e1000e: ESB2 config after link up
[linux-2.6/mini2440.git] / drivers / net / e1000e / 82571.c
blob11e72b64e87dfd3bb147dbe399ab3f6958f80396
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
45 #include <linux/netdevice.h>
46 #include <linux/delay.h>
47 #include <linux/pci.h>
49 #include "e1000.h"
51 #define ID_LED_RESERVED_F746 0xF746
52 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
53 (ID_LED_OFF1_ON2 << 8) | \
54 (ID_LED_DEF1_DEF2 << 4) | \
55 (ID_LED_DEF1_DEF2))
57 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
59 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
62 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
64 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
65 u16 words, u16 *data);
66 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
67 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
68 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
69 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
70 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
71 static s32 e1000_led_on_82574(struct e1000_hw *hw);
73 /**
74 * e1000_init_phy_params_82571 - Init PHY func ptrs.
75 * @hw: pointer to the HW structure
77 * This is a function pointer entry point called by the api module.
78 **/
79 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
81 struct e1000_phy_info *phy = &hw->phy;
82 s32 ret_val;
84 if (hw->phy.media_type != e1000_media_type_copper) {
85 phy->type = e1000_phy_none;
86 return 0;
89 phy->addr = 1;
90 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
91 phy->reset_delay_us = 100;
93 switch (hw->mac.type) {
94 case e1000_82571:
95 case e1000_82572:
96 phy->type = e1000_phy_igp_2;
97 break;
98 case e1000_82573:
99 phy->type = e1000_phy_m88;
100 break;
101 case e1000_82574:
102 phy->type = e1000_phy_bm;
103 break;
104 default:
105 return -E1000_ERR_PHY;
106 break;
109 /* This can only be done after all function pointers are setup. */
110 ret_val = e1000_get_phy_id_82571(hw);
112 /* Verify phy id */
113 switch (hw->mac.type) {
114 case e1000_82571:
115 case e1000_82572:
116 if (phy->id != IGP01E1000_I_PHY_ID)
117 return -E1000_ERR_PHY;
118 break;
119 case e1000_82573:
120 if (phy->id != M88E1111_I_PHY_ID)
121 return -E1000_ERR_PHY;
122 break;
123 case e1000_82574:
124 if (phy->id != BME1000_E_PHY_ID_R2)
125 return -E1000_ERR_PHY;
126 break;
127 default:
128 return -E1000_ERR_PHY;
129 break;
132 return 0;
136 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
137 * @hw: pointer to the HW structure
139 * This is a function pointer entry point called by the api module.
141 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
143 struct e1000_nvm_info *nvm = &hw->nvm;
144 u32 eecd = er32(EECD);
145 u16 size;
147 nvm->opcode_bits = 8;
148 nvm->delay_usec = 1;
149 switch (nvm->override) {
150 case e1000_nvm_override_spi_large:
151 nvm->page_size = 32;
152 nvm->address_bits = 16;
153 break;
154 case e1000_nvm_override_spi_small:
155 nvm->page_size = 8;
156 nvm->address_bits = 8;
157 break;
158 default:
159 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161 break;
164 switch (hw->mac.type) {
165 case e1000_82573:
166 case e1000_82574:
167 if (((eecd >> 15) & 0x3) == 0x3) {
168 nvm->type = e1000_nvm_flash_hw;
169 nvm->word_size = 2048;
171 * Autonomous Flash update bit must be cleared due
172 * to Flash update issue.
174 eecd &= ~E1000_EECD_AUPDEN;
175 ew32(EECD, eecd);
176 break;
178 /* Fall Through */
179 default:
180 nvm->type = e1000_nvm_eeprom_spi;
181 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
182 E1000_EECD_SIZE_EX_SHIFT);
184 * Added to a constant, "size" becomes the left-shift value
185 * for setting word_size.
187 size += NVM_WORD_SIZE_BASE_SHIFT;
189 /* EEPROM access above 16k is unsupported */
190 if (size > 14)
191 size = 14;
192 nvm->word_size = 1 << size;
193 break;
196 return 0;
200 * e1000_init_mac_params_82571 - Init MAC func ptrs.
201 * @hw: pointer to the HW structure
203 * This is a function pointer entry point called by the api module.
