x86: irq no should not use hex in /proc/interrupts
[linux-2.6/mini2440.git] / drivers / net / igb / igb_ethtool.c
blob58906c984be9f641e8e87c1acac40a098387a022
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
38 #include "igb.h"
40 struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 #ifdef CONFIG_IGB_LRO
97 { "lro_aggregated", IGB_STAT(lro_aggregated) },
98 { "lro_flushed", IGB_STAT(lro_flushed) },
99 { "lro_no_desc", IGB_STAT(lro_no_desc) },
100 #endif
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev->priv)->num_rx_queues + \
105 ((struct igb_adapter *)netdev->priv)->num_tx_queues) * \
106 (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN \
108 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
111 "Register test (offline)", "Eeprom test (offline)",
112 "Interrupt test (offline)", "Loopback test (offline)",
113 "Link test (on/offline)"
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
117 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
119 struct igb_adapter *adapter = netdev_priv(netdev);
120 struct e1000_hw *hw = &adapter->hw;
122 if (hw->phy.media_type == e1000_media_type_copper) {
124 ecmd->supported = (SUPPORTED_10baseT_Half |
125 SUPPORTED_10baseT_Full |
126 SUPPORTED_100baseT_Half |
127 SUPPORTED_100baseT_Full |
128 SUPPORTED_1000baseT_Full|
129 SUPPORTED_Autoneg |
130 SUPPORTED_TP);
131 ecmd->advertising = ADVERTISED_TP;
133 if (hw->mac.autoneg == 1) {
134 ecmd->advertising |= ADVERTISED_Autoneg;
135 /* the e1000 autoneg seems to match ethtool nicely */
136 ecmd->advertising |= hw->phy.autoneg_advertised;
139 ecmd->port = PORT_TP;
140 ecmd->phy_address = hw->phy.addr;
141 } else {
142 ecmd->supported = (SUPPORTED_1000baseT_Full |
143 SUPPORTED_FIBRE |
144 SUPPORTED_Autoneg);
146 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147 ADVERTISED_FIBRE |
148 ADVERTISED_Autoneg);
150 ecmd->port = PORT_FIBRE;
153 ecmd->transceiver = XCVR_INTERNAL;
155 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
157 adapter->hw.mac.ops.get_speed_and_duplex(hw,
158 &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
162 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
165 if (adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
167 else
168 ecmd->duplex = DUPLEX_HALF;
169 } else {
170 ecmd->speed = -1;
171 ecmd->duplex = -1;
174 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
175 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 struct igb_adapter *adapter = netdev_priv(netdev);
182 struct e1000_hw *hw = &adapter->hw;
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw)) {
187 dev_err(&adapter->pdev->dev, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
189 return -EINVAL;
192 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193 msleep(1);
195 if (ecmd->autoneg == AUTONEG_ENABLE) {
196 hw->mac.autoneg = 1;
197 if (hw->phy.media_type == e1000_media_type_fiber)
198 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199 ADVERTISED_FIBRE |
200 ADVERTISED_Autoneg;
201 else
202 hw->phy.autoneg_advertised = ecmd->advertising |
203 ADVERTISED_TP |
204 ADVERTISED_Autoneg;
205 ecmd->advertising = hw->phy.autoneg_advertised;
206 } else
207 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
208 clear_bit(__IGB_RESETTING, &adapter->state);
209 return -EINVAL;
212 /* reset the link */
214 if (netif_running(adapter->netdev)) {
215 igb_down(adapter);
216 igb_up(adapter);
217 } else
218 igb_reset(adapter);
220 clear_bit(__IGB_RESETTING, &adapter->state);
221 return 0;
224 static void igb_get_pauseparam(struct net_device *netdev,
225 struct ethtool_pauseparam *pause)
227 struct igb_adapter *adapter = netdev_priv(netdev);
228 struct e1000_hw *hw = &adapter->hw;
230 pause->autoneg =
231 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
233 if (hw->fc.type == e1000_fc_rx_pause)
234 pause->rx_pause = 1;
235 else if (hw->fc.type == e1000_fc_tx_pause)
236 pause->tx_pause = 1;
237 else if (hw->fc.type == e1000_fc_full) {
238 pause->rx_pause = 1;
239 pause->tx_pause = 1;
243 static int igb_set_pauseparam(struct net_device *netdev,
244 struct ethtool_pauseparam *pause)
246 struct igb_adapter *adapter = netdev_priv(netdev);
247 struct e1000_hw *hw = &adapter->hw;
248 int retval = 0;
250 adapter->fc_autoneg = pause->autoneg;
252 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
253 msleep(1);
255 if (pause->rx_pause && pause->tx_pause)
256 hw->fc.type = e1000_fc_full;
257 else if (pause->rx_pause && !pause->tx_pause)
258 hw->fc.type = e1000_fc_rx_pause;
259 else if (!pause->rx_pause && pause->tx_pause)
260 hw->fc.type = e1000_fc_tx_pause;
261 else if (!pause->rx_pause && !pause->tx_pause)
262 hw->fc.type = e1000_fc_none;
264 hw->fc.original_type = hw->fc.type;
266 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
267 if (netif_running(adapter->netdev)) {
268 igb_down(adapter);
269 igb_up(adapter);
270 } else
271 igb_reset(adapter);
272 } else
273 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
274 igb_setup_link(hw) : igb_force_mac_fc(hw));
276 clear_bit(__IGB_RESETTING, &adapter->state);
277 return retval;
280 static u32 igb_get_rx_csum(struct net_device *netdev)
282 struct igb_adapter *adapter = netdev_priv(netdev);
283 return adapter->rx_csum;
286 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
288 struct igb_adapter *adapter = netdev_priv(netdev);
289 adapter->rx_csum = data;
291 return 0;
294 static u32 igb_get_tx_csum(struct net_device *netdev)
296 return (netdev->features & NETIF_F_HW_CSUM) != 0;
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
301 if (data)
302 netdev->features |= NETIF_F_HW_CSUM;
303 else
304 netdev->features &= ~NETIF_F_HW_CSUM;
306 return 0;
309 static int igb_set_tso(struct net_device *netdev, u32 data)
311 struct igb_adapter *adapter = netdev_priv(netdev);
313 if (data)
314 netdev->features |= NETIF_F_TSO;
315 else
316 netdev->features &= ~NETIF_F_TSO;
318 if (data)
319 netdev->features |= NETIF_F_TSO6;
320 else
321 netdev->features &= ~NETIF_F_TSO6;
323 dev_info(&adapter->pdev->dev, "TSO is %s\n",
324 data ? "Enabled" : "Disabled");
325 return 0;
328 static u32 igb_get_msglevel(struct net_device *netdev)
330 struct igb_adapter *adapter = netdev_priv(netdev);
331 return adapter->msg_enable;
334 static void igb_set_msglevel(struct net_device *netdev, u32 data)
336 struct igb_adapter *adapter = netdev_priv(netdev);
337 adapter->msg_enable = data;
340 static int igb_get_regs_len(struct net_device *netdev)
342 #define IGB_REGS_LEN 551
343 return IGB_REGS_LEN * sizeof(u32);
346 static void igb_get_regs(struct net_device *netdev,
347 struct ethtool_regs *regs, void *p)
349 struct igb_adapter *adapter = netdev_priv(netdev);
350 struct e1000_hw *hw = &adapter->hw;
351 u32 *regs_buff = p;
352 u8 i;
354 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
