4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107 * These are the 'tuning knobs' of the scheduler:
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
112 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * single value that denotes runtime == period, ie unlimited time.
117 #define RUNTIME_INF ((u64)~0ULL)
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
126 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
133 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
135 sg
->__cpu_power
+= val
;
136 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
140 static inline int rt_policy(int policy
)
142 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
147 static inline int task_has_rt_policy(struct task_struct
*p
)
149 return rt_policy(p
->policy
);
153 * This is the priority-queue data structure of the RT scheduling class:
155 struct rt_prio_array
{
156 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
157 struct list_head queue
[MAX_RT_PRIO
];
160 struct rt_bandwidth
{
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock
;
165 struct hrtimer rt_period_timer
;
168 static struct rt_bandwidth def_rt_bandwidth
;
170 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
172 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
174 struct rt_bandwidth
*rt_b
=
175 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
181 now
= hrtimer_cb_get_time(timer
);
182 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
187 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
190 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
194 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
196 rt_b
->rt_period
= ns_to_ktime(period
);
197 rt_b
->rt_runtime
= runtime
;
199 spin_lock_init(&rt_b
->rt_runtime_lock
);
201 hrtimer_init(&rt_b
->rt_period_timer
,
202 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
203 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
204 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
207 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
211 if (rt_b
->rt_runtime
== RUNTIME_INF
)
214 if (hrtimer_active(&rt_b
->rt_period_timer
))
217 spin_lock(&rt_b
->rt_runtime_lock
);
219 if (hrtimer_active(&rt_b
->rt_period_timer
))
222 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
223 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
224 hrtimer_start(&rt_b
->rt_period_timer
,
225 rt_b
->rt_period_timer
.expires
,
228 spin_unlock(&rt_b
->rt_runtime_lock
);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
234 hrtimer_cancel(&rt_b
->rt_period_timer
);
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex
);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
250 static LIST_HEAD(task_groups
);
252 /* task group related information */
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css
;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity
**se
;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq
**cfs_rq
;
263 unsigned long shares
;
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity
**rt_se
;
268 struct rt_rq
**rt_rq
;
270 struct rt_bandwidth rt_bandwidth
;
274 struct list_head list
;
276 struct task_group
*parent
;
277 struct list_head siblings
;
278 struct list_head children
;
281 #ifdef CONFIG_USER_SCHED
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group
;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
299 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock
);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group
;
336 /* return group to which a task belongs */
337 static inline struct task_group
*task_group(struct task_struct
*p
)
339 struct task_group
*tg
;
341 #ifdef CONFIG_USER_SCHED
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
345 struct task_group
, css
);
347 tg
= &init_task_group
;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
357 p
->se
.parent
= task_group(p
)->se
[cpu
];
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
362 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
368 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
369 static inline struct task_group
*task_group(struct task_struct
*p
)
374 #endif /* CONFIG_GROUP_SCHED */
376 /* CFS-related fields in a runqueue */
378 struct load_weight load
;
379 unsigned long nr_running
;
385 struct rb_root tasks_timeline
;
386 struct rb_node
*rb_leftmost
;
388 struct list_head tasks
;
389 struct list_head
*balance_iterator
;
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
395 struct sched_entity
*curr
, *next
;
397 unsigned long nr_spread_over
;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
410 struct list_head leaf_cfs_rq_list
;
411 struct task_group
*tg
; /* group that "owns" this runqueue */
415 * the part of load.weight contributed by tasks
417 unsigned long task_weight
;
420 * h_load = weight * f(tg)
422 * Where f(tg) is the recursive weight fraction assigned to
425 unsigned long h_load
;
428 * this cpu's part of tg->shares
430 unsigned long shares
;
433 * load.weight at the time we set shares
435 unsigned long rq_weight
;
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active
;
443 unsigned long rt_nr_running
;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio
; /* highest queued rt task prio */
448 unsigned long rt_nr_migratory
;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock
;
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted
;
461 struct list_head leaf_rt_rq_list
;
462 struct task_group
*tg
;
463 struct sched_rt_entity
*rt_se
;
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
489 struct cpupri cpupri
;
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
497 static struct root_domain def_root_domain
;
502 * This is the main, per-CPU runqueue data structure.
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
516 unsigned long nr_running
;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
519 unsigned char idle_at_tick
;
521 unsigned long last_tick_seen
;
522 unsigned char in_nohz_recently
;
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load
;
526 unsigned long nr_load_updates
;
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list
;
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list
;
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
546 unsigned long nr_uninterruptible
;
548 struct task_struct
*curr
, *idle
;
549 unsigned long next_balance
;
550 struct mm_struct
*prev_mm
;
557 struct root_domain
*rd
;
558 struct sched_domain
*sd
;
560 /* For active balancing */
563 /* cpu of this runqueue: */
567 unsigned long avg_load_per_task
;
569 struct task_struct
*migration_thread
;
570 struct list_head migration_queue
;
573 #ifdef CONFIG_SCHED_HRTICK
575 int hrtick_csd_pending
;
576 struct call_single_data hrtick_csd
;
578 struct hrtimer hrtick_timer
;
581 #ifdef CONFIG_SCHEDSTATS
583 struct sched_info rq_sched_info
;
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty
;
587 unsigned int yld_act_empty
;
588 unsigned int yld_both_empty
;
589 unsigned int yld_count
;
591 /* schedule() stats */
592 unsigned int sched_switch
;
593 unsigned int sched_count
;
594 unsigned int sched_goidle
;
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count
;
598 unsigned int ttwu_local
;
601 unsigned int bkl_count
;
603 struct lock_class_key rq_lock_key
;
606 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
608 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
610 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
613 static inline int cpu_of(struct rq
*rq
)
623 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
624 * See detach_destroy_domains: synchronize_sched for details.
626 * The domain tree of any CPU may only be accessed from within
627 * preempt-disabled sections.
629 #define for_each_domain(cpu, __sd) \
630 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
632 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
633 #define this_rq() (&__get_cpu_var(runqueues))
634 #define task_rq(p) cpu_rq(task_cpu(p))
635 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
637 static inline void update_rq_clock(struct rq
*rq
)
639 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
648 # define const_debug static const
654 * Returns true if the current cpu runqueue is locked.
655 * This interface allows printk to be called with the runqueue lock
656 * held and know whether or not it is OK to wake up the klogd.
658 int runqueue_is_locked(void)
661 struct rq
*rq
= cpu_rq(cpu
);
664 ret
= spin_is_locked(&rq
->lock
);
670 * Debugging: various feature bits
673 #define SCHED_FEAT(name, enabled) \
674 __SCHED_FEAT_##name ,
677 #include "sched_features.h"
682 #define SCHED_FEAT(name, enabled) \
683 (1UL << __SCHED_FEAT_##name) * enabled |
685 const_debug
unsigned int sysctl_sched_features
=
686 #include "sched_features.h"
691 #ifdef CONFIG_SCHED_DEBUG
692 #define SCHED_FEAT(name, enabled) \
695 static __read_mostly
char *sched_feat_names
[] = {
696 #include "sched_features.h"
702 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
704 filp
->private_data
= inode
->i_private
;
709 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
710 size_t cnt
, loff_t
*ppos
)
717 for (i
= 0; sched_feat_names
[i
]; i
++) {
718 len
+= strlen(sched_feat_names
[i
]);
722 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
726 for (i
= 0; sched_feat_names
[i
]; i
++) {
727 if (sysctl_sched_features
& (1UL << i
))
728 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
730 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
733 r
+= sprintf(buf
+ r
, "\n");
734 WARN_ON(r
>= len
+ 2);
736 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
744 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
745 size_t cnt
, loff_t
*ppos
)
755 if (copy_from_user(&buf
, ubuf
, cnt
))
760 if (strncmp(buf
, "NO_", 3) == 0) {
765 for (i
= 0; sched_feat_names
[i
]; i
++) {
766 int len
= strlen(sched_feat_names
[i
]);
768 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
770 sysctl_sched_features
&= ~(1UL << i
);
772 sysctl_sched_features
|= (1UL << i
);
777 if (!sched_feat_names
[i
])
785 static struct file_operations sched_feat_fops
= {
786 .open
= sched_feat_open
,
787 .read
= sched_feat_read
,
788 .write
= sched_feat_write
,
791 static __init
int sched_init_debug(void)
793 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
798 late_initcall(sched_init_debug
);
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
808 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
811 * ratelimit for updating the group shares.
814 const_debug
unsigned int sysctl_sched_shares_ratelimit
= 500000;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period
= 1000000;
822 static __read_mostly
int scheduler_running
;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime
= 950000;
830 static inline u64
global_rt_period(void)
832 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
835 static inline u64
global_rt_runtime(void)
837 if (sysctl_sched_rt_period
< 0)
840 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
852 return rq
->curr
== p
;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq
->lock
.owner
= current
;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
878 spin_unlock_irq(&rq
->lock
);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
887 return task_current(rq
, p
);
891 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 spin_unlock_irq(&rq
->lock
);
904 spin_unlock(&rq
->lock
);
908 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
929 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
933 struct rq
*rq
= task_rq(p
);
934 spin_lock(&rq
->lock
);
935 if (likely(rq
== task_rq(p
)))
937 spin_unlock(&rq
->lock
);
942 * task_rq_lock - lock the runqueue a given task resides on and disable
943 * interrupts. Note the ordering: we can safely lookup the task_rq without
944 * explicitly disabling preemption.
946 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
952 local_irq_save(*flags
);
954 spin_lock(&rq
->lock
);
955 if (likely(rq
== task_rq(p
)))
957 spin_unlock_irqrestore(&rq
->lock
, *flags
);
961 static void __task_rq_unlock(struct rq
*rq
)
964 spin_unlock(&rq
->lock
);
967 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
970 spin_unlock_irqrestore(&rq
->lock
, *flags
);
974 * this_rq_lock - lock this runqueue and disable interrupts.
976 static struct rq
*this_rq_lock(void)
983 spin_lock(&rq
->lock
);
988 #ifdef CONFIG_SCHED_HRTICK
990 * Use HR-timers to deliver accurate preemption points.
992 * Its all a bit involved since we cannot program an hrt while holding the
993 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * - enabled by features
1003 * - hrtimer is actually high res
1005 static inline int hrtick_enabled(struct rq
*rq
)
1007 if (!sched_feat(HRTICK
))
1009 if (!cpu_active(cpu_of(rq
)))
1011 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1014 static void hrtick_clear(struct rq
*rq
)
1016 if (hrtimer_active(&rq
->hrtick_timer
))
1017 hrtimer_cancel(&rq
->hrtick_timer
);
1021 * High-resolution timer tick.
1022 * Runs from hardirq context with interrupts disabled.
1024 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1026 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1028 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1030 spin_lock(&rq
->lock
);
1031 update_rq_clock(rq
);
1032 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1033 spin_unlock(&rq
->lock
);
1035 return HRTIMER_NORESTART
;
1040 * called from hardirq (IPI) context
1042 static void __hrtick_start(void *arg
)
1044 struct rq
*rq
= arg
;
1046 spin_lock(&rq
->lock
);
1047 hrtimer_restart(&rq
->hrtick_timer
);
1048 rq
->hrtick_csd_pending
= 0;
1049 spin_unlock(&rq
->lock
);
1053 * Called to set the hrtick timer state.
1055 * called with rq->lock held and irqs disabled
1057 static void hrtick_start(struct rq
*rq
, u64 delay
)
1059 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1060 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1062 timer
->expires
= time
;
1064 if (rq
== this_rq()) {
1065 hrtimer_restart(timer
);
1066 } else if (!rq
->hrtick_csd_pending
) {
1067 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1068 rq
->hrtick_csd_pending
= 1;
1073 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1075 int cpu
= (int)(long)hcpu
;
1078 case CPU_UP_CANCELED
:
1079 case CPU_UP_CANCELED_FROZEN
:
1080 case CPU_DOWN_PREPARE
:
1081 case CPU_DOWN_PREPARE_FROZEN
:
1083 case CPU_DEAD_FROZEN
:
1084 hrtick_clear(cpu_rq(cpu
));
1091 static void init_hrtick(void)
1093 hotcpu_notifier(hotplug_hrtick
, 0);
1097 * Called to set the hrtick timer state.
1099 * called with rq->lock held and irqs disabled
1101 static void hrtick_start(struct rq
*rq
, u64 delay
)
1103 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1106 static void init_hrtick(void)
1109 #endif /* CONFIG_SMP */
1111 static void init_rq_hrtick(struct rq
*rq
)
1114 rq
->hrtick_csd_pending
= 0;
1116 rq
->hrtick_csd
.flags
= 0;
1117 rq
->hrtick_csd
.func
= __hrtick_start
;
1118 rq
->hrtick_csd
.info
= rq
;
1121 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1122 rq
->hrtick_timer
.function
= hrtick
;
1123 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1126 static inline void hrtick_clear(struct rq
*rq
)
1130 static inline void init_rq_hrtick(struct rq
*rq
)
1134 static inline void init_hrtick(void)
1140 * resched_task - mark a task 'to be rescheduled now'.
1142 * On UP this means the setting of the need_resched flag, on SMP it
1143 * might also involve a cross-CPU call to trigger the scheduler on
1148 #ifndef tsk_is_polling
1149 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152 static void resched_task(struct task_struct
*p
)
1156 assert_spin_locked(&task_rq(p
)->lock
);
1158 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1161 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1164 if (cpu
== smp_processor_id())
1167 /* NEED_RESCHED must be visible before we test polling */
1169 if (!tsk_is_polling(p
))
1170 smp_send_reschedule(cpu
);
1173 static void resched_cpu(int cpu
)
1175 struct rq
*rq
= cpu_rq(cpu
);
1176 unsigned long flags
;
1178 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1180 resched_task(cpu_curr(cpu
));
1181 spin_unlock_irqrestore(&rq
->lock
, flags
);
1186 * When add_timer_on() enqueues a timer into the timer wheel of an
1187 * idle CPU then this timer might expire before the next timer event
1188 * which is scheduled to wake up that CPU. In case of a completely
1189 * idle system the next event might even be infinite time into the
1190 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1191 * leaves the inner idle loop so the newly added timer is taken into
1192 * account when the CPU goes back to idle and evaluates the timer
1193 * wheel for the next timer event.
1195 void wake_up_idle_cpu(int cpu
)
1197 struct rq
*rq
= cpu_rq(cpu
);
1199 if (cpu
== smp_processor_id())
1203 * This is safe, as this function is called with the timer
1204 * wheel base lock of (cpu) held. When the CPU is on the way
1205 * to idle and has not yet set rq->curr to idle then it will
1206 * be serialized on the timer wheel base lock and take the new
1207 * timer into account automatically.
1209 if (rq
->curr
!= rq
->idle
)
1213 * We can set TIF_RESCHED on the idle task of the other CPU
1214 * lockless. The worst case is that the other CPU runs the
1215 * idle task through an additional NOOP schedule()
1217 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1219 /* NEED_RESCHED must be visible before we test polling */
1221 if (!tsk_is_polling(rq
->idle
))
1222 smp_send_reschedule(cpu
);
1224 #endif /* CONFIG_NO_HZ */
1226 #else /* !CONFIG_SMP */
1227 static void resched_task(struct task_struct
*p
)
1229 assert_spin_locked(&task_rq(p
)->lock
);
1230 set_tsk_need_resched(p
);
1232 #endif /* CONFIG_SMP */
1234 #if BITS_PER_LONG == 32
1235 # define WMULT_CONST (~0UL)
1237 # define WMULT_CONST (1UL << 32)
1240 #define WMULT_SHIFT 32
1243 * Shift right and round:
1245 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1248 * delta *= weight / lw
1250 static unsigned long
1251 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1252 struct load_weight
*lw
)
1256 if (!lw
->inv_weight
) {
1257 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1260 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1264 tmp
= (u64
)delta_exec
* weight
;
1266 * Check whether we'd overflow the 64-bit multiplication:
1268 if (unlikely(tmp
> WMULT_CONST
))
1269 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1272 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1274 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1277 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1283 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1290 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1291 * of tasks with abnormal "nice" values across CPUs the contribution that
1292 * each task makes to its run queue's load is weighted according to its
1293 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1294 * scaled version of the new time slice allocation that they receive on time
1298 #define WEIGHT_IDLEPRIO 2
1299 #define WMULT_IDLEPRIO (1 << 31)
1302 * Nice levels are multiplicative, with a gentle 10% change for every
1303 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1304 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1305 * that remained on nice 0.
1307 * The "10% effect" is relative and cumulative: from _any_ nice level,
1308 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1309 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1310 * If a task goes up by ~10% and another task goes down by ~10% then
1311 * the relative distance between them is ~25%.)
1313 static const int prio_to_weight
[40] = {
1314 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1315 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1316 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1317 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1318 /* 0 */ 1024, 820, 655, 526, 423,
1319 /* 5 */ 335, 272, 215, 172, 137,
1320 /* 10 */ 110, 87, 70, 56, 45,
1321 /* 15 */ 36, 29, 23, 18, 15,
1325 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1327 * In cases where the weight does not change often, we can use the
1328 * precalculated inverse to speed up arithmetics by turning divisions
1329 * into multiplications:
1331 static const u32 prio_to_wmult
[40] = {
1332 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1333 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1334 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1335 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1336 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1337 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1338 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1339 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1342 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1345 * runqueue iterator, to support SMP load-balancing between different
1346 * scheduling classes, without having to expose their internal data
1347 * structures to the load-balancing proper:
1349 struct rq_iterator
{
1351 struct task_struct
*(*start
)(void *);
1352 struct task_struct
*(*next
)(void *);
1356 static unsigned long
1357 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1358 unsigned long max_load_move
, struct sched_domain
*sd
,
1359 enum cpu_idle_type idle
, int *all_pinned
,
1360 int *this_best_prio
, struct rq_iterator
*iterator
);
1363 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1364 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1365 struct rq_iterator
*iterator
);
1368 #ifdef CONFIG_CGROUP_CPUACCT
1369 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1371 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1374 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1376 update_load_add(&rq
->load
, load
);
1379 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1381 update_load_sub(&rq
->load
, load
);
1385 static unsigned long source_load(int cpu
, int type
);
1386 static unsigned long target_load(int cpu
, int type
);
1387 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1389 static unsigned long cpu_avg_load_per_task(int cpu
)
1391 struct rq
*rq
= cpu_rq(cpu
);
1394 rq
->avg_load_per_task
= rq
->load
.weight
/ rq
->nr_running
;
1396 return rq
->avg_load_per_task
;
1399 #ifdef CONFIG_FAIR_GROUP_SCHED
1401 typedef void (*tg_visitor
)(struct task_group
*, int, struct sched_domain
*);
1404 * Iterate the full tree, calling @down when first entering a node and @up when
1405 * leaving it for the final time.
1408 walk_tg_tree(tg_visitor down
, tg_visitor up
, int cpu
, struct sched_domain
*sd
)
1410 struct task_group
*parent
, *child
;
1413 parent
= &root_task_group
;
1415 (*down
)(parent
, cpu
, sd
);
1416 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1423 (*up
)(parent
, cpu
, sd
);
1426 parent
= parent
->parent
;
1432 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1435 * Calculate and set the cpu's group shares.
1438 __update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1439 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1442 unsigned long shares
;
1443 unsigned long rq_weight
;
1448 rq_weight
= tg
->cfs_rq
[cpu
]->load
.weight
;
1451 * If there are currently no tasks on the cpu pretend there is one of
1452 * average load so that when a new task gets to run here it will not
1453 * get delayed by group starvation.
1457 rq_weight
= NICE_0_LOAD
;
1460 if (unlikely(rq_weight
> sd_rq_weight
))
1461 rq_weight
= sd_rq_weight
;
1464 * \Sum shares * rq_weight
1465 * shares = -----------------------
1469 shares
= (sd_shares
* rq_weight
) / (sd_rq_weight
+ 1);
1472 * record the actual number of shares, not the boosted amount.
1474 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1475 tg
->cfs_rq
[cpu
]->rq_weight
= rq_weight
;
1477 if (shares
< MIN_SHARES
)
1478 shares
= MIN_SHARES
;
1479 else if (shares
> MAX_SHARES
)
1480 shares
= MAX_SHARES
;
1482 __set_se_shares(tg
->se
[cpu
], shares
);
1486 * Re-compute the task group their per cpu shares over the given domain.
1487 * This needs to be done in a bottom-up fashion because the rq weight of a
1488 * parent group depends on the shares of its child groups.
1491 tg_shares_up(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1493 unsigned long rq_weight
= 0;
1494 unsigned long shares
= 0;
1497 for_each_cpu_mask(i
, sd
->span
) {
1498 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1499 shares
+= tg
->cfs_rq
[i
]->shares
;
1502 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1503 shares
= tg
->shares
;
1505 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1506 shares
= tg
->shares
;
1509 rq_weight
= cpus_weight(sd
->span
) * NICE_0_LOAD
;
1511 for_each_cpu_mask(i
, sd
->span
) {
1512 struct rq
*rq
= cpu_rq(i
);
1513 unsigned long flags
;
1515 spin_lock_irqsave(&rq
->lock
, flags
);
1516 __update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1517 spin_unlock_irqrestore(&rq
->lock
, flags
);
1522 * Compute the cpu's hierarchical load factor for each task group.
1523 * This needs to be done in a top-down fashion because the load of a child
1524 * group is a fraction of its parents load.
1527 tg_load_down(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1532 load
= cpu_rq(cpu
)->load
.weight
;
1534 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1535 load
*= tg
->cfs_rq
[cpu
]->shares
;
1536 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1539 tg
->cfs_rq
[cpu
]->h_load
= load
;
1543 tg_nop(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1547 static void update_shares(struct sched_domain
*sd
)
1549 u64 now
= cpu_clock(raw_smp_processor_id());
1550 s64 elapsed
= now
- sd
->last_update
;
1552 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1553 sd
->last_update
= now
;
1554 walk_tg_tree(tg_nop
, tg_shares_up
, 0, sd
);
1558 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1560 spin_unlock(&rq
->lock
);
1562 spin_lock(&rq
->lock
);
1565 static void update_h_load(int cpu
)
1567 walk_tg_tree(tg_load_down
, tg_nop
, cpu
, NULL
);
1572 static inline void update_shares(struct sched_domain
*sd
)
1576 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1584 #ifdef CONFIG_FAIR_GROUP_SCHED
1585 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1588 cfs_rq
->shares
= shares
;
1593 #include "sched_stats.h"
1594 #include "sched_idletask.c"
1595 #include "sched_fair.c"
1596 #include "sched_rt.c"
1597 #ifdef CONFIG_SCHED_DEBUG
1598 # include "sched_debug.c"
1601 #define sched_class_highest (&rt_sched_class)
1602 #define for_each_class(class) \
1603 for (class = sched_class_highest; class; class = class->next)
1605 static void inc_nr_running(struct rq
*rq
)
1610 static void dec_nr_running(struct rq
*rq
)
1615 static void set_load_weight(struct task_struct
*p
)
1617 if (task_has_rt_policy(p
)) {
1618 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1619 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1624 * SCHED_IDLE tasks get minimal weight:
1626 if (p
->policy
== SCHED_IDLE
) {
1627 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1628 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1632 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1633 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1636 static void update_avg(u64
*avg
, u64 sample
)
1638 s64 diff
= sample
- *avg
;
1642 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1644 sched_info_queued(p
);
1645 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1649 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1651 if (sleep
&& p
->se
.last_wakeup
) {
1652 update_avg(&p
->se
.avg_overlap
,
1653 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1654 p
->se
.last_wakeup
= 0;
1657 sched_info_dequeued(p
);
1658 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1663 * __normal_prio - return the priority that is based on the static prio
1665 static inline int __normal_prio(struct task_struct
*p
)
1667 return p
->static_prio
;
1671 * Calculate the expected normal priority: i.e. priority
1672 * without taking RT-inheritance into account. Might be
1673 * boosted by interactivity modifiers. Changes upon fork,
1674 * setprio syscalls, and whenever the interactivity
1675 * estimator recalculates.
