S3C: Backported openmoko's touchscreen filters
[linux-2.6/mini2440.git] / drivers / cpufreq / cpufreq_ondemand.c
blob4b34ade2332baaa50bb1ca1af9c45e1a9893d321
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59 unsigned int event);
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65 .name = "ondemand",
66 .governor = cpufreq_governor_dbs,
67 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68 .owner = THIS_MODULE,
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
74 struct cpu_dbs_info_s {
75 cputime64_t prev_cpu_idle;
76 cputime64_t prev_cpu_wall;
77 cputime64_t prev_cpu_nice;
78 struct cpufreq_policy *cur_policy;
79 struct delayed_work work;
80 struct cpufreq_frequency_table *freq_table;
81 unsigned int freq_lo;
82 unsigned int freq_lo_jiffies;
83 unsigned int freq_hi_jiffies;
84 int cpu;
85 unsigned int sample_type:1;
87 * percpu mutex that serializes governor limit change with
88 * do_dbs_timer invocation. We do not want do_dbs_timer to run
89 * when user is changing the governor or limits.
91 struct mutex timer_mutex;
93 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
95 static unsigned int dbs_enable; /* number of CPUs using this policy */
98 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
99 * different CPUs. It protects dbs_enable in governor start/stop.
101 static DEFINE_MUTEX(dbs_mutex);
103 static struct workqueue_struct *kondemand_wq;
105 static struct dbs_tuners {
106 unsigned int sampling_rate;
107 unsigned int up_threshold;
108 unsigned int down_differential;
109 unsigned int ignore_nice;
110 unsigned int powersave_bias;
111 } dbs_tuners_ins = {
112 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
113 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
114 .ignore_nice = 0,
115 .powersave_bias = 0,
118 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
119 cputime64_t *wall)
121 cputime64_t idle_time;
122 cputime64_t cur_wall_time;
123 cputime64_t busy_time;
125 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
126 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
127 kstat_cpu(cpu).cpustat.system);
129 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
130 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
131 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
132 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
134 idle_time = cputime64_sub(cur_wall_time, busy_time);
135 if (wall)
136 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
138 return (cputime64_t)jiffies_to_usecs(idle_time);
141 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
143 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
145 if (idle_time == -1ULL)
146 return get_cpu_idle_time_jiffy(cpu, wall);
148 return idle_time;
152 * Find right freq to be set now with powersave_bias on.
153 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
154 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
156 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
157 unsigned int freq_next,
158 unsigned int relation)
160 unsigned int freq_req, freq_reduc, freq_avg;
161 unsigned int freq_hi, freq_lo;
162 unsigned int index = 0;
163 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
164 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
165 policy->cpu);
167 if (!dbs_info->freq_table) {
168 dbs_info->freq_lo = 0;
169 dbs_info->freq_lo_jiffies = 0;
170 return freq_next;
173 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174 relation, &index);
175 freq_req = dbs_info->freq_table[index].frequency;
176 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177 freq_avg = freq_req - freq_reduc;
179 /* Find freq bounds for freq_avg in freq_table */
180 index = 0;
181 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182 CPUFREQ_RELATION_H, &index);
183 freq_lo = dbs_info->freq_table[index].frequency;
