byteorder: make swab.h include asm/swab.h like a regular header
[linux-2.6/mini2440.git] / mm / filemap.c
blobceba0bd0366261740b27c8f19785ae8857eeb8c8
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 void remove_from_page_cache(struct page *page)
141 struct address_space *mapping = page->mapping;
143 BUG_ON(!PageLocked(page));
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
150 static int sync_page(void *word)
152 struct address_space *mapping;
153 struct page *page;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
186 static int sync_page_killable(void *word)
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
394 int err = 0;
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
410 return err;
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
428 int err = 0;
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
442 return err;
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
458 int error;
460 VM_BUG_ON(!PageLocked(page));
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & GFP_RECLAIM_MASK);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
491 EXPORT_SYMBOL(add_to_page_cache_locked);
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
496 int ret;
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
514 return ret;
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
524 return alloc_pages(gfp, 0);
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
529 static int __sleep_on_page_lock(void *word)
531 io_schedule();
532 return 0;
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
545 static wait_queue_head_t *page_waitqueue(struct page *page)
547 const struct zone *zone = page_zone(page);
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 static inline void wake_up_page(struct page *page, int bit)
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 void wait_on_page_bit(struct page *page, int bit_nr)
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
565 EXPORT_SYMBOL(wait_on_page_bit);
568 * unlock_page - unlock a locked page
569 * @page: the page
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
579 void unlock_page(struct page *page)
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_locked);
586 EXPORT_SYMBOL(unlock_page);
589 * end_page_writeback - end writeback against a page
590 * @page: the page
592 void end_page_writeback(struct page *page)
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
597 if (!test_clear_page_writeback(page))
598 BUG();
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
603 EXPORT_SYMBOL(end_page_writeback);
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
614 void __lock_page(struct page *page)
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
621 EXPORT_SYMBOL(__lock_page);
623 int __lock_page_killable(struct page *page)
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
638 void __lock_page_nosync(struct page *page)
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
655 void **pagep;
656 struct page *page;
658 rcu_read_lock();
659 repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
667 if (!page_cache_get_speculative(page))
668 goto repeat;
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
680 rcu_read_unlock();
682 return page;
684 EXPORT_SYMBOL(find_get_page);
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
694 * Returns zero if the page was not present. find_lock_page() may sleep.
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
698 struct page *page;
700 repeat:
701 page = find_get_page(mapping, offset);
702 if (page) {
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
710 VM_BUG_ON(page->index != offset);
712 return page;
714 EXPORT_SYMBOL(find_lock_page);
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
733 struct page *find_or_create_page(struct address_space *mapping,
734 pgoff_t index, gfp_t gfp_mask)
736 struct page *page;
737 int err;
738 repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
745 * We want a regular kernel memory (not highmem or DMA etc)
746 * allocation for the radix tree nodes, but we need to honour
747 * the context-specific requirements the caller has asked for.
748 * GFP_RECLAIM_MASK collects those requirements.
750 err = add_to_page_cache_lru(page, mapping, index,
751 (gfp_mask & GFP_RECLAIM_MASK));
752 if (unlikely(err)) {
753 page_cache_release(page);
754 page = NULL;
755 if (err == -EEXIST)
756 goto repeat;
759 return page;
761 EXPORT_SYMBOL(find_or_create_page);
764 * find_get_pages - gang pagecache lookup
765 * @mapping: The address_space to search
766 * @start: The starting page index
767 * @nr_pages: The maximum number of pages
768 * @pages: Where the resulting pages are placed
770 * find_get_pages() will search for and return a group of up to
771 * @nr_pages pages in the mapping. The pages are placed at @pages.
772 * find_get_pages() takes a reference against the returned pages.
774 * The search returns a group of mapping-contiguous pages with ascending
775 * indexes. There may be holes in the indices due to not-present pages.
777 * find_get_pages() returns the number of pages which were found.