356 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358 /* General Registers */
359 regs_buff[0] = rd32(E1000_CTRL);
360 regs_buff[1] = rd32(E1000_STATUS);
361 regs_buff[2] = rd32(E1000_CTRL_EXT);
362 regs_buff[3] = rd32(E1000_MDIC);
363 regs_buff[4] = rd32(E1000_SCTL);
364 regs_buff[5] = rd32(E1000_CONNSW);
365 regs_buff[6] = rd32(E1000_VET);
366 regs_buff[7] = rd32(E1000_LEDCTL);
367 regs_buff[8] = rd32(E1000_PBA);
368 regs_buff[9] = rd32(E1000_PBS);
369 regs_buff[10] = rd32(E1000_FRTIMER);
370 regs_buff[11] = rd32(E1000_TCPTIMER);
372 /* NVM Register */
373 regs_buff[12] = rd32(E1000_EECD);
375 /* Interrupt */
376 /* Reading EICS for EICR because they read the
377 * same but EICS does not clear on read */
378 regs_buff[13] = rd32(E1000_EICS);
379 regs_buff[14] = rd32(E1000_EICS);
380 regs_buff[15] = rd32(E1000_EIMS);
381 regs_buff[16] = rd32(E1000_EIMC);
382 regs_buff[17] = rd32(E1000_EIAC);
383 regs_buff[18] = rd32(E1000_EIAM);
384 /* Reading ICS for ICR because they read the
385 * same but ICS does not clear on read */
386 regs_buff[19] = rd32(E1000_ICS);
387 regs_buff[20] = rd32(E1000_ICS);
388 regs_buff[21] = rd32(E1000_IMS);
389 regs_buff[22] = rd32(E1000_IMC);
390 regs_buff[23] = rd32(E1000_IAC);
391 regs_buff[24] = rd32(E1000_IAM);
392 regs_buff[25] = rd32(E1000_IMIRVP);
394 /* Flow Control */
395 regs_buff[26] = rd32(E1000_FCAL);
396 regs_buff[27] = rd32(E1000_FCAH);
397 regs_buff[28] = rd32(E1000_FCTTV);
398 regs_buff[29] = rd32(E1000_FCRTL);
399 regs_buff[30] = rd32(E1000_FCRTH);
400 regs_buff[31] = rd32(E1000_FCRTV);
402 /* Receive */
403 regs_buff[32] = rd32(E1000_RCTL);
404 regs_buff[33] = rd32(E1000_RXCSUM);
405 regs_buff[34] = rd32(E1000_RLPML);
406 regs_buff[35] = rd32(E1000_RFCTL);
407 regs_buff[36] = rd32(E1000_MRQC);
408 regs_buff[37] = rd32(E1000_VMD_CTL);
410 /* Transmit */
411 regs_buff[38] = rd32(E1000_TCTL);
412 regs_buff[39] = rd32(E1000_TCTL_EXT);
413 regs_buff[40] = rd32(E1000_TIPG);
414 regs_buff[41] = rd32(E1000_DTXCTL);
416 /* Wake Up */
417 regs_buff[42] = rd32(E1000_WUC);
418 regs_buff[43] = rd32(E1000_WUFC);
419 regs_buff[44] = rd32(E1000_WUS);
420 regs_buff[45] = rd32(E1000_IPAV);
421 regs_buff[46] = rd32(E1000_WUPL);
423 /* MAC */
424 regs_buff[47] = rd32(E1000_PCS_CFG0);
425 regs_buff[48] = rd32(E1000_PCS_LCTL);
426 regs_buff[49] = rd32(E1000_PCS_LSTAT);
427 regs_buff[50] = rd32(E1000_PCS_ANADV);
428 regs_buff[51] = rd32(E1000_PCS_LPAB);
429 regs_buff[52] = rd32(E1000_PCS_NPTX);
430 regs_buff[53] = rd32(E1000_PCS_LPABNP);
432 /* Statistics */
433 regs_buff[54] = adapter->stats.crcerrs;
434 regs_buff[55] = adapter->stats.algnerrc;
435 regs_buff[56] = adapter->stats.symerrs;
436 regs_buff[57] = adapter->stats.rxerrc;
437 regs_buff[58] = adapter->stats.mpc;
438 regs_buff[59] = adapter->stats.scc;
439 regs_buff[60] = adapter->stats.ecol;
440 regs_buff[61] = adapter->stats.mcc;
441 regs_buff[62] = adapter->stats.latecol;
442 regs_buff[63] = adapter->stats.colc;
443 regs_buff[64] = adapter->stats.dc;
444 regs_buff[65] = adapter->stats.tncrs;
445 regs_buff[66] = adapter->stats.sec;
446 regs_buff[67] = adapter->stats.htdpmc;
447 regs_buff[68] = adapter->stats.rlec;
448 regs_buff[69] = adapter->stats.xonrxc;
449 regs_buff[70] = adapter->stats.xontxc;
450 regs_buff[71] = adapter->stats.xoffrxc;
451 regs_buff[72] = adapter->stats.xofftxc;
452 regs_buff[73] = adapter->stats.fcruc;
453 regs_buff[74] = adapter->stats.prc64;
454 regs_buff[75] = adapter->stats.prc127;
455 regs_buff[76] = adapter->stats.prc255;
456 regs_buff[77] = adapter->stats.prc511;
457 regs_buff[78] = adapter->stats.prc1023;
458 regs_buff[79] = adapter->stats.prc1522;
459 regs_buff[80] = adapter->stats.gprc;
460 regs_buff[81] = adapter->stats.bprc;
461 regs_buff[82] = adapter->stats.mprc;
462 regs_buff[83] = adapter->stats.gptc;
463 regs_buff[84] = adapter->stats.gorc;
464 regs_buff[86] = adapter->stats.gotc;
465 regs_buff[88] = adapter->stats.rnbc;
466 regs_buff[89] = adapter->stats.ruc;
467 regs_buff[90] = adapter->stats.rfc;
468 regs_buff[91] = adapter->stats.roc;
469 regs_buff[92] = adapter->stats.rjc;
470 regs_buff[93] = adapter->stats.mgprc;
471 regs_buff[94] = adapter->stats.mgpdc;
472 regs_buff[95] = adapter->stats.mgptc;
473 regs_buff[96] = adapter->stats.tor;
474 regs_buff[98] = adapter->stats.tot;
475 regs_buff[100] = adapter->stats.tpr;
476 regs_buff[101] = adapter->stats.tpt;
477 regs_buff[102] = adapter->stats.ptc64;
478 regs_buff[103] = adapter->stats.ptc127;
479 regs_buff[104] = adapter->stats.ptc255;
480 regs_buff[105] = adapter->stats.ptc511;
481 regs_buff[106] = adapter->stats.ptc1023;
482 regs_buff[107] = adapter->stats.ptc1522;
483 regs_buff[108] = adapter->stats.mptc;
484 regs_buff[109] = adapter->stats.bptc;
485 regs_buff[110] = adapter->stats.tsctc;
486 regs_buff[111] = adapter->stats.iac;
487 regs_buff[112] = adapter->stats.rpthc;
488 regs_buff[113] = adapter->stats.hgptc;
489 regs_buff[114] = adapter->stats.hgorc;
490 regs_buff[116] = adapter->stats.hgotc;
491 regs_buff[118] = adapter->stats.lenerrs;
492 regs_buff[119] = adapter->stats.scvpc;
493 regs_buff[120] = adapter->stats.hrmpc;
495 /* These should probably be added to e1000_regs.h instead */
496 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497 #define E1000_RAL(_i) (0x05400 + ((_i) * 8))
498 #define E1000_RAH(_i) (0x05404 + ((_i) * 8))
499 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
500 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
501 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
502 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
503 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
504 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
506 for (i = 0; i < 4; i++)
507 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
508 for (i = 0; i < 4; i++)
509 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
510 for (i = 0; i < 4; i++)
511 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
512 for (i = 0; i < 4; i++)
513 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
514 for (i = 0; i < 4; i++)
515 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
516 for (i = 0; i < 4; i++)
517 regs_buff[141 + i] = rd32(E1000_RDH(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[145 + i] = rd32(E1000_RDT(i));
520 for (i = 0; i < 4; i++)
521 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
523 for (i = 0; i < 10; i++)
524 regs_buff[153 + i] = rd32(E1000_EITR(i));
525 for (i = 0; i < 8; i++)
526 regs_buff[163 + i] = rd32(E1000_IMIR(i));
527 for (i = 0; i < 8; i++)
528 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
529 for (i = 0; i < 16; i++)
530 regs_buff[179 + i] = rd32(E1000_RAL(i));
531 for (i = 0; i < 16; i++)
532 regs_buff[195 + i] = rd32(E1000_RAH(i));
534 for (i = 0; i < 4; i++)
535 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
536 for (i = 0; i < 4; i++)
