mm/hugetlb.c: fix duplicate variable
[linux-2.6/mini2440.git] / kernel / power / snapshot.c
blob5f91a07c4eac7e104f3fc9c333a481be11ead921
1 /*
2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
35 #include "power.h"
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
41 /* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
46 struct pbe *restore_pblist;
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
51 /**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
61 #define PG_ANY 0
62 #define PG_SAFE 1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP 0
66 static unsigned int allocated_unsafe_pages;
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
70 void *res;
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
74 while (res && swsusp_page_is_free(virt_to_page(res))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res));
77 allocated_unsafe_pages++;
78 res = (void *)get_zeroed_page(gfp_mask);
80 if (res) {
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
84 return res;
87 unsigned long get_safe_page(gfp_t gfp_mask)
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
92 static struct page *alloc_image_page(gfp_t gfp_mask)
94 struct page *page;
96 page = alloc_page(gfp_mask);
97 if (page) {
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
101 return page;
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
109 static inline void free_image_page(void *addr, int clear_nosave_free)
111 struct page *page;
113 BUG_ON(!virt_addr_valid(addr));
115 page = virt_to_page(addr);
117 swsusp_unset_page_forbidden(page);
118 if (clear_nosave_free)
119 swsusp_unset_page_free(page);
121 __free_page(page);
124 /* struct linked_page is used to build chains of pages */
126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
128 struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
136 while (list) {
137 struct linked_page *lp = list->next;
139 free_image_page(list, clear_page_nosave);
140 list = lp;
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
157 struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
177 void *ret;
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 if (!lp)
184 return NULL;
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
202 * Data types related to memory bitmaps.
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bit chunks in which information is
209 * stored.
211 * struct memory_bitmap contains a pointer to the main list of zone
212 * bitmap objects, a struct bm_position used for browsing the bitmap,
213 * and a pointer to the list of pages used for allocating all of the
214 * zone bitmap objects and bitmap block objects.
216 * NOTE: It has to be possible to lay out the bitmap in memory
217 * using only allocations of order 0. Additionally, the bitmap is
218 * designed to work with arbitrary number of zones (this is over the
219 * top for now, but let's avoid making unnecessary assumptions ;-).
221 * struct zone_bitmap contains a pointer to a list of bitmap block
222 * objects and a pointer to the bitmap block object that has been
223 * most recently used for setting bits. Additionally, it contains the
224 * pfns that correspond to the start and end of the represented zone.
226 * struct bm_block contains a pointer to the memory page in which
227 * information is stored (in the form of a block of bit chunks
228 * of type unsigned long each). It also contains the pfns that
229 * correspond to the start and end of the represented memory area and
230 * the number of bit chunks in the block.
233 #define BM_END_OF_MAP (~0UL)
235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
239 struct bm_block {
240 struct bm_block *next; /* next element of the list */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned int size; /* number of bit chunks */
244 unsigned long *data; /* chunks of bits representing pages */
247 struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
255 /* strcut bm_position is used for browsing memory bitmaps */
257 struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int chunk;
261 int bit;
264 struct memory_bitmap {
265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
266 struct linked_page *p_list; /* list of pages used to store zone
267 * bitmap objects and bitmap block
268 * objects
270 struct bm_position cur; /* most recently used bit position */
273 /* Functions that operate on memory bitmaps */
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 bm->cur.chunk = 0;
278 bm->cur.bit = -1;
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 struct zone_bitmap *zone_bm;
285 zone_bm = bm->zone_bm_list;
286 bm->cur.zone_bm = zone_bm;
287 bm->cur.block = zone_bm->bm_blocks;
288 memory_bm_reset_chunk(bm);
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294 * create_bm_block_list - create a list of block bitmap objects
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 struct bm_block *bblist = NULL;
302 while (nr_blocks-- > 0) {
303 struct bm_block *bb;
305 bb = chain_alloc(ca, sizeof(struct bm_block));
306 if (!bb)
307 return NULL;
309 bb->next = bblist;
310 bblist = bb;
312 return bblist;
316 * create_zone_bm_list - create a list of zone bitmap objects
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 struct zone_bitmap *zbmlist = NULL;
324 while (nr_zones-- > 0) {
325 struct zone_bitmap *zbm;
327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 if (!zbm)
329 return NULL;
331 zbm->next = zbmlist;
332 zbmlist = zbm;
334 return zbmlist;
338 * memory_bm_create - allocate memory for a memory bitmap
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 struct chain_allocator ca;
345 struct zone *zone;
346 struct zone_bitmap *zone_bm;
347 struct bm_block *bb;
348 unsigned int nr;
350 chain_init(&ca, gfp_mask, safe_needed);
352 /* Compute the number of zones */
353 nr = 0;
354 for_each_zone(zone)
355 if (populated_zone(zone))
356 nr++;
358 /* Allocate the list of zones bitmap objects */
359 zone_bm = create_zone_bm_list(nr, &ca);
360 bm->zone_bm_list = zone_bm;
361 if (!zone_bm) {
362 chain_free(&ca, PG_UNSAFE_CLEAR);
363 return -ENOMEM;
366 /* Initialize the zone bitmap objects */
367 for_each_zone(zone) {
368 unsigned long pfn;
370 if (!populated_zone(zone))
371 continue;
373 zone_bm->start_pfn = zone->zone_start_pfn;
374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 /* Allocate the list of bitmap block objects */
376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 bb = create_bm_block_list(nr, &ca);