779 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
780 unsigned int nr_pages, struct page **pages)
782 unsigned int i;
783 unsigned int ret;
784 unsigned int nr_found;
786 rcu_read_lock();
787 restart:
788 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
789 (void ***)pages, start, nr_pages);
790 ret = 0;
791 for (i = 0; i < nr_found; i++) {
792 struct page *page;
793 repeat:
794 page = radix_tree_deref_slot((void **)pages[i]);
795 if (unlikely(!page))
796 continue;
798 * this can only trigger if nr_found == 1, making livelock
799 * a non issue.
801 if (unlikely(page == RADIX_TREE_RETRY))
802 goto restart;
804 if (!page_cache_get_speculative(page))
805 goto repeat;
807 /* Has the page moved? */
808 if (unlikely(page != *((void **)pages[i]))) {
809 page_cache_release(page);
810 goto repeat;
813 pages[ret] = page;
814 ret++;
816 rcu_read_unlock();
817 return ret;
821 * find_get_pages_contig - gang contiguous pagecache lookup
822 * @mapping: The address_space to search
823 * @index: The starting page index
824 * @nr_pages: The maximum number of pages
825 * @pages: Where the resulting pages are placed
827 * find_get_pages_contig() works exactly like find_get_pages(), except
828 * that the returned number of pages are guaranteed to be contiguous.
830 * find_get_pages_contig() returns the number of pages which were found.
832 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
833 unsigned int nr_pages, struct page **pages)
835 unsigned int i;
836 unsigned int ret;
837 unsigned int nr_found;
839 rcu_read_lock();
840 restart:
841 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
842 (void ***)pages, index, nr_pages);
843 ret = 0;
844 for (i = 0; i < nr_found; i++) {
845 struct page *page;
846 repeat:
847 page = radix_tree_deref_slot((void **)pages[i]);
848 if (unlikely(!page))
849 continue;
851 * this can only trigger if nr_found == 1, making livelock
852 * a non issue.
854 if (unlikely(page == RADIX_TREE_RETRY))
855 goto restart;
857 if (page->mapping == NULL || page->index != index)
858 break;
860 if (!page_cache_get_speculative(page))
861 goto repeat;
863 /* Has the page moved? */
864 if (unlikely(page != *((void **)pages[i]))) {
865 page_cache_release(page);
866 goto repeat;
869 pages[ret] = page;
870 ret++;
871 index++;
873 rcu_read_unlock();
874 return ret;
876 EXPORT_SYMBOL(find_get_pages_contig);
879 * find_get_pages_tag - find and return pages that match @tag
880 * @mapping: the address_space to search
881 * @index: the starting page index
882 * @tag: the tag index
883 * @nr_pages: the maximum number of pages
884 * @pages: where the resulting pages are placed
886 * Like find_get_pages, except we only return pages which are tagged with
887 * @tag. We update @index to index the next page for the traversal.
889 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
890 int tag, unsigned int nr_pages, struct page **pages)
892 unsigned int i;
893 unsigned int ret;
894 unsigned int nr_found;
896 rcu_read_lock();
897 restart:
898 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
899 (void ***)pages, *index, nr_pages, tag);
900 ret = 0;
901 for (i = 0; i < nr_found; i++) {
902 struct page *page;
903 repeat:
904 page = radix_tree_deref_slot((void **)pages[i]);
905 if (unlikely(!page))
906 continue;
908 * this can only trigger if nr_found == 1, making livelock
909 * a non issue.
911 if (unlikely(page == RADIX_TREE_RETRY))
912 goto restart;
914 if (!page_cache_get_speculative(page))
915 goto repeat;
917 /* Has the page moved? */
918 if (unlikely(page != *((void **)pages[i]))) {
919 page_cache_release(page);
920 goto repeat;
923 pages[ret] = page;
924 ret++;
926 rcu_read_unlock();
928 if (ret)
929 *index = pages[ret - 1]->index + 1;
931 return ret;
933 EXPORT_SYMBOL(find_get_pages_tag);
936 * grab_cache_page_nowait - returns locked page at given index in given cache
937 * @mapping: target address_space
938 * @index: the page index
940 * Same as grab_cache_page(), but do not wait if the page is unavailable.