205 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 struct e1000_hw *hw = &adapter->hw;
208 struct e1000_mac_info *mac = &hw->mac;
209 struct e1000_mac_operations *func = &mac->ops;
211 /* Set media type */
212 switch (adapter->pdev->device) {
213 case E1000_DEV_ID_82571EB_FIBER:
214 case E1000_DEV_ID_82572EI_FIBER:
215 case E1000_DEV_ID_82571EB_QUAD_FIBER:
216 hw->phy.media_type = e1000_media_type_fiber;
217 break;
218 case E1000_DEV_ID_82571EB_SERDES:
219 case E1000_DEV_ID_82572EI_SERDES:
220 case E1000_DEV_ID_82571EB_SERDES_DUAL:
221 case E1000_DEV_ID_82571EB_SERDES_QUAD:
222 hw->phy.media_type = e1000_media_type_internal_serdes;
223 break;
224 default:
225 hw->phy.media_type = e1000_media_type_copper;
226 break;
229 /* Set mta register count */
230 mac->mta_reg_count = 128;
231 /* Set rar entry count */
232 mac->rar_entry_count = E1000_RAR_ENTRIES;
233 /* Set if manageability features are enabled. */
234 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
236 /* check for link */
237 switch (hw->phy.media_type) {
238 case e1000_media_type_copper:
239 func->setup_physical_interface = e1000_setup_copper_link_82571;
240 func->check_for_link = e1000e_check_for_copper_link;
241 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
242 break;
243 case e1000_media_type_fiber:
244 func->setup_physical_interface =
245 e1000_setup_fiber_serdes_link_82571;
246 func->check_for_link = e1000e_check_for_fiber_link;
247 func->get_link_up_info =
248 e1000e_get_speed_and_duplex_fiber_serdes;
249 break;
250 case e1000_media_type_internal_serdes:
251 func->setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 func->check_for_link = e1000e_check_for_serdes_link;
254 func->get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
256 break;
257 default:
258 return -E1000_ERR_CONFIG;
259 break;
262 switch (hw->mac.type) {
263 case e1000_82574:
264 func->check_mng_mode = e1000_check_mng_mode_82574;
265 func->led_on = e1000_led_on_82574;
266 break;
267 default:
268 func->check_mng_mode = e1000e_check_mng_mode_generic;
269 func->led_on = e1000e_led_on_generic;
270 break;
273 return 0;
276 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
278 struct e1000_hw *hw = &adapter->hw;
279 static int global_quad_port_a; /* global port a indication */
280 struct pci_dev *pdev = adapter->pdev;
281 u16 eeprom_data = 0;
282 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
283 s32 rc;
285 rc = e1000_init_mac_params_82571(adapter);
286 if (rc)
287 return rc;
289 rc = e1000_init_nvm_params_82571(hw);
290 if (rc)
291 return rc;
293 rc = e1000_init_phy_params_82571(hw);
294 if (rc)
295 return rc;
297 /* tag quad port adapters first, it's used below */
298 switch (pdev->device) {
299 case E1000_DEV_ID_82571EB_QUAD_COPPER:
300 case E1000_DEV_ID_82571EB_QUAD_FIBER:
301 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
302 case E1000_DEV_ID_82571PT_QUAD_COPPER:
303 adapter->flags |= FLAG_IS_QUAD_PORT;
304 /* mark the first port */
305 if (global_quad_port_a == 0)
306 adapter->flags |= FLAG_IS_QUAD_PORT_A;
307 /* Reset for multiple quad port adapters */
308 global_quad_port_a++;
309 if (global_quad_port_a == 4)
310 global_quad_port_a = 0;
311 break;
312 default:
313 break;
316 switch (adapter->hw.mac.type) {
317 case e1000_82571:
318 /* these dual ports don't have WoL on port B at all */
319 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
320 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
321 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
322 (is_port_b))
323 adapter->flags &= ~FLAG_HAS_WOL;
324 /* quad ports only support WoL on port A */
325 if (adapter->flags & FLAG_IS_QUAD_PORT &&
326 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
327 adapter->flags &= ~FLAG_HAS_WOL;
328 /* Does not support WoL on any port */
329 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
330 adapter->flags &= ~FLAG_HAS_WOL;
331 break;
333 case e1000_82573:
334 if (pdev->device == E1000_DEV_ID_82573L) {
335 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
336 &eeprom_data);
337 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
338 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
340 break;
341 default:
342 break;
345 return 0;
349 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
350 * @hw: pointer to the HW structure
352 * Reads the PHY registers and stores the PHY ID and possibly the PHY
353 * revision in the hardware structure.
355 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
357 struct e1000_phy_info *phy = &hw->phy;
358 s32 ret_val;
359 u16 phy_id = 0;
361 switch (hw->mac.type) {
362 case e1000_82571:
363 case e1000_82572:
365 * The 82571 firmware may still be configuring the PHY.
366 * In this case, we cannot access the PHY until the
367 * configuration is done. So we explicitly set the
368 * PHY ID.
370 phy->id = IGP01E1000_I_PHY_ID;
371 break;
372 case e1000_82573:
373 return e1000e_get_phy_id(hw);
374 break;
375 case e1000_82574:
376 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
377 if (ret_val)
378 return ret_val;
380 phy->id = (u32)(phy_id << 16);
381 udelay(20);
382 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
383 if (ret_val)
384 return ret_val;
386 phy->id |= (u32)(phy_id);
387 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
388 break;
389 default:
390 return -E1000_ERR_PHY;
391 break;
394 return 0;
398 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
399 * @hw: pointer to the HW structure
401 * Acquire the HW semaphore to access the PHY or NVM
403 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
405 u32 swsm;
406 s32 timeout = hw->nvm.word_size + 1;
407 s32 i = 0;
409 /* Get the FW semaphore. */
410 for (i = 0; i < timeout; i++) {
411 swsm = er32(SWSM);
412 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
414 /* Semaphore acquired if bit latched */
415 if (er32(SWSM) & E1000_SWSM_SWESMBI)
416 break;
418 udelay(50);
421 if (i == timeout) {
422 /* Release semaphores */
423 e1000e_put_hw_semaphore(hw);
424 hw_dbg(hw, "Driver can't access the NVM\n");
425 return -E1000_ERR_NVM;
428 return 0;
432 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
433 * @hw: pointer to the HW structure
435 * Release hardware semaphore used to access the PHY or NVM
437 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
439 u32 swsm;
441 swsm = er32(SWSM);
443 swsm &= ~E1000_SWSM_SWESMBI;
445 ew32(SWSM, swsm);
449 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
450 * @hw: pointer to the HW structure
452 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
453 * Then for non-82573 hardware, set the EEPROM access request bit and wait
454 * for EEPROM access grant bit. If the access grant bit is not set, release
455 * hardware semaphore.