537 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
538 for (i = 0; i < 4; i++)
539 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[223 + i] = rd32(E1000_TDH(i));
542 for (i = 0; i < 4; i++)
543 regs_buff[227 + i] = rd32(E1000_TDT(i));
544 for (i = 0; i < 4; i++)
545 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
550 for (i = 0; i < 4; i++)
551 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
557 for (i = 0; i < 32; i++)
558 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
559 for (i = 0; i < 128; i++)
560 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
561 for (i = 0; i < 128; i++)
562 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
563 for (i = 0; i < 4; i++)
564 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
566 regs_buff[547] = rd32(E1000_TDFH);
567 regs_buff[548] = rd32(E1000_TDFT);
568 regs_buff[549] = rd32(E1000_TDFHS);
569 regs_buff[550] = rd32(E1000_TDFPC);
573 static int igb_get_eeprom_len(struct net_device *netdev)
575 struct igb_adapter *adapter = netdev_priv(netdev);
576 return adapter->hw.nvm.word_size * 2;
579 static int igb_get_eeprom(struct net_device *netdev,
580 struct ethtool_eeprom *eeprom, u8 *bytes)
582 struct igb_adapter *adapter = netdev_priv(netdev);
583 struct e1000_hw *hw = &adapter->hw;
584 u16 *eeprom_buff;
585 int first_word, last_word;
586 int ret_val = 0;
587 u16 i;
589 if (eeprom->len == 0)
590 return -EINVAL;
592 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
594 first_word = eeprom->offset >> 1;
595 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
597 eeprom_buff = kmalloc(sizeof(u16) *
598 (last_word - first_word + 1), GFP_KERNEL);
599 if (!eeprom_buff)
600 return -ENOMEM;
602 if (hw->nvm.type == e1000_nvm_eeprom_spi)
603 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
604 last_word - first_word + 1,
605 eeprom_buff);
606 else {
607 for (i = 0; i < last_word - first_word + 1; i++) {
608 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
609 &eeprom_buff[i]);
610 if (ret_val)
611 break;
615 /* Device's eeprom is always little-endian, word addressable */
616 for (i = 0; i < last_word - first_word + 1; i++)
617 le16_to_cpus(&eeprom_buff[i]);
619 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
620 eeprom->len);
621 kfree(eeprom_buff);
623 return ret_val;
626 static int igb_set_eeprom(struct net_device *netdev,
627 struct ethtool_eeprom *eeprom, u8 *bytes)
629 struct igb_adapter *adapter = netdev_priv(netdev);
630 struct e1000_hw *hw = &adapter->hw;
631 u16 *eeprom_buff;
632 void *ptr;
633 int max_len, first_word, last_word, ret_val = 0;
634 u16 i;
636 if (eeprom->len == 0)
637 return -EOPNOTSUPP;
639 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
640 return -EFAULT;
642 max_len = hw->nvm.word_size * 2;
644 first_word = eeprom->offset >> 1;
645 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
646 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
647 if (!eeprom_buff)
648 return -ENOMEM;
650 ptr = (void *)eeprom_buff;
652 if (eeprom->offset & 1) {
653 /* need read/modify/write of first changed EEPROM word */
654 /* only the second byte of the word is being modified */
655 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
656 &eeprom_buff[0]);
657 ptr++;
659 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
660 /* need read/modify/write of last changed EEPROM word */
661 /* only the first byte of the word is being modified */
662 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
663 &eeprom_buff[last_word - first_word]);
666 /* Device's eeprom is always little-endian, word addressable */
667 for (i = 0; i < last_word - first_word + 1; i++)
668 le16_to_cpus(&eeprom_buff[i]);
670 memcpy(ptr, bytes, eeprom->len);
672 for (i = 0; i < last_word - first_word + 1; i++)
673 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
675 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
676 last_word - first_word + 1, eeprom_buff);
678 /* Update the checksum over the first part of the EEPROM if needed
679 * and flush shadow RAM for 82573 controllers */
680 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
681 igb_update_nvm_checksum(hw);
683 kfree(eeprom_buff);
684 return ret_val;
687 static void igb_get_drvinfo(struct net_device *netdev,
688 struct ethtool_drvinfo *drvinfo)
690 struct igb_adapter *adapter = netdev_priv(netdev);
691 char firmware_version[32];
692 u16 eeprom_data;
694 strncpy(drvinfo->driver, igb_driver_name, 32);
695 strncpy(drvinfo->version, igb_driver_version, 32);
697 /* EEPROM image version # is reported as firmware version # for
698 * 82575 controllers */
699 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
700 sprintf(firmware_version, "%d.%d-%d",
701 (eeprom_data & 0xF000) >> 12,
702 (eeprom_data & 0x0FF0) >> 4,
703 eeprom_data & 0x000F);
705 strncpy(drvinfo->fw_version, firmware_version, 32);
706 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
707 drvinfo->n_stats = IGB_STATS_LEN;
708 drvinfo->testinfo_len = IGB_TEST_LEN;
709 drvinfo->regdump_len = igb_get_regs_len(netdev);
710 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
713 static void igb_get_ringparam(struct net_device *netdev,
714 struct ethtool_ringparam *ring)
716 struct igb_adapter *adapter = netdev_priv(netdev);
717 struct igb_ring *tx_ring = adapter->tx_ring;
718 struct igb_ring *rx_ring = adapter->rx_ring;
720 ring->rx_max_pending = IGB_MAX_RXD;
721 ring->tx_max_pending = IGB_MAX_TXD;
722 ring->rx_mini_max_pending = 0;
723 ring->rx_jumbo_max_pending = 0;
724 ring->rx_pending = rx_ring->count;
725 ring->tx_pending = tx_ring->count;
726 ring->rx_mini_pending = 0;
727 ring->rx_jumbo_pending = 0;
730 static int igb_set_ringparam(struct net_device *netdev,
731 struct ethtool_ringparam *ring)
733 struct igb_adapter *adapter = netdev_priv(netdev);
734 struct igb_buffer *old_buf;
735 struct igb_buffer *old_rx_buf;
736 void *old_desc;
737 int i, err;
738 u32 new_rx_count, new_tx_count, old_size;
739 dma_addr_t old_dma;
741 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
742 return -EINVAL;
744 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
745 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
746 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
748 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
749 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
750 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
752 if ((new_tx_count == adapter->tx_ring->count) &&
753 (new_rx_count == adapter->rx_ring->count)) {
754 /* nothing to do */
755 return 0;
758 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759 msleep(1);
761 if (netif_running(adapter->netdev))
762 igb_down(adapter);
765 * We can't just free everything and then setup again,
766 * because the ISRs in MSI-X mode get passed pointers
767 * to the tx and rx ring structs.