941 * This is intended for speculative data generators, where the data can
942 * be regenerated if the page couldn't be grabbed. This routine should
943 * be safe to call while holding the lock for another page.
945 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
946 * and deadlock against the caller's locked page.
948 struct page *
949 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
951 struct page *page = find_get_page(mapping, index);
953 if (page) {
954 if (trylock_page(page))
955 return page;
956 page_cache_release(page);
957 return NULL;
959 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
960 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
961 page_cache_release(page);
962 page = NULL;
964 return page;
966 EXPORT_SYMBOL(grab_cache_page_nowait);
969 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
970 * a _large_ part of the i/o request. Imagine the worst scenario:
972 * ---R__________________________________________B__________
973 * ^ reading here ^ bad block(assume 4k)
975 * read(R) => miss => readahead(R...B) => media error => frustrating retries
976 * => failing the whole request => read(R) => read(R+1) =>
977 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
978 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
979 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
981 * It is going insane. Fix it by quickly scaling down the readahead size.
983 static void shrink_readahead_size_eio(struct file *filp,
984 struct file_ra_state *ra)
986 if (!ra->ra_pages)
987 return;
989 ra->ra_pages /= 4;
993 * do_generic_file_read - generic file read routine
994 * @filp: the file to read
995 * @ppos: current file position
996 * @desc: read_descriptor
997 * @actor: read method
999 * This is a generic file read routine, and uses the
1000 * mapping->a_ops->readpage() function for the actual low-level stuff.
1002 * This is really ugly. But the goto's actually try to clarify some
1003 * of the logic when it comes to error handling etc.
1005 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1006 read_descriptor_t *desc, read_actor_t actor)
1008 struct address_space *mapping = filp->f_mapping;
1009 struct inode *inode = mapping->host;
1010 struct file_ra_state *ra = &filp->f_ra;
1011 pgoff_t index;
1012 pgoff_t last_index;
1013 pgoff_t prev_index;
1014 unsigned long offset; /* offset into pagecache page */
1015 unsigned int prev_offset;
1016 int error;
1018 index = *ppos >> PAGE_CACHE_SHIFT;
1019 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1020 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1021 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1022 offset = *ppos & ~PAGE_CACHE_MASK;
1024 for (;;) {
1025 struct page *page;
1026 pgoff_t end_index;
1027 loff_t isize;
1028 unsigned long nr, ret;
1030 cond_resched();
1031 find_page:
1032 page = find_get_page(mapping, index);
1033 if (!page) {
1034 page_cache_sync_readahead(mapping,
1035 ra, filp,
1036 index, last_index - index);
1037 page = find_get_page(mapping, index);
1038 if (unlikely(page == NULL))
1039 goto no_cached_page;
1041 if (PageReadahead(page)) {
1042 page_cache_async_readahead(mapping,
1043 ra, filp, page,
1044 index, last_index - index);
1046 if (!PageUptodate(page)) {
1047 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1048 !mapping->a_ops->is_partially_uptodate)
1049 goto page_not_up_to_date;
1050 if (!trylock_page(page))
1051 goto page_not_up_to_date;
1052 if (!mapping->a_ops->is_partially_uptodate(page,
1053 desc, offset))
1054 goto page_not_up_to_date_locked;
1055 unlock_page(page);
1057 page_ok:
1059 * i_size must be checked after we know the page is Uptodate.
1061 * Checking i_size after the check allows us to calculate
1062 * the correct value for "nr", which means the zero-filled
1063 * part of the page is not copied back to userspace (unless
1064 * another truncate extends the file - this is desired though).