1677 static inline int normal_prio(struct task_struct
*p
)
1681 if (task_has_rt_policy(p
))
1682 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1684 prio
= __normal_prio(p
);
1689 * Calculate the current priority, i.e. the priority
1690 * taken into account by the scheduler. This value might
1691 * be boosted by RT tasks, or might be boosted by
1692 * interactivity modifiers. Will be RT if the task got
1693 * RT-boosted. If not then it returns p->normal_prio.
1695 static int effective_prio(struct task_struct
*p
)
1697 p
->normal_prio
= normal_prio(p
);
1699 * If we are RT tasks or we were boosted to RT priority,
1700 * keep the priority unchanged. Otherwise, update priority
1701 * to the normal priority:
1703 if (!rt_prio(p
->prio
))
1704 return p
->normal_prio
;
1709 * activate_task - move a task to the runqueue.
1711 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1713 if (task_contributes_to_load(p
))
1714 rq
->nr_uninterruptible
--;
1716 enqueue_task(rq
, p
, wakeup
);
1721 * deactivate_task - remove a task from the runqueue.
1723 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1725 if (task_contributes_to_load(p
))
1726 rq
->nr_uninterruptible
++;
1728 dequeue_task(rq
, p
, sleep
);
1733 * task_curr - is this task currently executing on a CPU?
1734 * @p: the task in question.
1736 inline int task_curr(const struct task_struct
*p
)
1738 return cpu_curr(task_cpu(p
)) == p
;
1741 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1743 set_task_rq(p
, cpu
);
1746 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1747 * successfuly executed on another CPU. We must ensure that updates of
1748 * per-task data have been completed by this moment.
1751 task_thread_info(p
)->cpu
= cpu
;
1755 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1756 const struct sched_class
*prev_class
,
1757 int oldprio
, int running
)
1759 if (prev_class
!= p
->sched_class
) {
1760 if (prev_class
->switched_from
)
1761 prev_class
->switched_from(rq
, p
, running
);
1762 p
->sched_class
->switched_to(rq
, p
, running
);
1764 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1769 /* Used instead of source_load when we know the type == 0 */
1770 static unsigned long weighted_cpuload(const int cpu
)
1772 return cpu_rq(cpu
)->load
.weight
;
1776 * Is this task likely cache-hot:
1779 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1784 * Buddy candidates are cache hot:
1786 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1789 if (p
->sched_class
!= &fair_sched_class
)
1792 if (sysctl_sched_migration_cost
== -1)
1794 if (sysctl_sched_migration_cost
== 0)
1797 delta
= now
- p
->se
.exec_start
;
1799 return delta
< (s64
)sysctl_sched_migration_cost
;
1803 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1805 int old_cpu
= task_cpu(p
);
1806 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1807 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1808 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1811 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1813 #ifdef CONFIG_SCHEDSTATS
1814 if (p
->se
.wait_start
)
1815 p
->se
.wait_start
-= clock_offset
;
1816 if (p
->se
.sleep_start
)
1817 p
->se
.sleep_start
-= clock_offset
;
1818 if (p
->se
.block_start
)
1819 p
->se
.block_start
-= clock_offset
;
1820 if (old_cpu
!= new_cpu
) {
1821 schedstat_inc(p
, se
.nr_migrations
);
1822 if (task_hot(p
, old_rq
->clock
, NULL
))
1823 schedstat_inc(p
, se
.nr_forced2_migrations
);
1826 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1827 new_cfsrq
->min_vruntime
;
1829 __set_task_cpu(p
, new_cpu
);
1832 struct migration_req
{
1833 struct list_head list
;
1835 struct task_struct
*task
;
1838 struct completion done
;
1842 * The task's runqueue lock must be held.
1843 * Returns true if you have to wait for migration thread.
1846 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1848 struct rq
*rq
= task_rq(p
);
1851 * If the task is not on a runqueue (and not running), then
1852 * it is sufficient to simply update the task's cpu field.
1854 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1855 set_task_cpu(p
, dest_cpu
);
1859 init_completion(&req
->done
);
1861 req
->dest_cpu
= dest_cpu
;
1862 list_add(&req
->list
, &rq
->migration_queue
);
1868 * wait_task_inactive - wait for a thread to unschedule.
1870 * The caller must ensure that the task *will* unschedule sometime soon,
1871 * else this function might spin for a *long* time. This function can't
1872 * be called with interrupts off, or it may introduce deadlock with
1873 * smp_call_function() if an IPI is sent by the same process we are
1874 * waiting to become inactive.
1876 void wait_task_inactive(struct task_struct
*p
)
1878 unsigned long flags
;
1884 * We do the initial early heuristics without holding
1885 * any task-queue locks at all. We'll only try to get
1886 * the runqueue lock when things look like they will
1892 * If the task is actively running on another CPU
1893 * still, just relax and busy-wait without holding
1896 * NOTE! Since we don't hold any locks, it's not
1897 * even sure that "rq" stays as the right runqueue!
1898 * But we don't care, since "task_running()" will
1899 * return false if the runqueue has changed and p
1900 * is actually now running somewhere else!
1902 while (task_running(rq
, p
))
1906 * Ok, time to look more closely! We need the rq
1907 * lock now, to be *sure*. If we're wrong, we'll
1908 * just go back and repeat.
1910 rq
= task_rq_lock(p
, &flags
);
1911 running
= task_running(rq
, p
);
1912 on_rq
= p
->se
.on_rq
;
1913 task_rq_unlock(rq
, &flags
);
1916 * Was it really running after all now that we
1917 * checked with the proper locks actually held?
1919 * Oops. Go back and try again..
1921 if (unlikely(running
)) {
1927 * It's not enough that it's not actively running,
1928 * it must be off the runqueue _entirely_, and not
1931 * So if it wa still runnable (but just not actively
1932 * running right now), it's preempted, and we should
1933 * yield - it could be a while.
1935 if (unlikely(on_rq
)) {
1936 schedule_timeout_uninterruptible(1);
1941 * Ahh, all good. It wasn't running, and it wasn't
1942 * runnable, which means that it will never become
1943 * running in the future either. We're all done!
1950 * kick_process - kick a running thread to enter/exit the kernel
1951 * @p: the to-be-kicked thread
1953 * Cause a process which is running on another CPU to enter
1954 * kernel-mode, without any delay. (to get signals handled.)
1956 * NOTE: this function doesnt have to take the runqueue lock,
1957 * because all it wants to ensure is that the remote task enters
1958 * the kernel. If the IPI races and the task has been migrated
1959 * to another CPU then no harm is done and the purpose has been
1962 void kick_process(struct task_struct
*p
)
1968 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1969 smp_send_reschedule(cpu
);
1974 * Return a low guess at the load of a migration-source cpu weighted
1975 * according to the scheduling class and "nice" value.
1977 * We want to under-estimate the load of migration sources, to
1978 * balance conservatively.
1980 static unsigned long source_load(int cpu
, int type
)
1982 struct rq
*rq
= cpu_rq(cpu
);
1983 unsigned long total
= weighted_cpuload(cpu
);
1985 if (type
== 0 || !sched_feat(LB_BIAS
))
1988 return min(rq
->cpu_load
[type
-1], total
);
1992 * Return a high guess at the load of a migration-target cpu weighted
1993 * according to the scheduling class and "nice" value.
1995 static unsigned long target_load(int cpu
, int type
)
1997 struct rq
*rq
= cpu_rq(cpu
);
1998 unsigned long total
= weighted_cpuload(cpu
);
2000 if (type
== 0 || !sched_feat(LB_BIAS
))
2003 return max(rq
->cpu_load
[type
-1], total
);
2007 * find_idlest_group finds and returns the least busy CPU group within the
2010 static struct sched_group
*
2011 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2013 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2014 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2015 int load_idx
= sd
->forkexec_idx
;
2016 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2019 unsigned long load
, avg_load
;
2023 /* Skip over this group if it has no CPUs allowed */
2024 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2027 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2029 /* Tally up the load of all CPUs in the group */
2032 for_each_cpu_mask_nr(i
, group
->cpumask
) {
2033 /* Bias balancing toward cpus of our domain */
2035 load
= source_load(i
, load_idx
);
2037 load
= target_load(i
, load_idx
);
2042 /* Adjust by relative CPU power of the group */
2043 avg_load
= sg_div_cpu_power(group
,
2044 avg_load
* SCHED_LOAD_SCALE
);
2047 this_load
= avg_load
;
2049 } else if (avg_load
< min_load
) {
2050 min_load
= avg_load
;
2053 } while (group
= group
->next
, group
!= sd
->groups
);
2055 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2061 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2064 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2067 unsigned long load
, min_load
= ULONG_MAX
;
2071 /* Traverse only the allowed CPUs */
2072 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2074 for_each_cpu_mask_nr(i
, *tmp
) {
2075 load
= weighted_cpuload(i
);
2077 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2087 * sched_balance_self: balance the current task (running on cpu) in domains
2088 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2091 * Balance, ie. select the least loaded group.
2093 * Returns the target CPU number, or the same CPU if no balancing is needed.
2095 * preempt must be disabled.
2097 static int sched_balance_self(int cpu
, int flag
)
2099 struct task_struct
*t
= current
;
2100 struct sched_domain
*tmp
, *sd
= NULL
;
2102 for_each_domain(cpu
, tmp
) {
2104 * If power savings logic is enabled for a domain, stop there.
2106 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2108 if (tmp
->flags
& flag
)
2116 cpumask_t span
, tmpmask
;
2117 struct sched_group
*group
;
2118 int new_cpu
, weight
;
2120 if (!(sd
->flags
& flag
)) {
2126 group
= find_idlest_group(sd
, t
, cpu
);
2132 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2133 if (new_cpu
== -1 || new_cpu
== cpu
) {
2134 /* Now try balancing at a lower domain level of cpu */
2139 /* Now try balancing at a lower domain level of new_cpu */
2142 weight
= cpus_weight(span
);
2143 for_each_domain(cpu
, tmp
) {
2144 if (weight
<= cpus_weight(tmp
->span
))
2146 if (tmp
->flags
& flag
)
2149 /* while loop will break here if sd == NULL */
2155 #endif /* CONFIG_SMP */
2158 * try_to_wake_up - wake up a thread
2159 * @p: the to-be-woken-up thread
2160 * @state: the mask of task states that can be woken
2161 * @sync: do a synchronous wakeup?
2163 * Put it on the run-queue if it's not already there. The "current"
2164 * thread is always on the run-queue (except when the actual
2165 * re-schedule is in progress), and as such you're allowed to do
2166 * the simpler "current->state = TASK_RUNNING" to mark yourself
2167 * runnable without the overhead of this.
2169 * returns failure only if the task is already active.
2171 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2173 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2174 unsigned long flags
;
2178 if (!sched_feat(SYNC_WAKEUPS
))
2182 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2183 struct sched_domain
*sd
;
2185 this_cpu
= raw_smp_processor_id();
2188 for_each_domain(this_cpu
, sd
) {
2189 if (cpu_isset(cpu
, sd
->span
)) {
2198 rq
= task_rq_lock(p
, &flags
);
2199 old_state
= p
->state
;
2200 if (!(old_state
& state
))
2208 this_cpu
= smp_processor_id();
2211 if (unlikely(task_running(rq
, p
)))
2214 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2215 if (cpu
!= orig_cpu
) {
2216 set_task_cpu(p
, cpu
);
2217 task_rq_unlock(rq
, &flags
);
2218 /* might preempt at this point */
2219 rq
= task_rq_lock(p
, &flags
);
2220 old_state
= p
->state
;
2221 if (!(old_state
& state
))
2226 this_cpu
= smp_processor_id();
2230 #ifdef CONFIG_SCHEDSTATS
2231 schedstat_inc(rq
, ttwu_count
);
2232 if (cpu
== this_cpu
)
2233 schedstat_inc(rq
, ttwu_local
);
2235 struct sched_domain
*sd
;
2236 for_each_domain(this_cpu
, sd
) {
2237 if (cpu_isset(cpu
, sd
->span
)) {
2238 schedstat_inc(sd
, ttwu_wake_remote
);
2243 #endif /* CONFIG_SCHEDSTATS */
2246 #endif /* CONFIG_SMP */
2247 schedstat_inc(p
, se
.nr_wakeups
);
2249 schedstat_inc(p
, se
.nr_wakeups_sync
);
2250 if (orig_cpu
!= cpu
)
2251 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2252 if (cpu
== this_cpu
)
2253 schedstat_inc(p
, se
.nr_wakeups_local
);
2255 schedstat_inc(p
, se
.nr_wakeups_remote
);
2256 update_rq_clock(rq
);
2257 activate_task(rq
, p
, 1);
2261 trace_mark(kernel_sched_wakeup
,
2262 "pid %d state %ld ## rq %p task %p rq->curr %p",
2263 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2264 check_preempt_curr(rq
, p
);
2266 p
->state
= TASK_RUNNING
;
2268 if (p
->sched_class
->task_wake_up
)
2269 p
->sched_class
->task_wake_up(rq
, p
);
2272 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2274 task_rq_unlock(rq
, &flags
);
2279 int wake_up_process(struct task_struct
*p
)
2281 return try_to_wake_up(p
, TASK_ALL
, 0);
2283 EXPORT_SYMBOL(wake_up_process
);
2285 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2287 return try_to_wake_up(p
, state
, 0);
2291 * Perform scheduler related setup for a newly forked process p.
2292 * p is forked by current.
2294 * __sched_fork() is basic setup used by init_idle() too:
2296 static void __sched_fork(struct task_struct
*p
)
2298 p
->se
.exec_start
= 0;
2299 p
->se
.sum_exec_runtime
= 0;
2300 p
->se
.prev_sum_exec_runtime
= 0;
2301 p
->se
.last_wakeup
= 0;
2302 p
->se
.avg_overlap
= 0;
2304 #ifdef CONFIG_SCHEDSTATS
2305 p
->se
.wait_start
= 0;
2306 p
->se
.sum_sleep_runtime
= 0;
2307 p
->se
.sleep_start
= 0;
2308 p
->se
.block_start
= 0;
2309 p
->se
.sleep_max
= 0;
2310 p
->se
.block_max
= 0;
2312 p
->se
.slice_max
= 0;
2316 INIT_LIST_HEAD(&p
->rt
.run_list
);
2318 INIT_LIST_HEAD(&p
->se
.group_node
);
2320 #ifdef CONFIG_PREEMPT_NOTIFIERS
2321 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2325 * We mark the process as running here, but have not actually
2326 * inserted it onto the runqueue yet. This guarantees that
2327 * nobody will actually run it, and a signal or other external
2328 * event cannot wake it up and insert it on the runqueue either.
2330 p
->state
= TASK_RUNNING
;
2334 * fork()/clone()-time setup:
2336 void sched_fork(struct task_struct
*p
, int clone_flags
)
2338 int cpu
= get_cpu();
2343 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2345 set_task_cpu(p
, cpu
);
2348 * Make sure we do not leak PI boosting priority to the child:
2350 p
->prio
= current
->normal_prio
;
2351 if (!rt_prio(p
->prio
))
2352 p
->sched_class
= &fair_sched_class
;
2354 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2355 if (likely(sched_info_on()))
2356 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2358 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2361 #ifdef CONFIG_PREEMPT
2362 /* Want to start with kernel preemption disabled. */
2363 task_thread_info(p
)->preempt_count
= 1;
2369 * wake_up_new_task - wake up a newly created task for the first time.
2371 * This function will do some initial scheduler statistics housekeeping
2372 * that must be done for every newly created context, then puts the task
2373 * on the runqueue and wakes it.
2375 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2377 unsigned long flags
;
2380 rq
= task_rq_lock(p
, &flags
);
2381 BUG_ON(p
->state
!= TASK_RUNNING
);
2382 update_rq_clock(rq
);
2384 p
->prio
= effective_prio(p
);
2386 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2387 activate_task(rq
, p
, 0);
2390 * Let the scheduling class do new task startup
2391 * management (if any):
2393 p
->sched_class
->task_new(rq
, p
);
2396 trace_mark(kernel_sched_wakeup_new
,
2397 "pid %d state %ld ## rq %p task %p rq->curr %p",
2398 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2399 check_preempt_curr(rq
, p
);
2401 if (p
->sched_class
->task_wake_up
)
2402 p
->sched_class
->task_wake_up(rq
, p
);
2404 task_rq_unlock(rq
, &flags
);
2407 #ifdef CONFIG_PREEMPT_NOTIFIERS
2410 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2411 * @notifier: notifier struct to register
2413 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2415 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2417 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2420 * preempt_notifier_unregister - no longer interested in preemption notifications
2421 * @notifier: notifier struct to unregister
2423 * This is safe to call from within a preemption notifier.
2425 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2427 hlist_del(¬ifier
->link
);
2429 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2431 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2433 struct preempt_notifier
*notifier
;
2434 struct hlist_node
*node
;
2436 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2437 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2441 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2442 struct task_struct
*next
)
2444 struct preempt_notifier
*notifier
;
2445 struct hlist_node
*node
;
2447 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2448 notifier
->ops
->sched_out(notifier
, next
);
2451 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2453 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2458 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2459 struct task_struct
*next
)
2463 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2466 * prepare_task_switch - prepare to switch tasks
2467 * @rq: the runqueue preparing to switch
2468 * @prev: the current task that is being switched out
2469 * @next: the task we are going to switch to.
2471 * This is called with the rq lock held and interrupts off. It must
2472 * be paired with a subsequent finish_task_switch after the context
2475 * prepare_task_switch sets up locking and calls architecture specific
2479 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2480 struct task_struct
*next
)
2482 fire_sched_out_preempt_notifiers(prev
, next
);
2483 prepare_lock_switch(rq
, next
);
2484 prepare_arch_switch(next
);
2488 * finish_task_switch - clean up after a task-switch
2489 * @rq: runqueue associated with task-switch
2490 * @prev: the thread we just switched away from.
2492 * finish_task_switch must be called after the context switch, paired
2493 * with a prepare_task_switch call before the context switch.
2494 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2495 * and do any other architecture-specific cleanup actions.
2497 * Note that we may have delayed dropping an mm in context_switch(). If
2498 * so, we finish that here outside of the runqueue lock. (Doing it
2499 * with the lock held can cause deadlocks; see schedule() for
2502 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2503 __releases(rq
->lock
)
2505 struct mm_struct
*mm
= rq
->prev_mm
;
2511 * A task struct has one reference for the use as "current".
2512 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2513 * schedule one last time. The schedule call will never return, and
2514 * the scheduled task must drop that reference.
2515 * The test for TASK_DEAD must occur while the runqueue locks are
2516 * still held, otherwise prev could be scheduled on another cpu, die
2517 * there before we look at prev->state, and then the reference would
2519 * Manfred Spraul <manfred@colorfullife.com>
2521 prev_state
= prev
->state
;
2522 finish_arch_switch(prev
);
2523 finish_lock_switch(rq
, prev
);
2525 if (current
->sched_class
->post_schedule
)
2526 current
->sched_class
->post_schedule(rq
);
2529 fire_sched_in_preempt_notifiers(current
);
2532 if (unlikely(prev_state
== TASK_DEAD
)) {
2534 * Remove function-return probe instances associated with this
2535 * task and put them back on the free list.
2537 kprobe_flush_task(prev
);
2538 put_task_struct(prev
);
2543 * schedule_tail - first thing a freshly forked thread must call.
2544 * @prev: the thread we just switched away from.
2546 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2547 __releases(rq
->lock
)
2549 struct rq
*rq
= this_rq();
2551 finish_task_switch(rq
, prev
);
2552 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2553 /* In this case, finish_task_switch does not reenable preemption */
2556 if (current
->set_child_tid
)
2557 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2561 * context_switch - switch to the new MM and the new
2562 * thread's register state.
2565 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2566 struct task_struct
*next
)
2568 struct mm_struct
*mm
, *oldmm
;
2570 prepare_task_switch(rq
, prev
, next
);
2571 trace_mark(kernel_sched_schedule
,
2572 "prev_pid %d next_pid %d prev_state %ld "
2573 "## rq %p prev %p next %p",
2574 prev
->pid
, next
->pid
, prev
->state
,
2577 oldmm
= prev
->active_mm
;
2579 * For paravirt, this is coupled with an exit in switch_to to
2580 * combine the page table reload and the switch backend into
2583 arch_enter_lazy_cpu_mode();
2585 if (unlikely(!mm
)) {
2586 next
->active_mm
= oldmm
;
2587 atomic_inc(&oldmm
->mm_count
);
2588 enter_lazy_tlb(oldmm
, next
);
2590 switch_mm(oldmm
, mm
, next
);
2592 if (unlikely(!prev
->mm
)) {
2593 prev
->active_mm
= NULL
;
2594 rq
->prev_mm
= oldmm
;
2597 * Since the runqueue lock will be released by the next
2598 * task (which is an invalid locking op but in the case
2599 * of the scheduler it's an obvious special-case), so we
2600 * do an early lockdep release here:
2602 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2603 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2606 /* Here we just switch the register state and the stack. */
2607 switch_to(prev
, next
, prev
);
2611 * this_rq must be evaluated again because prev may have moved
2612 * CPUs since it called schedule(), thus the 'rq' on its stack
2613 * frame will be invalid.
2615 finish_task_switch(this_rq(), prev
);
2619 * nr_running, nr_uninterruptible and nr_context_switches:
2621 * externally visible scheduler statistics: current number of runnable
2622 * threads, current number of uninterruptible-sleeping threads, total
2623 * number of context switches performed since bootup.
2625 unsigned long nr_running(void)
2627 unsigned long i
, sum
= 0;
2629 for_each_online_cpu(i
)
2630 sum
+= cpu_rq(i
)->nr_running
;
2635 unsigned long nr_uninterruptible(void)
2637 unsigned long i
, sum
= 0;
2639 for_each_possible_cpu(i
)
2640 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2643 * Since we read the counters lockless, it might be slightly
2644 * inaccurate. Do not allow it to go below zero though:
2646 if (unlikely((long)sum
< 0))
2652 unsigned long long nr_context_switches(void)
2655 unsigned long long sum
= 0;
2657 for_each_possible_cpu(i
)
2658 sum
+= cpu_rq(i
)->nr_switches
;
2663 unsigned long nr_iowait(void)
2665 unsigned long i
, sum
= 0;
2667 for_each_possible_cpu(i
)
2668 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2673 unsigned long nr_active(void)
2675 unsigned long i
, running
= 0, uninterruptible
= 0;
2677 for_each_online_cpu(i
) {
2678 running
+= cpu_rq(i
)->nr_running
;
2679 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2682 if (unlikely((long)uninterruptible
< 0))
2683 uninterruptible
= 0;
2685 return running
+ uninterruptible
;
2689 * Update rq->cpu_load[] statistics. This function is usually called every
2690 * scheduler tick (TICK_NSEC).