457 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
459 s32 ret_val;
461 ret_val = e1000_get_hw_semaphore_82571(hw);
462 if (ret_val)
463 return ret_val;
465 if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574)
466 ret_val = e1000e_acquire_nvm(hw);
468 if (ret_val)
469 e1000_put_hw_semaphore_82571(hw);
471 return ret_val;
475 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
476 * @hw: pointer to the HW structure
478 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
480 static void e1000_release_nvm_82571(struct e1000_hw *hw)
482 e1000e_release_nvm(hw);
483 e1000_put_hw_semaphore_82571(hw);
487 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
488 * @hw: pointer to the HW structure
489 * @offset: offset within the EEPROM to be written to
490 * @words: number of words to write
491 * @data: 16 bit word(s) to be written to the EEPROM
493 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
495 * If e1000e_update_nvm_checksum is not called after this function, the
496 * EEPROM will most likely contain an invalid checksum.
498 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
499 u16 *data)
501 s32 ret_val;
503 switch (hw->mac.type) {
504 case e1000_82573:
505 case e1000_82574:
506 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
507 break;
508 case e1000_82571:
509 case e1000_82572:
510 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
511 break;
512 default:
513 ret_val = -E1000_ERR_NVM;
514 break;
517 return ret_val;
521 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
522 * @hw: pointer to the HW structure
524 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
525 * up to the checksum. Then calculates the EEPROM checksum and writes the
526 * value to the EEPROM.
528 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
530 u32 eecd;
531 s32 ret_val;
532 u16 i;
534 ret_val = e1000e_update_nvm_checksum_generic(hw);
535 if (ret_val)
536 return ret_val;
539 * If our nvm is an EEPROM, then we're done
540 * otherwise, commit the checksum to the flash NVM.
542 if (hw->nvm.type != e1000_nvm_flash_hw)
543 return ret_val;
545 /* Check for pending operations. */
546 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
547 msleep(1);
548 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
549 break;
552 if (i == E1000_FLASH_UPDATES)
553 return -E1000_ERR_NVM;
555 /* Reset the firmware if using STM opcode. */
556 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
558 * The enabling of and the actual reset must be done
559 * in two write cycles.
561 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
562 e1e_flush();
563 ew32(HICR, E1000_HICR_FW_RESET);
566 /* Commit the write to flash */
567 eecd = er32(EECD) | E1000_EECD_FLUPD;
568 ew32(EECD, eecd);
570 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
571 msleep(1);
572 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
573 break;
576 if (i == E1000_FLASH_UPDATES)
577 return -E1000_ERR_NVM;
579 return 0;
583 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
584 * @hw: pointer to the HW structure
586 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
587 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
589 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
591 if (hw->nvm.type == e1000_nvm_flash_hw)
592 e1000_fix_nvm_checksum_82571(hw);
594 return e1000e_validate_nvm_checksum_generic(hw);
598 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
599 * @hw: pointer to the HW structure
600 * @offset: offset within the EEPROM to be written to
601 * @words: number of words to write
602 * @data: 16 bit word(s) to be written to the EEPROM
604 * After checking for invalid values, poll the EEPROM to ensure the previous
605 * command has completed before trying to write the next word. After write
606 * poll for completion.
608 * If e1000e_update_nvm_checksum is not called after this function, the
609 * EEPROM will most likely contain an invalid checksum.
611 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
612 u16 words, u16 *data)
614 struct e1000_nvm_info *nvm = &hw->nvm;
615 u32 i;
616 u32 eewr = 0;
617 s32 ret_val = 0;
620 * A check for invalid values: offset too large, too many words,
621 * and not enough words.
623 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
624 (words == 0)) {
625 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
626 return -E1000_ERR_NVM;
629 for (i = 0; i < words; i++) {
630 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
631 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
632 E1000_NVM_RW_REG_START;
634 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
635 if (ret_val)
636 break;
638 ew32(EEWR, eewr);
640 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
641 if (ret_val)
642 break;
645 return ret_val;
649 * e1000_get_cfg_done_82571 - Poll for configuration done
650 * @hw: pointer to the HW structure
652 * Reads the management control register for the config done bit to be set.