1067 isize = i_size_read(inode);
1068 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1069 if (unlikely(!isize || index > end_index)) {
1070 page_cache_release(page);
1071 goto out;
1074 /* nr is the maximum number of bytes to copy from this page */
1075 nr = PAGE_CACHE_SIZE;
1076 if (index == end_index) {
1077 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1078 if (nr <= offset) {
1079 page_cache_release(page);
1080 goto out;
1083 nr = nr - offset;
1085 /* If users can be writing to this page using arbitrary
1086 * virtual addresses, take care about potential aliasing
1087 * before reading the page on the kernel side.
1089 if (mapping_writably_mapped(mapping))
1090 flush_dcache_page(page);
1093 * When a sequential read accesses a page several times,
1094 * only mark it as accessed the first time.
1096 if (prev_index != index || offset != prev_offset)
1097 mark_page_accessed(page);
1098 prev_index = index;
1101 * Ok, we have the page, and it's up-to-date, so
1102 * now we can copy it to user space...
1104 * The actor routine returns how many bytes were actually used..
1105 * NOTE! This may not be the same as how much of a user buffer
1106 * we filled up (we may be padding etc), so we can only update
1107 * "pos" here (the actor routine has to update the user buffer
1108 * pointers and the remaining count).
1110 ret = actor(desc, page, offset, nr);
1111 offset += ret;
1112 index += offset >> PAGE_CACHE_SHIFT;
1113 offset &= ~PAGE_CACHE_MASK;
1114 prev_offset = offset;
1116 page_cache_release(page);
1117 if (ret == nr && desc->count)
1118 continue;
1119 goto out;
1121 page_not_up_to_date:
1122 /* Get exclusive access to the page ... */
1123 error = lock_page_killable(page);
1124 if (unlikely(error))
1125 goto readpage_error;
1127 page_not_up_to_date_locked:
1128 /* Did it get truncated before we got the lock? */
1129 if (!page->mapping) {
1130 unlock_page(page);
1131 page_cache_release(page);
1132 continue;
1135 /* Did somebody else fill it already? */
1136 if (PageUptodate(page)) {
1137 unlock_page(page);
1138 goto page_ok;
1141 readpage:
1142 /* Start the actual read. The read will unlock the page. */
1143 error = mapping->a_ops->readpage(filp, page);
1145 if (unlikely(error)) {
1146 if (error == AOP_TRUNCATED_PAGE) {
1147 page_cache_release(page);
1148 goto find_page;
1150 goto readpage_error;
1153 if (!PageUptodate(page)) {
1154 error = lock_page_killable(page);
1155 if (unlikely(error))
1156 goto readpage_error;
1157 if (!PageUptodate(page)) {
1158 if (page->mapping == NULL) {
1160 * invalidate_inode_pages got it
1162 unlock_page(page);
1163 page_cache_release(page);
1164 goto find_page;
1166 unlock_page(page);
1167 shrink_readahead_size_eio(filp, ra);
1168 error = -EIO;
1169 goto readpage_error;
1171 unlock_page(page);
1174 goto page_ok;
1176 readpage_error:
1177 /* UHHUH! A synchronous read error occurred. Report it */
1178 desc->error = error;
1179 page_cache_release(page);
1180 goto out;
1182 no_cached_page:
1184 * Ok, it wasn't cached, so we need to create a new
1185 * page..
1187 page = page_cache_alloc_cold(mapping);
1188 if (!page) {
1189 desc->error = -ENOMEM;
1190 goto out;
1192 error = add_to_page_cache_lru(page, mapping,
1193 index, GFP_KERNEL);
1194 if (error) {
1195 page_cache_release(page);
1196 if (error == -EEXIST)
1197 goto find_page;
1198 desc->error = error;
1199 goto out;
1201 goto readpage;
1204 out:
1205 ra->prev_pos = prev_index;
1206 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1207 ra->prev_pos |= prev_offset;
1209 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1210 file_accessed(filp);
1213 int file_read_actor(read_descriptor_t *desc, struct page *page,
1214 unsigned long offset, unsigned long size)
1216 char *kaddr;
1217 unsigned long left, count = desc->count;
1219 if (size > count)
1220 size = count;
1223 * Faults on the destination of a read are common, so do it before
1224 * taking the kmap.