184 index = 0;
185 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186 CPUFREQ_RELATION_L, &index);
187 freq_hi = dbs_info->freq_table[index].frequency;
189 /* Find out how long we have to be in hi and lo freqs */
190 if (freq_hi == freq_lo) {
191 dbs_info->freq_lo = 0;
192 dbs_info->freq_lo_jiffies = 0;
193 return freq_lo;
195 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197 jiffies_hi += ((freq_hi - freq_lo) / 2);
198 jiffies_hi /= (freq_hi - freq_lo);
199 jiffies_lo = jiffies_total - jiffies_hi;
200 dbs_info->freq_lo = freq_lo;
201 dbs_info->freq_lo_jiffies = jiffies_lo;
202 dbs_info->freq_hi_jiffies = jiffies_hi;
203 return freq_hi;
206 static void ondemand_powersave_bias_init_cpu(int cpu)
208 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
209 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
210 dbs_info->freq_lo = 0;
213 static void ondemand_powersave_bias_init(void)
215 int i;
216 for_each_online_cpu(i) {
217 ondemand_powersave_bias_init_cpu(i);
221 /************************** sysfs interface ************************/
223 static ssize_t show_sampling_rate_max(struct kobject *kobj,
224 struct attribute *attr, char *buf)
226 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
227 "sysfs file is deprecated - used by: %s\n", current->comm);
228 return sprintf(buf, "%u\n", -1U);
231 static ssize_t show_sampling_rate_min(struct kobject *kobj,
232 struct attribute *attr, char *buf)
234 return sprintf(buf, "%u\n", min_sampling_rate);
237 #define define_one_ro(_name) \
238 static struct global_attr _name = \
239 __ATTR(_name, 0444, show_##_name, NULL)
241 define_one_ro(sampling_rate_max);
242 define_one_ro(sampling_rate_min);
244 /* cpufreq_ondemand Governor Tunables */
245 #define show_one(file_name, object) \
246 static ssize_t show_##file_name \
247 (struct kobject *kobj, struct attribute *attr, char *buf) \
249 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
251 show_one(sampling_rate, sampling_rate);
252 show_one(up_threshold, up_threshold);
253 show_one(ignore_nice_load, ignore_nice);
254 show_one(powersave_bias, powersave_bias);
256 /*** delete after deprecation time ***/
258 #define DEPRECATION_MSG(file_name) \
259 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
260 "interface is deprecated - " #file_name "\n");
262 #define show_one_old(file_name) \
263 static ssize_t show_##file_name##_old \
264 (struct cpufreq_policy *unused, char *buf) \
266 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
267 "interface is deprecated - " #file_name "\n"); \
268 return show_##file_name(NULL, NULL, buf); \
270 show_one_old(sampling_rate);
271 show_one_old(up_threshold);
272 show_one_old(ignore_nice_load);
273 show_one_old(powersave_bias);
274 show_one_old(sampling_rate_min);
275 show_one_old(sampling_rate_max);
277 #define define_one_ro_old(object, _name) \
278 static struct freq_attr object = \
279 __ATTR(_name, 0444, show_##_name##_old, NULL)
281 define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
282 define_one_ro_old(sampling_rate_max_old, sampling_rate_max);
284 /*** delete after deprecation time ***/
286 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
287 const char *buf, size_t count)
289 unsigned int input;
290 int ret;
291 ret = sscanf(buf, "%u", &input);
292 if (ret != 1)
293 return -EINVAL;
295 mutex_lock(&dbs_mutex);
296 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
297 mutex_unlock(&dbs_mutex);
299 return count;
302 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
303 const char *buf, size_t count)
305 unsigned int input;
306 int ret;
307 ret = sscanf(buf, "%u", &input);
309 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
310 input < MIN_FREQUENCY_UP_THRESHOLD) {
311 return -EINVAL;
314 mutex_lock(&dbs_mutex);
315 dbs_tuners_ins.up_threshold = input;