378 zone_bm->bm_blocks = bb;
379 zone_bm->cur_block = bb;
380 if (!bb)
381 goto Free;
383 nr = zone->spanned_pages;
384 pfn = zone->zone_start_pfn;
385 /* Initialize the bitmap block objects */
386 while (bb) {
387 unsigned long *ptr;
389 ptr = get_image_page(gfp_mask, safe_needed);
390 bb->data = ptr;
391 if (!ptr)
392 goto Free;
394 bb->start_pfn = pfn;
395 if (nr >= BM_BITS_PER_BLOCK) {
396 pfn += BM_BITS_PER_BLOCK;
397 bb->size = BM_CHUNKS_PER_BLOCK;
398 nr -= BM_BITS_PER_BLOCK;
399 } else {
400 /* This is executed only once in the loop */
401 pfn += nr;
402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404 bb->end_pfn = pfn;
405 bb = bb->next;
407 zone_bm = zone_bm->next;
409 bm->p_list = ca.chain;
410 memory_bm_position_reset(bm);
411 return 0;
413 Free:
414 bm->p_list = ca.chain;
415 memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 return -ENOMEM;
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 struct zone_bitmap *zone_bm;
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm = bm->zone_bm_list;
429 while (zone_bm) {
430 struct bm_block *bb;
432 bb = zone_bm->bm_blocks;
433 while (bb) {
434 if (bb->data)
435 free_image_page(bb->data, clear_nosave_free);
436 bb = bb->next;
438 zone_bm = zone_bm->next;
440 free_list_of_pages(bm->p_list, clear_nosave_free);
441 bm->zone_bm_list = NULL;
445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
450 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 void **addr, unsigned int *bit_nr)
453 struct zone_bitmap *zone_bm;
454 struct bm_block *bb;
456 /* Check if the pfn is from the current zone */
457 zone_bm = bm->cur.zone_bm;
458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 zone_bm = bm->zone_bm_list;
460 /* We don't assume that the zones are sorted by pfns */
461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 zone_bm = zone_bm->next;
464 if (!zone_bm)
465 return -EFAULT;
467 bm->cur.zone_bm = zone_bm;
469 /* Check if the pfn corresponds to the current bitmap block */
470 bb = zone_bm->cur_block;
471 if (pfn < bb->start_pfn)
472 bb = zone_bm->bm_blocks;
474 while (pfn >= bb->end_pfn) {
475 bb = bb->next;
477 BUG_ON(!bb);
479 zone_bm->cur_block = bb;
480 pfn -= bb->start_pfn;
481 *bit_nr = pfn % BM_BITS_PER_CHUNK;
482 *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
483 return 0;
486 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
488 void *addr;
489 unsigned int bit;
490 int error;
492 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
493 BUG_ON(error);
494 set_bit(bit, addr);
497 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
499 void *addr;
500 unsigned int bit;
501 int error;
503 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
504 if (!error)
505 set_bit(bit, addr);
506 return error;
509 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
511 void *addr;
512 unsigned int bit;
513 int error;
515 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
516 BUG_ON(error);
517 clear_bit(bit, addr);
520 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
522 void *addr;
523 unsigned int bit;
524 int error;
526 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
527 BUG_ON(error);
528 return test_bit(bit, addr);
531 /* Two auxiliary functions for memory_bm_next_pfn */
533 /* Find the first set bit in the given chunk, if there is one */
535 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
537 bit++;
538 while (bit < BM_BITS_PER_CHUNK) {
539 if (test_bit(bit, chunk_p))
540 return bit;
542 bit++;
544 return -1;
547 /* Find a chunk containing some bits set in given block of bits */
549 static inline int next_chunk_in_block(int n, struct bm_block *bb)
551 n++;
552 while (n < bb->size) {
553 if (bb->data[n])
554 return n;
556 n++;
558 return -1;
562 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
563 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
564 * returned.
566 * It is required to run memory_bm_position_reset() before the first call to
567 * this function.
570 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
572 struct zone_bitmap *zone_bm;
573 struct bm_block *bb;
574 int chunk;
575 int bit;
577 do {
578 bb = bm->cur.block;
579 do {
580 chunk = bm->cur.chunk;
581 bit = bm->cur.bit;
582 do {
583 bit = next_bit_in_chunk(bit, bb->data + chunk);
584 if (bit >= 0)
585 goto Return_pfn;
587 chunk = next_chunk_in_block(chunk, bb);
588 bit = -1;
589 } while (chunk >= 0);
590 bb = bb->next;
591 bm->cur.block = bb;
592 memory_bm_reset_chunk(bm);
593 } while (bb);
594 zone_bm = bm->cur.zone_bm->next;
595 if (zone_bm) {
596 bm->cur.zone_bm = zone_bm;
597 bm->cur.block = zone_bm->bm_blocks;
598 memory_bm_reset_chunk(bm);
600 } while (zone_bm);
601 memory_bm_position_reset(bm);
602 return BM_END_OF_MAP;
604 Return_pfn:
605 bm->cur.chunk = chunk;
606 bm->cur.bit = bit;
607 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
611 * This structure represents a range of page frames the contents of which
612 * should not be saved during the suspend.
615 struct nosave_region {
616 struct list_head list;
617 unsigned long start_pfn;
618 unsigned long end_pfn;
621 static LIST_HEAD(nosave_regions);
624 * register_nosave_region - register a range of page frames the contents
625 * of which should not be saved during the suspend (to be used in the early
626 * initialization code)
629 void __init
630 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
631 int use_kmalloc)
633 struct nosave_region *region;
635 if (start_pfn >= end_pfn)
636 return;
638 if (!list_empty(&nosave_regions)) {
639 /* Try to extend the previous region (they should be sorted) */
640 region = list_entry(nosave_regions.prev,
641 struct nosave_region, list);
642 if (region->end_pfn == start_pfn) {
643 region->end_pfn = end_pfn;
644 goto Report;
647 if (use_kmalloc) {
648 /* during init, this shouldn't fail */
649 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
650 BUG_ON(!region);
651 } else
652 /* This allocation cannot fail */
653 region = alloc_bootmem_low(sizeof(struct nosave_region));
654 region->start_pfn = start_pfn;
655 region->end_pfn = end_pfn;
656 list_add_tail(&region->list, &nosave_regions);
657 Report:
658 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
659 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
663 * Set bits in this map correspond to the page frames the contents of which
664 * should not be saved during the suspend.