2692 static void update_cpu_load(struct rq
*this_rq
)
2694 unsigned long this_load
= this_rq
->load
.weight
;
2697 this_rq
->nr_load_updates
++;
2699 /* Update our load: */
2700 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2701 unsigned long old_load
, new_load
;
2703 /* scale is effectively 1 << i now, and >> i divides by scale */
2705 old_load
= this_rq
->cpu_load
[i
];
2706 new_load
= this_load
;
2708 * Round up the averaging division if load is increasing. This
2709 * prevents us from getting stuck on 9 if the load is 10, for
2712 if (new_load
> old_load
)
2713 new_load
+= scale
-1;
2714 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2721 * double_rq_lock - safely lock two runqueues
2723 * Note this does not disable interrupts like task_rq_lock,
2724 * you need to do so manually before calling.
2726 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2727 __acquires(rq1
->lock
)
2728 __acquires(rq2
->lock
)
2730 BUG_ON(!irqs_disabled());
2732 spin_lock(&rq1
->lock
);
2733 __acquire(rq2
->lock
); /* Fake it out ;) */
2736 spin_lock(&rq1
->lock
);
2737 spin_lock(&rq2
->lock
);
2739 spin_lock(&rq2
->lock
);
2740 spin_lock(&rq1
->lock
);
2743 update_rq_clock(rq1
);
2744 update_rq_clock(rq2
);
2748 * double_rq_unlock - safely unlock two runqueues
2750 * Note this does not restore interrupts like task_rq_unlock,
2751 * you need to do so manually after calling.
2753 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2754 __releases(rq1
->lock
)
2755 __releases(rq2
->lock
)
2757 spin_unlock(&rq1
->lock
);
2759 spin_unlock(&rq2
->lock
);
2761 __release(rq2
->lock
);
2765 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2767 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2768 __releases(this_rq
->lock
)
2769 __acquires(busiest
->lock
)
2770 __acquires(this_rq
->lock
)
2774 if (unlikely(!irqs_disabled())) {
2775 /* printk() doesn't work good under rq->lock */
2776 spin_unlock(&this_rq
->lock
);
2779 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2780 if (busiest
< this_rq
) {
2781 spin_unlock(&this_rq
->lock
);
2782 spin_lock(&busiest
->lock
);
2783 spin_lock(&this_rq
->lock
);
2786 spin_lock(&busiest
->lock
);
2792 * If dest_cpu is allowed for this process, migrate the task to it.
2793 * This is accomplished by forcing the cpu_allowed mask to only
2794 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2795 * the cpu_allowed mask is restored.
2797 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2799 struct migration_req req
;
2800 unsigned long flags
;
2803 rq
= task_rq_lock(p
, &flags
);
2804 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2805 || unlikely(!cpu_active(dest_cpu
)))
2808 /* force the process onto the specified CPU */
2809 if (migrate_task(p
, dest_cpu
, &req
)) {
2810 /* Need to wait for migration thread (might exit: take ref). */
2811 struct task_struct
*mt
= rq
->migration_thread
;
2813 get_task_struct(mt
);
2814 task_rq_unlock(rq
, &flags
);
2815 wake_up_process(mt
);
2816 put_task_struct(mt
);
2817 wait_for_completion(&req
.done
);
2822 task_rq_unlock(rq
, &flags
);
2826 * sched_exec - execve() is a valuable balancing opportunity, because at
2827 * this point the task has the smallest effective memory and cache footprint.
2829 void sched_exec(void)
2831 int new_cpu
, this_cpu
= get_cpu();
2832 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2834 if (new_cpu
!= this_cpu
)
2835 sched_migrate_task(current
, new_cpu
);
2839 * pull_task - move a task from a remote runqueue to the local runqueue.
2840 * Both runqueues must be locked.
2842 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2843 struct rq
*this_rq
, int this_cpu
)
2845 deactivate_task(src_rq
, p
, 0);
2846 set_task_cpu(p
, this_cpu
);
2847 activate_task(this_rq
, p
, 0);
2849 * Note that idle threads have a prio of MAX_PRIO, for this test
2850 * to be always true for them.
2852 check_preempt_curr(this_rq
, p
);
2856 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2859 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2860 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2864 * We do not migrate tasks that are:
2865 * 1) running (obviously), or
2866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2867 * 3) are cache-hot on their current CPU.
2869 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2870 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2875 if (task_running(rq
, p
)) {
2876 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2881 * Aggressive migration if:
2882 * 1) task is cache cold, or
2883 * 2) too many balance attempts have failed.
2886 if (!task_hot(p
, rq
->clock
, sd
) ||
2887 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2888 #ifdef CONFIG_SCHEDSTATS
2889 if (task_hot(p
, rq
->clock
, sd
)) {
2890 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2891 schedstat_inc(p
, se
.nr_forced_migrations
);
2897 if (task_hot(p
, rq
->clock
, sd
)) {
2898 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2904 static unsigned long
2905 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2906 unsigned long max_load_move
, struct sched_domain
*sd
,
2907 enum cpu_idle_type idle
, int *all_pinned
,
2908 int *this_best_prio
, struct rq_iterator
*iterator
)
2910 int loops
= 0, pulled
= 0, pinned
= 0;
2911 struct task_struct
*p
;
2912 long rem_load_move
= max_load_move
;
2914 if (max_load_move
== 0)
2920 * Start the load-balancing iterator:
2922 p
= iterator
->start(iterator
->arg
);
2924 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2927 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2928 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2929 p
= iterator
->next(iterator
->arg
);
2933 pull_task(busiest
, p
, this_rq
, this_cpu
);
2935 rem_load_move
-= p
->se
.load
.weight
;
2938 * We only want to steal up to the prescribed amount of weighted load.
2940 if (rem_load_move
> 0) {
2941 if (p
->prio
< *this_best_prio
)
2942 *this_best_prio
= p
->prio
;
2943 p
= iterator
->next(iterator
->arg
);
2948 * Right now, this is one of only two places pull_task() is called,
2949 * so we can safely collect pull_task() stats here rather than
2950 * inside pull_task().
2952 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2955 *all_pinned
= pinned
;
2957 return max_load_move
- rem_load_move
;
2961 * move_tasks tries to move up to max_load_move weighted load from busiest to
2962 * this_rq, as part of a balancing operation within domain "sd".
2963 * Returns 1 if successful and 0 otherwise.
2965 * Called with both runqueues locked.
2967 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2968 unsigned long max_load_move
,
2969 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2972 const struct sched_class
*class = sched_class_highest
;
2973 unsigned long total_load_moved
= 0;
2974 int this_best_prio
= this_rq
->curr
->prio
;
2978 class->load_balance(this_rq
, this_cpu
, busiest
,
2979 max_load_move
- total_load_moved
,
2980 sd
, idle
, all_pinned
, &this_best_prio
);
2981 class = class->next
;
2983 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2986 } while (class && max_load_move
> total_load_moved
);
2988 return total_load_moved
> 0;
2992 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2993 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2994 struct rq_iterator
*iterator
)
2996 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3000 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3001 pull_task(busiest
, p
, this_rq
, this_cpu
);
3003 * Right now, this is only the second place pull_task()
3004 * is called, so we can safely collect pull_task()
3005 * stats here rather than inside pull_task().
3007 schedstat_inc(sd
, lb_gained
[idle
]);
3011 p
= iterator
->next(iterator
->arg
);
3018 * move_one_task tries to move exactly one task from busiest to this_rq, as
3019 * part of active balancing operations within "domain".
3020 * Returns 1 if successful and 0 otherwise.
3022 * Called with both runqueues locked.
3024 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3025 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3027 const struct sched_class
*class;
3029 for (class = sched_class_highest
; class; class = class->next
)
3030 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3037 * find_busiest_group finds and returns the busiest CPU group within the
3038 * domain. It calculates and returns the amount of weighted load which
3039 * should be moved to restore balance via the imbalance parameter.
3041 static struct sched_group
*
3042 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3043 unsigned long *imbalance
, enum cpu_idle_type idle
,
3044 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3046 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3047 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3048 unsigned long max_pull
;
3049 unsigned long busiest_load_per_task
, busiest_nr_running
;
3050 unsigned long this_load_per_task
, this_nr_running
;
3051 int load_idx
, group_imb
= 0;
3052 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3053 int power_savings_balance
= 1;
3054 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3055 unsigned long min_nr_running
= ULONG_MAX
;
3056 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3059 max_load
= this_load
= total_load
= total_pwr
= 0;
3060 busiest_load_per_task
= busiest_nr_running
= 0;
3061 this_load_per_task
= this_nr_running
= 0;
3063 if (idle
== CPU_NOT_IDLE
)
3064 load_idx
= sd
->busy_idx
;
3065 else if (idle
== CPU_NEWLY_IDLE
)
3066 load_idx
= sd
->newidle_idx
;
3068 load_idx
= sd
->idle_idx
;
3071 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3074 int __group_imb
= 0;
3075 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3076 unsigned long sum_nr_running
, sum_weighted_load
;
3077 unsigned long sum_avg_load_per_task
;
3078 unsigned long avg_load_per_task
;
3080 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3083 balance_cpu
= first_cpu(group
->cpumask
);
3085 /* Tally up the load of all CPUs in the group */
3086 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3087 sum_avg_load_per_task
= avg_load_per_task
= 0;
3090 min_cpu_load
= ~0UL;
3092 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3095 if (!cpu_isset(i
, *cpus
))
3100 if (*sd_idle
&& rq
->nr_running
)
3103 /* Bias balancing toward cpus of our domain */
3105 if (idle_cpu(i
) && !first_idle_cpu
) {
3110 load
= target_load(i
, load_idx
);
3112 load
= source_load(i
, load_idx
);
3113 if (load
> max_cpu_load
)
3114 max_cpu_load
= load
;
3115 if (min_cpu_load
> load
)
3116 min_cpu_load
= load
;
3120 sum_nr_running
+= rq
->nr_running
;
3121 sum_weighted_load
+= weighted_cpuload(i
);
3123 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3127 * First idle cpu or the first cpu(busiest) in this sched group
3128 * is eligible for doing load balancing at this and above
3129 * domains. In the newly idle case, we will allow all the cpu's
3130 * to do the newly idle load balance.
3132 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3133 balance_cpu
!= this_cpu
&& balance
) {
3138 total_load
+= avg_load
;
3139 total_pwr
+= group
->__cpu_power
;
3141 /* Adjust by relative CPU power of the group */
3142 avg_load
= sg_div_cpu_power(group
,
3143 avg_load
* SCHED_LOAD_SCALE
);
3147 * Consider the group unbalanced when the imbalance is larger
3148 * than the average weight of two tasks.
3150 * APZ: with cgroup the avg task weight can vary wildly and
3151 * might not be a suitable number - should we keep a
3152 * normalized nr_running number somewhere that negates
3155 avg_load_per_task
= sg_div_cpu_power(group
,
3156 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3158 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3161 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3164 this_load
= avg_load
;
3166 this_nr_running
= sum_nr_running
;
3167 this_load_per_task
= sum_weighted_load
;
3168 } else if (avg_load
> max_load
&&
3169 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3170 max_load
= avg_load
;
3172 busiest_nr_running
= sum_nr_running
;
3173 busiest_load_per_task
= sum_weighted_load
;
3174 group_imb
= __group_imb
;
3177 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3179 * Busy processors will not participate in power savings
3182 if (idle
== CPU_NOT_IDLE
||
3183 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3187 * If the local group is idle or completely loaded
3188 * no need to do power savings balance at this domain
3190 if (local_group
&& (this_nr_running
>= group_capacity
||
3192 power_savings_balance
= 0;
3195 * If a group is already running at full capacity or idle,
3196 * don't include that group in power savings calculations
3198 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3203 * Calculate the group which has the least non-idle load.
3204 * This is the group from where we need to pick up the load
3207 if ((sum_nr_running
< min_nr_running
) ||
3208 (sum_nr_running
== min_nr_running
&&
3209 first_cpu(group
->cpumask
) <
3210 first_cpu(group_min
->cpumask
))) {
3212 min_nr_running
= sum_nr_running
;
3213 min_load_per_task
= sum_weighted_load
/
3218 * Calculate the group which is almost near its
3219 * capacity but still has some space to pick up some load
3220 * from other group and save more power
3222 if (sum_nr_running
<= group_capacity
- 1) {
3223 if (sum_nr_running
> leader_nr_running
||
3224 (sum_nr_running
== leader_nr_running
&&
3225 first_cpu(group
->cpumask
) >
3226 first_cpu(group_leader
->cpumask
))) {
3227 group_leader
= group
;
3228 leader_nr_running
= sum_nr_running
;
3233 group
= group
->next
;
3234 } while (group
!= sd
->groups
);
3236 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3239 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3241 if (this_load
>= avg_load
||
3242 100*max_load
<= sd
->imbalance_pct
*this_load
)
3245 busiest_load_per_task
/= busiest_nr_running
;
3247 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3250 * We're trying to get all the cpus to the average_load, so we don't
3251 * want to push ourselves above the average load, nor do we wish to
3252 * reduce the max loaded cpu below the average load, as either of these
3253 * actions would just result in more rebalancing later, and ping-pong
3254 * tasks around. Thus we look for the minimum possible imbalance.
3255 * Negative imbalances (*we* are more loaded than anyone else) will
3256 * be counted as no imbalance for these purposes -- we can't fix that
3257 * by pulling tasks to us. Be careful of negative numbers as they'll
3258 * appear as very large values with unsigned longs.
3260 if (max_load
<= busiest_load_per_task
)
3264 * In the presence of smp nice balancing, certain scenarios can have
3265 * max load less than avg load(as we skip the groups at or below
3266 * its cpu_power, while calculating max_load..)
3268 if (max_load
< avg_load
) {
3270 goto small_imbalance
;
3273 /* Don't want to pull so many tasks that a group would go idle */
3274 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3276 /* How much load to actually move to equalise the imbalance */
3277 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3278 (avg_load
- this_load
) * this->__cpu_power
)
3282 * if *imbalance is less than the average load per runnable task
3283 * there is no gaurantee that any tasks will be moved so we'll have
3284 * a think about bumping its value to force at least one task to be
3287 if (*imbalance
< busiest_load_per_task
) {
3288 unsigned long tmp
, pwr_now
, pwr_move
;
3292 pwr_move
= pwr_now
= 0;
3294 if (this_nr_running
) {
3295 this_load_per_task
/= this_nr_running
;
3296 if (busiest_load_per_task
> this_load_per_task
)
3299 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3301 if (max_load
- this_load
+ 2*busiest_load_per_task
>=
3302 busiest_load_per_task
* imbn
) {
3303 *imbalance
= busiest_load_per_task
;
3308 * OK, we don't have enough imbalance to justify moving tasks,
3309 * however we may be able to increase total CPU power used by
3313 pwr_now
+= busiest
->__cpu_power
*
3314 min(busiest_load_per_task
, max_load
);
3315 pwr_now
+= this->__cpu_power
*
3316 min(this_load_per_task
, this_load
);
3317 pwr_now
/= SCHED_LOAD_SCALE
;
3319 /* Amount of load we'd subtract */
3320 tmp
= sg_div_cpu_power(busiest
,
3321 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3323 pwr_move
+= busiest
->__cpu_power
*
3324 min(busiest_load_per_task
, max_load
- tmp
);
3326 /* Amount of load we'd add */
3327 if (max_load
* busiest
->__cpu_power
<
3328 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3329 tmp
= sg_div_cpu_power(this,
3330 max_load
* busiest
->__cpu_power
);
3332 tmp
= sg_div_cpu_power(this,
3333 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3334 pwr_move
+= this->__cpu_power
*
3335 min(this_load_per_task
, this_load
+ tmp
);
3336 pwr_move
/= SCHED_LOAD_SCALE
;
3338 /* Move if we gain throughput */
3339 if (pwr_move
> pwr_now
)
3340 *imbalance
= busiest_load_per_task
;
3346 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3347 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3350 if (this == group_leader
&& group_leader
!= group_min
) {
3351 *imbalance
= min_load_per_task
;
3361 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3364 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3365 unsigned long imbalance
, const cpumask_t
*cpus
)
3367 struct rq
*busiest
= NULL
, *rq
;
3368 unsigned long max_load
= 0;
3371 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3374 if (!cpu_isset(i
, *cpus
))
3378 wl
= weighted_cpuload(i
);
3380 if (rq
->nr_running
== 1 && wl
> imbalance
)
3383 if (wl
> max_load
) {
3393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3394 * so long as it is large enough.
3396 #define MAX_PINNED_INTERVAL 512
3399 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3400 * tasks if there is an imbalance.
3402 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3403 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3404 int *balance
, cpumask_t
*cpus
)
3406 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3407 struct sched_group
*group
;
3408 unsigned long imbalance
;
3410 unsigned long flags
;
3415 * When power savings policy is enabled for the parent domain, idle
3416 * sibling can pick up load irrespective of busy siblings. In this case,
3417 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3418 * portraying it as CPU_NOT_IDLE.
3420 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3421 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3424 schedstat_inc(sd
, lb_count
[idle
]);
3428 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3435 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3439 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3441 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3445 BUG_ON(busiest
== this_rq
);
3447 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3450 if (busiest
->nr_running
> 1) {
3452 * Attempt to move tasks. If find_busiest_group has found
3453 * an imbalance but busiest->nr_running <= 1, the group is
3454 * still unbalanced. ld_moved simply stays zero, so it is
3455 * correctly treated as an imbalance.
3457 local_irq_save(flags
);
3458 double_rq_lock(this_rq
, busiest
);
3459 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3460 imbalance
, sd
, idle
, &all_pinned
);
3461 double_rq_unlock(this_rq
, busiest
);
3462 local_irq_restore(flags
);
3465 * some other cpu did the load balance for us.
3467 if (ld_moved
&& this_cpu
!= smp_processor_id())
3468 resched_cpu(this_cpu
);
3470 /* All tasks on this runqueue were pinned by CPU affinity */
3471 if (unlikely(all_pinned
)) {
3472 cpu_clear(cpu_of(busiest
), *cpus
);
3473 if (!cpus_empty(*cpus
))
3480 schedstat_inc(sd
, lb_failed
[idle
]);
3481 sd
->nr_balance_failed
++;
3483 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3485 spin_lock_irqsave(&busiest
->lock
, flags
);
3487 /* don't kick the migration_thread, if the curr
3488 * task on busiest cpu can't be moved to this_cpu
3490 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3491 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3493 goto out_one_pinned
;
3496 if (!busiest
->active_balance
) {
3497 busiest
->active_balance
= 1;
3498 busiest
->push_cpu
= this_cpu
;
3501 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3503 wake_up_process(busiest
->migration_thread
);
3506 * We've kicked active balancing, reset the failure
3509 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3512 sd
->nr_balance_failed
= 0;
3514 if (likely(!active_balance
)) {
3515 /* We were unbalanced, so reset the balancing interval */
3516 sd
->balance_interval
= sd
->min_interval
;
3519 * If we've begun active balancing, start to back off. This
3520 * case may not be covered by the all_pinned logic if there
3521 * is only 1 task on the busy runqueue (because we don't call
3524 if (sd
->balance_interval
< sd
->max_interval
)
3525 sd
->balance_interval
*= 2;
3528 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3529 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3535 schedstat_inc(sd
, lb_balanced
[idle
]);
3537 sd
->nr_balance_failed
= 0;
3540 /* tune up the balancing interval */
3541 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3542 (sd
->balance_interval
< sd
->max_interval
))
3543 sd
->balance_interval
*= 2;
3545 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3546 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3557 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3558 * tasks if there is an imbalance.
3560 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3561 * this_rq is locked.
3564 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3567 struct sched_group
*group
;
3568 struct rq
*busiest
= NULL
;
3569 unsigned long imbalance
;
3577 * When power savings policy is enabled for the parent domain, idle
3578 * sibling can pick up load irrespective of busy siblings. In this case,
3579 * let the state of idle sibling percolate up as IDLE, instead of
3580 * portraying it as CPU_NOT_IDLE.
3582 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3583 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3586 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3588 update_shares_locked(this_rq
, sd
);
3589 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3590 &sd_idle
, cpus
, NULL
);
3592 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3596 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3598 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3602 BUG_ON(busiest
== this_rq
);
3604 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3607 if (busiest
->nr_running
> 1) {
3608 /* Attempt to move tasks */
3609 double_lock_balance(this_rq
, busiest
);
3610 /* this_rq->clock is already updated */
3611 update_rq_clock(busiest
);
3612 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3613 imbalance
, sd
, CPU_NEWLY_IDLE
,
3615 spin_unlock(&busiest
->lock
);
3617 if (unlikely(all_pinned
)) {
3618 cpu_clear(cpu_of(busiest
), *cpus
);
3619 if (!cpus_empty(*cpus
))
3625 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3626 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3627 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3630 sd
->nr_balance_failed
= 0;
3632 update_shares_locked(this_rq
, sd
);
3636 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3637 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3638 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3640 sd
->nr_balance_failed
= 0;
3646 * idle_balance is called by schedule() if this_cpu is about to become
3647 * idle. Attempts to pull tasks from other CPUs.
3649 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3651 struct sched_domain
*sd
;
3652 int pulled_task
= -1;
3653 unsigned long next_balance
= jiffies
+ HZ
;
3656 for_each_domain(this_cpu
, sd
) {
3657 unsigned long interval
;
3659 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3662 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3663 /* If we've pulled tasks over stop searching: */
3664 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3667 interval
= msecs_to_jiffies(sd
->balance_interval
);
3668 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3669 next_balance
= sd
->last_balance
+ interval
;
3673 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3675 * We are going idle. next_balance may be set based on
3676 * a busy processor. So reset next_balance.
3678 this_rq
->next_balance
= next_balance
;
3683 * active_load_balance is run by migration threads. It pushes running tasks
3684 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3685 * running on each physical CPU where possible, and avoids physical /
3686 * logical imbalances.
3688 * Called with busiest_rq locked.
3690 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3692 int target_cpu
= busiest_rq
->push_cpu
;
3693 struct sched_domain
*sd
;
3694 struct rq
*target_rq
;
3696 /* Is there any task to move? */
3697 if (busiest_rq
->nr_running
<= 1)
3700 target_rq
= cpu_rq(target_cpu
);
3703 * This condition is "impossible", if it occurs
3704 * we need to fix it. Originally reported by
3705 * Bjorn Helgaas on a 128-cpu setup.