769 if (new_tx_count != adapter->tx_ring->count) {
770 for (i = 0; i < adapter->num_tx_queues; i++) {
771 /* Save existing descriptor ring */
772 old_buf = adapter->tx_ring[i].buffer_info;
773 old_desc = adapter->tx_ring[i].desc;
774 old_size = adapter->tx_ring[i].size;
775 old_dma = adapter->tx_ring[i].dma;
776 /* Try to allocate a new one */
777 adapter->tx_ring[i].buffer_info = NULL;
778 adapter->tx_ring[i].desc = NULL;
779 adapter->tx_ring[i].count = new_tx_count;
780 err = igb_setup_tx_resources(adapter,
781 &adapter->tx_ring[i]);
782 if (err) {
783 /* Restore the old one so at least
784 the adapter still works, even if
785 we failed the request */
786 adapter->tx_ring[i].buffer_info = old_buf;
787 adapter->tx_ring[i].desc = old_desc;
788 adapter->tx_ring[i].size = old_size;
789 adapter->tx_ring[i].dma = old_dma;
790 goto err_setup;
792 /* Free the old buffer manually */
793 vfree(old_buf);
794 pci_free_consistent(adapter->pdev, old_size,
795 old_desc, old_dma);
799 if (new_rx_count != adapter->rx_ring->count) {
800 for (i = 0; i < adapter->num_rx_queues; i++) {
802 old_rx_buf = adapter->rx_ring[i].buffer_info;
803 old_desc = adapter->rx_ring[i].desc;
804 old_size = adapter->rx_ring[i].size;
805 old_dma = adapter->rx_ring[i].dma;
807 adapter->rx_ring[i].buffer_info = NULL;
808 adapter->rx_ring[i].desc = NULL;
809 adapter->rx_ring[i].dma = 0;
810 adapter->rx_ring[i].count = new_rx_count;
811 err = igb_setup_rx_resources(adapter,
812 &adapter->rx_ring[i]);
813 if (err) {
814 adapter->rx_ring[i].buffer_info = old_rx_buf;
815 adapter->rx_ring[i].desc = old_desc;
816 adapter->rx_ring[i].size = old_size;
817 adapter->rx_ring[i].dma = old_dma;
818 goto err_setup;
821 vfree(old_rx_buf);
822 pci_free_consistent(adapter->pdev, old_size, old_desc,
823 old_dma);
827 err = 0;
828 err_setup:
829 if (netif_running(adapter->netdev))
830 igb_up(adapter);
832 clear_bit(__IGB_RESETTING, &adapter->state);
833 return err;
836 /* ethtool register test data */
837 struct igb_reg_test {
838 u16 reg;
839 u16 reg_offset;
840 u16 array_len;
841 u16 test_type;
842 u32 mask;
843 u32 write;
846 /* In the hardware, registers are laid out either singly, in arrays
847 * spaced 0x100 bytes apart, or in contiguous tables. We assume
848 * most tests take place on arrays or single registers (handled
849 * as a single-element array) and special-case the tables.
850 * Table tests are always pattern tests.
852 * We also make provision for some required setup steps by specifying
853 * registers to be written without any read-back testing.
856 #define PATTERN_TEST 1
857 #define SET_READ_TEST 2
858 #define WRITE_NO_TEST 3
859 #define TABLE32_TEST 4
860 #define TABLE64_TEST_LO 5
861 #define TABLE64_TEST_HI 6
863 /* 82576 reg test */
864 static struct igb_reg_test reg_test_82576[] = {
865 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
867 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
868 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
870 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
871 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
872 { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873 { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874 { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
875 /* Enable all four RX queues before testing. */
876 { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
877 /* RDH is read-only for 82576, only test RDT. */
878 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
880 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
881 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
882 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
883 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
884 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
885 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
886 { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
887 { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888 { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
889 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
890 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
891 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
892 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
893 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
894 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
895 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898 { 0, 0, 0, 0 }
901 /* 82575 register test */
902 static struct igb_reg_test reg_test_82575[] = {
903 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
910 /* Enable all four RX queues before testing. */
911 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
912 /* RDH is read-only for 82575, only test RDT. */
913 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
914 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
915 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
916 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
917 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
918 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
919 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
921 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
922 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
923 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
924 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
925 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
926 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
927 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
928 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929 { 0, 0, 0, 0 }
932 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
933 int reg, u32 mask, u32 write)
935 u32 pat, val;
936 u32 _test[] =
937 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
938 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
939 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
940 val = readl(adapter->hw.hw_addr + reg);
941 if (val != (_test[pat] & write & mask)) {
942 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
943 "failed: got 0x%08X expected 0x%08X\n",
944 reg, val, (_test[pat] & write & mask));
945 *data = reg;
946 return 1;
949 return 0;
952 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
953 int reg, u32 mask, u32 write)
955 u32 val;
956 writel((write & mask), (adapter->hw.hw_addr + reg));
957 val = readl(adapter->hw.hw_addr + reg);
958 if ((write & mask) != (val & mask)) {
959 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
960 " got 0x%08X expected 0x%08X\n", reg,
961 (val & mask), (write & mask));
962 *data = reg;
963 return 1;
965 return 0;
968 #define REG_PATTERN_TEST(reg, mask, write) \
969 do { \
970 if (reg_pattern_test(adapter, data, reg, mask, write)) \
971 return 1; \
972 } while (0)
974 #define REG_SET_AND_CHECK(reg, mask, write) \
975 do { \
976 if (reg_set_and_check(adapter, data, reg, mask, write)) \
977 return 1; \
978 } while (0)
980 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
982 struct e1000_hw *hw = &adapter->hw;
983 struct igb_reg_test *test;
984 u32 value, before, after;
985 u32 i, toggle;
987 toggle = 0x7FFFF3FF;
989 switch (adapter->hw.mac.type) {
990 case e1000_82576:
991 test = reg_test_82576;
992 break;
993 default:
994 test = reg_test_82575;
995 break;
998 /* Because the status register is such a special case,
999 * we handle it separately from the rest of the register
1000 * tests. Some bits are read-only, some toggle, and some
1001 * are writable on newer MACs.
1003 before = rd32(E1000_STATUS);
1004 value = (rd32(E1000_STATUS) & toggle);
1005 wr32(E1000_STATUS, toggle);
1006 after = rd32(E1000_STATUS) & toggle;
1007 if (value != after) {
1008 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1009 "got: 0x%08X expected: 0x%08X\n", after, value);
1010 *data = 1;
1011 return 1;
1013 /* restore previous status */
1014 wr32(E1000_STATUS, before);
1016 /* Perform the remainder of the register test, looping through
1017 * the test table until we either fail or reach the null entry.