666 static struct memory_bitmap *forbidden_pages_map;
668 /* Set bits in this map correspond to free page frames. */
669 static struct memory_bitmap *free_pages_map;
672 * Each page frame allocated for creating the image is marked by setting the
673 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
676 void swsusp_set_page_free(struct page *page)
678 if (free_pages_map)
679 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
682 static int swsusp_page_is_free(struct page *page)
684 return free_pages_map ?
685 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
688 void swsusp_unset_page_free(struct page *page)
690 if (free_pages_map)
691 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
694 static void swsusp_set_page_forbidden(struct page *page)
696 if (forbidden_pages_map)
697 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
700 int swsusp_page_is_forbidden(struct page *page)
702 return forbidden_pages_map ?
703 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
706 static void swsusp_unset_page_forbidden(struct page *page)
708 if (forbidden_pages_map)
709 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
713 * mark_nosave_pages - set bits corresponding to the page frames the
714 * contents of which should not be saved in a given bitmap.
717 static void mark_nosave_pages(struct memory_bitmap *bm)
719 struct nosave_region *region;
721 if (list_empty(&nosave_regions))
722 return;
724 list_for_each_entry(region, &nosave_regions, list) {
725 unsigned long pfn;
727 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
728 region->start_pfn << PAGE_SHIFT,
729 region->end_pfn << PAGE_SHIFT);
731 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
732 if (pfn_valid(pfn)) {
734 * It is safe to ignore the result of
735 * mem_bm_set_bit_check() here, since we won't
736 * touch the PFNs for which the error is
737 * returned anyway.
739 mem_bm_set_bit_check(bm, pfn);
745 * create_basic_memory_bitmaps - create bitmaps needed for marking page
746 * frames that should not be saved and free page frames. The pointers
747 * forbidden_pages_map and free_pages_map are only modified if everything
748 * goes well, because we don't want the bits to be used before both bitmaps
749 * are set up.
752 int create_basic_memory_bitmaps(void)
754 struct memory_bitmap *bm1, *bm2;
755 int error = 0;
757 BUG_ON(forbidden_pages_map || free_pages_map);
759 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760 if (!bm1)
761 return -ENOMEM;
763 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
764 if (error)
765 goto Free_first_object;
767 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
768 if (!bm2)
769 goto Free_first_bitmap;
771 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
772 if (error)
773 goto Free_second_object;
775 forbidden_pages_map = bm1;
776 free_pages_map = bm2;
777 mark_nosave_pages(forbidden_pages_map);
779 pr_debug("PM: Basic memory bitmaps created\n");
781 return 0;
783 Free_second_object:
784 kfree(bm2);
785 Free_first_bitmap:
786 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
787 Free_first_object:
788 kfree(bm1);
789 return -ENOMEM;
793 * free_basic_memory_bitmaps - free memory bitmaps allocated by
794 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
795 * so that the bitmaps themselves are not referred to while they are being
796 * freed.
799 void free_basic_memory_bitmaps(void)
801 struct memory_bitmap *bm1, *bm2;
803 BUG_ON(!(forbidden_pages_map && free_pages_map));
805 bm1 = forbidden_pages_map;
806 bm2 = free_pages_map;
807 forbidden_pages_map = NULL;
808 free_pages_map = NULL;
809 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
810 kfree(bm1);
811 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
812 kfree(bm2);
814 pr_debug("PM: Basic memory bitmaps freed\n");
818 * snapshot_additional_pages - estimate the number of additional pages
819 * be needed for setting up the suspend image data structures for given
820 * zone (usually the returned value is greater than the exact number)
823 unsigned int snapshot_additional_pages(struct zone *zone)
825 unsigned int res;
827 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
828 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
829 return 2 * res;
832 #ifdef CONFIG_HIGHMEM
834 * count_free_highmem_pages - compute the total number of free highmem
835 * pages, system-wide.
838 static unsigned int count_free_highmem_pages(void)
840 struct zone *zone;
841 unsigned int cnt = 0;
843 for_each_zone(zone)
844 if (populated_zone(zone) && is_highmem(zone))
845 cnt += zone_page_state(zone, NR_FREE_PAGES);
847 return cnt;
851 * saveable_highmem_page - Determine whether a highmem page should be
852 * included in the suspend image.
854 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
855 * and it isn't a part of a free chunk of pages.
858 static struct page *saveable_highmem_page(unsigned long pfn)
860 struct page *page;
862 if (!pfn_valid(pfn))
863 return NULL;
865 page = pfn_to_page(pfn);
867 BUG_ON(!PageHighMem(page));
869 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
870 PageReserved(page))
871 return NULL;
873 return page;
877 * count_highmem_pages - compute the total number of saveable highmem
878 * pages.
881 unsigned int count_highmem_pages(void)
883 struct zone *zone;
884 unsigned int n = 0;
886 for_each_zone(zone) {
887 unsigned long pfn, max_zone_pfn;
889 if (!is_highmem(zone))
890 continue;
892 mark_free_pages(zone);
893 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
894 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
895 if (saveable_highmem_page(pfn))
896 n++;
898 return n;
900 #else
901 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
902 #endif /* CONFIG_HIGHMEM */
905 * saveable_page - Determine whether a non-highmem page should be included
906 * in the suspend image.
908 * We should save the page if it isn't Nosave, and is not in the range
909 * of pages statically defined as 'unsaveable', and it isn't a part of
910 * a free chunk of pages.
913 static struct page *saveable_page(unsigned long pfn)
915 struct page *page;
917 if (!pfn_valid(pfn))
918 return NULL;
920 page = pfn_to_page(pfn);
922 BUG_ON(PageHighMem(page));
924 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
925 return NULL;
927 if (PageReserved(page)
928 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
929 return NULL;
931 return page;
935 * count_data_pages - compute the total number of saveable non-highmem
936 * pages.