3707 BUG_ON(busiest_rq
== target_rq
);
3709 /* move a task from busiest_rq to target_rq */
3710 double_lock_balance(busiest_rq
, target_rq
);
3711 update_rq_clock(busiest_rq
);
3712 update_rq_clock(target_rq
);
3714 /* Search for an sd spanning us and the target CPU. */
3715 for_each_domain(target_cpu
, sd
) {
3716 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3717 cpu_isset(busiest_cpu
, sd
->span
))
3722 schedstat_inc(sd
, alb_count
);
3724 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3726 schedstat_inc(sd
, alb_pushed
);
3728 schedstat_inc(sd
, alb_failed
);
3730 spin_unlock(&target_rq
->lock
);
3735 atomic_t load_balancer
;
3737 } nohz ____cacheline_aligned
= {
3738 .load_balancer
= ATOMIC_INIT(-1),
3739 .cpu_mask
= CPU_MASK_NONE
,
3743 * This routine will try to nominate the ilb (idle load balancing)
3744 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3745 * load balancing on behalf of all those cpus. If all the cpus in the system
3746 * go into this tickless mode, then there will be no ilb owner (as there is
3747 * no need for one) and all the cpus will sleep till the next wakeup event
3750 * For the ilb owner, tick is not stopped. And this tick will be used
3751 * for idle load balancing. ilb owner will still be part of
3754 * While stopping the tick, this cpu will become the ilb owner if there
3755 * is no other owner. And will be the owner till that cpu becomes busy
3756 * or if all cpus in the system stop their ticks at which point
3757 * there is no need for ilb owner.
3759 * When the ilb owner becomes busy, it nominates another owner, during the
3760 * next busy scheduler_tick()
3762 int select_nohz_load_balancer(int stop_tick
)
3764 int cpu
= smp_processor_id();
3767 cpu_set(cpu
, nohz
.cpu_mask
);
3768 cpu_rq(cpu
)->in_nohz_recently
= 1;
3771 * If we are going offline and still the leader, give up!
3773 if (!cpu_active(cpu
) &&
3774 atomic_read(&nohz
.load_balancer
) == cpu
) {
3775 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3780 /* time for ilb owner also to sleep */
3781 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3782 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3783 atomic_set(&nohz
.load_balancer
, -1);
3787 if (atomic_read(&nohz
.load_balancer
) == -1) {
3788 /* make me the ilb owner */
3789 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3791 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3794 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3797 cpu_clear(cpu
, nohz
.cpu_mask
);
3799 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3800 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3807 static DEFINE_SPINLOCK(balancing
);
3810 * It checks each scheduling domain to see if it is due to be balanced,
3811 * and initiates a balancing operation if so.
3813 * Balancing parameters are set up in arch_init_sched_domains.
3815 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3818 struct rq
*rq
= cpu_rq(cpu
);
3819 unsigned long interval
;
3820 struct sched_domain
*sd
;
3821 /* Earliest time when we have to do rebalance again */
3822 unsigned long next_balance
= jiffies
+ 60*HZ
;
3823 int update_next_balance
= 0;
3827 for_each_domain(cpu
, sd
) {
3828 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3831 interval
= sd
->balance_interval
;
3832 if (idle
!= CPU_IDLE
)
3833 interval
*= sd
->busy_factor
;
3835 /* scale ms to jiffies */
3836 interval
= msecs_to_jiffies(interval
);
3837 if (unlikely(!interval
))
3839 if (interval
> HZ
*NR_CPUS
/10)
3840 interval
= HZ
*NR_CPUS
/10;
3842 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3844 if (need_serialize
) {
3845 if (!spin_trylock(&balancing
))
3849 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3850 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3852 * We've pulled tasks over so either we're no
3853 * longer idle, or one of our SMT siblings is
3856 idle
= CPU_NOT_IDLE
;
3858 sd
->last_balance
= jiffies
;
3861 spin_unlock(&balancing
);
3863 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3864 next_balance
= sd
->last_balance
+ interval
;
3865 update_next_balance
= 1;
3869 * Stop the load balance at this level. There is another
3870 * CPU in our sched group which is doing load balancing more
3878 * next_balance will be updated only when there is a need.
3879 * When the cpu is attached to null domain for ex, it will not be
3882 if (likely(update_next_balance
))
3883 rq
->next_balance
= next_balance
;
3887 * run_rebalance_domains is triggered when needed from the scheduler tick.
3888 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3889 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3891 static void run_rebalance_domains(struct softirq_action
*h
)
3893 int this_cpu
= smp_processor_id();
3894 struct rq
*this_rq
= cpu_rq(this_cpu
);
3895 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3896 CPU_IDLE
: CPU_NOT_IDLE
;
3898 rebalance_domains(this_cpu
, idle
);
3902 * If this cpu is the owner for idle load balancing, then do the
3903 * balancing on behalf of the other idle cpus whose ticks are
3906 if (this_rq
->idle_at_tick
&&
3907 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3908 cpumask_t cpus
= nohz
.cpu_mask
;
3912 cpu_clear(this_cpu
, cpus
);
3913 for_each_cpu_mask_nr(balance_cpu
, cpus
) {
3915 * If this cpu gets work to do, stop the load balancing
3916 * work being done for other cpus. Next load
3917 * balancing owner will pick it up.
3922 rebalance_domains(balance_cpu
, CPU_IDLE
);
3924 rq
= cpu_rq(balance_cpu
);
3925 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3926 this_rq
->next_balance
= rq
->next_balance
;
3933 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3935 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3936 * idle load balancing owner or decide to stop the periodic load balancing,
3937 * if the whole system is idle.
3939 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3943 * If we were in the nohz mode recently and busy at the current
3944 * scheduler tick, then check if we need to nominate new idle
3947 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3948 rq
->in_nohz_recently
= 0;
3950 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3951 cpu_clear(cpu
, nohz
.cpu_mask
);
3952 atomic_set(&nohz
.load_balancer
, -1);
3955 if (atomic_read(&nohz
.load_balancer
) == -1) {
3957 * simple selection for now: Nominate the
3958 * first cpu in the nohz list to be the next
3961 * TBD: Traverse the sched domains and nominate
3962 * the nearest cpu in the nohz.cpu_mask.
3964 int ilb
= first_cpu(nohz
.cpu_mask
);
3966 if (ilb
< nr_cpu_ids
)
3972 * If this cpu is idle and doing idle load balancing for all the
3973 * cpus with ticks stopped, is it time for that to stop?
3975 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3976 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3982 * If this cpu is idle and the idle load balancing is done by
3983 * someone else, then no need raise the SCHED_SOFTIRQ
3985 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3986 cpu_isset(cpu
, nohz
.cpu_mask
))
3989 if (time_after_eq(jiffies
, rq
->next_balance
))
3990 raise_softirq(SCHED_SOFTIRQ
);
3993 #else /* CONFIG_SMP */
3996 * on UP we do not need to balance between CPUs:
3998 static inline void idle_balance(int cpu
, struct rq
*rq
)
4004 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4006 EXPORT_PER_CPU_SYMBOL(kstat
);
4009 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4010 * that have not yet been banked in case the task is currently running.
4012 unsigned long long task_sched_runtime(struct task_struct
*p
)
4014 unsigned long flags
;
4018 rq
= task_rq_lock(p
, &flags
);
4019 ns
= p
->se
.sum_exec_runtime
;
4020 if (task_current(rq
, p
)) {
4021 update_rq_clock(rq
);
4022 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4023 if ((s64
)delta_exec
> 0)
4026 task_rq_unlock(rq
, &flags
);
4032 * Account user cpu time to a process.
4033 * @p: the process that the cpu time gets accounted to
4034 * @cputime: the cpu time spent in user space since the last update
4036 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4038 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4041 p
->utime
= cputime_add(p
->utime
, cputime
);
4043 /* Add user time to cpustat. */
4044 tmp
= cputime_to_cputime64(cputime
);
4045 if (TASK_NICE(p
) > 0)
4046 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4048 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4052 * Account guest cpu time to a process.
4053 * @p: the process that the cpu time gets accounted to
4054 * @cputime: the cpu time spent in virtual machine since the last update
4056 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4059 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4061 tmp
= cputime_to_cputime64(cputime
);
4063 p
->utime
= cputime_add(p
->utime
, cputime
);
4064 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4066 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4067 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4071 * Account scaled user cpu time to a process.
4072 * @p: the process that the cpu time gets accounted to
4073 * @cputime: the cpu time spent in user space since the last update
4075 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4077 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4081 * Account system cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @hardirq_offset: the offset to subtract from hardirq_count()
4084 * @cputime: the cpu time spent in kernel space since the last update
4086 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4089 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4090 struct rq
*rq
= this_rq();
4093 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4094 account_guest_time(p
, cputime
);
4098 p
->stime
= cputime_add(p
->stime
, cputime
);
4100 /* Add system time to cpustat. */
4101 tmp
= cputime_to_cputime64(cputime
);
4102 if (hardirq_count() - hardirq_offset
)
4103 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4104 else if (softirq_count())
4105 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4106 else if (p
!= rq
->idle
)
4107 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4108 else if (atomic_read(&rq
->nr_iowait
) > 0)
4109 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4111 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4112 /* Account for system time used */
4113 acct_update_integrals(p
);
4117 * Account scaled system cpu time to a process.
4118 * @p: the process that the cpu time gets accounted to
4119 * @hardirq_offset: the offset to subtract from hardirq_count()
4120 * @cputime: the cpu time spent in kernel space since the last update
4122 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4124 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4128 * Account for involuntary wait time.
4129 * @p: the process from which the cpu time has been stolen
4130 * @steal: the cpu time spent in involuntary wait
4132 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4134 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4135 cputime64_t tmp
= cputime_to_cputime64(steal
);
4136 struct rq
*rq
= this_rq();
4138 if (p
== rq
->idle
) {
4139 p
->stime
= cputime_add(p
->stime
, steal
);
4140 if (atomic_read(&rq
->nr_iowait
) > 0)
4141 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4143 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4145 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4149 * This function gets called by the timer code, with HZ frequency.
4150 * We call it with interrupts disabled.
4152 * It also gets called by the fork code, when changing the parent's
4155 void scheduler_tick(void)
4157 int cpu
= smp_processor_id();
4158 struct rq
*rq
= cpu_rq(cpu
);
4159 struct task_struct
*curr
= rq
->curr
;
4163 spin_lock(&rq
->lock
);
4164 update_rq_clock(rq
);
4165 update_cpu_load(rq
);
4166 curr
->sched_class
->task_tick(rq
, curr
, 0);
4167 spin_unlock(&rq
->lock
);
4170 rq
->idle_at_tick
= idle_cpu(cpu
);
4171 trigger_load_balance(rq
, cpu
);
4175 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4176 defined(CONFIG_PREEMPT_TRACER))
4178 static inline unsigned long get_parent_ip(unsigned long addr
)
4180 if (in_lock_functions(addr
)) {
4181 addr
= CALLER_ADDR2
;
4182 if (in_lock_functions(addr
))
4183 addr
= CALLER_ADDR3
;
4188 void __kprobes
add_preempt_count(int val
)
4190 #ifdef CONFIG_DEBUG_PREEMPT
4194 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4197 preempt_count() += val
;
4198 #ifdef CONFIG_DEBUG_PREEMPT
4200 * Spinlock count overflowing soon?
4202 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4205 if (preempt_count() == val
)
4206 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4208 EXPORT_SYMBOL(add_preempt_count
);
4210 void __kprobes
sub_preempt_count(int val
)
4212 #ifdef CONFIG_DEBUG_PREEMPT
4216 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4219 * Is the spinlock portion underflowing?
4221 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4222 !(preempt_count() & PREEMPT_MASK
)))
4226 if (preempt_count() == val
)
4227 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4228 preempt_count() -= val
;
4230 EXPORT_SYMBOL(sub_preempt_count
);
4235 * Print scheduling while atomic bug:
4237 static noinline
void __schedule_bug(struct task_struct
*prev
)
4239 struct pt_regs
*regs
= get_irq_regs();
4241 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4242 prev
->comm
, prev
->pid
, preempt_count());
4244 debug_show_held_locks(prev
);
4246 if (irqs_disabled())
4247 print_irqtrace_events(prev
);
4256 * Various schedule()-time debugging checks and statistics:
4258 static inline void schedule_debug(struct task_struct
*prev
)
4261 * Test if we are atomic. Since do_exit() needs to call into
4262 * schedule() atomically, we ignore that path for now.
4263 * Otherwise, whine if we are scheduling when we should not be.
4265 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4266 __schedule_bug(prev
);
4268 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4270 schedstat_inc(this_rq(), sched_count
);
4271 #ifdef CONFIG_SCHEDSTATS
4272 if (unlikely(prev
->lock_depth
>= 0)) {
4273 schedstat_inc(this_rq(), bkl_count
);
4274 schedstat_inc(prev
, sched_info
.bkl_count
);
4280 * Pick up the highest-prio task:
4282 static inline struct task_struct
*
4283 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4285 const struct sched_class
*class;
4286 struct task_struct
*p
;
4289 * Optimization: we know that if all tasks are in
4290 * the fair class we can call that function directly:
4292 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4293 p
= fair_sched_class
.pick_next_task(rq
);
4298 class = sched_class_highest
;
4300 p
= class->pick_next_task(rq
);
4304 * Will never be NULL as the idle class always
4305 * returns a non-NULL p:
4307 class = class->next
;
4312 * schedule() is the main scheduler function.
4314 asmlinkage
void __sched
schedule(void)
4316 struct task_struct
*prev
, *next
;
4317 unsigned long *switch_count
;
4323 cpu
= smp_processor_id();
4327 switch_count
= &prev
->nivcsw
;
4329 release_kernel_lock(prev
);
4330 need_resched_nonpreemptible
:
4332 schedule_debug(prev
);
4334 if (sched_feat(HRTICK
))
4338 * Do the rq-clock update outside the rq lock:
4340 local_irq_disable();
4341 update_rq_clock(rq
);
4342 spin_lock(&rq
->lock
);
4343 clear_tsk_need_resched(prev
);
4345 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4346 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4347 prev
->state
= TASK_RUNNING
;
4349 deactivate_task(rq
, prev
, 1);
4350 switch_count
= &prev
->nvcsw
;
4354 if (prev
->sched_class
->pre_schedule
)
4355 prev
->sched_class
->pre_schedule(rq
, prev
);
4358 if (unlikely(!rq
->nr_running
))
4359 idle_balance(cpu
, rq
);
4361 prev
->sched_class
->put_prev_task(rq
, prev
);
4362 next
= pick_next_task(rq
, prev
);
4364 if (likely(prev
!= next
)) {
4365 sched_info_switch(prev
, next
);
4371 context_switch(rq
, prev
, next
); /* unlocks the rq */
4373 * the context switch might have flipped the stack from under
4374 * us, hence refresh the local variables.
4376 cpu
= smp_processor_id();
4379 spin_unlock_irq(&rq
->lock
);
4381 if (unlikely(reacquire_kernel_lock(current
) < 0))
4382 goto need_resched_nonpreemptible
;
4384 preempt_enable_no_resched();
4385 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4388 EXPORT_SYMBOL(schedule
);
4390 #ifdef CONFIG_PREEMPT
4392 * this is the entry point to schedule() from in-kernel preemption
4393 * off of preempt_enable. Kernel preemptions off return from interrupt
4394 * occur there and call schedule directly.
4396 asmlinkage
void __sched
preempt_schedule(void)
4398 struct thread_info
*ti
= current_thread_info();
4401 * If there is a non-zero preempt_count or interrupts are disabled,
4402 * we do not want to preempt the current task. Just return..
4404 if (likely(ti
->preempt_count
|| irqs_disabled()))
4408 add_preempt_count(PREEMPT_ACTIVE
);
4410 sub_preempt_count(PREEMPT_ACTIVE
);
4413 * Check again in case we missed a preemption opportunity
4414 * between schedule and now.
4417 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4419 EXPORT_SYMBOL(preempt_schedule
);
4422 * this is the entry point to schedule() from kernel preemption
4423 * off of irq context.
4424 * Note, that this is called and return with irqs disabled. This will
4425 * protect us against recursive calling from irq.
4427 asmlinkage
void __sched
preempt_schedule_irq(void)
4429 struct thread_info
*ti
= current_thread_info();
4431 /* Catch callers which need to be fixed */
4432 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4435 add_preempt_count(PREEMPT_ACTIVE
);
4438 local_irq_disable();
4439 sub_preempt_count(PREEMPT_ACTIVE
);
4442 * Check again in case we missed a preemption opportunity
4443 * between schedule and now.
4446 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4449 #endif /* CONFIG_PREEMPT */
4451 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4454 return try_to_wake_up(curr
->private, mode
, sync
);
4456 EXPORT_SYMBOL(default_wake_function
);
4459 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4460 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4461 * number) then we wake all the non-exclusive tasks and one exclusive task.
4463 * There are circumstances in which we can try to wake a task which has already
4464 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4465 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4467 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4468 int nr_exclusive
, int sync
, void *key
)
4470 wait_queue_t
*curr
, *next
;
4472 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4473 unsigned flags
= curr
->flags
;
4475 if (curr
->func(curr
, mode
, sync
, key
) &&
4476 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4482 * __wake_up - wake up threads blocked on a waitqueue.
4484 * @mode: which threads
4485 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4486 * @key: is directly passed to the wakeup function
4488 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4489 int nr_exclusive
, void *key
)
4491 unsigned long flags
;
4493 spin_lock_irqsave(&q
->lock
, flags
);
4494 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4495 spin_unlock_irqrestore(&q
->lock
, flags
);
4497 EXPORT_SYMBOL(__wake_up
);
4500 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4502 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4504 __wake_up_common(q
, mode
, 1, 0, NULL
);
4508 * __wake_up_sync - wake up threads blocked on a waitqueue.
4510 * @mode: which threads
4511 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4513 * The sync wakeup differs that the waker knows that it will schedule
4514 * away soon, so while the target thread will be woken up, it will not
4515 * be migrated to another CPU - ie. the two threads are 'synchronized'
4516 * with each other. This can prevent needless bouncing between CPUs.
4518 * On UP it can prevent extra preemption.
4521 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4523 unsigned long flags
;
4529 if (unlikely(!nr_exclusive
))
4532 spin_lock_irqsave(&q
->lock
, flags
);
4533 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4534 spin_unlock_irqrestore(&q
->lock
, flags
);
4536 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4538 void complete(struct completion
*x
)
4540 unsigned long flags
;
4542 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4544 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4545 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4547 EXPORT_SYMBOL(complete
);
4549 void complete_all(struct completion
*x
)
4551 unsigned long flags
;
4553 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4554 x
->done
+= UINT_MAX
/2;
4555 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4556 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4558 EXPORT_SYMBOL(complete_all
);
4560 static inline long __sched
4561 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4564 DECLARE_WAITQUEUE(wait
, current
);
4566 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4567 __add_wait_queue_tail(&x
->wait
, &wait
);
4569 if ((state
== TASK_INTERRUPTIBLE
&&
4570 signal_pending(current
)) ||
4571 (state
== TASK_KILLABLE
&&
4572 fatal_signal_pending(current
))) {
4573 timeout
= -ERESTARTSYS
;
4576 __set_current_state(state
);
4577 spin_unlock_irq(&x
->wait
.lock
);
4578 timeout
= schedule_timeout(timeout
);
4579 spin_lock_irq(&x
->wait
.lock
);
4580 } while (!x
->done
&& timeout
);
4581 __remove_wait_queue(&x
->wait
, &wait
);
4586 return timeout
?: 1;
4590 wait_for_common(struct completion
*x
, long timeout
, int state
)
4594 spin_lock_irq(&x
->wait
.lock
);
4595 timeout
= do_wait_for_common(x
, timeout
, state
);
4596 spin_unlock_irq(&x
->wait
.lock
);
4600 void __sched
wait_for_completion(struct completion
*x
)
4602 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4604 EXPORT_SYMBOL(wait_for_completion
);
4606 unsigned long __sched
4607 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4609 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4611 EXPORT_SYMBOL(wait_for_completion_timeout
);
4613 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4615 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4616 if (t
== -ERESTARTSYS
)
4620 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4622 unsigned long __sched
4623 wait_for_completion_interruptible_timeout(struct completion
*x
,
4624 unsigned long timeout
)
4626 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4628 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4630 int __sched
wait_for_completion_killable(struct completion
*x
)
4632 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4633 if (t
== -ERESTARTSYS
)
4637 EXPORT_SYMBOL(wait_for_completion_killable
);
4640 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4642 unsigned long flags
;
4645 init_waitqueue_entry(&wait
, current
);
4647 __set_current_state(state
);
4649 spin_lock_irqsave(&q
->lock
, flags
);
4650 __add_wait_queue(q
, &wait
);
4651 spin_unlock(&q
->lock
);
4652 timeout
= schedule_timeout(timeout
);
4653 spin_lock_irq(&q
->lock
);
4654 __remove_wait_queue(q
, &wait
);
4655 spin_unlock_irqrestore(&q
->lock
, flags
);
4660 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4662 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4664 EXPORT_SYMBOL(interruptible_sleep_on
);
4667 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4669 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4671 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4673 void __sched
sleep_on(wait_queue_head_t
*q
)
4675 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4677 EXPORT_SYMBOL(sleep_on
);
4679 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4681 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4683 EXPORT_SYMBOL(sleep_on_timeout
);
4685 #ifdef CONFIG_RT_MUTEXES
4688 * rt_mutex_setprio - set the current priority of a task
4690 * @prio: prio value (kernel-internal form)
4692 * This function changes the 'effective' priority of a task. It does
4693 * not touch ->normal_prio like __setscheduler().
4695 * Used by the rt_mutex code to implement priority inheritance logic.
4697 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4699 unsigned long flags
;
4700 int oldprio
, on_rq
, running
;
4702 const struct sched_class
*prev_class
= p
->sched_class
;
4704 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4706 rq
= task_rq_lock(p
, &flags
);
4707 update_rq_clock(rq
);
4710 on_rq
= p
->se
.on_rq
;
4711 running
= task_current(rq
, p
);
4713 dequeue_task(rq
, p
, 0);
4715 p
->sched_class
->put_prev_task(rq
, p
);
4718 p
->sched_class
= &rt_sched_class
;
4720 p
->sched_class
= &fair_sched_class
;
4725 p
->sched_class
->set_curr_task(rq
);
4727 enqueue_task(rq
, p
, 0);
4729 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4731 task_rq_unlock(rq
, &flags
);
4736 void set_user_nice(struct task_struct
*p
, long nice
)
4738 int old_prio
, delta
, on_rq
;
4739 unsigned long flags
;
4742 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4748 rq
= task_rq_lock(p
, &flags
);
4749 update_rq_clock(rq
);
4751 * The RT priorities are set via sched_setscheduler(), but we still
4752 * allow the 'normal' nice value to be set - but as expected
4753 * it wont have any effect on scheduling until the task is
4754 * SCHED_FIFO/SCHED_RR:
4756 if (task_has_rt_policy(p
)) {
4757 p
->static_prio
= NICE_TO_PRIO(nice
);
4760 on_rq
= p
->se
.on_rq
;
4762 dequeue_task(rq
, p
, 0);
4764 p
->static_prio
= NICE_TO_PRIO(nice
);
4767 p
->prio
= effective_prio(p
);
4768 delta
= p
->prio
- old_prio
;
4771 enqueue_task(rq
, p
, 0);
4773 * If the task increased its priority or is running and
4774 * lowered its priority, then reschedule its CPU:
4776 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4777 resched_task(rq
->curr
);
4780 task_rq_unlock(rq
, &flags
);
4782 EXPORT_SYMBOL(set_user_nice
);
4785 * can_nice - check if a task can reduce its nice value
4789 int can_nice(const struct task_struct
*p
, const int nice
)
4791 /* convert nice value [19,-20] to rlimit style value [1,40] */
4792 int nice_rlim
= 20 - nice
;
4794 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4795 capable(CAP_SYS_NICE
));
4798 #ifdef __ARCH_WANT_SYS_NICE
4801 * sys_nice - change the priority of the current process.