1019 while (test->reg) {
1020 for (i = 0; i < test->array_len; i++) {
1021 switch (test->test_type) {
1022 case PATTERN_TEST:
1023 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1024 test->mask,
1025 test->write);
1026 break;
1027 case SET_READ_TEST:
1028 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1029 test->mask,
1030 test->write);
1031 break;
1032 case WRITE_NO_TEST:
1033 writel(test->write,
1034 (adapter->hw.hw_addr + test->reg)
1035 + (i * test->reg_offset));
1036 break;
1037 case TABLE32_TEST:
1038 REG_PATTERN_TEST(test->reg + (i * 4),
1039 test->mask,
1040 test->write);
1041 break;
1042 case TABLE64_TEST_LO:
1043 REG_PATTERN_TEST(test->reg + (i * 8),
1044 test->mask,
1045 test->write);
1046 break;
1047 case TABLE64_TEST_HI:
1048 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1049 test->mask,
1050 test->write);
1051 break;
1054 test++;
1057 *data = 0;
1058 return 0;
1061 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1063 u16 temp;
1064 u16 checksum = 0;
1065 u16 i;
1067 *data = 0;
1068 /* Read and add up the contents of the EEPROM */
1069 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1070 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1071 < 0) {
1072 *data = 1;
1073 break;
1075 checksum += temp;
1078 /* If Checksum is not Correct return error else test passed */
1079 if ((checksum != (u16) NVM_SUM) && !(*data))
1080 *data = 2;
1082 return *data;
1085 static irqreturn_t igb_test_intr(int irq, void *data)
1087 struct net_device *netdev = (struct net_device *) data;
1088 struct igb_adapter *adapter = netdev_priv(netdev);
1089 struct e1000_hw *hw = &adapter->hw;
1091 adapter->test_icr |= rd32(E1000_ICR);
1093 return IRQ_HANDLED;
1096 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1098 struct e1000_hw *hw = &adapter->hw;
1099 struct net_device *netdev = adapter->netdev;
1100 u32 mask, i = 0, shared_int = true;
1101 u32 irq = adapter->pdev->irq;
1103 *data = 0;
1105 /* Hook up test interrupt handler just for this test */
1106 if (adapter->msix_entries) {
1107 /* NOTE: we don't test MSI-X interrupts here, yet */
1108 return 0;
1109 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1110 shared_int = false;
1111 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1112 *data = 1;
1113 return -1;
1115 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1116 netdev->name, netdev)) {
1117 shared_int = false;
1118 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1119 netdev->name, netdev)) {
1120 *data = 1;
1121 return -1;
1123 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1124 (shared_int ? "shared" : "unshared"));
1126 /* Disable all the interrupts */
1127 wr32(E1000_IMC, 0xFFFFFFFF);
1128 msleep(10);
1130 /* Test each interrupt */
1131 for (; i < 10; i++) {
1132 /* Interrupt to test */
1133 mask = 1 << i;
1135 if (!shared_int) {
1136 /* Disable the interrupt to be reported in
1137 * the cause register and then force the same
1138 * interrupt and see if one gets posted. If
1139 * an interrupt was posted to the bus, the
1140 * test failed.
1142 adapter->test_icr = 0;
1143 wr32(E1000_IMC, ~mask & 0x00007FFF);
1144 wr32(E1000_ICS, ~mask & 0x00007FFF);
1145 msleep(10);
1147 if (adapter->test_icr & mask) {
1148 *data = 3;
1149 break;
1153 /* Enable the interrupt to be reported in
1154 * the cause register and then force the same
1155 * interrupt and see if one gets posted. If
1156 * an interrupt was not posted to the bus, the
1157 * test failed.
1159 adapter->test_icr = 0;
1160 wr32(E1000_IMS, mask);
1161 wr32(E1000_ICS, mask);
1162 msleep(10);
1164 if (!(adapter->test_icr & mask)) {
1165 *data = 4;
1166 break;
1169 if (!shared_int) {
1170 /* Disable the other interrupts to be reported in
1171 * the cause register and then force the other
1172 * interrupts and see if any get posted. If
1173 * an interrupt was posted to the bus, the
1174 * test failed.
1176 adapter->test_icr = 0;
1177 wr32(E1000_IMC, ~mask & 0x00007FFF);
1178 wr32(E1000_ICS, ~mask & 0x00007FFF);
1179 msleep(10);
1181 if (adapter->test_icr) {
1182 *data = 5;
1183 break;
1188 /* Disable all the interrupts */
1189 wr32(E1000_IMC, 0xFFFFFFFF);
1190 msleep(10);
1192 /* Unhook test interrupt handler */
1193 free_irq(irq, netdev);
1195 return *data;
1198 static void igb_free_desc_rings(struct igb_adapter *adapter)
1200 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1201 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1202 struct pci_dev *pdev = adapter->pdev;
1203 int i;
1205 if (tx_ring->desc && tx_ring->buffer_info) {
1206 for (i = 0; i < tx_ring->count; i++) {
1207 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1208 if (buf->dma)
1209 pci_unmap_single(pdev, buf->dma, buf->length,
1210 PCI_DMA_TODEVICE);
1211 if (buf->skb)
1212 dev_kfree_skb(buf->skb);
1216 if (rx_ring->desc && rx_ring->buffer_info) {
1217 for (i = 0; i < rx_ring->count; i++) {
1218 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1219 if (buf->dma)
1220 pci_unmap_single(pdev, buf->dma,
1221 IGB_RXBUFFER_2048,
1222 PCI_DMA_FROMDEVICE);
1223 if (buf->skb)
1224 dev_kfree_skb(buf->skb);
1228 if (tx_ring->desc) {
1229 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1230 tx_ring->dma);
1231 tx_ring->desc = NULL;
1233 if (rx_ring->desc) {
1234 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1235 rx_ring->dma);
1236 rx_ring->desc = NULL;
1239 kfree(tx_ring->buffer_info);
1240 tx_ring->buffer_info = NULL;
1241 kfree(rx_ring->buffer_info);
1242 rx_ring->buffer_info = NULL;
1244 return;
1247 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1249 struct e1000_hw *hw = &adapter->hw;
1250 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1251 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1252 struct pci_dev *pdev = adapter->pdev;
1253 u32 rctl;
1254 int i, ret_val;
1256 /* Setup Tx descriptor ring and Tx buffers */
1258 if (!tx_ring->count)
1259 tx_ring->count = IGB_DEFAULT_TXD;
1261 tx_ring->buffer_info = kcalloc(tx_ring->count,
1262 sizeof(struct igb_buffer),
1263 GFP_KERNEL);
1264 if (!tx_ring->buffer_info) {
1265 ret_val = 1;
1266 goto err_nomem;
1269 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1270 tx_ring->size = ALIGN(tx_ring->size, 4096);
1271 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1272 &tx_ring->dma);
1273 if (!tx_ring->desc) {
1274 ret_val = 2;
1275 goto err_nomem;
1277 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1279 wr32(E1000_TDBAL(0),
1280 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1281 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1282 wr32(E1000_TDLEN(0),
1283 tx_ring->count * sizeof(struct e1000_tx_desc));
1284 wr32(E1000_TDH(0), 0);
1285 wr32(E1000_TDT(0), 0);
1286 wr32(E1000_TCTL,
1287 E1000_TCTL_PSP | E1000_TCTL_EN |
1288 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1289 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1291 for (i = 0; i < tx_ring->count; i++) {
1292 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1293 struct sk_buff *skb;
1294 unsigned int size = 1024;