939 unsigned int count_data_pages(void)
941 struct zone *zone;
942 unsigned long pfn, max_zone_pfn;
943 unsigned int n = 0;
945 for_each_zone(zone) {
946 if (is_highmem(zone))
947 continue;
949 mark_free_pages(zone);
950 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
952 if(saveable_page(pfn))
953 n++;
955 return n;
958 /* This is needed, because copy_page and memcpy are not usable for copying
959 * task structs.
961 static inline void do_copy_page(long *dst, long *src)
963 int n;
965 for (n = PAGE_SIZE / sizeof(long); n; n--)
966 *dst++ = *src++;
971 * safe_copy_page - check if the page we are going to copy is marked as
972 * present in the kernel page tables (this always is the case if
973 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
974 * kernel_page_present() always returns 'true').
976 static void safe_copy_page(void *dst, struct page *s_page)
978 if (kernel_page_present(s_page)) {
979 do_copy_page(dst, page_address(s_page));
980 } else {
981 kernel_map_pages(s_page, 1, 1);
982 do_copy_page(dst, page_address(s_page));
983 kernel_map_pages(s_page, 1, 0);
988 #ifdef CONFIG_HIGHMEM
989 static inline struct page *
990 page_is_saveable(struct zone *zone, unsigned long pfn)
992 return is_highmem(zone) ?
993 saveable_highmem_page(pfn) : saveable_page(pfn);
996 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
998 struct page *s_page, *d_page;
999 void *src, *dst;
1001 s_page = pfn_to_page(src_pfn);
1002 d_page = pfn_to_page(dst_pfn);
1003 if (PageHighMem(s_page)) {
1004 src = kmap_atomic(s_page, KM_USER0);
1005 dst = kmap_atomic(d_page, KM_USER1);
1006 do_copy_page(dst, src);
1007 kunmap_atomic(src, KM_USER0);
1008 kunmap_atomic(dst, KM_USER1);
1009 } else {
1010 if (PageHighMem(d_page)) {
1011 /* Page pointed to by src may contain some kernel
1012 * data modified by kmap_atomic()
1014 safe_copy_page(buffer, s_page);
1015 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
1016 memcpy(dst, buffer, PAGE_SIZE);
1017 kunmap_atomic(dst, KM_USER0);
1018 } else {
1019 safe_copy_page(page_address(d_page), s_page);
1023 #else
1024 #define page_is_saveable(zone, pfn) saveable_page(pfn)
1026 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1028 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1029 pfn_to_page(src_pfn));
1031 #endif /* CONFIG_HIGHMEM */
1033 static void
1034 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1036 struct zone *zone;
1037 unsigned long pfn;
1039 for_each_zone(zone) {
1040 unsigned long max_zone_pfn;
1042 mark_free_pages(zone);
1043 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1044 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1045 if (page_is_saveable(zone, pfn))
1046 memory_bm_set_bit(orig_bm, pfn);
1048 memory_bm_position_reset(orig_bm);
1049 memory_bm_position_reset(copy_bm);
1050 for(;;) {
1051 pfn = memory_bm_next_pfn(orig_bm);
1052 if (unlikely(pfn == BM_END_OF_MAP))
1053 break;
1054 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1058 /* Total number of image pages */
1059 static unsigned int nr_copy_pages;
1060 /* Number of pages needed for saving the original pfns of the image pages */
1061 static unsigned int nr_meta_pages;
1064 * swsusp_free - free pages allocated for the suspend.
1066 * Suspend pages are alocated before the atomic copy is made, so we
1067 * need to release them after the resume.
1070 void swsusp_free(void)
1072 struct zone *zone;
1073 unsigned long pfn, max_zone_pfn;
1075 for_each_zone(zone) {
1076 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1077 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1078 if (pfn_valid(pfn)) {
1079 struct page *page = pfn_to_page(pfn);
1081 if (swsusp_page_is_forbidden(page) &&
1082 swsusp_page_is_free(page)) {
1083 swsusp_unset_page_forbidden(page);
1084 swsusp_unset_page_free(page);
1085 __free_page(page);
1089 nr_copy_pages = 0;
1090 nr_meta_pages = 0;
1091 restore_pblist = NULL;
1092 buffer = NULL;
1095 #ifdef CONFIG_HIGHMEM
1097 * count_pages_for_highmem - compute the number of non-highmem pages
1098 * that will be necessary for creating copies of highmem pages.
1101 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1103 unsigned int free_highmem = count_free_highmem_pages();
1105 if (free_highmem >= nr_highmem)
1106 nr_highmem = 0;
1107 else
1108 nr_highmem -= free_highmem;
1110 return nr_highmem;
1112 #else
1113 static unsigned int
1114 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1115 #endif /* CONFIG_HIGHMEM */
1118 * enough_free_mem - Make sure we have enough free memory for the
1119 * snapshot image.
1122 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1124 struct zone *zone;
1125 unsigned int free = 0, meta = 0;
1127 for_each_zone(zone) {
1128 meta += snapshot_additional_pages(zone);
1129 if (!is_highmem(zone))
1130 free += zone_page_state(zone, NR_FREE_PAGES);
1133 nr_pages += count_pages_for_highmem(nr_highmem);
1134 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1135 nr_pages, PAGES_FOR_IO, meta, free);
1137 return free > nr_pages + PAGES_FOR_IO + meta;
1140 #ifdef CONFIG_HIGHMEM
1142 * get_highmem_buffer - if there are some highmem pages in the suspend
1143 * image, we may need the buffer to copy them and/or load their data.
1146 static inline int get_highmem_buffer(int safe_needed)
1148 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1149 return buffer ? 0 : -ENOMEM;
1153 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1154 * Try to allocate as many pages as needed, but if the number of free
1155 * highmem pages is lesser than that, allocate them all.