4802 * @increment: priority increment
4804 * sys_setpriority is a more generic, but much slower function that
4805 * does similar things.
4807 asmlinkage
long sys_nice(int increment
)
4812 * Setpriority might change our priority at the same moment.
4813 * We don't have to worry. Conceptually one call occurs first
4814 * and we have a single winner.
4816 if (increment
< -40)
4821 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4827 if (increment
< 0 && !can_nice(current
, nice
))
4830 retval
= security_task_setnice(current
, nice
);
4834 set_user_nice(current
, nice
);
4841 * task_prio - return the priority value of a given task.
4842 * @p: the task in question.
4844 * This is the priority value as seen by users in /proc.
4845 * RT tasks are offset by -200. Normal tasks are centered
4846 * around 0, value goes from -16 to +15.
4848 int task_prio(const struct task_struct
*p
)
4850 return p
->prio
- MAX_RT_PRIO
;
4854 * task_nice - return the nice value of a given task.
4855 * @p: the task in question.
4857 int task_nice(const struct task_struct
*p
)
4859 return TASK_NICE(p
);
4861 EXPORT_SYMBOL(task_nice
);
4864 * idle_cpu - is a given cpu idle currently?
4865 * @cpu: the processor in question.
4867 int idle_cpu(int cpu
)
4869 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4873 * idle_task - return the idle task for a given cpu.
4874 * @cpu: the processor in question.
4876 struct task_struct
*idle_task(int cpu
)
4878 return cpu_rq(cpu
)->idle
;
4882 * find_process_by_pid - find a process with a matching PID value.
4883 * @pid: the pid in question.
4885 static struct task_struct
*find_process_by_pid(pid_t pid
)
4887 return pid
? find_task_by_vpid(pid
) : current
;
4890 /* Actually do priority change: must hold rq lock. */
4892 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4894 BUG_ON(p
->se
.on_rq
);
4897 switch (p
->policy
) {
4901 p
->sched_class
= &fair_sched_class
;
4905 p
->sched_class
= &rt_sched_class
;
4909 p
->rt_priority
= prio
;
4910 p
->normal_prio
= normal_prio(p
);
4911 /* we are holding p->pi_lock already */
4912 p
->prio
= rt_mutex_getprio(p
);
4916 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4917 struct sched_param
*param
, bool user
)
4919 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4920 unsigned long flags
;
4921 const struct sched_class
*prev_class
= p
->sched_class
;
4924 /* may grab non-irq protected spin_locks */
4925 BUG_ON(in_interrupt());
4927 /* double check policy once rq lock held */
4929 policy
= oldpolicy
= p
->policy
;
4930 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4931 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4932 policy
!= SCHED_IDLE
)
4935 * Valid priorities for SCHED_FIFO and SCHED_RR are
4936 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4937 * SCHED_BATCH and SCHED_IDLE is 0.
4939 if (param
->sched_priority
< 0 ||
4940 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4941 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4943 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4947 * Allow unprivileged RT tasks to decrease priority:
4949 if (user
&& !capable(CAP_SYS_NICE
)) {
4950 if (rt_policy(policy
)) {
4951 unsigned long rlim_rtprio
;
4953 if (!lock_task_sighand(p
, &flags
))
4955 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4956 unlock_task_sighand(p
, &flags
);
4958 /* can't set/change the rt policy */
4959 if (policy
!= p
->policy
&& !rlim_rtprio
)
4962 /* can't increase priority */
4963 if (param
->sched_priority
> p
->rt_priority
&&
4964 param
->sched_priority
> rlim_rtprio
)
4968 * Like positive nice levels, dont allow tasks to
4969 * move out of SCHED_IDLE either:
4971 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4974 /* can't change other user's priorities */
4975 if ((current
->euid
!= p
->euid
) &&
4976 (current
->euid
!= p
->uid
))
4980 #ifdef CONFIG_RT_GROUP_SCHED
4982 * Do not allow realtime tasks into groups that have no runtime
4986 && rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4990 retval
= security_task_setscheduler(p
, policy
, param
);
4994 * make sure no PI-waiters arrive (or leave) while we are
4995 * changing the priority of the task:
4997 spin_lock_irqsave(&p
->pi_lock
, flags
);
4999 * To be able to change p->policy safely, the apropriate
5000 * runqueue lock must be held.
5002 rq
= __task_rq_lock(p
);
5003 /* recheck policy now with rq lock held */
5004 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5005 policy
= oldpolicy
= -1;
5006 __task_rq_unlock(rq
);
5007 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5010 update_rq_clock(rq
);
5011 on_rq
= p
->se
.on_rq
;
5012 running
= task_current(rq
, p
);
5014 deactivate_task(rq
, p
, 0);
5016 p
->sched_class
->put_prev_task(rq
, p
);
5019 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5022 p
->sched_class
->set_curr_task(rq
);
5024 activate_task(rq
, p
, 0);
5026 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5028 __task_rq_unlock(rq
);
5029 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5031 rt_mutex_adjust_pi(p
);
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5042 * NOTE that the task may be already dead.
5044 int sched_setscheduler(struct task_struct
*p
, int policy
,
5045 struct sched_param
*param
)
5047 return __sched_setscheduler(p
, policy
, param
, true);
5049 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5052 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5053 * @p: the task in question.
5054 * @policy: new policy.
5055 * @param: structure containing the new RT priority.
5057 * Just like sched_setscheduler, only don't bother checking if the
5058 * current context has permission. For example, this is needed in
5059 * stop_machine(): we create temporary high priority worker threads,
5060 * but our caller might not have that capability.
5062 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5063 struct sched_param
*param
)
5065 return __sched_setscheduler(p
, policy
, param
, false);
5069 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5071 struct sched_param lparam
;
5072 struct task_struct
*p
;
5075 if (!param
|| pid
< 0)
5077 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5082 p
= find_process_by_pid(pid
);
5084 retval
= sched_setscheduler(p
, policy
, &lparam
);
5091 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5092 * @pid: the pid in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5097 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5099 /* negative values for policy are not valid */
5103 return do_sched_setscheduler(pid
, policy
, param
);
5107 * sys_sched_setparam - set/change the RT priority of a thread
5108 * @pid: the pid in question.
5109 * @param: structure containing the new RT priority.
5111 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5113 return do_sched_setscheduler(pid
, -1, param
);
5117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5118 * @pid: the pid in question.
5120 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5122 struct task_struct
*p
;
5129 read_lock(&tasklist_lock
);
5130 p
= find_process_by_pid(pid
);
5132 retval
= security_task_getscheduler(p
);
5136 read_unlock(&tasklist_lock
);
5141 * sys_sched_getscheduler - get the RT priority of a thread
5142 * @pid: the pid in question.
5143 * @param: structure containing the RT priority.
5145 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5147 struct sched_param lp
;
5148 struct task_struct
*p
;
5151 if (!param
|| pid
< 0)
5154 read_lock(&tasklist_lock
);
5155 p
= find_process_by_pid(pid
);
5160 retval
= security_task_getscheduler(p
);
5164 lp
.sched_priority
= p
->rt_priority
;
5165 read_unlock(&tasklist_lock
);
5168 * This one might sleep, we cannot do it with a spinlock held ...
5170 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5175 read_unlock(&tasklist_lock
);
5179 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5181 cpumask_t cpus_allowed
;
5182 cpumask_t new_mask
= *in_mask
;
5183 struct task_struct
*p
;
5187 read_lock(&tasklist_lock
);
5189 p
= find_process_by_pid(pid
);
5191 read_unlock(&tasklist_lock
);
5197 * It is not safe to call set_cpus_allowed with the
5198 * tasklist_lock held. We will bump the task_struct's
5199 * usage count and then drop tasklist_lock.
5202 read_unlock(&tasklist_lock
);
5205 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5206 !capable(CAP_SYS_NICE
))
5209 retval
= security_task_setscheduler(p
, 0, NULL
);
5213 cpuset_cpus_allowed(p
, &cpus_allowed
);
5214 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5216 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5219 cpuset_cpus_allowed(p
, &cpus_allowed
);
5220 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5222 * We must have raced with a concurrent cpuset
5223 * update. Just reset the cpus_allowed to the
5224 * cpuset's cpus_allowed
5226 new_mask
= cpus_allowed
;
5236 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5237 cpumask_t
*new_mask
)
5239 if (len
< sizeof(cpumask_t
)) {
5240 memset(new_mask
, 0, sizeof(cpumask_t
));
5241 } else if (len
> sizeof(cpumask_t
)) {
5242 len
= sizeof(cpumask_t
);
5244 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5248 * sys_sched_setaffinity - set the cpu affinity of a process
5249 * @pid: pid of the process
5250 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5251 * @user_mask_ptr: user-space pointer to the new cpu mask
5253 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5254 unsigned long __user
*user_mask_ptr
)
5259 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5263 return sched_setaffinity(pid
, &new_mask
);
5266 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5268 struct task_struct
*p
;
5272 read_lock(&tasklist_lock
);
5275 p
= find_process_by_pid(pid
);
5279 retval
= security_task_getscheduler(p
);
5283 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5286 read_unlock(&tasklist_lock
);
5293 * sys_sched_getaffinity - get the cpu affinity of a process
5294 * @pid: pid of the process
5295 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5296 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5298 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5299 unsigned long __user
*user_mask_ptr
)
5304 if (len
< sizeof(cpumask_t
))
5307 ret
= sched_getaffinity(pid
, &mask
);
5311 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5314 return sizeof(cpumask_t
);
5318 * sys_sched_yield - yield the current processor to other threads.
5320 * This function yields the current CPU to other tasks. If there are no
5321 * other threads running on this CPU then this function will return.
5323 asmlinkage
long sys_sched_yield(void)
5325 struct rq
*rq
= this_rq_lock();
5327 schedstat_inc(rq
, yld_count
);
5328 current
->sched_class
->yield_task(rq
);
5331 * Since we are going to call schedule() anyway, there's
5332 * no need to preempt or enable interrupts:
5334 __release(rq
->lock
);
5335 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5336 _raw_spin_unlock(&rq
->lock
);
5337 preempt_enable_no_resched();
5344 static void __cond_resched(void)
5346 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5347 __might_sleep(__FILE__
, __LINE__
);
5350 * The BKS might be reacquired before we have dropped
5351 * PREEMPT_ACTIVE, which could trigger a second
5352 * cond_resched() call.
5355 add_preempt_count(PREEMPT_ACTIVE
);
5357 sub_preempt_count(PREEMPT_ACTIVE
);
5358 } while (need_resched());
5361 int __sched
_cond_resched(void)
5363 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5364 system_state
== SYSTEM_RUNNING
) {
5370 EXPORT_SYMBOL(_cond_resched
);
5373 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5374 * call schedule, and on return reacquire the lock.
5376 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5377 * operations here to prevent schedule() from being called twice (once via
5378 * spin_unlock(), once by hand).
5380 int cond_resched_lock(spinlock_t
*lock
)
5382 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5385 if (spin_needbreak(lock
) || resched
) {
5387 if (resched
&& need_resched())
5396 EXPORT_SYMBOL(cond_resched_lock
);
5398 int __sched
cond_resched_softirq(void)
5400 BUG_ON(!in_softirq());
5402 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5410 EXPORT_SYMBOL(cond_resched_softirq
);
5413 * yield - yield the current processor to other threads.
5415 * This is a shortcut for kernel-space yielding - it marks the
5416 * thread runnable and calls sys_sched_yield().
5418 void __sched
yield(void)
5420 set_current_state(TASK_RUNNING
);
5423 EXPORT_SYMBOL(yield
);
5426 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5427 * that process accounting knows that this is a task in IO wait state.
5429 * But don't do that if it is a deliberate, throttling IO wait (this task
5430 * has set its backing_dev_info: the queue against which it should throttle)
5432 void __sched
io_schedule(void)
5434 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5436 delayacct_blkio_start();
5437 atomic_inc(&rq
->nr_iowait
);
5439 atomic_dec(&rq
->nr_iowait
);
5440 delayacct_blkio_end();
5442 EXPORT_SYMBOL(io_schedule
);
5444 long __sched
io_schedule_timeout(long timeout
)
5446 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5449 delayacct_blkio_start();
5450 atomic_inc(&rq
->nr_iowait
);
5451 ret
= schedule_timeout(timeout
);
5452 atomic_dec(&rq
->nr_iowait
);
5453 delayacct_blkio_end();
5458 * sys_sched_get_priority_max - return maximum RT priority.
5459 * @policy: scheduling class.
5461 * this syscall returns the maximum rt_priority that can be used
5462 * by a given scheduling class.
5464 asmlinkage
long sys_sched_get_priority_max(int policy
)
5471 ret
= MAX_USER_RT_PRIO
-1;
5483 * sys_sched_get_priority_min - return minimum RT priority.
5484 * @policy: scheduling class.
5486 * this syscall returns the minimum rt_priority that can be used
5487 * by a given scheduling class.
5489 asmlinkage
long sys_sched_get_priority_min(int policy
)
5507 * sys_sched_rr_get_interval - return the default timeslice of a process.
5508 * @pid: pid of the process.
5509 * @interval: userspace pointer to the timeslice value.
5511 * this syscall writes the default timeslice value of a given process
5512 * into the user-space timespec buffer. A value of '0' means infinity.
5515 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5517 struct task_struct
*p
;
5518 unsigned int time_slice
;
5526 read_lock(&tasklist_lock
);
5527 p
= find_process_by_pid(pid
);
5531 retval
= security_task_getscheduler(p
);
5536 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5537 * tasks that are on an otherwise idle runqueue:
5540 if (p
->policy
== SCHED_RR
) {
5541 time_slice
= DEF_TIMESLICE
;
5542 } else if (p
->policy
!= SCHED_FIFO
) {
5543 struct sched_entity
*se
= &p
->se
;
5544 unsigned long flags
;
5547 rq
= task_rq_lock(p
, &flags
);
5548 if (rq
->cfs
.load
.weight
)
5549 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5550 task_rq_unlock(rq
, &flags
);
5552 read_unlock(&tasklist_lock
);
5553 jiffies_to_timespec(time_slice
, &t
);
5554 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5558 read_unlock(&tasklist_lock
);
5562 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5564 void sched_show_task(struct task_struct
*p
)
5566 unsigned long free
= 0;
5569 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5570 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5571 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5572 #if BITS_PER_LONG == 32
5573 if (state
== TASK_RUNNING
)
5574 printk(KERN_CONT
" running ");
5576 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5578 if (state
== TASK_RUNNING
)
5579 printk(KERN_CONT
" running task ");
5581 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5583 #ifdef CONFIG_DEBUG_STACK_USAGE
5585 unsigned long *n
= end_of_stack(p
);
5588 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5591 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5592 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5594 show_stack(p
, NULL
);
5597 void show_state_filter(unsigned long state_filter
)
5599 struct task_struct
*g
, *p
;
5601 #if BITS_PER_LONG == 32
5603 " task PC stack pid father\n");
5606 " task PC stack pid father\n");
5608 read_lock(&tasklist_lock
);
5609 do_each_thread(g
, p
) {
5611 * reset the NMI-timeout, listing all files on a slow
5612 * console might take alot of time:
5614 touch_nmi_watchdog();
5615 if (!state_filter
|| (p
->state
& state_filter
))
5617 } while_each_thread(g
, p
);
5619 touch_all_softlockup_watchdogs();
5621 #ifdef CONFIG_SCHED_DEBUG
5622 sysrq_sched_debug_show();
5624 read_unlock(&tasklist_lock
);
5626 * Only show locks if all tasks are dumped:
5628 if (state_filter
== -1)
5629 debug_show_all_locks();
5632 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5634 idle
->sched_class
= &idle_sched_class
;
5638 * init_idle - set up an idle thread for a given CPU
5639 * @idle: task in question
5640 * @cpu: cpu the idle task belongs to
5642 * NOTE: this function does not set the idle thread's NEED_RESCHED
5643 * flag, to make booting more robust.
5645 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5647 struct rq
*rq
= cpu_rq(cpu
);
5648 unsigned long flags
;
5651 idle
->se
.exec_start
= sched_clock();
5653 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5654 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5655 __set_task_cpu(idle
, cpu
);
5657 spin_lock_irqsave(&rq
->lock
, flags
);
5658 rq
->curr
= rq
->idle
= idle
;
5659 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5662 spin_unlock_irqrestore(&rq
->lock
, flags
);
5664 /* Set the preempt count _outside_ the spinlocks! */
5665 #if defined(CONFIG_PREEMPT)
5666 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5668 task_thread_info(idle
)->preempt_count
= 0;
5671 * The idle tasks have their own, simple scheduling class:
5673 idle
->sched_class
= &idle_sched_class
;
5677 * In a system that switches off the HZ timer nohz_cpu_mask
5678 * indicates which cpus entered this state. This is used
5679 * in the rcu update to wait only for active cpus. For system
5680 * which do not switch off the HZ timer nohz_cpu_mask should
5681 * always be CPU_MASK_NONE.
5683 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5686 * Increase the granularity value when there are more CPUs,
5687 * because with more CPUs the 'effective latency' as visible
5688 * to users decreases. But the relationship is not linear,
5689 * so pick a second-best guess by going with the log2 of the
5692 * This idea comes from the SD scheduler of Con Kolivas:
5694 static inline void sched_init_granularity(void)
5696 unsigned int factor
= 1 + ilog2(num_online_cpus());
5697 const unsigned long limit
= 200000000;
5699 sysctl_sched_min_granularity
*= factor
;
5700 if (sysctl_sched_min_granularity
> limit
)
5701 sysctl_sched_min_granularity
= limit
;
5703 sysctl_sched_latency
*= factor
;
5704 if (sysctl_sched_latency
> limit
)
5705 sysctl_sched_latency
= limit
;
5707 sysctl_sched_wakeup_granularity
*= factor
;
5712 * This is how migration works:
5714 * 1) we queue a struct migration_req structure in the source CPU's
5715 * runqueue and wake up that CPU's migration thread.
5716 * 2) we down() the locked semaphore => thread blocks.
5717 * 3) migration thread wakes up (implicitly it forces the migrated
5718 * thread off the CPU)
5719 * 4) it gets the migration request and checks whether the migrated
5720 * task is still in the wrong runqueue.
5721 * 5) if it's in the wrong runqueue then the migration thread removes
5722 * it and puts it into the right queue.
5723 * 6) migration thread up()s the semaphore.
5724 * 7) we wake up and the migration is done.
5728 * Change a given task's CPU affinity. Migrate the thread to a
5729 * proper CPU and schedule it away if the CPU it's executing on
5730 * is removed from the allowed bitmask.
5732 * NOTE: the caller must have a valid reference to the task, the
5733 * task must not exit() & deallocate itself prematurely. The
5734 * call is not atomic; no spinlocks may be held.
5736 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5738 struct migration_req req
;
5739 unsigned long flags
;
5743 rq
= task_rq_lock(p
, &flags
);
5744 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5749 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5750 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5755 if (p
->sched_class
->set_cpus_allowed
)
5756 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5758 p
->cpus_allowed
= *new_mask
;
5759 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5762 /* Can the task run on the task's current CPU? If so, we're done */
5763 if (cpu_isset(task_cpu(p
), *new_mask
))
5766 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5767 /* Need help from migration thread: drop lock and wait. */
5768 task_rq_unlock(rq
, &flags
);
5769 wake_up_process(rq
->migration_thread
);
5770 wait_for_completion(&req
.done
);
5771 tlb_migrate_finish(p
->mm
);
5775 task_rq_unlock(rq
, &flags
);
5779 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5782 * Move (not current) task off this cpu, onto dest cpu. We're doing
5783 * this because either it can't run here any more (set_cpus_allowed()
5784 * away from this CPU, or CPU going down), or because we're
5785 * attempting to rebalance this task on exec (sched_exec).
5787 * So we race with normal scheduler movements, but that's OK, as long
5788 * as the task is no longer on this CPU.
5790 * Returns non-zero if task was successfully migrated.
5792 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5794 struct rq
*rq_dest
, *rq_src
;
5797 if (unlikely(!cpu_active(dest_cpu
)))
5800 rq_src
= cpu_rq(src_cpu
);
5801 rq_dest
= cpu_rq(dest_cpu
);
5803 double_rq_lock(rq_src
, rq_dest
);
5804 /* Already moved. */
5805 if (task_cpu(p
) != src_cpu
)
5807 /* Affinity changed (again). */
5808 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5811 on_rq
= p
->se
.on_rq
;
5813 deactivate_task(rq_src
, p
, 0);
5815 set_task_cpu(p
, dest_cpu
);
5817 activate_task(rq_dest
, p
, 0);
5818 check_preempt_curr(rq_dest
, p
);
5823 double_rq_unlock(rq_src
, rq_dest
);
5828 * migration_thread - this is a highprio system thread that performs
5829 * thread migration by bumping thread off CPU then 'pushing' onto
5832 static int migration_thread(void *data
)
5834 int cpu
= (long)data
;
5838 BUG_ON(rq
->migration_thread
!= current
);
5840 set_current_state(TASK_INTERRUPTIBLE
);
5841 while (!kthread_should_stop()) {
5842 struct migration_req
*req
;
5843 struct list_head
*head
;
5845 spin_lock_irq(&rq
->lock
);
5847 if (cpu_is_offline(cpu
)) {
5848 spin_unlock_irq(&rq
->lock
);
5852 if (rq
->active_balance
) {
5853 active_load_balance(rq
, cpu
);
5854 rq
->active_balance
= 0;
5857 head
= &rq
->migration_queue
;
5859 if (list_empty(head
)) {
5860 spin_unlock_irq(&rq
->lock
);
5862 set_current_state(TASK_INTERRUPTIBLE
);
5865 req
= list_entry(head
->next
, struct migration_req
, list
);
5866 list_del_init(head
->next
);
5868 spin_unlock(&rq
->lock
);
5869 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5872 complete(&req
->done
);
5874 __set_current_state(TASK_RUNNING
);
5878 /* Wait for kthread_stop */
5879 set_current_state(TASK_INTERRUPTIBLE
);
5880 while (!kthread_should_stop()) {
5882 set_current_state(TASK_INTERRUPTIBLE
);
5884 __set_current_state(TASK_RUNNING
);
5888 #ifdef CONFIG_HOTPLUG_CPU
5890 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5894 local_irq_disable();
5895 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5901 * Figure out where task on dead CPU should go, use force if necessary.