1296 skb = alloc_skb(size, GFP_KERNEL);
1297 if (!skb) {
1298 ret_val = 3;
1299 goto err_nomem;
1301 skb_put(skb, size);
1302 tx_ring->buffer_info[i].skb = skb;
1303 tx_ring->buffer_info[i].length = skb->len;
1304 tx_ring->buffer_info[i].dma =
1305 pci_map_single(pdev, skb->data, skb->len,
1306 PCI_DMA_TODEVICE);
1307 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1308 tx_desc->lower.data = cpu_to_le32(skb->len);
1309 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1310 E1000_TXD_CMD_IFCS |
1311 E1000_TXD_CMD_RS);
1312 tx_desc->upper.data = 0;
1315 /* Setup Rx descriptor ring and Rx buffers */
1317 if (!rx_ring->count)
1318 rx_ring->count = IGB_DEFAULT_RXD;
1320 rx_ring->buffer_info = kcalloc(rx_ring->count,
1321 sizeof(struct igb_buffer),
1322 GFP_KERNEL);
1323 if (!rx_ring->buffer_info) {
1324 ret_val = 4;
1325 goto err_nomem;
1328 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1329 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1330 &rx_ring->dma);
1331 if (!rx_ring->desc) {
1332 ret_val = 5;
1333 goto err_nomem;
1335 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1337 rctl = rd32(E1000_RCTL);
1338 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1339 wr32(E1000_RDBAL(0),
1340 ((u64) rx_ring->dma & 0xFFFFFFFF));
1341 wr32(E1000_RDBAH(0),
1342 ((u64) rx_ring->dma >> 32));
1343 wr32(E1000_RDLEN(0), rx_ring->size);
1344 wr32(E1000_RDH(0), 0);
1345 wr32(E1000_RDT(0), 0);
1346 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1347 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1348 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1349 wr32(E1000_RCTL, rctl);
1350 wr32(E1000_SRRCTL(0), 0);
1352 for (i = 0; i < rx_ring->count; i++) {
1353 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1354 struct sk_buff *skb;
1356 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1357 GFP_KERNEL);
1358 if (!skb) {
1359 ret_val = 6;
1360 goto err_nomem;
1362 skb_reserve(skb, NET_IP_ALIGN);
1363 rx_ring->buffer_info[i].skb = skb;
1364 rx_ring->buffer_info[i].dma =
1365 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1366 PCI_DMA_FROMDEVICE);
1367 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1368 memset(skb->data, 0x00, skb->len);
1371 return 0;
1373 err_nomem:
1374 igb_free_desc_rings(adapter);
1375 return ret_val;
1378 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1380 struct e1000_hw *hw = &adapter->hw;
1382 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1383 hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1384 hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1385 hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1386 hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1389 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1391 struct e1000_hw *hw = &adapter->hw;
1392 u32 ctrl_reg = 0;
1393 u32 stat_reg = 0;
1395 hw->mac.autoneg = false;
1397 if (hw->phy.type == e1000_phy_m88) {
1398 /* Auto-MDI/MDIX Off */
1399 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1400 /* reset to update Auto-MDI/MDIX */
1401 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1402 /* autoneg off */
1403 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1406 ctrl_reg = rd32(E1000_CTRL);
1408 /* force 1000, set loopback */
1409 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1411 /* Now set up the MAC to the same speed/duplex as the PHY. */
1412 ctrl_reg = rd32(E1000_CTRL);
1413 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1414 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1415 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1416 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1417 E1000_CTRL_FD); /* Force Duplex to FULL */
1419 if (hw->phy.media_type == e1000_media_type_copper &&
1420 hw->phy.type == e1000_phy_m88)
1421 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1422 else {
1423 /* Set the ILOS bit on the fiber Nic if half duplex link is
1424 * detected. */
1425 stat_reg = rd32(E1000_STATUS);
1426 if ((stat_reg & E1000_STATUS_FD) == 0)
1427 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1430 wr32(E1000_CTRL, ctrl_reg);
1432 /* Disable the receiver on the PHY so when a cable is plugged in, the
1433 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1435 if (hw->phy.type == e1000_phy_m88)
1436 igb_phy_disable_receiver(adapter);
1438 udelay(500);
1440 return 0;
1443 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1445 return igb_integrated_phy_loopback(adapter);
1448 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1450 struct e1000_hw *hw = &adapter->hw;
1451 u32 reg;
1453 if (hw->phy.media_type == e1000_media_type_fiber ||
1454 hw->phy.media_type == e1000_media_type_internal_serdes) {
1455 reg = rd32(E1000_RCTL);
1456 reg |= E1000_RCTL_LBM_TCVR;
1457 wr32(E1000_RCTL, reg);
1459 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1461 reg = rd32(E1000_CTRL);
1462 reg &= ~(E1000_CTRL_RFCE |
1463 E1000_CTRL_TFCE |
1464 E1000_CTRL_LRST);
1465 reg |= E1000_CTRL_SLU |
1466 E1000_CTRL_FD;
1467 wr32(E1000_CTRL, reg);
1469 /* Unset switch control to serdes energy detect */
1470 reg = rd32(E1000_CONNSW);
1471 reg &= ~E1000_CONNSW_ENRGSRC;
1472 wr32(E1000_CONNSW, reg);
1474 /* Set PCS register for forced speed */
1475 reg = rd32(E1000_PCS_LCTL);
1476 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1477 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1478 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1479 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1480 E1000_PCS_LCTL_FSD | /* Force Speed */
1481 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1482 wr32(E1000_PCS_LCTL, reg);
1484 return 0;
1485 } else if (hw->phy.media_type == e1000_media_type_copper) {
1486 return igb_set_phy_loopback(adapter);
1489 return 7;
1492 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1494 struct e1000_hw *hw = &adapter->hw;
1495 u32 rctl;
1496 u16 phy_reg;
1498 rctl = rd32(E1000_RCTL);
1499 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1500 wr32(E1000_RCTL, rctl);
1502 hw->mac.autoneg = true;
1503 hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1504 if (phy_reg & MII_CR_LOOPBACK) {
1505 phy_reg &= ~MII_CR_LOOPBACK;
1506 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1507 igb_phy_sw_reset(hw);
1511 static void igb_create_lbtest_frame(struct sk_buff *skb,
1512 unsigned int frame_size)
1514 memset(skb->data, 0xFF, frame_size);
1515 frame_size &= ~1;
1516 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1517 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1518 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1521 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1523 frame_size &= ~1;
1524 if (*(skb->data + 3) == 0xFF)
1525 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1526 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1527 return 0;
1528 return 13;
1531 static int igb_run_loopback_test(struct igb_adapter *adapter)
1533 struct e1000_hw *hw = &adapter->hw;