1158 static inline unsigned int
1159 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1161 unsigned int to_alloc = count_free_highmem_pages();
1163 if (to_alloc > nr_highmem)
1164 to_alloc = nr_highmem;
1166 nr_highmem -= to_alloc;
1167 while (to_alloc-- > 0) {
1168 struct page *page;
1170 page = alloc_image_page(__GFP_HIGHMEM);
1171 memory_bm_set_bit(bm, page_to_pfn(page));
1173 return nr_highmem;
1175 #else
1176 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1178 static inline unsigned int
1179 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1180 #endif /* CONFIG_HIGHMEM */
1183 * swsusp_alloc - allocate memory for the suspend image
1185 * We first try to allocate as many highmem pages as there are
1186 * saveable highmem pages in the system. If that fails, we allocate
1187 * non-highmem pages for the copies of the remaining highmem ones.
1189 * In this approach it is likely that the copies of highmem pages will
1190 * also be located in the high memory, because of the way in which
1191 * copy_data_pages() works.
1194 static int
1195 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1196 unsigned int nr_pages, unsigned int nr_highmem)
1198 int error;
1200 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1201 if (error)
1202 goto Free;
1204 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1205 if (error)
1206 goto Free;
1208 if (nr_highmem > 0) {
1209 error = get_highmem_buffer(PG_ANY);
1210 if (error)
1211 goto Free;
1213 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1215 while (nr_pages-- > 0) {
1216 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1218 if (!page)
1219 goto Free;
1221 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1223 return 0;
1225 Free:
1226 swsusp_free();
1227 return -ENOMEM;
1230 /* Memory bitmap used for marking saveable pages (during suspend) or the
1231 * suspend image pages (during resume)
1233 static struct memory_bitmap orig_bm;
1234 /* Memory bitmap used on suspend for marking allocated pages that will contain
1235 * the copies of saveable pages. During resume it is initially used for
1236 * marking the suspend image pages, but then its set bits are duplicated in
1237 * @orig_bm and it is released. Next, on systems with high memory, it may be
1238 * used for marking "safe" highmem pages, but it has to be reinitialized for
1239 * this purpose.
1241 static struct memory_bitmap copy_bm;
1243 asmlinkage int swsusp_save(void)
1245 unsigned int nr_pages, nr_highmem;
1247 printk(KERN_INFO "PM: Creating hibernation image: \n");
1249 drain_local_pages(NULL);
1250 nr_pages = count_data_pages();
1251 nr_highmem = count_highmem_pages();
1252 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1254 if (!enough_free_mem(nr_pages, nr_highmem)) {
1255 printk(KERN_ERR "PM: Not enough free memory\n");
1256 return -ENOMEM;
1259 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1260 printk(KERN_ERR "PM: Memory allocation failed\n");
1261 return -ENOMEM;
1264 /* During allocating of suspend pagedir, new cold pages may appear.
1265 * Kill them.
1267 drain_local_pages(NULL);
1268 copy_data_pages(&copy_bm, &orig_bm);
1271 * End of critical section. From now on, we can write to memory,
1272 * but we should not touch disk. This specially means we must _not_
1273 * touch swap space! Except we must write out our image of course.
1276 nr_pages += nr_highmem;
1277 nr_copy_pages = nr_pages;
1278 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1280 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1281 nr_pages);
1283 return 0;
1286 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1287 static int init_header_complete(struct swsusp_info *info)
1289 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1290 info->version_code = LINUX_VERSION_CODE;
1291 return 0;
1294 static char *check_image_kernel(struct swsusp_info *info)
1296 if (info->version_code != LINUX_VERSION_CODE)
1297 return "kernel version";
1298 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1299 return "system type";
1300 if (strcmp(info->uts.release,init_utsname()->release))
1301 return "kernel release";
1302 if (strcmp(info->uts.version,init_utsname()->version))
1303 return "version";
1304 if (strcmp(info->uts.machine,init_utsname()->machine))
1305 return "machine";
1306 return NULL;
1308 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1310 unsigned long snapshot_get_image_size(void)
1312 return nr_copy_pages + nr_meta_pages + 1;
1315 static int init_header(struct swsusp_info *info)
1317 memset(info, 0, sizeof(struct swsusp_info));
1318 info->num_physpages = num_physpages;
1319 info->image_pages = nr_copy_pages;
1320 info->pages = snapshot_get_image_size();
1321 info->size = info->pages;
1322 info->size <<= PAGE_SHIFT;
1323 return init_header_complete(info);
1327 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1328 * are stored in the array @buf[] (1 page at a time)
1331 static inline void
1332 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1334 int j;
1336 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1337 buf[j] = memory_bm_next_pfn(bm);
1338 if (unlikely(buf[j] == BM_END_OF_MAP))
1339 break;
1344 * snapshot_read_next - used for reading the system memory snapshot.
1346 * On the first call to it @handle should point to a zeroed
1347 * snapshot_handle structure. The structure gets updated and a pointer
1348 * to it should be passed to this function every next time.
1350 * The @count parameter should contain the number of bytes the caller
1351 * wants to read from the snapshot. It must not be zero.
1353 * On success the function returns a positive number. Then, the caller
1354 * is allowed to read up to the returned number of bytes from the memory
1355 * location computed by the data_of() macro. The number returned
1356 * may be smaller than @count, but this only happens if the read would
1357 * cross a page boundary otherwise.
1359 * The function returns 0 to indicate the end of data stream condition,
1360 * and a negative number is returned on error. In such cases the
1361 * structure pointed to by @handle is not updated and should not be used
1362 * any more.
1365 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1367 if (handle->cur > nr_meta_pages + nr_copy_pages)
1368 return 0;
1370 if (!buffer) {
1371 /* This makes the buffer be freed by swsusp_free() */
1372 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1373 if (!buffer)
1374 return -ENOMEM;
1376 if (!handle->offset) {
1377 int error;
1379 error = init_header((struct swsusp_info *)buffer);
1380 if (error)
1381 return error;
1382 handle->buffer = buffer;
1383 memory_bm_position_reset(&orig_bm);
1384 memory_bm_position_reset(&copy_bm);
1386 if (handle->prev < handle->cur) {
1387 if (handle->cur <= nr_meta_pages) {
1388 memset(buffer, 0, PAGE_SIZE);
1389 pack_pfns(buffer, &orig_bm);
1390 } else {
1391 struct page *page;
1393 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1394 if (PageHighMem(page)) {
1395 /* Highmem pages are copied to the buffer,
1396 * because we can't return with a kmapped
1397 * highmem page (we may not be called again).