316 mutex_unlock(&dbs_mutex);
318 return count;
321 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322 const char *buf, size_t count)
324 unsigned int input;
325 int ret;
327 unsigned int j;
329 ret = sscanf(buf, "%u", &input);
330 if (ret != 1)
331 return -EINVAL;
333 if (input > 1)
334 input = 1;
336 mutex_lock(&dbs_mutex);
337 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
338 mutex_unlock(&dbs_mutex);
339 return count;
341 dbs_tuners_ins.ignore_nice = input;
343 /* we need to re-evaluate prev_cpu_idle */
344 for_each_online_cpu(j) {
345 struct cpu_dbs_info_s *dbs_info;
346 dbs_info = &per_cpu(od_cpu_dbs_info, j);
347 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
348 &dbs_info->prev_cpu_wall);
349 if (dbs_tuners_ins.ignore_nice)
350 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
353 mutex_unlock(&dbs_mutex);
355 return count;
358 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
359 const char *buf, size_t count)
361 unsigned int input;
362 int ret;
363 ret = sscanf(buf, "%u", &input);
365 if (ret != 1)
366 return -EINVAL;
368 if (input > 1000)
369 input = 1000;
371 mutex_lock(&dbs_mutex);
372 dbs_tuners_ins.powersave_bias = input;
373 ondemand_powersave_bias_init();
374 mutex_unlock(&dbs_mutex);
376 return count;
379 #define define_one_rw(_name) \
380 static struct global_attr _name = \
381 __ATTR(_name, 0644, show_##_name, store_##_name)
383 define_one_rw(sampling_rate);
384 define_one_rw(up_threshold);
385 define_one_rw(ignore_nice_load);
386 define_one_rw(powersave_bias);
388 static struct attribute *dbs_attributes[] = {
389 &sampling_rate_max.attr,
390 &sampling_rate_min.attr,
391 &sampling_rate.attr,
392 &up_threshold.attr,
393 &ignore_nice_load.attr,
394 &powersave_bias.attr,
395 NULL
398 static struct attribute_group dbs_attr_group = {
399 .attrs = dbs_attributes,
400 .name = "ondemand",
403 /*** delete after deprecation time ***/
405 #define write_one_old(file_name) \
406 static ssize_t store_##file_name##_old \
407 (struct cpufreq_policy *unused, const char *buf, size_t count) \
409 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
410 "interface is deprecated - " #file_name "\n"); \
411 return store_##file_name(NULL, NULL, buf, count); \
413 write_one_old(sampling_rate);
414 write_one_old(up_threshold);
415 write_one_old(ignore_nice_load);
416 write_one_old(powersave_bias);
418 #define define_one_rw_old(object, _name) \
419 static struct freq_attr object = \
420 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
422 define_one_rw_old(sampling_rate_old, sampling_rate);
423 define_one_rw_old(up_threshold_old, up_threshold);
424 define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
425 define_one_rw_old(powersave_bias_old, powersave_bias);
427 static struct attribute *dbs_attributes_old[] = {
428 &sampling_rate_max_old.attr,
429 &sampling_rate_min_old.attr,
430 &sampling_rate_old.attr,
431 &up_threshold_old.attr,
432 &ignore_nice_load_old.attr,
433 &powersave_bias_old.attr,
434 NULL
437 static struct attribute_group dbs_attr_group_old = {
438 .attrs = dbs_attributes_old,
439 .name = "ondemand",
442 /*** delete after deprecation time ***/
444 /************************** sysfs end ************************/
446 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
448 unsigned int max_load_freq;
450 struct cpufreq_policy *policy;
451 unsigned int j;
453 this_dbs_info->freq_lo = 0;
454 policy = this_dbs_info->cur_policy;
457 * Every sampling_rate, we check, if current idle time is less
458 * than 20% (default), then we try to increase frequency
459 * Every sampling_rate, we look for a the lowest
460 * frequency which can sustain the load while keeping idle time over
461 * 30%. If such a frequency exist, we try to decrease to this frequency.
463 * Any frequency increase takes it to the maximum frequency.