1534 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1535 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1536 struct pci_dev *pdev = adapter->pdev;
1537 int i, j, k, l, lc, good_cnt;
1538 int ret_val = 0;
1539 unsigned long time;
1541 wr32(E1000_RDT(0), rx_ring->count - 1);
1543 /* Calculate the loop count based on the largest descriptor ring
1544 * The idea is to wrap the largest ring a number of times using 64
1545 * send/receive pairs during each loop
1548 if (rx_ring->count <= tx_ring->count)
1549 lc = ((tx_ring->count / 64) * 2) + 1;
1550 else
1551 lc = ((rx_ring->count / 64) * 2) + 1;
1553 k = l = 0;
1554 for (j = 0; j <= lc; j++) { /* loop count loop */
1555 for (i = 0; i < 64; i++) { /* send the packets */
1556 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1557 1024);
1558 pci_dma_sync_single_for_device(pdev,
1559 tx_ring->buffer_info[k].dma,
1560 tx_ring->buffer_info[k].length,
1561 PCI_DMA_TODEVICE);
1562 k++;
1563 if (k == tx_ring->count)
1564 k = 0;
1566 wr32(E1000_TDT(0), k);
1567 msleep(200);
1568 time = jiffies; /* set the start time for the receive */
1569 good_cnt = 0;
1570 do { /* receive the sent packets */
1571 pci_dma_sync_single_for_cpu(pdev,
1572 rx_ring->buffer_info[l].dma,
1573 IGB_RXBUFFER_2048,
1574 PCI_DMA_FROMDEVICE);
1576 ret_val = igb_check_lbtest_frame(
1577 rx_ring->buffer_info[l].skb, 1024);
1578 if (!ret_val)
1579 good_cnt++;
1580 l++;
1581 if (l == rx_ring->count)
1582 l = 0;
1583 /* time + 20 msecs (200 msecs on 2.4) is more than
1584 * enough time to complete the receives, if it's
1585 * exceeded, break and error off
1587 } while (good_cnt < 64 && jiffies < (time + 20));
1588 if (good_cnt != 64) {
1589 ret_val = 13; /* ret_val is the same as mis-compare */
1590 break;
1592 if (jiffies >= (time + 20)) {
1593 ret_val = 14; /* error code for time out error */
1594 break;
1596 } /* end loop count loop */
1597 return ret_val;
1600 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1602 /* PHY loopback cannot be performed if SoL/IDER
1603 * sessions are active */
1604 if (igb_check_reset_block(&adapter->hw)) {
1605 dev_err(&adapter->pdev->dev,
1606 "Cannot do PHY loopback test "
1607 "when SoL/IDER is active.\n");
1608 *data = 0;
1609 goto out;
1611 *data = igb_setup_desc_rings(adapter);
1612 if (*data)
1613 goto out;
1614 *data = igb_setup_loopback_test(adapter);
1615 if (*data)
1616 goto err_loopback;
1617 *data = igb_run_loopback_test(adapter);
1618 igb_loopback_cleanup(adapter);
1620 err_loopback:
1621 igb_free_desc_rings(adapter);
1622 out:
1623 return *data;
1626 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1628 struct e1000_hw *hw = &adapter->hw;
1629 *data = 0;
1630 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1631 int i = 0;
1632 hw->mac.serdes_has_link = false;
1634 /* On some blade server designs, link establishment
1635 * could take as long as 2-3 minutes */
1636 do {
1637 hw->mac.ops.check_for_link(&adapter->hw);
1638 if (hw->mac.serdes_has_link)
1639 return *data;
1640 msleep(20);
1641 } while (i++ < 3750);
1643 *data = 1;
1644 } else {
1645 hw->mac.ops.check_for_link(&adapter->hw);
1646 if (hw->mac.autoneg)
1647 msleep(4000);
1649 if (!(rd32(E1000_STATUS) &
1650 E1000_STATUS_LU))
1651 *data = 1;
1653 return *data;
1656 static void igb_diag_test(struct net_device *netdev,
1657 struct ethtool_test *eth_test, u64 *data)
1659 struct igb_adapter *adapter = netdev_priv(netdev);
1660 u16 autoneg_advertised;
1661 u8 forced_speed_duplex, autoneg;
1662 bool if_running = netif_running(netdev);
1664 set_bit(__IGB_TESTING, &adapter->state);
1665 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1666 /* Offline tests */
1668 /* save speed, duplex, autoneg settings */
1669 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1670 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1671 autoneg = adapter->hw.mac.autoneg;
1673 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1675 /* Link test performed before hardware reset so autoneg doesn't
1676 * interfere with test result */
1677 if (igb_link_test(adapter, &data[4]))
1678 eth_test->flags |= ETH_TEST_FL_FAILED;
1680 if (if_running)
1681 /* indicate we're in test mode */
1682 dev_close(netdev);
1683 else
1684 igb_reset(adapter);
1686 if (igb_reg_test(adapter, &data[0]))
1687 eth_test->flags |= ETH_TEST_FL_FAILED;
1689 igb_reset(adapter);
1690 if (igb_eeprom_test(adapter, &data[1]))
1691 eth_test->flags |= ETH_TEST_FL_FAILED;
1693 igb_reset(adapter);
1694 if (igb_intr_test(adapter, &data[2]))
1695 eth_test->flags |= ETH_TEST_FL_FAILED;
1697 igb_reset(adapter);
1698 if (igb_loopback_test(adapter, &data[3]))
1699 eth_test->flags |= ETH_TEST_FL_FAILED;
1701 /* restore speed, duplex, autoneg settings */
1702 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1703 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1704 adapter->hw.mac.autoneg = autoneg;
1706 /* force this routine to wait until autoneg complete/timeout */
1707 adapter->hw.phy.autoneg_wait_to_complete = true;
1708 igb_reset(adapter);
1709 adapter->hw.phy.autoneg_wait_to_complete = false;
1711 clear_bit(__IGB_TESTING, &adapter->state);
1712 if (if_running)
1713 dev_open(netdev);
1714 } else {
1715 dev_info(&adapter->pdev->dev, "online testing starting\n");
1716 /* Online tests */
1717 if (igb_link_test(adapter, &data[4]))
1718 eth_test->flags |= ETH_TEST_FL_FAILED;
1720 /* Online tests aren't run; pass by default */
1721 data[0] = 0;
1722 data[1] = 0;
1723 data[2] = 0;
1724 data[3] = 0;
1726 clear_bit(__IGB_TESTING, &adapter->state);
1728 msleep_interruptible(4 * 1000);
1731 static int igb_wol_exclusion(struct igb_adapter *adapter,
1732 struct ethtool_wolinfo *wol)
1734 struct e1000_hw *hw = &adapter->hw;
1735 int retval = 1; /* fail by default */
1737 switch (hw->device_id) {
1738 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1739 /* WoL not supported */
1740 wol->supported = 0;
1741 break;
1742 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1743 case E1000_DEV_ID_82576_FIBER:
1744 case E1000_DEV_ID_82576_SERDES:
1745 /* Wake events not supported on port B */
1746 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1747 wol->supported = 0;
1748 break;
1750 /* return success for non excluded adapter ports */
1751 retval = 0;
1752 break;
1753 default:
1754 /* dual port cards only support WoL on port A from now on
1755 * unless it was enabled in the eeprom for port B
1756 * so exclude FUNC_1 ports from having WoL enabled */
1757 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1758 !adapter->eeprom_wol) {
1759 wol->supported = 0;
1760 break;
1763 retval = 0;
1766 return retval;
1769 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1771 struct igb_adapter *adapter = netdev_priv(netdev);
1773 wol->supported = WAKE_UCAST | WAKE_MCAST |
1774 WAKE_BCAST | WAKE_MAGIC;
1775 wol->wolopts = 0;
1777 /* this function will set ->supported = 0 and return 1 if wol is not
1778 * supported by this hardware */
1779 if (igb_wol_exclusion(adapter, wol))
1780 return;
1782 /* apply any specific unsupported masks here */
1783 switch (adapter->hw.device_id) {