654 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
656 s32 timeout = PHY_CFG_TIMEOUT;
658 while (timeout) {
659 if (er32(EEMNGCTL) &
660 E1000_NVM_CFG_DONE_PORT_0)
661 break;
662 msleep(1);
663 timeout--;
665 if (!timeout) {
666 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
667 return -E1000_ERR_RESET;
670 return 0;
674 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
675 * @hw: pointer to the HW structure
676 * @active: TRUE to enable LPLU, FALSE to disable
678 * Sets the LPLU D0 state according to the active flag. When activating LPLU
679 * this function also disables smart speed and vice versa. LPLU will not be
680 * activated unless the device autonegotiation advertisement meets standards
681 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
682 * pointer entry point only called by PHY setup routines.
684 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
686 struct e1000_phy_info *phy = &hw->phy;
687 s32 ret_val;
688 u16 data;
690 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
691 if (ret_val)
692 return ret_val;
694 if (active) {
695 data |= IGP02E1000_PM_D0_LPLU;
696 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
697 if (ret_val)
698 return ret_val;
700 /* When LPLU is enabled, we should disable SmartSpeed */
701 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
702 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
703 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
704 if (ret_val)
705 return ret_val;
706 } else {
707 data &= ~IGP02E1000_PM_D0_LPLU;
708 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
710 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
711 * during Dx states where the power conservation is most
712 * important. During driver activity we should enable
713 * SmartSpeed, so performance is maintained.
715 if (phy->smart_speed == e1000_smart_speed_on) {
716 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
717 &data);
718 if (ret_val)
719 return ret_val;
721 data |= IGP01E1000_PSCFR_SMART_SPEED;
722 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
723 data);
724 if (ret_val)
725 return ret_val;
726 } else if (phy->smart_speed == e1000_smart_speed_off) {
727 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
728 &data);
729 if (ret_val)
730 return ret_val;
732 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
733 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
734 data);
735 if (ret_val)
736 return ret_val;
740 return 0;
744 * e1000_reset_hw_82571 - Reset hardware
745 * @hw: pointer to the HW structure
747 * This resets the hardware into a known state. This is a
748 * function pointer entry point called by the api module.
750 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
752 u32 ctrl;
753 u32 extcnf_ctrl;
754 u32 ctrl_ext;
755 u32 icr;
756 s32 ret_val;
757 u16 i = 0;
760 * Prevent the PCI-E bus from sticking if there is no TLP connection
761 * on the last TLP read/write transaction when MAC is reset.
763 ret_val = e1000e_disable_pcie_master(hw);
764 if (ret_val)
765 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
767 hw_dbg(hw, "Masking off all interrupts\n");
768 ew32(IMC, 0xffffffff);
770 ew32(RCTL, 0);
771 ew32(TCTL, E1000_TCTL_PSP);
772 e1e_flush();
774 msleep(10);
777 * Must acquire the MDIO ownership before MAC reset.
778 * Ownership defaults to firmware after a reset.
780 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
781 extcnf_ctrl = er32(EXTCNF_CTRL);
782 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
784 do {
785 ew32(EXTCNF_CTRL, extcnf_ctrl);
786 extcnf_ctrl = er32(EXTCNF_CTRL);
788 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
789 break;
791 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
793 msleep(2);
794 i++;
795 } while (i < MDIO_OWNERSHIP_TIMEOUT);
798 ctrl = er32(CTRL);
800 hw_dbg(hw, "Issuing a global reset to MAC\n");
801 ew32(CTRL, ctrl | E1000_CTRL_RST);
803 if (hw->nvm.type == e1000_nvm_flash_hw) {
804 udelay(10);
805 ctrl_ext = er32(CTRL_EXT);
806 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
807 ew32(CTRL_EXT, ctrl_ext);
808 e1e_flush();
811 ret_val = e1000e_get_auto_rd_done(hw);
812 if (ret_val)
813 /* We don't want to continue accessing MAC registers. */
814 return ret_val;
817 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
818 * Need to wait for Phy configuration completion before accessing
819 * NVM and Phy.
821 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574)
822 msleep(25);
824 /* Clear any pending interrupt events. */
825 ew32(IMC, 0xffffffff);
826 icr = er32(ICR);
828 if (hw->mac.type == e1000_82571 &&
829 hw->dev_spec.e82571.alt_mac_addr_is_present)
830 e1000e_set_laa_state_82571(hw, true);
832 return 0;
836 * e1000_init_hw_82571 - Initialize hardware
837 * @hw: pointer to the HW structure
839 * This inits the hardware readying it for operation.
841 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
843 struct e1000_mac_info *mac = &hw->mac;
844 u32 reg_data;
845 s32 ret_val;
846 u16 i;
847 u16 rar_count = mac->rar_entry_count;
849 e1000_initialize_hw_bits_82571(hw);
851 /* Initialize identification LED */
852 ret_val = e1000e_id_led_init(hw);
853 if (ret_val) {
854 hw_dbg(hw, "Error initializing identification LED\n");
855 return ret_val;
858 /* Disabling VLAN filtering */
859 hw_dbg(hw, "Initializing the IEEE VLAN\n");
860 e1000e_clear_vfta(hw);
862 /* Setup the receive address. */
864 * If, however, a locally administered address was assigned to the
865 * 82571, we must reserve a RAR for it to work around an issue where
866 * resetting one port will reload the MAC on the other port.