5902 * NOTE: interrupts should be disabled by the caller
5904 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5906 unsigned long flags
;
5913 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5914 cpus_and(mask
, mask
, p
->cpus_allowed
);
5915 dest_cpu
= any_online_cpu(mask
);
5917 /* On any allowed CPU? */
5918 if (dest_cpu
>= nr_cpu_ids
)
5919 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5921 /* No more Mr. Nice Guy. */
5922 if (dest_cpu
>= nr_cpu_ids
) {
5923 cpumask_t cpus_allowed
;
5925 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
5927 * Try to stay on the same cpuset, where the
5928 * current cpuset may be a subset of all cpus.
5929 * The cpuset_cpus_allowed_locked() variant of
5930 * cpuset_cpus_allowed() will not block. It must be
5931 * called within calls to cpuset_lock/cpuset_unlock.
5933 rq
= task_rq_lock(p
, &flags
);
5934 p
->cpus_allowed
= cpus_allowed
;
5935 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5936 task_rq_unlock(rq
, &flags
);
5939 * Don't tell them about moving exiting tasks or
5940 * kernel threads (both mm NULL), since they never
5943 if (p
->mm
&& printk_ratelimit()) {
5944 printk(KERN_INFO
"process %d (%s) no "
5945 "longer affine to cpu%d\n",
5946 task_pid_nr(p
), p
->comm
, dead_cpu
);
5949 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5953 * While a dead CPU has no uninterruptible tasks queued at this point,
5954 * it might still have a nonzero ->nr_uninterruptible counter, because
5955 * for performance reasons the counter is not stricly tracking tasks to
5956 * their home CPUs. So we just add the counter to another CPU's counter,
5957 * to keep the global sum constant after CPU-down:
5959 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5961 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
5962 unsigned long flags
;
5964 local_irq_save(flags
);
5965 double_rq_lock(rq_src
, rq_dest
);
5966 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5967 rq_src
->nr_uninterruptible
= 0;
5968 double_rq_unlock(rq_src
, rq_dest
);
5969 local_irq_restore(flags
);
5972 /* Run through task list and migrate tasks from the dead cpu. */
5973 static void migrate_live_tasks(int src_cpu
)
5975 struct task_struct
*p
, *t
;
5977 read_lock(&tasklist_lock
);
5979 do_each_thread(t
, p
) {
5983 if (task_cpu(p
) == src_cpu
)
5984 move_task_off_dead_cpu(src_cpu
, p
);
5985 } while_each_thread(t
, p
);
5987 read_unlock(&tasklist_lock
);
5991 * Schedules idle task to be the next runnable task on current CPU.
5992 * It does so by boosting its priority to highest possible.
5993 * Used by CPU offline code.
5995 void sched_idle_next(void)
5997 int this_cpu
= smp_processor_id();
5998 struct rq
*rq
= cpu_rq(this_cpu
);
5999 struct task_struct
*p
= rq
->idle
;
6000 unsigned long flags
;
6002 /* cpu has to be offline */
6003 BUG_ON(cpu_online(this_cpu
));
6006 * Strictly not necessary since rest of the CPUs are stopped by now
6007 * and interrupts disabled on the current cpu.
6009 spin_lock_irqsave(&rq
->lock
, flags
);
6011 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6013 update_rq_clock(rq
);
6014 activate_task(rq
, p
, 0);
6016 spin_unlock_irqrestore(&rq
->lock
, flags
);
6020 * Ensures that the idle task is using init_mm right before its cpu goes
6023 void idle_task_exit(void)
6025 struct mm_struct
*mm
= current
->active_mm
;
6027 BUG_ON(cpu_online(smp_processor_id()));
6030 switch_mm(mm
, &init_mm
, current
);
6034 /* called under rq->lock with disabled interrupts */
6035 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6037 struct rq
*rq
= cpu_rq(dead_cpu
);
6039 /* Must be exiting, otherwise would be on tasklist. */
6040 BUG_ON(!p
->exit_state
);
6042 /* Cannot have done final schedule yet: would have vanished. */
6043 BUG_ON(p
->state
== TASK_DEAD
);
6048 * Drop lock around migration; if someone else moves it,
6049 * that's OK. No task can be added to this CPU, so iteration is
6052 spin_unlock_irq(&rq
->lock
);
6053 move_task_off_dead_cpu(dead_cpu
, p
);
6054 spin_lock_irq(&rq
->lock
);
6059 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6060 static void migrate_dead_tasks(unsigned int dead_cpu
)
6062 struct rq
*rq
= cpu_rq(dead_cpu
);
6063 struct task_struct
*next
;
6066 if (!rq
->nr_running
)
6068 update_rq_clock(rq
);
6069 next
= pick_next_task(rq
, rq
->curr
);
6072 next
->sched_class
->put_prev_task(rq
, next
);
6073 migrate_dead(dead_cpu
, next
);
6077 #endif /* CONFIG_HOTPLUG_CPU */
6079 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6081 static struct ctl_table sd_ctl_dir
[] = {
6083 .procname
= "sched_domain",
6089 static struct ctl_table sd_ctl_root
[] = {
6091 .ctl_name
= CTL_KERN
,
6092 .procname
= "kernel",
6094 .child
= sd_ctl_dir
,
6099 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6101 struct ctl_table
*entry
=
6102 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6107 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6109 struct ctl_table
*entry
;
6112 * In the intermediate directories, both the child directory and
6113 * procname are dynamically allocated and could fail but the mode
6114 * will always be set. In the lowest directory the names are
6115 * static strings and all have proc handlers.
6117 for (entry
= *tablep
; entry
->mode
; entry
++) {
6119 sd_free_ctl_entry(&entry
->child
);
6120 if (entry
->proc_handler
== NULL
)
6121 kfree(entry
->procname
);
6129 set_table_entry(struct ctl_table
*entry
,
6130 const char *procname
, void *data
, int maxlen
,
6131 mode_t mode
, proc_handler
*proc_handler
)
6133 entry
->procname
= procname
;
6135 entry
->maxlen
= maxlen
;
6137 entry
->proc_handler
= proc_handler
;
6140 static struct ctl_table
*
6141 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6143 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6148 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6149 sizeof(long), 0644, proc_doulongvec_minmax
);
6150 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6151 sizeof(long), 0644, proc_doulongvec_minmax
);
6152 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6153 sizeof(int), 0644, proc_dointvec_minmax
);
6154 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6155 sizeof(int), 0644, proc_dointvec_minmax
);
6156 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6157 sizeof(int), 0644, proc_dointvec_minmax
);
6158 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6159 sizeof(int), 0644, proc_dointvec_minmax
);
6160 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6161 sizeof(int), 0644, proc_dointvec_minmax
);
6162 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6163 sizeof(int), 0644, proc_dointvec_minmax
);
6164 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6165 sizeof(int), 0644, proc_dointvec_minmax
);
6166 set_table_entry(&table
[9], "cache_nice_tries",
6167 &sd
->cache_nice_tries
,
6168 sizeof(int), 0644, proc_dointvec_minmax
);
6169 set_table_entry(&table
[10], "flags", &sd
->flags
,
6170 sizeof(int), 0644, proc_dointvec_minmax
);
6171 /* &table[11] is terminator */
6176 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6178 struct ctl_table
*entry
, *table
;
6179 struct sched_domain
*sd
;
6180 int domain_num
= 0, i
;
6183 for_each_domain(cpu
, sd
)
6185 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6190 for_each_domain(cpu
, sd
) {
6191 snprintf(buf
, 32, "domain%d", i
);
6192 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6194 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6201 static struct ctl_table_header
*sd_sysctl_header
;
6202 static void register_sched_domain_sysctl(void)
6204 int i
, cpu_num
= num_online_cpus();
6205 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6208 WARN_ON(sd_ctl_dir
[0].child
);
6209 sd_ctl_dir
[0].child
= entry
;
6214 for_each_online_cpu(i
) {
6215 snprintf(buf
, 32, "cpu%d", i
);
6216 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6218 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6222 WARN_ON(sd_sysctl_header
);
6223 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6226 /* may be called multiple times per register */
6227 static void unregister_sched_domain_sysctl(void)
6229 if (sd_sysctl_header
)
6230 unregister_sysctl_table(sd_sysctl_header
);
6231 sd_sysctl_header
= NULL
;
6232 if (sd_ctl_dir
[0].child
)
6233 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6236 static void register_sched_domain_sysctl(void)
6239 static void unregister_sched_domain_sysctl(void)
6244 static void set_rq_online(struct rq
*rq
)
6247 const struct sched_class
*class;
6249 cpu_set(rq
->cpu
, rq
->rd
->online
);
6252 for_each_class(class) {
6253 if (class->rq_online
)
6254 class->rq_online(rq
);
6259 static void set_rq_offline(struct rq
*rq
)
6262 const struct sched_class
*class;
6264 for_each_class(class) {
6265 if (class->rq_offline
)
6266 class->rq_offline(rq
);
6269 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6275 * migration_call - callback that gets triggered when a CPU is added.
6276 * Here we can start up the necessary migration thread for the new CPU.
6278 static int __cpuinit
6279 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6281 struct task_struct
*p
;
6282 int cpu
= (long)hcpu
;
6283 unsigned long flags
;
6288 case CPU_UP_PREPARE
:
6289 case CPU_UP_PREPARE_FROZEN
:
6290 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6293 kthread_bind(p
, cpu
);
6294 /* Must be high prio: stop_machine expects to yield to it. */
6295 rq
= task_rq_lock(p
, &flags
);
6296 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6297 task_rq_unlock(rq
, &flags
);
6298 cpu_rq(cpu
)->migration_thread
= p
;
6302 case CPU_ONLINE_FROZEN
:
6303 /* Strictly unnecessary, as first user will wake it. */
6304 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6306 /* Update our root-domain */
6308 spin_lock_irqsave(&rq
->lock
, flags
);
6310 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6314 spin_unlock_irqrestore(&rq
->lock
, flags
);
6317 #ifdef CONFIG_HOTPLUG_CPU
6318 case CPU_UP_CANCELED
:
6319 case CPU_UP_CANCELED_FROZEN
:
6320 if (!cpu_rq(cpu
)->migration_thread
)
6322 /* Unbind it from offline cpu so it can run. Fall thru. */
6323 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6324 any_online_cpu(cpu_online_map
));
6325 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6326 cpu_rq(cpu
)->migration_thread
= NULL
;
6330 case CPU_DEAD_FROZEN
:
6331 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6332 migrate_live_tasks(cpu
);
6334 kthread_stop(rq
->migration_thread
);
6335 rq
->migration_thread
= NULL
;
6336 /* Idle task back to normal (off runqueue, low prio) */
6337 spin_lock_irq(&rq
->lock
);
6338 update_rq_clock(rq
);
6339 deactivate_task(rq
, rq
->idle
, 0);
6340 rq
->idle
->static_prio
= MAX_PRIO
;
6341 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6342 rq
->idle
->sched_class
= &idle_sched_class
;
6343 migrate_dead_tasks(cpu
);
6344 spin_unlock_irq(&rq
->lock
);
6346 migrate_nr_uninterruptible(rq
);
6347 BUG_ON(rq
->nr_running
!= 0);
6350 * No need to migrate the tasks: it was best-effort if
6351 * they didn't take sched_hotcpu_mutex. Just wake up
6354 spin_lock_irq(&rq
->lock
);
6355 while (!list_empty(&rq
->migration_queue
)) {
6356 struct migration_req
*req
;
6358 req
= list_entry(rq
->migration_queue
.next
,
6359 struct migration_req
, list
);
6360 list_del_init(&req
->list
);
6361 complete(&req
->done
);
6363 spin_unlock_irq(&rq
->lock
);
6367 case CPU_DYING_FROZEN
:
6368 /* Update our root-domain */
6370 spin_lock_irqsave(&rq
->lock
, flags
);
6372 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6375 spin_unlock_irqrestore(&rq
->lock
, flags
);
6382 /* Register at highest priority so that task migration (migrate_all_tasks)
6383 * happens before everything else.
6385 static struct notifier_block __cpuinitdata migration_notifier
= {
6386 .notifier_call
= migration_call
,
6390 void __init
migration_init(void)
6392 void *cpu
= (void *)(long)smp_processor_id();
6395 /* Start one for the boot CPU: */
6396 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6397 BUG_ON(err
== NOTIFY_BAD
);
6398 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6399 register_cpu_notifier(&migration_notifier
);
6405 #ifdef CONFIG_SCHED_DEBUG
6407 static inline const char *sd_level_to_string(enum sched_domain_level lvl
)
6420 case SD_LV_ALLNODES
:
6429 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6430 cpumask_t
*groupmask
)
6432 struct sched_group
*group
= sd
->groups
;
6435 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6436 cpus_clear(*groupmask
);
6438 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6440 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6441 printk("does not load-balance\n");
6443 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6448 printk(KERN_CONT
"span %s level %s\n",
6449 str
, sd_level_to_string(sd
->level
));
6451 if (!cpu_isset(cpu
, sd
->span
)) {
6452 printk(KERN_ERR
"ERROR: domain->span does not contain "
6455 if (!cpu_isset(cpu
, group
->cpumask
)) {
6456 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6460 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6464 printk(KERN_ERR
"ERROR: group is NULL\n");
6468 if (!group
->__cpu_power
) {
6469 printk(KERN_CONT
"\n");
6470 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6475 if (!cpus_weight(group
->cpumask
)) {
6476 printk(KERN_CONT
"\n");
6477 printk(KERN_ERR
"ERROR: empty group\n");
6481 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6482 printk(KERN_CONT
"\n");
6483 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6487 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6489 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6490 printk(KERN_CONT
" %s", str
);
6492 group
= group
->next
;
6493 } while (group
!= sd
->groups
);
6494 printk(KERN_CONT
"\n");
6496 if (!cpus_equal(sd
->span
, *groupmask
))
6497 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6499 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6500 printk(KERN_ERR
"ERROR: parent span is not a superset "
6501 "of domain->span\n");
6505 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6507 cpumask_t
*groupmask
;
6511 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6515 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6517 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6519 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6524 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6533 #else /* !CONFIG_SCHED_DEBUG */
6534 # define sched_domain_debug(sd, cpu) do { } while (0)
6535 #endif /* CONFIG_SCHED_DEBUG */
6537 static int sd_degenerate(struct sched_domain
*sd
)
6539 if (cpus_weight(sd
->span
) == 1)
6542 /* Following flags need at least 2 groups */
6543 if (sd
->flags
& (SD_LOAD_BALANCE
|
6544 SD_BALANCE_NEWIDLE
|
6548 SD_SHARE_PKG_RESOURCES
)) {
6549 if (sd
->groups
!= sd
->groups
->next
)
6553 /* Following flags don't use groups */
6554 if (sd
->flags
& (SD_WAKE_IDLE
|
6563 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6565 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6567 if (sd_degenerate(parent
))
6570 if (!cpus_equal(sd
->span
, parent
->span
))
6573 /* Does parent contain flags not in child? */
6574 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6575 if (cflags
& SD_WAKE_AFFINE
)
6576 pflags
&= ~SD_WAKE_BALANCE
;
6577 /* Flags needing groups don't count if only 1 group in parent */
6578 if (parent
->groups
== parent
->groups
->next
) {
6579 pflags
&= ~(SD_LOAD_BALANCE
|
6580 SD_BALANCE_NEWIDLE
|
6584 SD_SHARE_PKG_RESOURCES
);
6586 if (~cflags
& pflags
)
6592 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6594 unsigned long flags
;
6596 spin_lock_irqsave(&rq
->lock
, flags
);
6599 struct root_domain
*old_rd
= rq
->rd
;
6601 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6604 cpu_clear(rq
->cpu
, old_rd
->span
);
6606 if (atomic_dec_and_test(&old_rd
->refcount
))
6610 atomic_inc(&rd
->refcount
);
6613 cpu_set(rq
->cpu
, rd
->span
);
6614 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6617 spin_unlock_irqrestore(&rq
->lock
, flags
);
6620 static void init_rootdomain(struct root_domain
*rd
)
6622 memset(rd
, 0, sizeof(*rd
));
6624 cpus_clear(rd
->span
);
6625 cpus_clear(rd
->online
);
6627 cpupri_init(&rd
->cpupri
);
6630 static void init_defrootdomain(void)
6632 init_rootdomain(&def_root_domain
);
6633 atomic_set(&def_root_domain
.refcount
, 1);
6636 static struct root_domain
*alloc_rootdomain(void)
6638 struct root_domain
*rd
;
6640 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6644 init_rootdomain(rd
);
6650 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6651 * hold the hotplug lock.
6654 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6656 struct rq
*rq
= cpu_rq(cpu
);
6657 struct sched_domain
*tmp
;
6659 /* Remove the sched domains which do not contribute to scheduling. */
6660 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6661 struct sched_domain
*parent
= tmp
->parent
;
6664 if (sd_parent_degenerate(tmp
, parent
)) {
6665 tmp
->parent
= parent
->parent
;
6667 parent
->parent
->child
= tmp
;
6671 if (sd
&& sd_degenerate(sd
)) {
6677 sched_domain_debug(sd
, cpu
);
6679 rq_attach_root(rq
, rd
);
6680 rcu_assign_pointer(rq
->sd
, sd
);
6683 /* cpus with isolated domains */
6684 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6686 /* Setup the mask of cpus configured for isolated domains */
6687 static int __init
isolated_cpu_setup(char *str
)
6689 static int __initdata ints
[NR_CPUS
];
6692 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6693 cpus_clear(cpu_isolated_map
);
6694 for (i
= 1; i
<= ints
[0]; i
++)
6695 if (ints
[i
] < NR_CPUS
)
6696 cpu_set(ints
[i
], cpu_isolated_map
);
6700 __setup("isolcpus=", isolated_cpu_setup
);
6703 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6704 * to a function which identifies what group(along with sched group) a CPU
6705 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6706 * (due to the fact that we keep track of groups covered with a cpumask_t).
6708 * init_sched_build_groups will build a circular linked list of the groups
6709 * covered by the given span, and will set each group's ->cpumask correctly,
6710 * and ->cpu_power to 0.
6713 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6714 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6715 struct sched_group
**sg
,
6716 cpumask_t
*tmpmask
),
6717 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6719 struct sched_group
*first
= NULL
, *last
= NULL
;
6722 cpus_clear(*covered
);
6724 for_each_cpu_mask_nr(i
, *span
) {
6725 struct sched_group
*sg
;
6726 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6729 if (cpu_isset(i
, *covered
))
6732 cpus_clear(sg
->cpumask
);
6733 sg
->__cpu_power
= 0;
6735 for_each_cpu_mask_nr(j
, *span
) {
6736 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6739 cpu_set(j
, *covered
);
6740 cpu_set(j
, sg
->cpumask
);
6751 #define SD_NODES_PER_DOMAIN 16
6756 * find_next_best_node - find the next node to include in a sched_domain
6757 * @node: node whose sched_domain we're building
6758 * @used_nodes: nodes already in the sched_domain
6760 * Find the next node to include in a given scheduling domain. Simply
6761 * finds the closest node not already in the @used_nodes map.
6763 * Should use nodemask_t.
6765 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6767 int i
, n
, val
, min_val
, best_node
= 0;
6771 for (i
= 0; i
< nr_node_ids
; i
++) {
6772 /* Start at @node */
6773 n
= (node
+ i
) % nr_node_ids
;
6775 if (!nr_cpus_node(n
))
6778 /* Skip already used nodes */
6779 if (node_isset(n
, *used_nodes
))
6782 /* Simple min distance search */
6783 val
= node_distance(node
, n
);
6785 if (val
< min_val
) {
6791 node_set(best_node
, *used_nodes
);
6796 * sched_domain_node_span - get a cpumask for a node's sched_domain
6797 * @node: node whose cpumask we're constructing
6798 * @span: resulting cpumask
6800 * Given a node, construct a good cpumask for its sched_domain to span. It
6801 * should be one that prevents unnecessary balancing, but also spreads tasks
6804 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6806 nodemask_t used_nodes
;
6807 node_to_cpumask_ptr(nodemask
, node
);
6811 nodes_clear(used_nodes
);
6813 cpus_or(*span
, *span
, *nodemask
);
6814 node_set(node
, used_nodes
);
6816 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6817 int next_node
= find_next_best_node(node
, &used_nodes
);
6819 node_to_cpumask_ptr_next(nodemask
, next_node
);
6820 cpus_or(*span
, *span
, *nodemask
);
6823 #endif /* CONFIG_NUMA */
6825 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6828 * SMT sched-domains:
6830 #ifdef CONFIG_SCHED_SMT
6831 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6832 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6835 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6839 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6842 #endif /* CONFIG_SCHED_SMT */
6845 * multi-core sched-domains:
6847 #ifdef CONFIG_SCHED_MC
6848 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6849 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6850 #endif /* CONFIG_SCHED_MC */
6852 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6854 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6859 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6860 cpus_and(*mask
, *mask
, *cpu_map
);
6861 group
= first_cpu(*mask
);
6863 *sg
= &per_cpu(sched_group_core
, group
);
6866 #elif defined(CONFIG_SCHED_MC)
6868 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6872 *sg
= &per_cpu(sched_group_core
, cpu
);
6877 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6878 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6881 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6885 #ifdef CONFIG_SCHED_MC
6886 *mask
= cpu_coregroup_map(cpu
);
6887 cpus_and(*mask
, *mask
, *cpu_map
);
6888 group
= first_cpu(*mask
);
6889 #elif defined(CONFIG_SCHED_SMT)
6890 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6891 cpus_and(*mask
, *mask
, *cpu_map
);
6892 group
= first_cpu(*mask
);
6897 *sg
= &per_cpu(sched_group_phys
, group
);
6903 * The init_sched_build_groups can't handle what we want to do with node
6904 * groups, so roll our own. Now each node has its own list of groups which
6905 * gets dynamically allocated.
6907 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6908 static struct sched_group
***sched_group_nodes_bycpu
;
6910 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6911 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6913 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6914 struct sched_group
**sg
, cpumask_t
*nodemask
)
6918 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6919 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6920 group
= first_cpu(*nodemask
);
6923 *sg
= &per_cpu(sched_group_allnodes
, group
);
6927 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6929 struct sched_group
*sg
= group_head
;
6935 for_each_cpu_mask_nr(j
, sg
->cpumask
) {
6936 struct sched_domain
*sd
;
6938 sd
= &per_cpu(phys_domains
, j
);
6939 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6941 * Only add "power" once for each
6947 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6950 } while (sg
!= group_head
);
6952 #endif /* CONFIG_NUMA */
6955 /* Free memory allocated for various sched_group structures */
6956 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6960 for_each_cpu_mask_nr(cpu
, *cpu_map
) {
6961 struct sched_group
**sched_group_nodes
6962 = sched_group_nodes_bycpu
[cpu
];
6964 if (!sched_group_nodes
)
6967 for (i
= 0; i
< nr_node_ids
; i
++) {
6968 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6970 *nodemask
= node_to_cpumask(i
);
6971 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6972 if (cpus_empty(*nodemask
))
6982 if (oldsg
!= sched_group_nodes
[i
])
6985 kfree(sched_group_nodes
);
6986 sched_group_nodes_bycpu
[cpu
] = NULL
;
6989 #else /* !CONFIG_NUMA */
6990 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6993 #endif /* CONFIG_NUMA */
6996 * Initialize sched groups cpu_power.