1399 void *kaddr;
1401 kaddr = kmap_atomic(page, KM_USER0);
1402 memcpy(buffer, kaddr, PAGE_SIZE);
1403 kunmap_atomic(kaddr, KM_USER0);
1404 handle->buffer = buffer;
1405 } else {
1406 handle->buffer = page_address(page);
1409 handle->prev = handle->cur;
1411 handle->buf_offset = handle->cur_offset;
1412 if (handle->cur_offset + count >= PAGE_SIZE) {
1413 count = PAGE_SIZE - handle->cur_offset;
1414 handle->cur_offset = 0;
1415 handle->cur++;
1416 } else {
1417 handle->cur_offset += count;
1419 handle->offset += count;
1420 return count;
1424 * mark_unsafe_pages - mark the pages that cannot be used for storing
1425 * the image during resume, because they conflict with the pages that
1426 * had been used before suspend
1429 static int mark_unsafe_pages(struct memory_bitmap *bm)
1431 struct zone *zone;
1432 unsigned long pfn, max_zone_pfn;
1434 /* Clear page flags */
1435 for_each_zone(zone) {
1436 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1437 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1438 if (pfn_valid(pfn))
1439 swsusp_unset_page_free(pfn_to_page(pfn));
1442 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1443 memory_bm_position_reset(bm);
1444 do {
1445 pfn = memory_bm_next_pfn(bm);
1446 if (likely(pfn != BM_END_OF_MAP)) {
1447 if (likely(pfn_valid(pfn)))
1448 swsusp_set_page_free(pfn_to_page(pfn));
1449 else
1450 return -EFAULT;
1452 } while (pfn != BM_END_OF_MAP);
1454 allocated_unsafe_pages = 0;
1456 return 0;
1459 static void
1460 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1462 unsigned long pfn;
1464 memory_bm_position_reset(src);
1465 pfn = memory_bm_next_pfn(src);
1466 while (pfn != BM_END_OF_MAP) {
1467 memory_bm_set_bit(dst, pfn);
1468 pfn = memory_bm_next_pfn(src);
1472 static int check_header(struct swsusp_info *info)
1474 char *reason;
1476 reason = check_image_kernel(info);
1477 if (!reason && info->num_physpages != num_physpages)
1478 reason = "memory size";
1479 if (reason) {
1480 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1481 return -EPERM;
1483 return 0;
1487 * load header - check the image header and copy data from it
1490 static int
1491 load_header(struct swsusp_info *info)
1493 int error;
1495 restore_pblist = NULL;
1496 error = check_header(info);
1497 if (!error) {
1498 nr_copy_pages = info->image_pages;
1499 nr_meta_pages = info->pages - info->image_pages - 1;
1501 return error;
1505 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1506 * the corresponding bit in the memory bitmap @bm
1509 static inline void
1510 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1512 int j;
1514 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1515 if (unlikely(buf[j] == BM_END_OF_MAP))
1516 break;
1518 memory_bm_set_bit(bm, buf[j]);
1522 /* List of "safe" pages that may be used to store data loaded from the suspend
1523 * image
1525 static struct linked_page *safe_pages_list;
1527 #ifdef CONFIG_HIGHMEM
1528 /* struct highmem_pbe is used for creating the list of highmem pages that
1529 * should be restored atomically during the resume from disk, because the page
1530 * frames they have occupied before the suspend are in use.
1532 struct highmem_pbe {
1533 struct page *copy_page; /* data is here now */
1534 struct page *orig_page; /* data was here before the suspend */
1535 struct highmem_pbe *next;
1538 /* List of highmem PBEs needed for restoring the highmem pages that were
1539 * allocated before the suspend and included in the suspend image, but have
1540 * also been allocated by the "resume" kernel, so their contents cannot be
1541 * written directly to their "original" page frames.
1543 static struct highmem_pbe *highmem_pblist;
1546 * count_highmem_image_pages - compute the number of highmem pages in the
1547 * suspend image. The bits in the memory bitmap @bm that correspond to the
1548 * image pages are assumed to be set.
1551 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1553 unsigned long pfn;
1554 unsigned int cnt = 0;
1556 memory_bm_position_reset(bm);
1557 pfn = memory_bm_next_pfn(bm);
1558 while (pfn != BM_END_OF_MAP) {
1559 if (PageHighMem(pfn_to_page(pfn)))
1560 cnt++;
1562 pfn = memory_bm_next_pfn(bm);
1564 return cnt;
1568 * prepare_highmem_image - try to allocate as many highmem pages as
1569 * there are highmem image pages (@nr_highmem_p points to the variable
1570 * containing the number of highmem image pages). The pages that are
1571 * "safe" (ie. will not be overwritten when the suspend image is
1572 * restored) have the corresponding bits set in @bm (it must be
1573 * unitialized).
1575 * NOTE: This function should not be called if there are no highmem
1576 * image pages.
1579 static unsigned int safe_highmem_pages;
1581 static struct memory_bitmap *safe_highmem_bm;
1583 static int
1584 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1586 unsigned int to_alloc;
1588 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1589 return -ENOMEM;
1591 if (get_highmem_buffer(PG_SAFE))
1592 return -ENOMEM;
1594 to_alloc = count_free_highmem_pages();
1595 if (to_alloc > *nr_highmem_p)
1596 to_alloc = *nr_highmem_p;
1597 else
1598 *nr_highmem_p = to_alloc;
1600 safe_highmem_pages = 0;
1601 while (to_alloc-- > 0) {
1602 struct page *page;
1604 page = alloc_page(__GFP_HIGHMEM);
1605 if (!swsusp_page_is_free(page)) {
1606 /* The page is "safe", set its bit the bitmap */
1607 memory_bm_set_bit(bm, page_to_pfn(page));
1608 safe_highmem_pages++;
1610 /* Mark the page as allocated */
1611 swsusp_set_page_forbidden(page);
1612 swsusp_set_page_free(page);
1614 memory_bm_position_reset(bm);
1615 safe_highmem_bm = bm;
1616 return 0;
1620 * get_highmem_page_buffer - for given highmem image page find the buffer
1621 * that suspend_write_next() should set for its caller to write to.