868 if (e1000e_get_laa_state_82571(hw))
869 rar_count--;
870 e1000e_init_rx_addrs(hw, rar_count);
872 /* Zero out the Multicast HASH table */
873 hw_dbg(hw, "Zeroing the MTA\n");
874 for (i = 0; i < mac->mta_reg_count; i++)
875 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
877 /* Setup link and flow control */
878 ret_val = e1000_setup_link_82571(hw);
880 /* Set the transmit descriptor write-back policy */
881 reg_data = er32(TXDCTL(0));
882 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
883 E1000_TXDCTL_FULL_TX_DESC_WB |
884 E1000_TXDCTL_COUNT_DESC;
885 ew32(TXDCTL(0), reg_data);
887 /* ...for both queues. */
888 if (mac->type != e1000_82573 && mac->type != e1000_82574) {
889 reg_data = er32(TXDCTL(1));
890 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
891 E1000_TXDCTL_FULL_TX_DESC_WB |
892 E1000_TXDCTL_COUNT_DESC;
893 ew32(TXDCTL(1), reg_data);
894 } else {
895 e1000e_enable_tx_pkt_filtering(hw);
896 reg_data = er32(GCR);
897 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
898 ew32(GCR, reg_data);
902 * Clear all of the statistics registers (clear on read). It is
903 * important that we do this after we have tried to establish link
904 * because the symbol error count will increment wildly if there
905 * is no link.
907 e1000_clear_hw_cntrs_82571(hw);
909 return ret_val;
913 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
914 * @hw: pointer to the HW structure
916 * Initializes required hardware-dependent bits needed for normal operation.
918 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
920 u32 reg;
922 /* Transmit Descriptor Control 0 */
923 reg = er32(TXDCTL(0));
924 reg |= (1 << 22);
925 ew32(TXDCTL(0), reg);
927 /* Transmit Descriptor Control 1 */
928 reg = er32(TXDCTL(1));
929 reg |= (1 << 22);
930 ew32(TXDCTL(1), reg);
932 /* Transmit Arbitration Control 0 */
933 reg = er32(TARC(0));
934 reg &= ~(0xF << 27); /* 30:27 */
935 switch (hw->mac.type) {
936 case e1000_82571:
937 case e1000_82572:
938 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
939 break;
940 default:
941 break;
943 ew32(TARC(0), reg);
945 /* Transmit Arbitration Control 1 */
946 reg = er32(TARC(1));
947 switch (hw->mac.type) {
948 case e1000_82571:
949 case e1000_82572:
950 reg &= ~((1 << 29) | (1 << 30));
951 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
952 if (er32(TCTL) & E1000_TCTL_MULR)
953 reg &= ~(1 << 28);
954 else
955 reg |= (1 << 28);
956 ew32(TARC(1), reg);
957 break;
958 default:
959 break;
962 /* Device Control */
963 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
964 reg = er32(CTRL);
965 reg &= ~(1 << 29);
966 ew32(CTRL, reg);
969 /* Extended Device Control */
970 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
971 reg = er32(CTRL_EXT);
972 reg &= ~(1 << 23);
973 reg |= (1 << 22);
974 ew32(CTRL_EXT, reg);
977 if (hw->mac.type == e1000_82571) {
978 reg = er32(PBA_ECC);
979 reg |= E1000_PBA_ECC_CORR_EN;
980 ew32(PBA_ECC, reg);
983 /* PCI-Ex Control Register */
984 if (hw->mac.type == e1000_82574) {
985 reg = er32(GCR);
986 reg |= (1 << 22);
987 ew32(GCR, reg);
990 return;
994 * e1000e_clear_vfta - Clear VLAN filter table
995 * @hw: pointer to the HW structure
997 * Clears the register array which contains the VLAN filter table by
998 * setting all the values to 0.
1000 void e1000e_clear_vfta(struct e1000_hw *hw)
1002 u32 offset;
1003 u32 vfta_value = 0;
1004 u32 vfta_offset = 0;
1005 u32 vfta_bit_in_reg = 0;
1007 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
1008 if (hw->mng_cookie.vlan_id != 0) {
1010 * The VFTA is a 4096b bit-field, each identifying
1011 * a single VLAN ID. The following operations
1012 * determine which 32b entry (i.e. offset) into the
1013 * array we want to set the VLAN ID (i.e. bit) of
1014 * the manageability unit.
1016 vfta_offset = (hw->mng_cookie.vlan_id >>
1017 E1000_VFTA_ENTRY_SHIFT) &
1018 E1000_VFTA_ENTRY_MASK;
1019 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1020 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1023 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1025 * If the offset we want to clear is the same offset of the
1026 * manageability VLAN ID, then clear all bits except that of
1027 * the manageability unit.
1029 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1030 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1031 e1e_flush();
1036 * e1000_check_mng_mode_82574 - Check manageability is enabled
1037 * @hw: pointer to the HW structure
1039 * Reads the NVM Initialization Control Word 2 and returns true
1040 * (>0) if any manageability is enabled, else false (0).
1042 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1044 u16 data;
1046 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1047 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1051 * e1000_led_on_82574 - Turn LED on
1052 * @hw: pointer to the HW structure
1054 * Turn LED on.