6998 * cpu_power indicates the capacity of sched group, which is used while
6999 * distributing the load between different sched groups in a sched domain.
7000 * Typically cpu_power for all the groups in a sched domain will be same unless
7001 * there are asymmetries in the topology. If there are asymmetries, group
7002 * having more cpu_power will pickup more load compared to the group having
7005 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7006 * the maximum number of tasks a group can handle in the presence of other idle
7007 * or lightly loaded groups in the same sched domain.
7009 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7011 struct sched_domain
*child
;
7012 struct sched_group
*group
;
7014 WARN_ON(!sd
|| !sd
->groups
);
7016 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7021 sd
->groups
->__cpu_power
= 0;
7024 * For perf policy, if the groups in child domain share resources
7025 * (for example cores sharing some portions of the cache hierarchy
7026 * or SMT), then set this domain groups cpu_power such that each group
7027 * can handle only one task, when there are other idle groups in the
7028 * same sched domain.
7030 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7032 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7033 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7038 * add cpu_power of each child group to this groups cpu_power
7040 group
= child
->groups
;
7042 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7043 group
= group
->next
;
7044 } while (group
!= child
->groups
);
7048 * Initializers for schedule domains
7049 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7052 #define SD_INIT(sd, type) sd_init_##type(sd)
7053 #define SD_INIT_FUNC(type) \
7054 static noinline void sd_init_##type(struct sched_domain *sd) \
7056 memset(sd, 0, sizeof(*sd)); \
7057 *sd = SD_##type##_INIT; \
7058 sd->level = SD_LV_##type; \
7063 SD_INIT_FUNC(ALLNODES
)
7066 #ifdef CONFIG_SCHED_SMT
7067 SD_INIT_FUNC(SIBLING
)
7069 #ifdef CONFIG_SCHED_MC
7074 * To minimize stack usage kmalloc room for cpumasks and share the
7075 * space as the usage in build_sched_domains() dictates. Used only
7076 * if the amount of space is significant.
7079 cpumask_t tmpmask
; /* make this one first */
7082 cpumask_t this_sibling_map
;
7083 cpumask_t this_core_map
;
7085 cpumask_t send_covered
;
7088 cpumask_t domainspan
;
7090 cpumask_t notcovered
;
7095 #define SCHED_CPUMASK_ALLOC 1
7096 #define SCHED_CPUMASK_FREE(v) kfree(v)
7097 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7099 #define SCHED_CPUMASK_ALLOC 0
7100 #define SCHED_CPUMASK_FREE(v)
7101 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7104 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7105 ((unsigned long)(a) + offsetof(struct allmasks, v))
7107 static int default_relax_domain_level
= -1;
7109 static int __init
setup_relax_domain_level(char *str
)
7113 val
= simple_strtoul(str
, NULL
, 0);
7114 if (val
< SD_LV_MAX
)
7115 default_relax_domain_level
= val
;
7119 __setup("relax_domain_level=", setup_relax_domain_level
);
7121 static void set_domain_attribute(struct sched_domain
*sd
,
7122 struct sched_domain_attr
*attr
)
7126 if (!attr
|| attr
->relax_domain_level
< 0) {
7127 if (default_relax_domain_level
< 0)
7130 request
= default_relax_domain_level
;
7132 request
= attr
->relax_domain_level
;
7133 if (request
< sd
->level
) {
7134 /* turn off idle balance on this domain */
7135 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7137 /* turn on idle balance on this domain */
7138 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7143 * Build sched domains for a given set of cpus and attach the sched domains
7144 * to the individual cpus
7146 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7147 struct sched_domain_attr
*attr
)
7150 struct root_domain
*rd
;
7151 SCHED_CPUMASK_DECLARE(allmasks
);
7154 struct sched_group
**sched_group_nodes
= NULL
;
7155 int sd_allnodes
= 0;
7158 * Allocate the per-node list of sched groups
7160 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7162 if (!sched_group_nodes
) {
7163 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7168 rd
= alloc_rootdomain();
7170 printk(KERN_WARNING
"Cannot alloc root domain\n");
7172 kfree(sched_group_nodes
);
7177 #if SCHED_CPUMASK_ALLOC
7178 /* get space for all scratch cpumask variables */
7179 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7181 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7184 kfree(sched_group_nodes
);
7189 tmpmask
= (cpumask_t
*)allmasks
;
7193 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7197 * Set up domains for cpus specified by the cpu_map.
7199 for_each_cpu_mask_nr(i
, *cpu_map
) {
7200 struct sched_domain
*sd
= NULL
, *p
;
7201 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7203 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7204 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7207 if (cpus_weight(*cpu_map
) >
7208 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7209 sd
= &per_cpu(allnodes_domains
, i
);
7210 SD_INIT(sd
, ALLNODES
);
7211 set_domain_attribute(sd
, attr
);
7212 sd
->span
= *cpu_map
;
7213 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7219 sd
= &per_cpu(node_domains
, i
);
7221 set_domain_attribute(sd
, attr
);
7222 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7226 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7230 sd
= &per_cpu(phys_domains
, i
);
7232 set_domain_attribute(sd
, attr
);
7233 sd
->span
= *nodemask
;
7237 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7239 #ifdef CONFIG_SCHED_MC
7241 sd
= &per_cpu(core_domains
, i
);
7243 set_domain_attribute(sd
, attr
);
7244 sd
->span
= cpu_coregroup_map(i
);
7245 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7248 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7251 #ifdef CONFIG_SCHED_SMT
7253 sd
= &per_cpu(cpu_domains
, i
);
7254 SD_INIT(sd
, SIBLING
);
7255 set_domain_attribute(sd
, attr
);
7256 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7257 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7260 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7264 #ifdef CONFIG_SCHED_SMT
7265 /* Set up CPU (sibling) groups */
7266 for_each_cpu_mask_nr(i
, *cpu_map
) {
7267 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7268 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7270 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7271 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7272 if (i
!= first_cpu(*this_sibling_map
))
7275 init_sched_build_groups(this_sibling_map
, cpu_map
,
7277 send_covered
, tmpmask
);
7281 #ifdef CONFIG_SCHED_MC
7282 /* Set up multi-core groups */
7283 for_each_cpu_mask_nr(i
, *cpu_map
) {
7284 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7285 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7287 *this_core_map
= cpu_coregroup_map(i
);
7288 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7289 if (i
!= first_cpu(*this_core_map
))
7292 init_sched_build_groups(this_core_map
, cpu_map
,
7294 send_covered
, tmpmask
);
7298 /* Set up physical groups */
7299 for (i
= 0; i
< nr_node_ids
; i
++) {
7300 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7301 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7303 *nodemask
= node_to_cpumask(i
);
7304 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7305 if (cpus_empty(*nodemask
))
7308 init_sched_build_groups(nodemask
, cpu_map
,
7310 send_covered
, tmpmask
);
7314 /* Set up node groups */
7316 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7318 init_sched_build_groups(cpu_map
, cpu_map
,
7319 &cpu_to_allnodes_group
,
7320 send_covered
, tmpmask
);
7323 for (i
= 0; i
< nr_node_ids
; i
++) {
7324 /* Set up node groups */
7325 struct sched_group
*sg
, *prev
;
7326 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7327 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7328 SCHED_CPUMASK_VAR(covered
, allmasks
);
7331 *nodemask
= node_to_cpumask(i
);
7332 cpus_clear(*covered
);
7334 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7335 if (cpus_empty(*nodemask
)) {
7336 sched_group_nodes
[i
] = NULL
;
7340 sched_domain_node_span(i
, domainspan
);
7341 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7343 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7345 printk(KERN_WARNING
"Can not alloc domain group for "
7349 sched_group_nodes
[i
] = sg
;
7350 for_each_cpu_mask_nr(j
, *nodemask
) {
7351 struct sched_domain
*sd
;
7353 sd
= &per_cpu(node_domains
, j
);
7356 sg
->__cpu_power
= 0;
7357 sg
->cpumask
= *nodemask
;
7359 cpus_or(*covered
, *covered
, *nodemask
);
7362 for (j
= 0; j
< nr_node_ids
; j
++) {
7363 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7364 int n
= (i
+ j
) % nr_node_ids
;
7365 node_to_cpumask_ptr(pnodemask
, n
);
7367 cpus_complement(*notcovered
, *covered
);
7368 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7369 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7370 if (cpus_empty(*tmpmask
))
7373 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7374 if (cpus_empty(*tmpmask
))
7377 sg
= kmalloc_node(sizeof(struct sched_group
),
7381 "Can not alloc domain group for node %d\n", j
);
7384 sg
->__cpu_power
= 0;
7385 sg
->cpumask
= *tmpmask
;
7386 sg
->next
= prev
->next
;
7387 cpus_or(*covered
, *covered
, *tmpmask
);
7394 /* Calculate CPU power for physical packages and nodes */
7395 #ifdef CONFIG_SCHED_SMT
7396 for_each_cpu_mask_nr(i
, *cpu_map
) {
7397 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7399 init_sched_groups_power(i
, sd
);
7402 #ifdef CONFIG_SCHED_MC
7403 for_each_cpu_mask_nr(i
, *cpu_map
) {
7404 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7406 init_sched_groups_power(i
, sd
);
7410 for_each_cpu_mask_nr(i
, *cpu_map
) {
7411 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7413 init_sched_groups_power(i
, sd
);
7417 for (i
= 0; i
< nr_node_ids
; i
++)
7418 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7421 struct sched_group
*sg
;
7423 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7425 init_numa_sched_groups_power(sg
);
7429 /* Attach the domains */
7430 for_each_cpu_mask_nr(i
, *cpu_map
) {
7431 struct sched_domain
*sd
;
7432 #ifdef CONFIG_SCHED_SMT
7433 sd
= &per_cpu(cpu_domains
, i
);
7434 #elif defined(CONFIG_SCHED_MC)
7435 sd
= &per_cpu(core_domains
, i
);
7437 sd
= &per_cpu(phys_domains
, i
);
7439 cpu_attach_domain(sd
, rd
, i
);
7442 SCHED_CPUMASK_FREE((void *)allmasks
);
7447 free_sched_groups(cpu_map
, tmpmask
);
7448 SCHED_CPUMASK_FREE((void *)allmasks
);
7453 static int build_sched_domains(const cpumask_t
*cpu_map
)
7455 return __build_sched_domains(cpu_map
, NULL
);
7458 static cpumask_t
*doms_cur
; /* current sched domains */
7459 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7460 static struct sched_domain_attr
*dattr_cur
;
7461 /* attribues of custom domains in 'doms_cur' */
7464 * Special case: If a kmalloc of a doms_cur partition (array of
7465 * cpumask_t) fails, then fallback to a single sched domain,
7466 * as determined by the single cpumask_t fallback_doms.
7468 static cpumask_t fallback_doms
;
7470 void __attribute__((weak
)) arch_update_cpu_topology(void)
7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
7479 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7483 arch_update_cpu_topology();
7485 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7487 doms_cur
= &fallback_doms
;
7488 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7490 err
= build_sched_domains(doms_cur
);
7491 register_sched_domain_sysctl();
7496 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7499 free_sched_groups(cpu_map
, tmpmask
);
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7506 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7511 unregister_sched_domain_sysctl();
7513 for_each_cpu_mask_nr(i
, *cpu_map
)
7514 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7515 synchronize_sched();
7516 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7519 /* handle null as "default" */
7520 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7521 struct sched_domain_attr
*new, int idx_new
)
7523 struct sched_domain_attr tmp
;
7530 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7531 new ? (new + idx_new
) : &tmp
,
7532 sizeof(struct sched_domain_attr
));
7536 * Partition sched domains as specified by the 'ndoms_new'
7537 * cpumasks in the array doms_new[] of cpumasks. This compares
7538 * doms_new[] to the current sched domain partitioning, doms_cur[].
7539 * It destroys each deleted domain and builds each new domain.
7541 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7542 * The masks don't intersect (don't overlap.) We should setup one
7543 * sched domain for each mask. CPUs not in any of the cpumasks will
7544 * not be load balanced. If the same cpumask appears both in the
7545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7548 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7549 * ownership of it and will kfree it when done with it. If the caller
7550 * failed the kmalloc call, then it can pass in doms_new == NULL,
7551 * and partition_sched_domains() will fallback to the single partition
7552 * 'fallback_doms', it also forces the domains to be rebuilt.
7554 * Call with hotplug lock held
7556 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7557 struct sched_domain_attr
*dattr_new
)
7561 mutex_lock(&sched_domains_mutex
);
7563 /* always unregister in case we don't destroy any domains */
7564 unregister_sched_domain_sysctl();
7566 if (doms_new
== NULL
)
7569 /* Destroy deleted domains */
7570 for (i
= 0; i
< ndoms_cur
; i
++) {
7571 for (j
= 0; j
< ndoms_new
; j
++) {
7572 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7573 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7576 /* no match - a current sched domain not in new doms_new[] */
7577 detach_destroy_domains(doms_cur
+ i
);
7582 if (doms_new
== NULL
) {
7585 doms_new
= &fallback_doms
;
7586 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7590 /* Build new domains */
7591 for (i
= 0; i
< ndoms_new
; i
++) {
7592 for (j
= 0; j
< ndoms_cur
; j
++) {
7593 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7594 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7597 /* no match - add a new doms_new */
7598 __build_sched_domains(doms_new
+ i
,
7599 dattr_new
? dattr_new
+ i
: NULL
);
7604 /* Remember the new sched domains */
7605 if (doms_cur
!= &fallback_doms
)
7607 kfree(dattr_cur
); /* kfree(NULL) is safe */
7608 doms_cur
= doms_new
;
7609 dattr_cur
= dattr_new
;
7610 ndoms_cur
= ndoms_new
;
7612 register_sched_domain_sysctl();
7614 mutex_unlock(&sched_domains_mutex
);
7617 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7618 int arch_reinit_sched_domains(void)
7621 rebuild_sched_domains();
7626 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7630 if (buf
[0] != '0' && buf
[0] != '1')
7634 sched_smt_power_savings
= (buf
[0] == '1');
7636 sched_mc_power_savings
= (buf
[0] == '1');
7638 ret
= arch_reinit_sched_domains();
7640 return ret
? ret
: count
;
7643 #ifdef CONFIG_SCHED_MC
7644 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
,
7645 struct sysdev_attribute
*attr
, char *page
)
7647 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7649 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7650 struct sysdev_attribute
*attr
,
7651 const char *buf
, size_t count
)
7653 return sched_power_savings_store(buf
, count
, 0);
7655 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7656 sched_mc_power_savings_store
);
7659 #ifdef CONFIG_SCHED_SMT
7660 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
,
7661 struct sysdev_attribute
*attr
, char *page
)
7663 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7665 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7666 struct sysdev_attribute
*attr
,
7667 const char *buf
, size_t count
)
7669 return sched_power_savings_store(buf
, count
, 1);
7671 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7672 sched_smt_power_savings_store
);
7675 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7679 #ifdef CONFIG_SCHED_SMT
7681 err
= sysfs_create_file(&cls
->kset
.kobj
,
7682 &attr_sched_smt_power_savings
.attr
);
7684 #ifdef CONFIG_SCHED_MC
7685 if (!err
&& mc_capable())
7686 err
= sysfs_create_file(&cls
->kset
.kobj
,
7687 &attr_sched_mc_power_savings
.attr
);
7691 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7693 #ifndef CONFIG_CPUSETS
7695 * Add online and remove offline CPUs from the scheduler domains.
7696 * When cpusets are enabled they take over this function.
7698 static int update_sched_domains(struct notifier_block
*nfb
,
7699 unsigned long action
, void *hcpu
)
7703 case CPU_ONLINE_FROZEN
:
7705 case CPU_DEAD_FROZEN
:
7706 partition_sched_domains(0, NULL
, NULL
);
7715 static int update_runtime(struct notifier_block
*nfb
,
7716 unsigned long action
, void *hcpu
)
7718 int cpu
= (int)(long)hcpu
;
7721 case CPU_DOWN_PREPARE
:
7722 case CPU_DOWN_PREPARE_FROZEN
:
7723 disable_runtime(cpu_rq(cpu
));
7726 case CPU_DOWN_FAILED
:
7727 case CPU_DOWN_FAILED_FROZEN
:
7729 case CPU_ONLINE_FROZEN
:
7730 enable_runtime(cpu_rq(cpu
));
7738 void __init
sched_init_smp(void)
7740 cpumask_t non_isolated_cpus
;
7742 #if defined(CONFIG_NUMA)
7743 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7745 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7748 mutex_lock(&sched_domains_mutex
);
7749 arch_init_sched_domains(&cpu_online_map
);
7750 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7751 if (cpus_empty(non_isolated_cpus
))
7752 cpu_set(smp_processor_id(), non_isolated_cpus
);
7753 mutex_unlock(&sched_domains_mutex
);
7756 #ifndef CONFIG_CPUSETS
7757 /* XXX: Theoretical race here - CPU may be hotplugged now */
7758 hotcpu_notifier(update_sched_domains
, 0);
7761 /* RT runtime code needs to handle some hotplug events */
7762 hotcpu_notifier(update_runtime
, 0);
7766 /* Move init over to a non-isolated CPU */
7767 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7769 sched_init_granularity();
7772 void __init
sched_init_smp(void)
7774 sched_init_granularity();
7776 #endif /* CONFIG_SMP */
7778 int in_sched_functions(unsigned long addr
)
7780 return in_lock_functions(addr
) ||
7781 (addr
>= (unsigned long)__sched_text_start
7782 && addr
< (unsigned long)__sched_text_end
);
7785 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7787 cfs_rq
->tasks_timeline
= RB_ROOT
;
7788 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7789 #ifdef CONFIG_FAIR_GROUP_SCHED
7792 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7795 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7797 struct rt_prio_array
*array
;
7800 array
= &rt_rq
->active
;
7801 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7802 INIT_LIST_HEAD(array
->queue
+ i
);
7803 __clear_bit(i
, array
->bitmap
);
7805 /* delimiter for bitsearch: */
7806 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7808 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7809 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7812 rt_rq
->rt_nr_migratory
= 0;
7813 rt_rq
->overloaded
= 0;
7817 rt_rq
->rt_throttled
= 0;
7818 rt_rq
->rt_runtime
= 0;
7819 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7821 #ifdef CONFIG_RT_GROUP_SCHED
7822 rt_rq
->rt_nr_boosted
= 0;
7827 #ifdef CONFIG_FAIR_GROUP_SCHED
7828 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7829 struct sched_entity
*se
, int cpu
, int add
,
7830 struct sched_entity
*parent
)
7832 struct rq
*rq
= cpu_rq(cpu
);
7833 tg
->cfs_rq
[cpu
] = cfs_rq
;
7834 init_cfs_rq(cfs_rq
, rq
);
7837 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7840 /* se could be NULL for init_task_group */
7845 se
->cfs_rq
= &rq
->cfs
;
7847 se
->cfs_rq
= parent
->my_q
;
7850 se
->load
.weight
= tg
->shares
;
7851 se
->load
.inv_weight
= 0;
7852 se
->parent
= parent
;
7856 #ifdef CONFIG_RT_GROUP_SCHED
7857 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7858 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7859 struct sched_rt_entity
*parent
)
7861 struct rq
*rq
= cpu_rq(cpu
);
7863 tg
->rt_rq
[cpu
] = rt_rq
;
7864 init_rt_rq(rt_rq
, rq
);
7866 rt_rq
->rt_se
= rt_se
;
7867 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7869 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7871 tg
->rt_se
[cpu
] = rt_se
;
7876 rt_se
->rt_rq
= &rq
->rt
;
7878 rt_se
->rt_rq
= parent
->my_q
;
7880 rt_se
->my_q
= rt_rq
;
7881 rt_se
->parent
= parent
;
7882 INIT_LIST_HEAD(&rt_se
->run_list
);
7886 void __init
sched_init(void)
7889 unsigned long alloc_size
= 0, ptr
;
7891 #ifdef CONFIG_FAIR_GROUP_SCHED
7892 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7894 #ifdef CONFIG_RT_GROUP_SCHED
7895 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7897 #ifdef CONFIG_USER_SCHED
7901 * As sched_init() is called before page_alloc is setup,
7902 * we use alloc_bootmem().
7905 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
7907 #ifdef CONFIG_FAIR_GROUP_SCHED
7908 init_task_group
.se
= (struct sched_entity
**)ptr
;
7909 ptr
+= nr_cpu_ids
* sizeof(void **);
7911 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7912 ptr
+= nr_cpu_ids
* sizeof(void **);
7914 #ifdef CONFIG_USER_SCHED
7915 root_task_group
.se
= (struct sched_entity
**)ptr
;
7916 ptr
+= nr_cpu_ids
* sizeof(void **);
7918 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7919 ptr
+= nr_cpu_ids
* sizeof(void **);
7920 #endif /* CONFIG_USER_SCHED */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922 #ifdef CONFIG_RT_GROUP_SCHED
7923 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7924 ptr
+= nr_cpu_ids
* sizeof(void **);
7926 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7927 ptr
+= nr_cpu_ids
* sizeof(void **);
7929 #ifdef CONFIG_USER_SCHED
7930 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7931 ptr
+= nr_cpu_ids
* sizeof(void **);
7933 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7934 ptr
+= nr_cpu_ids
* sizeof(void **);
7935 #endif /* CONFIG_USER_SCHED */
7936 #endif /* CONFIG_RT_GROUP_SCHED */
7940 init_defrootdomain();
7943 init_rt_bandwidth(&def_rt_bandwidth
,
7944 global_rt_period(), global_rt_runtime());
7946 #ifdef CONFIG_RT_GROUP_SCHED
7947 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7948 global_rt_period(), global_rt_runtime());
7949 #ifdef CONFIG_USER_SCHED
7950 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7951 global_rt_period(), RUNTIME_INF
);
7952 #endif /* CONFIG_USER_SCHED */
7953 #endif /* CONFIG_RT_GROUP_SCHED */
7955 #ifdef CONFIG_GROUP_SCHED
7956 list_add(&init_task_group
.list
, &task_groups
);
7957 INIT_LIST_HEAD(&init_task_group
.children
);
7959 #ifdef CONFIG_USER_SCHED
7960 INIT_LIST_HEAD(&root_task_group
.children
);
7961 init_task_group
.parent
= &root_task_group
;
7962 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
7963 #endif /* CONFIG_USER_SCHED */
7964 #endif /* CONFIG_GROUP_SCHED */
7966 for_each_possible_cpu(i
) {
7970 spin_lock_init(&rq
->lock
);
7971 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7973 init_cfs_rq(&rq
->cfs
, rq
);
7974 init_rt_rq(&rq
->rt
, rq
);
7975 #ifdef CONFIG_FAIR_GROUP_SCHED
7976 init_task_group
.shares
= init_task_group_load
;
7977 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7978 #ifdef CONFIG_CGROUP_SCHED
7980 * How much cpu bandwidth does init_task_group get?