464 * Frequency reduction happens at minimum steps of
465 * 5% (default) of current frequency
468 /* Get Absolute Load - in terms of freq */
469 max_load_freq = 0;
471 for_each_cpu(j, policy->cpus) {
472 struct cpu_dbs_info_s *j_dbs_info;
473 cputime64_t cur_wall_time, cur_idle_time;
474 unsigned int idle_time, wall_time;
475 unsigned int load, load_freq;
476 int freq_avg;
478 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
480 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
482 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
483 j_dbs_info->prev_cpu_wall);
484 j_dbs_info->prev_cpu_wall = cur_wall_time;
486 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
487 j_dbs_info->prev_cpu_idle);
488 j_dbs_info->prev_cpu_idle = cur_idle_time;
490 if (dbs_tuners_ins.ignore_nice) {
491 cputime64_t cur_nice;
492 unsigned long cur_nice_jiffies;
494 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
495 j_dbs_info->prev_cpu_nice);
497 * Assumption: nice time between sampling periods will
498 * be less than 2^32 jiffies for 32 bit sys
500 cur_nice_jiffies = (unsigned long)
501 cputime64_to_jiffies64(cur_nice);
503 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
504 idle_time += jiffies_to_usecs(cur_nice_jiffies);
507 if (unlikely(!wall_time || wall_time < idle_time))
508 continue;
510 load = 100 * (wall_time - idle_time) / wall_time;
512 freq_avg = __cpufreq_driver_getavg(policy, j);
513 if (freq_avg <= 0)
514 freq_avg = policy->cur;
516 load_freq = load * freq_avg;
517 if (load_freq > max_load_freq)
518 max_load_freq = load_freq;
521 /* Check for frequency increase */
522 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
523 /* if we are already at full speed then break out early */
524 if (!dbs_tuners_ins.powersave_bias) {
525 if (policy->cur == policy->max)
526 return;
528 __cpufreq_driver_target(policy, policy->max,
529 CPUFREQ_RELATION_H);
530 } else {
531 int freq = powersave_bias_target(policy, policy->max,
532 CPUFREQ_RELATION_H);
533 __cpufreq_driver_target(policy, freq,
534 CPUFREQ_RELATION_L);
536 return;
539 /* Check for frequency decrease */
540 /* if we cannot reduce the frequency anymore, break out early */
541 if (policy->cur == policy->min)
542 return;
545 * The optimal frequency is the frequency that is the lowest that
546 * can support the current CPU usage without triggering the up
547 * policy. To be safe, we focus 10 points under the threshold.
549 if (max_load_freq <
550 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
551 policy->cur) {
552 unsigned int freq_next;
553 freq_next = max_load_freq /
554 (dbs_tuners_ins.up_threshold -
555 dbs_tuners_ins.down_differential);
557 if (!dbs_tuners_ins.powersave_bias) {
558 __cpufreq_driver_target(policy, freq_next,
559 CPUFREQ_RELATION_L);
560 } else {
561 int freq = powersave_bias_target(policy, freq_next,
562 CPUFREQ_RELATION_L);
563 __cpufreq_driver_target(policy, freq,
564 CPUFREQ_RELATION_L);
569 static void do_dbs_timer(struct work_struct *work)
571 struct cpu_dbs_info_s *dbs_info =
572 container_of(work, struct cpu_dbs_info_s, work.work);
573 unsigned int cpu = dbs_info->cpu;
574 int sample_type = dbs_info->sample_type;
576 /* We want all CPUs to do sampling nearly on same jiffy */
577 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
579 delay -= jiffies % delay;
580 mutex_lock(&dbs_info->timer_mutex);
582 /* Common NORMAL_SAMPLE setup */
583 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
584 if (!dbs_tuners_ins.powersave_bias ||
585 sample_type == DBS_NORMAL_SAMPLE) {
586 dbs_check_cpu(dbs_info);
587 if (dbs_info->freq_lo) {
588 /* Setup timer for SUB_SAMPLE */
589 dbs_info->sample_type = DBS_SUB_SAMPLE;
590 delay = dbs_info->freq_hi_jiffies;
592 } else {
593 __cpufreq_driver_target(dbs_info->cur_policy,
594 dbs_info->freq_lo, CPUFREQ_RELATION_H);
596 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
597 mutex_unlock(&dbs_info->timer_mutex);
600 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
602 /* We want all CPUs to do sampling nearly on same jiffy */
603 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
604 delay -= jiffies % delay;
606 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
607 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
608 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
609 delay);