1056 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1058 u32 ctrl;
1059 u32 i;
1061 ctrl = hw->mac.ledctl_mode2;
1062 if (!(E1000_STATUS_LU & er32(STATUS))) {
1064 * If no link, then turn LED on by setting the invert bit
1065 * for each LED that's "on" (0x0E) in ledctl_mode2.
1067 for (i = 0; i < 4; i++)
1068 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1069 E1000_LEDCTL_MODE_LED_ON)
1070 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1072 ew32(LEDCTL, ctrl);
1074 return 0;
1078 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
1079 * @hw: pointer to the HW structure
1080 * @mc_addr_list: array of multicast addresses to program
1081 * @mc_addr_count: number of multicast addresses to program
1082 * @rar_used_count: the first RAR register free to program
1083 * @rar_count: total number of supported Receive Address Registers
1085 * Updates the Receive Address Registers and Multicast Table Array.
1086 * The caller must have a packed mc_addr_list of multicast addresses.
1087 * The parameter rar_count will usually be hw->mac.rar_entry_count
1088 * unless there are workarounds that change this.
1090 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1091 u8 *mc_addr_list,
1092 u32 mc_addr_count,
1093 u32 rar_used_count,
1094 u32 rar_count)
1096 if (e1000e_get_laa_state_82571(hw))
1097 rar_count--;
1099 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1100 rar_used_count, rar_count);
1104 * e1000_setup_link_82571 - Setup flow control and link settings
1105 * @hw: pointer to the HW structure
1107 * Determines which flow control settings to use, then configures flow
1108 * control. Calls the appropriate media-specific link configuration
1109 * function. Assuming the adapter has a valid link partner, a valid link
1110 * should be established. Assumes the hardware has previously been reset
1111 * and the transmitter and receiver are not enabled.
1113 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1116 * 82573 does not have a word in the NVM to determine
1117 * the default flow control setting, so we explicitly
1118 * set it to full.
1120 if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1121 hw->fc.type == e1000_fc_default)
1122 hw->fc.type = e1000_fc_full;
1124 return e1000e_setup_link(hw);
1128 * e1000_setup_copper_link_82571 - Configure copper link settings
1129 * @hw: pointer to the HW structure
1131 * Configures the link for auto-neg or forced speed and duplex. Then we check
1132 * for link, once link is established calls to configure collision distance
1133 * and flow control are called.
1135 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1137 u32 ctrl;
1138 u32 led_ctrl;
1139 s32 ret_val;
1141 ctrl = er32(CTRL);
1142 ctrl |= E1000_CTRL_SLU;
1143 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1144 ew32(CTRL, ctrl);
1146 switch (hw->phy.type) {
1147 case e1000_phy_m88:
1148 case e1000_phy_bm:
1149 ret_val = e1000e_copper_link_setup_m88(hw);
1150 break;
1151 case e1000_phy_igp_2:
1152 ret_val = e1000e_copper_link_setup_igp(hw);
1153 /* Setup activity LED */
1154 led_ctrl = er32(LEDCTL);
1155 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1156 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1157 ew32(LEDCTL, led_ctrl);
1158 break;
1159 default:
1160 return -E1000_ERR_PHY;
1161 break;
1164 if (ret_val)
1165 return ret_val;
1167 ret_val = e1000e_setup_copper_link(hw);
1169 return ret_val;
1173 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1174 * @hw: pointer to the HW structure
1176 * Configures collision distance and flow control for fiber and serdes links.
1177 * Upon successful setup, poll for link.
1179 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1181 switch (hw->mac.type) {
1182 case e1000_82571:
1183 case e1000_82572:
1185 * If SerDes loopback mode is entered, there is no form
1186 * of reset to take the adapter out of that mode. So we
1187 * have to explicitly take the adapter out of loopback
1188 * mode. This prevents drivers from twiddling their thumbs
1189 * if another tool failed to take it out of loopback mode.
1191 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1192 break;
1193 default:
1194 break;
1197 return e1000e_setup_fiber_serdes_link(hw);
1201 * e1000_valid_led_default_82571 - Verify a valid default LED config
1202 * @hw: pointer to the HW structure
1203 * @data: pointer to the NVM (EEPROM)
1205 * Read the EEPROM for the current default LED configuration. If the
1206 * LED configuration is not valid, set to a valid LED configuration.
1208 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1210 s32 ret_val;
1212 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1213 if (ret_val) {
1214 hw_dbg(hw, "NVM Read Error\n");
1215 return ret_val;
1218 if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1219 *data == ID_LED_RESERVED_F746)
1220 *data = ID_LED_DEFAULT_82573;
1221 else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1222 *data = ID_LED_DEFAULT;
1224 return 0;
1228 * e1000e_get_laa_state_82571 - Get locally administered address state
1229 * @hw: pointer to the HW structure
1231 * Retrieve and return the current locally administered address state.
1233 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1235 if (hw->mac.type != e1000_82571)
1236 return 0;
1238 return hw->dev_spec.e82571.laa_is_present;
1242 * e1000e_set_laa_state_82571 - Set locally administered address state
1243 * @hw: pointer to the HW structure
1244 * @state: enable/disable locally administered address
1246 * Enable/Disable the current locally administers address state.