1226 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1227 kaddr = kmap_atomic(page, KM_USER0);
1228 left = __copy_to_user_inatomic(desc->arg.buf,
1229 kaddr + offset, size);
1230 kunmap_atomic(kaddr, KM_USER0);
1231 if (left == 0)
1232 goto success;
1235 /* Do it the slow way */
1236 kaddr = kmap(page);
1237 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1238 kunmap(page);
1240 if (left) {
1241 size -= left;
1242 desc->error = -EFAULT;
1244 success:
1245 desc->count = count - size;
1246 desc->written += size;
1247 desc->arg.buf += size;
1248 return size;
1252 * Performs necessary checks before doing a write
1253 * @iov: io vector request
1254 * @nr_segs: number of segments in the iovec
1255 * @count: number of bytes to write
1256 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1258 * Adjust number of segments and amount of bytes to write (nr_segs should be
1259 * properly initialized first). Returns appropriate error code that caller
1260 * should return or zero in case that write should be allowed.
1262 int generic_segment_checks(const struct iovec *iov,
1263 unsigned long *nr_segs, size_t *count, int access_flags)
1265 unsigned long seg;
1266 size_t cnt = 0;
1267 for (seg = 0; seg < *nr_segs; seg++) {
1268 const struct iovec *iv = &iov[seg];
1271 * If any segment has a negative length, or the cumulative
1272 * length ever wraps negative then return -EINVAL.
1274 cnt += iv->iov_len;
1275 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1276 return -EINVAL;
1277 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1278 continue;
1279 if (seg == 0)
1280 return -EFAULT;
1281 *nr_segs = seg;
1282 cnt -= iv->iov_len; /* This segment is no good */
1283 break;
1285 *count = cnt;
1286 return 0;
1288 EXPORT_SYMBOL(generic_segment_checks);
1291 * generic_file_aio_read - generic filesystem read routine
1292 * @iocb: kernel I/O control block
1293 * @iov: io vector request
1294 * @nr_segs: number of segments in the iovec
1295 * @pos: current file position
1297 * This is the "read()" routine for all filesystems
1298 * that can use the page cache directly.
1300 ssize_t
1301 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1302 unsigned long nr_segs, loff_t pos)
1304 struct file *filp = iocb->ki_filp;
1305 ssize_t retval;
1306 unsigned long seg;
1307 size_t count;
1308 loff_t *ppos = &iocb->ki_pos;
1310 count = 0;
1311 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1312 if (retval)
1313 return retval;
1315 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1316 if (filp->f_flags & O_DIRECT) {
1317 loff_t size;
1318 struct address_space *mapping;
1319 struct inode *inode;
1321 mapping = filp->f_mapping;
1322 inode = mapping->host;
1323 if (!count)
1324 goto out; /* skip atime */
1325 size = i_size_read(inode);
1326 if (pos < size) {
1327 retval = filemap_write_and_wait_range(mapping, pos,
1328 pos + iov_length(iov, nr_segs) - 1);
1329 if (!retval) {
1330 retval = mapping->a_ops->direct_IO(READ, iocb,
1331 iov, pos, nr_segs);
1333 if (retval > 0)
1334 *ppos = pos + retval;
1335 if (retval) {
1336 file_accessed(filp);
1337 goto out;
1342 for (seg = 0; seg < nr_segs; seg++) {
1343 read_descriptor_t desc;
1345 desc.written = 0;
1346 desc.arg.buf = iov[seg].iov_base;
1347 desc.count = iov[seg].iov_len;
1348 if (desc.count == 0)
1349 continue;
1350 desc.error = 0;
1351 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1352 retval += desc.written;
1353 if (desc.error) {
1354 retval = retval ?: desc.error;