612 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
614 cancel_delayed_work_sync(&dbs_info->work);
617 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
618 unsigned int event)
620 unsigned int cpu = policy->cpu;
621 struct cpu_dbs_info_s *this_dbs_info;
622 unsigned int j;
623 int rc;
625 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
627 switch (event) {
628 case CPUFREQ_GOV_START:
629 if ((!cpu_online(cpu)) || (!policy->cur))
630 return -EINVAL;
632 mutex_lock(&dbs_mutex);
634 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
635 if (rc) {
636 mutex_unlock(&dbs_mutex);
637 return rc;
640 dbs_enable++;
641 for_each_cpu(j, policy->cpus) {
642 struct cpu_dbs_info_s *j_dbs_info;
643 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
644 j_dbs_info->cur_policy = policy;
646 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647 &j_dbs_info->prev_cpu_wall);
648 if (dbs_tuners_ins.ignore_nice) {
649 j_dbs_info->prev_cpu_nice =
650 kstat_cpu(j).cpustat.nice;
653 this_dbs_info->cpu = cpu;
654 ondemand_powersave_bias_init_cpu(cpu);
656 * Start the timerschedule work, when this governor
657 * is used for first time
659 if (dbs_enable == 1) {
660 unsigned int latency;
662 rc = sysfs_create_group(cpufreq_global_kobject,
663 &dbs_attr_group);
664 if (rc) {
665 mutex_unlock(&dbs_mutex);
666 return rc;
669 /* policy latency is in nS. Convert it to uS first */
670 latency = policy->cpuinfo.transition_latency / 1000;
671 if (latency == 0)
672 latency = 1;
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate = max(min_sampling_rate,
675 MIN_LATENCY_MULTIPLIER * latency);
676 dbs_tuners_ins.sampling_rate =
677 max(min_sampling_rate,
678 latency * LATENCY_MULTIPLIER);
680 mutex_unlock(&dbs_mutex);
682 mutex_init(&this_dbs_info->timer_mutex);
683 dbs_timer_init(this_dbs_info);
684 break;
686 case CPUFREQ_GOV_STOP:
687 dbs_timer_exit(this_dbs_info);
689 mutex_lock(&dbs_mutex);
690 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
691 mutex_destroy(&this_dbs_info->timer_mutex);
692 dbs_enable--;
693 mutex_unlock(&dbs_mutex);
694 if (!dbs_enable)
695 sysfs_remove_group(cpufreq_global_kobject,
696 &dbs_attr_group);
698 break;
700 case CPUFREQ_GOV_LIMITS:
701 mutex_lock(&this_dbs_info->timer_mutex);
702 if (policy->max < this_dbs_info->cur_policy->cur)
703 __cpufreq_driver_target(this_dbs_info->cur_policy,
704 policy->max, CPUFREQ_RELATION_H);
705 else if (policy->min > this_dbs_info->cur_policy->cur)
706 __cpufreq_driver_target(this_dbs_info->cur_policy,
707 policy->min, CPUFREQ_RELATION_L);
708 mutex_unlock(&this_dbs_info->timer_mutex);
709 break;
711 return 0;
714 static int __init cpufreq_gov_dbs_init(void)
716 int err;
717 cputime64_t wall;
718 u64 idle_time;
719 int cpu = get_cpu();
721 idle_time = get_cpu_idle_time_us(cpu, &wall);
722 put_cpu();
723 if (idle_time != -1ULL) {
724 /* Idle micro accounting is supported. Use finer thresholds */
725 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
726 dbs_tuners_ins.down_differential =
727 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
729 * In no_hz/micro accounting case we set the minimum frequency
730 * not depending on HZ, but fixed (very low). The deferred
731 * timer might skip some samples if idle/sleeping as needed.
733 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
734 } else {
735 /* For correct statistics, we need 10 ticks for each measure */
736 min_sampling_rate =
737 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
740 kondemand_wq = create_workqueue("kondemand");
741 if (!kondemand_wq) {
742 printk(KERN_ERR "Creation of kondemand failed\n");
743 return -EFAULT;
745 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
746 if (err)
747 destroy_workqueue(kondemand_wq);
749 return err;
752 static void __exit cpufreq_gov_dbs_exit(void)
754 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
755 destroy_workqueue(kondemand_wq);
759 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
760 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
761 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
762 "Low Latency Frequency Transition capable processors");
763 MODULE_LICENSE("GPL");
765 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
766 fs_initcall(cpufreq_gov_dbs_init);
767 #else
768 module_init(cpufreq_gov_dbs_init);
769 #endif
770 module_exit(cpufreq_gov_dbs_exit);