1248 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1250 if (hw->mac.type != e1000_82571)
1251 return;
1253 hw->dev_spec.e82571.laa_is_present = state;
1255 /* If workaround is activated... */
1256 if (state)
1258 * Hold a copy of the LAA in RAR[14] This is done so that
1259 * between the time RAR[0] gets clobbered and the time it
1260 * gets fixed, the actual LAA is in one of the RARs and no
1261 * incoming packets directed to this port are dropped.
1262 * Eventually the LAA will be in RAR[0] and RAR[14].
1264 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1268 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1269 * @hw: pointer to the HW structure
1271 * Verifies that the EEPROM has completed the update. After updating the
1272 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1273 * the checksum fix is not implemented, we need to set the bit and update
1274 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1275 * we need to return bad checksum.
1277 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1279 struct e1000_nvm_info *nvm = &hw->nvm;
1280 s32 ret_val;
1281 u16 data;
1283 if (nvm->type != e1000_nvm_flash_hw)
1284 return 0;
1287 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1288 * 10h-12h. Checksum may need to be fixed.
1290 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1291 if (ret_val)
1292 return ret_val;
1294 if (!(data & 0x10)) {
1296 * Read 0x23 and check bit 15. This bit is a 1
1297 * when the checksum has already been fixed. If
1298 * the checksum is still wrong and this bit is a
1299 * 1, we need to return bad checksum. Otherwise,
1300 * we need to set this bit to a 1 and update the
1301 * checksum.
1303 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1304 if (ret_val)
1305 return ret_val;
1307 if (!(data & 0x8000)) {
1308 data |= 0x8000;
1309 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1310 if (ret_val)
1311 return ret_val;
1312 ret_val = e1000e_update_nvm_checksum(hw);
1316 return 0;
1320 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1321 * @hw: pointer to the HW structure
1323 * Clears the hardware counters by reading the counter registers.
1325 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1327 u32 temp;
1329 e1000e_clear_hw_cntrs_base(hw);
1331 temp = er32(PRC64);
1332 temp = er32(PRC127);
1333 temp = er32(PRC255);
1334 temp = er32(PRC511);
1335 temp = er32(PRC1023);
1336 temp = er32(PRC1522);
1337 temp = er32(PTC64);
1338 temp = er32(PTC127);
1339 temp = er32(PTC255);
1340 temp = er32(PTC511);
1341 temp = er32(PTC1023);
1342 temp = er32(PTC1522);
1344 temp = er32(ALGNERRC);
1345 temp = er32(RXERRC);
1346 temp = er32(TNCRS);
1347 temp = er32(CEXTERR);
1348 temp = er32(TSCTC);
1349 temp = er32(TSCTFC);
1351 temp = er32(MGTPRC);
1352 temp = er32(MGTPDC);
1353 temp = er32(MGTPTC);
1355 temp = er32(IAC);
1356 temp = er32(ICRXOC);
1358 temp = er32(ICRXPTC);
1359 temp = er32(ICRXATC);
1360 temp = er32(ICTXPTC);
1361 temp = er32(ICTXATC);
1362 temp = er32(ICTXQEC);
1363 temp = er32(ICTXQMTC);
1364 temp = er32(ICRXDMTC);
1367 static struct e1000_mac_operations e82571_mac_ops = {
1368 /* .check_mng_mode: mac type dependent */
1369 /* .check_for_link: media type dependent */
1370 .cleanup_led = e1000e_cleanup_led_generic,
1371 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1372 .get_bus_info = e1000e_get_bus_info_pcie,
1373 /* .get_link_up_info: media type dependent */
1374 /* .led_on: mac type dependent */
1375 .led_off = e1000e_led_off_generic,
1376 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1377 .reset_hw = e1000_reset_hw_82571,
1378 .init_hw = e1000_init_hw_82571,
1379 .setup_link = e1000_setup_link_82571,
1380 /* .setup_physical_interface: media type dependent */
1383 static struct e1000_phy_operations e82_phy_ops_igp = {
1384 .acquire_phy = e1000_get_hw_semaphore_82571,
1385 .check_reset_block = e1000e_check_reset_block_generic,
1386 .commit_phy = NULL,
1387 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1388 .get_cfg_done = e1000_get_cfg_done_82571,
1389 .get_cable_length = e1000e_get_cable_length_igp_2,
1390 .get_phy_info = e1000e_get_phy_info_igp,
1391 .read_phy_reg = e1000e_read_phy_reg_igp,