7982 * In case of task-groups formed thr' the cgroup filesystem, it
7983 * gets 100% of the cpu resources in the system. This overall
7984 * system cpu resource is divided among the tasks of
7985 * init_task_group and its child task-groups in a fair manner,
7986 * based on each entity's (task or task-group's) weight
7987 * (se->load.weight).
7989 * In other words, if init_task_group has 10 tasks of weight
7990 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7991 * then A0's share of the cpu resource is:
7993 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7995 * We achieve this by letting init_task_group's tasks sit
7996 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7998 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7999 #elif defined CONFIG_USER_SCHED
8000 root_task_group
.shares
= NICE_0_LOAD
;
8001 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8003 * In case of task-groups formed thr' the user id of tasks,
8004 * init_task_group represents tasks belonging to root user.
8005 * Hence it forms a sibling of all subsequent groups formed.
8006 * In this case, init_task_group gets only a fraction of overall
8007 * system cpu resource, based on the weight assigned to root
8008 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8009 * by letting tasks of init_task_group sit in a separate cfs_rq
8010 * (init_cfs_rq) and having one entity represent this group of
8011 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8013 init_tg_cfs_entry(&init_task_group
,
8014 &per_cpu(init_cfs_rq
, i
),
8015 &per_cpu(init_sched_entity
, i
), i
, 1,
8016 root_task_group
.se
[i
]);
8019 #endif /* CONFIG_FAIR_GROUP_SCHED */
8021 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8022 #ifdef CONFIG_RT_GROUP_SCHED
8023 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8024 #ifdef CONFIG_CGROUP_SCHED
8025 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8026 #elif defined CONFIG_USER_SCHED
8027 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8028 init_tg_rt_entry(&init_task_group
,
8029 &per_cpu(init_rt_rq
, i
),
8030 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8031 root_task_group
.rt_se
[i
]);
8035 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8036 rq
->cpu_load
[j
] = 0;
8040 rq
->active_balance
= 0;
8041 rq
->next_balance
= jiffies
;
8045 rq
->migration_thread
= NULL
;
8046 INIT_LIST_HEAD(&rq
->migration_queue
);
8047 rq_attach_root(rq
, &def_root_domain
);
8050 atomic_set(&rq
->nr_iowait
, 0);
8053 set_load_weight(&init_task
);
8055 #ifdef CONFIG_PREEMPT_NOTIFIERS
8056 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8060 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8063 #ifdef CONFIG_RT_MUTEXES
8064 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8068 * The boot idle thread does lazy MMU switching as well:
8070 atomic_inc(&init_mm
.mm_count
);
8071 enter_lazy_tlb(&init_mm
, current
);
8074 * Make us the idle thread. Technically, schedule() should not be
8075 * called from this thread, however somewhere below it might be,
8076 * but because we are the idle thread, we just pick up running again
8077 * when this runqueue becomes "idle".
8079 init_idle(current
, smp_processor_id());
8081 * During early bootup we pretend to be a normal task:
8083 current
->sched_class
= &fair_sched_class
;
8085 scheduler_running
= 1;
8088 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8089 void __might_sleep(char *file
, int line
)
8092 static unsigned long prev_jiffy
; /* ratelimiting */
8094 if ((in_atomic() || irqs_disabled()) &&
8095 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8096 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8098 prev_jiffy
= jiffies
;
8099 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8100 " context at %s:%d\n", file
, line
);
8101 printk("in_atomic():%d, irqs_disabled():%d\n",
8102 in_atomic(), irqs_disabled());
8103 debug_show_held_locks(current
);
8104 if (irqs_disabled())
8105 print_irqtrace_events(current
);
8110 EXPORT_SYMBOL(__might_sleep
);
8113 #ifdef CONFIG_MAGIC_SYSRQ
8114 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8118 update_rq_clock(rq
);
8119 on_rq
= p
->se
.on_rq
;
8121 deactivate_task(rq
, p
, 0);
8122 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8124 activate_task(rq
, p
, 0);
8125 resched_task(rq
->curr
);
8129 void normalize_rt_tasks(void)
8131 struct task_struct
*g
, *p
;
8132 unsigned long flags
;
8135 read_lock_irqsave(&tasklist_lock
, flags
);
8136 do_each_thread(g
, p
) {
8138 * Only normalize user tasks:
8143 p
->se
.exec_start
= 0;
8144 #ifdef CONFIG_SCHEDSTATS
8145 p
->se
.wait_start
= 0;
8146 p
->se
.sleep_start
= 0;
8147 p
->se
.block_start
= 0;
8152 * Renice negative nice level userspace
8155 if (TASK_NICE(p
) < 0 && p
->mm
)
8156 set_user_nice(p
, 0);
8160 spin_lock(&p
->pi_lock
);
8161 rq
= __task_rq_lock(p
);
8163 normalize_task(rq
, p
);
8165 __task_rq_unlock(rq
);
8166 spin_unlock(&p
->pi_lock
);
8167 } while_each_thread(g
, p
);
8169 read_unlock_irqrestore(&tasklist_lock
, flags
);
8172 #endif /* CONFIG_MAGIC_SYSRQ */
8176 * These functions are only useful for the IA64 MCA handling.
8178 * They can only be called when the whole system has been
8179 * stopped - every CPU needs to be quiescent, and no scheduling
8180 * activity can take place. Using them for anything else would
8181 * be a serious bug, and as a result, they aren't even visible
8182 * under any other configuration.
8186 * curr_task - return the current task for a given cpu.
8187 * @cpu: the processor in question.
8189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8191 struct task_struct
*curr_task(int cpu
)
8193 return cpu_curr(cpu
);
8197 * set_curr_task - set the current task for a given cpu.
8198 * @cpu: the processor in question.
8199 * @p: the task pointer to set.
8201 * Description: This function must only be used when non-maskable interrupts
8202 * are serviced on a separate stack. It allows the architecture to switch the
8203 * notion of the current task on a cpu in a non-blocking manner. This function
8204 * must be called with all CPU's synchronized, and interrupts disabled, the
8205 * and caller must save the original value of the current task (see
8206 * curr_task() above) and restore that value before reenabling interrupts and
8207 * re-starting the system.
8209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8211 void set_curr_task(int cpu
, struct task_struct
*p
)
8218 #ifdef CONFIG_FAIR_GROUP_SCHED
8219 static void free_fair_sched_group(struct task_group
*tg
)
8223 for_each_possible_cpu(i
) {
8225 kfree(tg
->cfs_rq
[i
]);
8235 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8237 struct cfs_rq
*cfs_rq
;
8238 struct sched_entity
*se
, *parent_se
;
8242 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8245 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8249 tg
->shares
= NICE_0_LOAD
;
8251 for_each_possible_cpu(i
) {
8254 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8255 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8259 se
= kmalloc_node(sizeof(struct sched_entity
),
8260 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8264 parent_se
= parent
? parent
->se
[i
] : NULL
;
8265 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8274 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8276 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8277 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8280 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8282 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8284 #else /* !CONFG_FAIR_GROUP_SCHED */
8285 static inline void free_fair_sched_group(struct task_group
*tg
)
8290 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8295 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8299 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8302 #endif /* CONFIG_FAIR_GROUP_SCHED */
8304 #ifdef CONFIG_RT_GROUP_SCHED
8305 static void free_rt_sched_group(struct task_group
*tg
)
8309 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8311 for_each_possible_cpu(i
) {
8313 kfree(tg
->rt_rq
[i
]);
8315 kfree(tg
->rt_se
[i
]);
8323 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8325 struct rt_rq
*rt_rq
;
8326 struct sched_rt_entity
*rt_se
, *parent_se
;
8330 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8333 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8337 init_rt_bandwidth(&tg
->rt_bandwidth
,
8338 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8340 for_each_possible_cpu(i
) {
8343 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8344 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8348 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8349 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8353 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8354 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8363 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8365 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8366 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8369 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8371 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8373 #else /* !CONFIG_RT_GROUP_SCHED */
8374 static inline void free_rt_sched_group(struct task_group
*tg
)
8379 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8384 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8388 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8391 #endif /* CONFIG_RT_GROUP_SCHED */
8393 #ifdef CONFIG_GROUP_SCHED
8394 static void free_sched_group(struct task_group
*tg
)
8396 free_fair_sched_group(tg
);
8397 free_rt_sched_group(tg
);
8401 /* allocate runqueue etc for a new task group */
8402 struct task_group
*sched_create_group(struct task_group
*parent
)
8404 struct task_group
*tg
;
8405 unsigned long flags
;
8408 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8410 return ERR_PTR(-ENOMEM
);
8412 if (!alloc_fair_sched_group(tg
, parent
))
8415 if (!alloc_rt_sched_group(tg
, parent
))
8418 spin_lock_irqsave(&task_group_lock
, flags
);
8419 for_each_possible_cpu(i
) {
8420 register_fair_sched_group(tg
, i
);
8421 register_rt_sched_group(tg
, i
);
8423 list_add_rcu(&tg
->list
, &task_groups
);
8425 WARN_ON(!parent
); /* root should already exist */
8427 tg
->parent
= parent
;
8428 list_add_rcu(&tg
->siblings
, &parent
->children
);
8429 INIT_LIST_HEAD(&tg
->children
);
8430 spin_unlock_irqrestore(&task_group_lock
, flags
);
8435 free_sched_group(tg
);
8436 return ERR_PTR(-ENOMEM
);
8439 /* rcu callback to free various structures associated with a task group */
8440 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8442 /* now it should be safe to free those cfs_rqs */
8443 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8446 /* Destroy runqueue etc associated with a task group */
8447 void sched_destroy_group(struct task_group
*tg
)
8449 unsigned long flags
;
8452 spin_lock_irqsave(&task_group_lock
, flags
);
8453 for_each_possible_cpu(i
) {
8454 unregister_fair_sched_group(tg
, i
);
8455 unregister_rt_sched_group(tg
, i
);
8457 list_del_rcu(&tg
->list
);
8458 list_del_rcu(&tg
->siblings
);
8459 spin_unlock_irqrestore(&task_group_lock
, flags
);
8461 /* wait for possible concurrent references to cfs_rqs complete */
8462 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8465 /* change task's runqueue when it moves between groups.
8466 * The caller of this function should have put the task in its new group
8467 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8468 * reflect its new group.
8470 void sched_move_task(struct task_struct
*tsk
)
8473 unsigned long flags
;
8476 rq
= task_rq_lock(tsk
, &flags
);
8478 update_rq_clock(rq
);
8480 running
= task_current(rq
, tsk
);
8481 on_rq
= tsk
->se
.on_rq
;
8484 dequeue_task(rq
, tsk
, 0);
8485 if (unlikely(running
))
8486 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8488 set_task_rq(tsk
, task_cpu(tsk
));
8490 #ifdef CONFIG_FAIR_GROUP_SCHED
8491 if (tsk
->sched_class
->moved_group
)
8492 tsk
->sched_class
->moved_group(tsk
);
8495 if (unlikely(running
))
8496 tsk
->sched_class
->set_curr_task(rq
);
8498 enqueue_task(rq
, tsk
, 0);
8500 task_rq_unlock(rq
, &flags
);
8502 #endif /* CONFIG_GROUP_SCHED */
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8507 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8512 dequeue_entity(cfs_rq
, se
, 0);
8514 se
->load
.weight
= shares
;
8515 se
->load
.inv_weight
= 0;
8518 enqueue_entity(cfs_rq
, se
, 0);
8521 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8523 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8524 struct rq
*rq
= cfs_rq
->rq
;
8525 unsigned long flags
;
8527 spin_lock_irqsave(&rq
->lock
, flags
);
8528 __set_se_shares(se
, shares
);
8529 spin_unlock_irqrestore(&rq
->lock
, flags
);
8532 static DEFINE_MUTEX(shares_mutex
);
8534 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8537 unsigned long flags
;
8540 * We can't change the weight of the root cgroup.
8545 if (shares
< MIN_SHARES
)
8546 shares
= MIN_SHARES
;
8547 else if (shares
> MAX_SHARES
)
8548 shares
= MAX_SHARES
;
8550 mutex_lock(&shares_mutex
);
8551 if (tg
->shares
== shares
)
8554 spin_lock_irqsave(&task_group_lock
, flags
);
8555 for_each_possible_cpu(i
)
8556 unregister_fair_sched_group(tg
, i
);
8557 list_del_rcu(&tg
->siblings
);
8558 spin_unlock_irqrestore(&task_group_lock
, flags
);
8560 /* wait for any ongoing reference to this group to finish */
8561 synchronize_sched();
8564 * Now we are free to modify the group's share on each cpu
8565 * w/o tripping rebalance_share or load_balance_fair.
8567 tg
->shares
= shares
;
8568 for_each_possible_cpu(i
) {
8572 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8573 set_se_shares(tg
->se
[i
], shares
);
8577 * Enable load balance activity on this group, by inserting it back on
8578 * each cpu's rq->leaf_cfs_rq_list.
8580 spin_lock_irqsave(&task_group_lock
, flags
);
8581 for_each_possible_cpu(i
)
8582 register_fair_sched_group(tg
, i
);
8583 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8584 spin_unlock_irqrestore(&task_group_lock
, flags
);
8586 mutex_unlock(&shares_mutex
);
8590 unsigned long sched_group_shares(struct task_group
*tg
)
8596 #ifdef CONFIG_RT_GROUP_SCHED
8598 * Ensure that the real time constraints are schedulable.
8600 static DEFINE_MUTEX(rt_constraints_mutex
);
8602 static unsigned long to_ratio(u64 period
, u64 runtime
)
8604 if (runtime
== RUNTIME_INF
)
8607 return div64_u64(runtime
<< 16, period
);
8610 #ifdef CONFIG_CGROUP_SCHED
8611 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8613 struct task_group
*tgi
, *parent
= tg
->parent
;
8614 unsigned long total
= 0;
8617 if (global_rt_period() < period
)
8620 return to_ratio(period
, runtime
) <
8621 to_ratio(global_rt_period(), global_rt_runtime());
8624 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8628 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8632 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8633 tgi
->rt_bandwidth
.rt_runtime
);
8637 return total
+ to_ratio(period
, runtime
) <=
8638 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8639 parent
->rt_bandwidth
.rt_runtime
);
8641 #elif defined CONFIG_USER_SCHED
8642 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8644 struct task_group
*tgi
;
8645 unsigned long total
= 0;
8646 unsigned long global_ratio
=
8647 to_ratio(global_rt_period(), global_rt_runtime());
8650 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8654 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8655 tgi
->rt_bandwidth
.rt_runtime
);
8659 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8663 /* Must be called with tasklist_lock held */
8664 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8666 struct task_struct
*g
, *p
;
8667 do_each_thread(g
, p
) {
8668 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8670 } while_each_thread(g
, p
);
8674 static int tg_set_bandwidth(struct task_group
*tg
,
8675 u64 rt_period
, u64 rt_runtime
)
8679 mutex_lock(&rt_constraints_mutex
);
8680 read_lock(&tasklist_lock
);
8681 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8685 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8690 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8691 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8692 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8694 for_each_possible_cpu(i
) {
8695 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8697 spin_lock(&rt_rq
->rt_runtime_lock
);
8698 rt_rq
->rt_runtime
= rt_runtime
;
8699 spin_unlock(&rt_rq
->rt_runtime_lock
);
8701 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8703 read_unlock(&tasklist_lock
);
8704 mutex_unlock(&rt_constraints_mutex
);
8709 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8711 u64 rt_runtime
, rt_period
;
8713 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8714 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8715 if (rt_runtime_us
< 0)
8716 rt_runtime
= RUNTIME_INF
;
8718 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8721 long sched_group_rt_runtime(struct task_group
*tg
)
8725 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8728 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8729 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8730 return rt_runtime_us
;
8733 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8735 u64 rt_runtime
, rt_period
;
8737 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8738 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8743 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8746 long sched_group_rt_period(struct task_group
*tg
)
8750 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8751 do_div(rt_period_us
, NSEC_PER_USEC
);
8752 return rt_period_us
;
8755 static int sched_rt_global_constraints(void)
8757 struct task_group
*tg
= &root_task_group
;
8758 u64 rt_runtime
, rt_period
;
8761 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8762 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8764 mutex_lock(&rt_constraints_mutex
);
8765 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
))
8767 mutex_unlock(&rt_constraints_mutex
);
8771 #else /* !CONFIG_RT_GROUP_SCHED */
8772 static int sched_rt_global_constraints(void)
8774 unsigned long flags
;
8777 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8778 for_each_possible_cpu(i
) {
8779 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8781 spin_lock(&rt_rq
->rt_runtime_lock
);
8782 rt_rq
->rt_runtime
= global_rt_runtime();
8783 spin_unlock(&rt_rq
->rt_runtime_lock
);
8785 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8789 #endif /* CONFIG_RT_GROUP_SCHED */
8791 int sched_rt_handler(struct ctl_table
*table
, int write
,
8792 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8796 int old_period
, old_runtime
;
8797 static DEFINE_MUTEX(mutex
);
8800 old_period
= sysctl_sched_rt_period
;
8801 old_runtime
= sysctl_sched_rt_runtime
;
8803 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8805 if (!ret
&& write
) {
8806 ret
= sched_rt_global_constraints();
8808 sysctl_sched_rt_period
= old_period
;
8809 sysctl_sched_rt_runtime
= old_runtime
;
8811 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8812 def_rt_bandwidth
.rt_period
=
8813 ns_to_ktime(global_rt_period());
8816 mutex_unlock(&mutex
);
8821 #ifdef CONFIG_CGROUP_SCHED
8823 /* return corresponding task_group object of a cgroup */
8824 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8826 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8827 struct task_group
, css
);
8830 static struct cgroup_subsys_state
*
8831 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8833 struct task_group
*tg
, *parent
;
8835 if (!cgrp
->parent
) {
8836 /* This is early initialization for the top cgroup */
8837 init_task_group
.css
.cgroup
= cgrp
;
8838 return &init_task_group
.css
;
8841 parent
= cgroup_tg(cgrp
->parent
);
8842 tg
= sched_create_group(parent
);
8844 return ERR_PTR(-ENOMEM
);
8846 /* Bind the cgroup to task_group object we just created */
8847 tg
->css
.cgroup
= cgrp
;
8853 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8855 struct task_group
*tg
= cgroup_tg(cgrp
);
8857 sched_destroy_group(tg
);
8861 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8862 struct task_struct
*tsk
)
8864 #ifdef CONFIG_RT_GROUP_SCHED
8865 /* Don't accept realtime tasks when there is no way for them to run */
8866 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8869 /* We don't support RT-tasks being in separate groups */
8870 if (tsk
->sched_class
!= &fair_sched_class
)
8878 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8879 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8881 sched_move_task(tsk
);
8884 #ifdef CONFIG_FAIR_GROUP_SCHED
8885 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8888 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8891 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8893 struct task_group
*tg
= cgroup_tg(cgrp
);
8895 return (u64
) tg
->shares
;
8897 #endif /* CONFIG_FAIR_GROUP_SCHED */
8899 #ifdef CONFIG_RT_GROUP_SCHED
8900 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8903 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8906 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8908 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8911 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8914 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8917 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8919 return sched_group_rt_period(cgroup_tg(cgrp
));
8921 #endif /* CONFIG_RT_GROUP_SCHED */
8923 static struct cftype cpu_files
[] = {
8924 #ifdef CONFIG_FAIR_GROUP_SCHED
8927 .read_u64
= cpu_shares_read_u64
,
8928 .write_u64
= cpu_shares_write_u64
,
8931 #ifdef CONFIG_RT_GROUP_SCHED
8933 .name
= "rt_runtime_us",
8934 .read_s64
= cpu_rt_runtime_read
,
8935 .write_s64
= cpu_rt_runtime_write
,
8938 .name
= "rt_period_us",
8939 .read_u64
= cpu_rt_period_read_uint
,
8940 .write_u64
= cpu_rt_period_write_uint
,
8945 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8947 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8950 struct cgroup_subsys cpu_cgroup_subsys
= {
8952 .create
= cpu_cgroup_create
,
8953 .destroy
= cpu_cgroup_destroy
,
8954 .can_attach
= cpu_cgroup_can_attach
,
8955 .attach
= cpu_cgroup_attach
,
8956 .populate
= cpu_cgroup_populate
,
8957 .subsys_id
= cpu_cgroup_subsys_id
,
8961 #endif /* CONFIG_CGROUP_SCHED */
8963 #ifdef CONFIG_CGROUP_CPUACCT
8966 * CPU accounting code for task groups.
8968 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8969 * (balbir@in.ibm.com).
8972 /* track cpu usage of a group of tasks */
8974 struct cgroup_subsys_state css
;
8975 /* cpuusage holds pointer to a u64-type object on every cpu */
8979 struct cgroup_subsys cpuacct_subsys
;
8981 /* return cpu accounting group corresponding to this container */
8982 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8984 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8985 struct cpuacct
, css
);
8988 /* return cpu accounting group to which this task belongs */
8989 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8991 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8992 struct cpuacct
, css
);
8995 /* create a new cpu accounting group */
8996 static struct cgroup_subsys_state
*cpuacct_create(
8997 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8999 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9002 return ERR_PTR(-ENOMEM
);
9004 ca
->cpuusage
= alloc_percpu(u64
);
9005 if (!ca
->cpuusage
) {
9007 return ERR_PTR(-ENOMEM
);
9013 /* destroy an existing cpu accounting group */
9015 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9017 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9019 free_percpu(ca
->cpuusage
);
9023 /* return total cpu usage (in nanoseconds) of a group */
9024 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9026 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9027 u64 totalcpuusage
= 0;
9030 for_each_possible_cpu(i
) {
9031 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9034 * Take rq->lock to make 64-bit addition safe on 32-bit
9037 spin_lock_irq(&cpu_rq(i
)->lock
);
9038 totalcpuusage
+= *cpuusage
;
9039 spin_unlock_irq(&cpu_rq(i
)->lock
);
9042 return totalcpuusage
;
9045 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9048 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9057 for_each_possible_cpu(i
) {
9058 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9060 spin_lock_irq(&cpu_rq(i
)->lock
);
9062 spin_unlock_irq(&cpu_rq(i
)->lock
);
9068 static struct cftype files
[] = {
9071 .read_u64
= cpuusage_read
,
9072 .write_u64
= cpuusage_write
,
9076 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9078 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9082 * charge this task's execution time to its accounting group.
9084 * called with rq->lock held.
9086 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9090 if (!cpuacct_subsys
.active
)
9095 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9097 *cpuusage
+= cputime
;
9101 struct cgroup_subsys cpuacct_subsys
= {
9103 .create
= cpuacct_create
,
9104 .destroy
= cpuacct_destroy
,
9105 .populate
= cpuacct_populate
,
9106 .subsys_id
= cpuacct_subsys_id
,
9108 #endif /* CONFIG_CGROUP_CPUACCT */