1623 * If the page is to be saved to its "original" page frame or a copy of
1624 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1625 * the copy of the page is to be made in normal memory, so the address of
1626 * the copy is returned.
1628 * If @buffer is returned, the caller of suspend_write_next() will write
1629 * the page's contents to @buffer, so they will have to be copied to the
1630 * right location on the next call to suspend_write_next() and it is done
1631 * with the help of copy_last_highmem_page(). For this purpose, if
1632 * @buffer is returned, @last_highmem page is set to the page to which
1633 * the data will have to be copied from @buffer.
1636 static struct page *last_highmem_page;
1638 static void *
1639 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1641 struct highmem_pbe *pbe;
1642 void *kaddr;
1644 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1645 /* We have allocated the "original" page frame and we can
1646 * use it directly to store the loaded page.
1648 last_highmem_page = page;
1649 return buffer;
1651 /* The "original" page frame has not been allocated and we have to
1652 * use a "safe" page frame to store the loaded page.
1654 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1655 if (!pbe) {
1656 swsusp_free();
1657 return NULL;
1659 pbe->orig_page = page;
1660 if (safe_highmem_pages > 0) {
1661 struct page *tmp;
1663 /* Copy of the page will be stored in high memory */
1664 kaddr = buffer;
1665 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1666 safe_highmem_pages--;
1667 last_highmem_page = tmp;
1668 pbe->copy_page = tmp;
1669 } else {
1670 /* Copy of the page will be stored in normal memory */
1671 kaddr = safe_pages_list;
1672 safe_pages_list = safe_pages_list->next;
1673 pbe->copy_page = virt_to_page(kaddr);
1675 pbe->next = highmem_pblist;
1676 highmem_pblist = pbe;
1677 return kaddr;
1681 * copy_last_highmem_page - copy the contents of a highmem image from
1682 * @buffer, where the caller of snapshot_write_next() has place them,
1683 * to the right location represented by @last_highmem_page .
1686 static void copy_last_highmem_page(void)
1688 if (last_highmem_page) {
1689 void *dst;
1691 dst = kmap_atomic(last_highmem_page, KM_USER0);
1692 memcpy(dst, buffer, PAGE_SIZE);
1693 kunmap_atomic(dst, KM_USER0);
1694 last_highmem_page = NULL;
1698 static inline int last_highmem_page_copied(void)
1700 return !last_highmem_page;
1703 static inline void free_highmem_data(void)
1705 if (safe_highmem_bm)
1706 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1708 if (buffer)
1709 free_image_page(buffer, PG_UNSAFE_CLEAR);
1711 #else
1712 static inline int get_safe_write_buffer(void) { return 0; }
1714 static unsigned int
1715 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1717 static inline int
1718 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1720 return 0;
1723 static inline void *
1724 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1726 return NULL;
1729 static inline void copy_last_highmem_page(void) {}
1730 static inline int last_highmem_page_copied(void) { return 1; }
1731 static inline void free_highmem_data(void) {}
1732 #endif /* CONFIG_HIGHMEM */
1735 * prepare_image - use the memory bitmap @bm to mark the pages that will
1736 * be overwritten in the process of restoring the system memory state
1737 * from the suspend image ("unsafe" pages) and allocate memory for the
1738 * image.
1740 * The idea is to allocate a new memory bitmap first and then allocate
1741 * as many pages as needed for the image data, but not to assign these
1742 * pages to specific tasks initially. Instead, we just mark them as
1743 * allocated and create a lists of "safe" pages that will be used
1744 * later. On systems with high memory a list of "safe" highmem pages is
1745 * also created.
1748 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1750 static int
1751 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1753 unsigned int nr_pages, nr_highmem;
1754 struct linked_page *sp_list, *lp;
1755 int error;
1757 /* If there is no highmem, the buffer will not be necessary */
1758 free_image_page(buffer, PG_UNSAFE_CLEAR);
1759 buffer = NULL;
1761 nr_highmem = count_highmem_image_pages(bm);
1762 error = mark_unsafe_pages(bm);
1763 if (error)
1764 goto Free;
1766 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1767 if (error)
1768 goto Free;
1770 duplicate_memory_bitmap(new_bm, bm);
1771 memory_bm_free(bm, PG_UNSAFE_KEEP);
1772 if (nr_highmem > 0) {
1773 error = prepare_highmem_image(bm, &nr_highmem);
1774 if (error)
1775 goto Free;
1777 /* Reserve some safe pages for potential later use.
1779 * NOTE: This way we make sure there will be enough safe pages for the
1780 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1781 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1783 sp_list = NULL;
1784 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1785 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1786 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1787 while (nr_pages > 0) {
1788 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1789 if (!lp) {
1790 error = -ENOMEM;
1791 goto Free;
1793 lp->next = sp_list;
1794 sp_list = lp;
1795 nr_pages--;
1797 /* Preallocate memory for the image */
1798 safe_pages_list = NULL;
1799 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1800 while (nr_pages > 0) {
1801 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1802 if (!lp) {
1803 error = -ENOMEM;
1804 goto Free;
1806 if (!swsusp_page_is_free(virt_to_page(lp))) {
1807 /* The page is "safe", add it to the list */
1808 lp->next = safe_pages_list;
1809 safe_pages_list = lp;
1811 /* Mark the page as allocated */
1812 swsusp_set_page_forbidden(virt_to_page(lp));
1813 swsusp_set_page_free(virt_to_page(lp));
1814 nr_pages--;
1816 /* Free the reserved safe pages so that chain_alloc() can use them */
1817 while (sp_list) {
1818 lp = sp_list->next;
1819 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1820 sp_list = lp;
1822 return 0;
1824 Free:
1825 swsusp_free();
1826 return error;
1830 * get_buffer - compute the address that snapshot_write_next() should
1831 * set for its caller to write to.