1392 .release_phy = e1000_put_hw_semaphore_82571,
1393 .reset_phy = e1000e_phy_hw_reset_generic,
1394 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1395 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1396 .write_phy_reg = e1000e_write_phy_reg_igp,
1397 .cfg_on_link_up = NULL,
1400 static struct e1000_phy_operations e82_phy_ops_m88 = {
1401 .acquire_phy = e1000_get_hw_semaphore_82571,
1402 .check_reset_block = e1000e_check_reset_block_generic,
1403 .commit_phy = e1000e_phy_sw_reset,
1404 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1405 .get_cfg_done = e1000e_get_cfg_done,
1406 .get_cable_length = e1000e_get_cable_length_m88,
1407 .get_phy_info = e1000e_get_phy_info_m88,
1408 .read_phy_reg = e1000e_read_phy_reg_m88,
1409 .release_phy = e1000_put_hw_semaphore_82571,
1410 .reset_phy = e1000e_phy_hw_reset_generic,
1411 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1412 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1413 .write_phy_reg = e1000e_write_phy_reg_m88,
1414 .cfg_on_link_up = NULL,
1417 static struct e1000_phy_operations e82_phy_ops_bm = {
1418 .acquire_phy = e1000_get_hw_semaphore_82571,
1419 .check_reset_block = e1000e_check_reset_block_generic,
1420 .commit_phy = e1000e_phy_sw_reset,
1421 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1422 .get_cfg_done = e1000e_get_cfg_done,
1423 .get_cable_length = e1000e_get_cable_length_m88,
1424 .get_phy_info = e1000e_get_phy_info_m88,
1425 .read_phy_reg = e1000e_read_phy_reg_bm2,
1426 .release_phy = e1000_put_hw_semaphore_82571,
1427 .reset_phy = e1000e_phy_hw_reset_generic,
1428 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1429 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1430 .write_phy_reg = e1000e_write_phy_reg_bm2,
1431 .cfg_on_link_up = NULL,
1434 static struct e1000_nvm_operations e82571_nvm_ops = {
1435 .acquire_nvm = e1000_acquire_nvm_82571,
1436 .read_nvm = e1000e_read_nvm_eerd,
1437 .release_nvm = e1000_release_nvm_82571,
1438 .update_nvm = e1000_update_nvm_checksum_82571,
1439 .valid_led_default = e1000_valid_led_default_82571,
1440 .validate_nvm = e1000_validate_nvm_checksum_82571,
1441 .write_nvm = e1000_write_nvm_82571,
1444 struct e1000_info e1000_82571_info = {
1445 .mac = e1000_82571,
1446 .flags = FLAG_HAS_HW_VLAN_FILTER
1447 | FLAG_HAS_JUMBO_FRAMES
1448 | FLAG_HAS_WOL
1449 | FLAG_APME_IN_CTRL3
1450 | FLAG_RX_CSUM_ENABLED
1451 | FLAG_HAS_CTRLEXT_ON_LOAD
1452 | FLAG_HAS_SMART_POWER_DOWN
1453 | FLAG_RESET_OVERWRITES_LAA /* errata */
1454 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1455 | FLAG_APME_CHECK_PORT_B,
1456 .pba = 38,
1457 .get_variants = e1000_get_variants_82571,
1458 .mac_ops = &e82571_mac_ops,
1459 .phy_ops = &e82_phy_ops_igp,
1460 .nvm_ops = &e82571_nvm_ops,
1463 struct e1000_info e1000_82572_info = {
1464 .mac = e1000_82572,
1465 .flags = FLAG_HAS_HW_VLAN_FILTER
1466 | FLAG_HAS_JUMBO_FRAMES
1467 | FLAG_HAS_WOL
1468 | FLAG_APME_IN_CTRL3
1469 | FLAG_RX_CSUM_ENABLED
1470 | FLAG_HAS_CTRLEXT_ON_LOAD
1471 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1472 .pba = 38,
1473 .get_variants = e1000_get_variants_82571,
1474 .mac_ops = &e82571_mac_ops,
1475 .phy_ops = &e82_phy_ops_igp,
1476 .nvm_ops = &e82571_nvm_ops,
1479 struct e1000_info e1000_82573_info = {
1480 .mac = e1000_82573,
1481 .flags = FLAG_HAS_HW_VLAN_FILTER
1482 | FLAG_HAS_JUMBO_FRAMES
1483 | FLAG_HAS_WOL
1484 | FLAG_APME_IN_CTRL3
1485 | FLAG_RX_CSUM_ENABLED
1486 | FLAG_HAS_SMART_POWER_DOWN
1487 | FLAG_HAS_AMT
1488 | FLAG_HAS_ERT
1489 | FLAG_HAS_SWSM_ON_LOAD,
1490 .pba = 20,
1491 .get_variants = e1000_get_variants_82571,
1492 .mac_ops = &e82571_mac_ops,
1493 .phy_ops = &e82_phy_ops_m88,
1494 .nvm_ops = &e82571_nvm_ops,
1497 struct e1000_info e1000_82574_info = {
1498 .mac = e1000_82574,
1499 .flags = FLAG_HAS_HW_VLAN_FILTER
1500 | FLAG_HAS_MSIX
1501 | FLAG_HAS_JUMBO_FRAMES
1502 | FLAG_HAS_WOL
1503 | FLAG_APME_IN_CTRL3
1504 | FLAG_RX_CSUM_ENABLED
1505 | FLAG_HAS_SMART_POWER_DOWN
1506 | FLAG_HAS_AMT
1507 | FLAG_HAS_CTRLEXT_ON_LOAD,
1508 .pba = 20,
1509 .get_variants = e1000_get_variants_82571,
1510 .mac_ops = &e82571_mac_ops,
1511 .phy_ops = &e82_phy_ops_bm,
1512 .nvm_ops = &e82571_nvm_ops,