1784 default:
1785 break;
1788 if (adapter->wol & E1000_WUFC_EX)
1789 wol->wolopts |= WAKE_UCAST;
1790 if (adapter->wol & E1000_WUFC_MC)
1791 wol->wolopts |= WAKE_MCAST;
1792 if (adapter->wol & E1000_WUFC_BC)
1793 wol->wolopts |= WAKE_BCAST;
1794 if (adapter->wol & E1000_WUFC_MAG)
1795 wol->wolopts |= WAKE_MAGIC;
1797 return;
1800 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1802 struct igb_adapter *adapter = netdev_priv(netdev);
1803 struct e1000_hw *hw = &adapter->hw;
1805 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1806 return -EOPNOTSUPP;
1808 if (igb_wol_exclusion(adapter, wol))
1809 return wol->wolopts ? -EOPNOTSUPP : 0;
1811 switch (hw->device_id) {
1812 default:
1813 break;
1816 /* these settings will always override what we currently have */
1817 adapter->wol = 0;
1819 if (wol->wolopts & WAKE_UCAST)
1820 adapter->wol |= E1000_WUFC_EX;
1821 if (wol->wolopts & WAKE_MCAST)
1822 adapter->wol |= E1000_WUFC_MC;
1823 if (wol->wolopts & WAKE_BCAST)
1824 adapter->wol |= E1000_WUFC_BC;
1825 if (wol->wolopts & WAKE_MAGIC)
1826 adapter->wol |= E1000_WUFC_MAG;
1828 return 0;
1831 /* toggle LED 4 times per second = 2 "blinks" per second */
1832 #define IGB_ID_INTERVAL (HZ/4)
1834 /* bit defines for adapter->led_status */
1835 #define IGB_LED_ON 0
1837 static int igb_phys_id(struct net_device *netdev, u32 data)
1839 struct igb_adapter *adapter = netdev_priv(netdev);
1840 struct e1000_hw *hw = &adapter->hw;
1842 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1843 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1845 igb_blink_led(hw);
1846 msleep_interruptible(data * 1000);
1848 igb_led_off(hw);
1849 clear_bit(IGB_LED_ON, &adapter->led_status);
1850 igb_cleanup_led(hw);
1852 return 0;
1855 static int igb_set_coalesce(struct net_device *netdev,
1856 struct ethtool_coalesce *ec)
1858 struct igb_adapter *adapter = netdev_priv(netdev);
1859 struct e1000_hw *hw = &adapter->hw;
1860 int i;
1862 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1863 ((ec->rx_coalesce_usecs > 3) &&
1864 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1865 (ec->rx_coalesce_usecs == 2))
1866 return -EINVAL;
1868 /* convert to rate of irq's per second */
1869 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1870 adapter->itr_setting = ec->rx_coalesce_usecs;
1871 adapter->itr = IGB_START_ITR;
1872 } else {
1873 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1874 adapter->itr = adapter->itr_setting;
1877 for (i = 0; i < adapter->num_rx_queues; i++)
1878 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1880 return 0;
1883 static int igb_get_coalesce(struct net_device *netdev,
1884 struct ethtool_coalesce *ec)
1886 struct igb_adapter *adapter = netdev_priv(netdev);
1888 if (adapter->itr_setting <= 3)
1889 ec->rx_coalesce_usecs = adapter->itr_setting;
1890 else
1891 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1893 return 0;
1897 static int igb_nway_reset(struct net_device *netdev)
1899 struct igb_adapter *adapter = netdev_priv(netdev);
1900 if (netif_running(netdev))
1901 igb_reinit_locked(adapter);
1902 return 0;
1905 static int igb_get_sset_count(struct net_device *netdev, int sset)
1907 switch (sset) {
1908 case ETH_SS_STATS:
1909 return IGB_STATS_LEN;
1910 case ETH_SS_TEST:
1911 return IGB_TEST_LEN;
1912 default:
1913 return -ENOTSUPP;
1917 static void igb_get_ethtool_stats(struct net_device *netdev,
1918 struct ethtool_stats *stats, u64 *data)
1920 struct igb_adapter *adapter = netdev_priv(netdev);
1921 u64 *queue_stat;
1922 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1923 int j;
1924 int i;
1925 #ifdef CONFIG_IGB_LRO
1926 int aggregated = 0, flushed = 0, no_desc = 0;
1928 for (i = 0; i < adapter->num_rx_queues; i++) {
1929 aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
1930 flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
1931 no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
1933 adapter->lro_aggregated = aggregated;
1934 adapter->lro_flushed = flushed;
1935 adapter->lro_no_desc = no_desc;
1936 #endif
1938 igb_update_stats(adapter);
1939 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1940 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1941 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1942 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1944 for (j = 0; j < adapter->num_tx_queues; j++) {
1945 int k;
1946 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1947 for (k = 0; k < stat_count; k++)
1948 data[i + k] = queue_stat[k];
1949 i += k;
1951 for (j = 0; j < adapter->num_rx_queues; j++) {
1952 int k;
1953 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1954 for (k = 0; k < stat_count; k++)
1955 data[i + k] = queue_stat[k];
1956 i += k;
1960 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1962 struct igb_adapter *adapter = netdev_priv(netdev);
1963 u8 *p = data;
1964 int i;
1966 switch (stringset) {
1967 case ETH_SS_TEST:
1968 memcpy(data, *igb_gstrings_test,
1969 IGB_TEST_LEN*ETH_GSTRING_LEN);
1970 break;
1971 case ETH_SS_STATS:
1972 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1973 memcpy(p, igb_gstrings_stats[i].stat_string,
1974 ETH_GSTRING_LEN);
1975 p += ETH_GSTRING_LEN;
1977 for (i = 0; i < adapter->num_tx_queues; i++) {
1978 sprintf(p, "tx_queue_%u_packets", i);
1979 p += ETH_GSTRING_LEN;
1980 sprintf(p, "tx_queue_%u_bytes", i);
1981 p += ETH_GSTRING_LEN;
1983 for (i = 0; i < adapter->num_rx_queues; i++) {
1984 sprintf(p, "rx_queue_%u_packets", i);
1985 p += ETH_GSTRING_LEN;
1986 sprintf(p, "rx_queue_%u_bytes", i);
1987 p += ETH_GSTRING_LEN;
1989 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1990 break;
1994 static struct ethtool_ops igb_ethtool_ops = {
1995 .get_settings = igb_get_settings,
1996 .set_settings = igb_set_settings,
1997 .get_drvinfo = igb_get_drvinfo,
1998 .get_regs_len = igb_get_regs_len,
1999 .get_regs = igb_get_regs,
2000 .get_wol = igb_get_wol,
2001 .set_wol = igb_set_wol,
2002 .get_msglevel = igb_get_msglevel,
2003 .set_msglevel = igb_set_msglevel,
2004 .nway_reset = igb_nway_reset,
2005 .get_link = ethtool_op_get_link,
2006 .get_eeprom_len = igb_get_eeprom_len,
2007 .get_eeprom = igb_get_eeprom,
2008 .set_eeprom = igb_set_eeprom,
2009 .get_ringparam = igb_get_ringparam,
2010 .set_ringparam = igb_set_ringparam,
2011 .get_pauseparam = igb_get_pauseparam,
2012 .set_pauseparam = igb_set_pauseparam,
2013 .get_rx_csum = igb_get_rx_csum,
2014 .set_rx_csum = igb_set_rx_csum,
2015 .get_tx_csum = igb_get_tx_csum,
2016 .set_tx_csum = igb_set_tx_csum,
2017 .get_sg = ethtool_op_get_sg,
2018 .set_sg = ethtool_op_set_sg,
2019 .get_tso = ethtool_op_get_tso,
2020 .set_tso = igb_set_tso,
2021 .self_test = igb_diag_test,
2022 .get_strings = igb_get_strings,
2023 .phys_id = igb_phys_id,
2024 .get_sset_count = igb_get_sset_count,
2025 .get_ethtool_stats = igb_get_ethtool_stats,
2026 .get_coalesce = igb_get_coalesce,
2027 .set_coalesce = igb_set_coalesce,
2030 void igb_set_ethtool_ops(struct net_device *netdev)
2032 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);