1834 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1836 struct pbe *pbe;
1837 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1839 if (PageHighMem(page))
1840 return get_highmem_page_buffer(page, ca);
1842 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1843 /* We have allocated the "original" page frame and we can
1844 * use it directly to store the loaded page.
1846 return page_address(page);
1848 /* The "original" page frame has not been allocated and we have to
1849 * use a "safe" page frame to store the loaded page.
1851 pbe = chain_alloc(ca, sizeof(struct pbe));
1852 if (!pbe) {
1853 swsusp_free();
1854 return NULL;
1856 pbe->orig_address = page_address(page);
1857 pbe->address = safe_pages_list;
1858 safe_pages_list = safe_pages_list->next;
1859 pbe->next = restore_pblist;
1860 restore_pblist = pbe;
1861 return pbe->address;
1865 * snapshot_write_next - used for writing the system memory snapshot.
1867 * On the first call to it @handle should point to a zeroed
1868 * snapshot_handle structure. The structure gets updated and a pointer
1869 * to it should be passed to this function every next time.
1871 * The @count parameter should contain the number of bytes the caller
1872 * wants to write to the image. It must not be zero.
1874 * On success the function returns a positive number. Then, the caller
1875 * is allowed to write up to the returned number of bytes to the memory
1876 * location computed by the data_of() macro. The number returned
1877 * may be smaller than @count, but this only happens if the write would
1878 * cross a page boundary otherwise.
1880 * The function returns 0 to indicate the "end of file" condition,
1881 * and a negative number is returned on error. In such cases the
1882 * structure pointed to by @handle is not updated and should not be used
1883 * any more.
1886 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1888 static struct chain_allocator ca;
1889 int error = 0;
1891 /* Check if we have already loaded the entire image */
1892 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1893 return 0;
1895 if (handle->offset == 0) {
1896 if (!buffer)
1897 /* This makes the buffer be freed by swsusp_free() */
1898 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1900 if (!buffer)
1901 return -ENOMEM;
1903 handle->buffer = buffer;
1905 handle->sync_read = 1;
1906 if (handle->prev < handle->cur) {
1907 if (handle->prev == 0) {
1908 error = load_header(buffer);
1909 if (error)
1910 return error;
1912 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1913 if (error)
1914 return error;
1916 } else if (handle->prev <= nr_meta_pages) {
1917 unpack_orig_pfns(buffer, &copy_bm);
1918 if (handle->prev == nr_meta_pages) {
1919 error = prepare_image(&orig_bm, &copy_bm);
1920 if (error)
1921 return error;
1923 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1924 memory_bm_position_reset(&orig_bm);
1925 restore_pblist = NULL;
1926 handle->buffer = get_buffer(&orig_bm, &ca);
1927 handle->sync_read = 0;
1928 if (!handle->buffer)
1929 return -ENOMEM;
1931 } else {
1932 copy_last_highmem_page();
1933 handle->buffer = get_buffer(&orig_bm, &ca);
1934 if (handle->buffer != buffer)
1935 handle->sync_read = 0;
1937 handle->prev = handle->cur;
1939 handle->buf_offset = handle->cur_offset;
1940 if (handle->cur_offset + count >= PAGE_SIZE) {
1941 count = PAGE_SIZE - handle->cur_offset;
1942 handle->cur_offset = 0;
1943 handle->cur++;
1944 } else {
1945 handle->cur_offset += count;
1947 handle->offset += count;
1948 return count;
1952 * snapshot_write_finalize - must be called after the last call to
1953 * snapshot_write_next() in case the last page in the image happens
1954 * to be a highmem page and its contents should be stored in the
1955 * highmem. Additionally, it releases the memory that will not be
1956 * used any more.
1959 void snapshot_write_finalize(struct snapshot_handle *handle)
1961 copy_last_highmem_page();
1962 /* Free only if we have loaded the image entirely */
1963 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1964 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1965 free_highmem_data();
1969 int snapshot_image_loaded(struct snapshot_handle *handle)
1971 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1972 handle->cur <= nr_meta_pages + nr_copy_pages);
1975 #ifdef CONFIG_HIGHMEM
1976 /* Assumes that @buf is ready and points to a "safe" page */
1977 static inline void
1978 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1980 void *kaddr1, *kaddr2;
1982 kaddr1 = kmap_atomic(p1, KM_USER0);
1983 kaddr2 = kmap_atomic(p2, KM_USER1);
1984 memcpy(buf, kaddr1, PAGE_SIZE);
1985 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1986 memcpy(kaddr2, buf, PAGE_SIZE);
1987 kunmap_atomic(kaddr1, KM_USER0);
1988 kunmap_atomic(kaddr2, KM_USER1);
1992 * restore_highmem - for each highmem page that was allocated before
1993 * the suspend and included in the suspend image, and also has been
1994 * allocated by the "resume" kernel swap its current (ie. "before
1995 * resume") contents with the previous (ie. "before suspend") one.
1997 * If the resume eventually fails, we can call this function once
1998 * again and restore the "before resume" highmem state.
2001 int restore_highmem(void)
2003 struct highmem_pbe *pbe = highmem_pblist;
2004 void *buf;
2006 if (!pbe)
2007 return 0;
2009 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2010 if (!buf)
2011 return -ENOMEM;
2013 while (pbe) {
2014 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2015 pbe = pbe->next;
2017 free_image_page(buf, PG_UNSAFE_CLEAR);
2018 return 0;
2020 #endif /* CONFIG_HIGHMEM */