1355 break;
1357 if (desc.count > 0)
1358 break;
1360 out:
1361 return retval;
1363 EXPORT_SYMBOL(generic_file_aio_read);
1365 static ssize_t
1366 do_readahead(struct address_space *mapping, struct file *filp,
1367 pgoff_t index, unsigned long nr)
1369 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1370 return -EINVAL;
1372 force_page_cache_readahead(mapping, filp, index,
1373 max_sane_readahead(nr));
1374 return 0;
1377 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1379 ssize_t ret;
1380 struct file *file;
1382 ret = -EBADF;
1383 file = fget(fd);
1384 if (file) {
1385 if (file->f_mode & FMODE_READ) {
1386 struct address_space *mapping = file->f_mapping;
1387 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1388 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1389 unsigned long len = end - start + 1;
1390 ret = do_readahead(mapping, file, start, len);
1392 fput(file);
1394 return ret;
1397 #ifdef CONFIG_MMU
1399 * page_cache_read - adds requested page to the page cache if not already there
1400 * @file: file to read
1401 * @offset: page index
1403 * This adds the requested page to the page cache if it isn't already there,
1404 * and schedules an I/O to read in its contents from disk.
1406 static int page_cache_read(struct file *file, pgoff_t offset)
1408 struct address_space *mapping = file->f_mapping;
1409 struct page *page;
1410 int ret;
1412 do {
1413 page = page_cache_alloc_cold(mapping);
1414 if (!page)
1415 return -ENOMEM;
1417 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1418 if (ret == 0)
1419 ret = mapping->a_ops->readpage(file, page);
1420 else if (ret == -EEXIST)
1421 ret = 0; /* losing race to add is OK */
1423 page_cache_release(page);
1425 } while (ret == AOP_TRUNCATED_PAGE);
1427 return ret;
1430 #define MMAP_LOTSAMISS (100)
1433 * filemap_fault - read in file data for page fault handling
1434 * @vma: vma in which the fault was taken
1435 * @vmf: struct vm_fault containing details of the fault
1437 * filemap_fault() is invoked via the vma operations vector for a
1438 * mapped memory region to read in file data during a page fault.
1440 * The goto's are kind of ugly, but this streamlines the normal case of having
1441 * it in the page cache, and handles the special cases reasonably without
1442 * having a lot of duplicated code.
1444 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1446 int error;
1447 struct file *file = vma->vm_file;
1448 struct address_space *mapping = file->f_mapping;
1449 struct file_ra_state *ra = &file->f_ra;
1450 struct inode *inode = mapping->host;
1451 struct page *page;
1452 pgoff_t size;
1453 int did_readaround = 0;
1454 int ret = 0;
1456 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1457 if (vmf->pgoff >= size)
1458 return VM_FAULT_SIGBUS;
1460 /* If we don't want any read-ahead, don't bother */
1461 if (VM_RandomReadHint(vma))
1462 goto no_cached_page;
1465 * Do we have something in the page cache already?
1467 retry_find:
1468 page = find_lock_page(mapping, vmf->pgoff);
1470 * For sequential accesses, we use the generic readahead logic.
1472 if (VM_SequentialReadHint(vma)) {
1473 if (!page) {
1474 page_cache_sync_readahead(mapping, ra, file,
1475 vmf->pgoff, 1);
1476 page = find_lock_page(mapping, vmf->pgoff);
1477 if (!page)
1478 goto no_cached_page;
1480 if (PageReadahead(page)) {
1481 page_cache_async_readahead(mapping, ra, file, page,
1482 vmf->pgoff, 1);
1486 if (!page) {
1487 unsigned long ra_pages;
1489 ra->mmap_miss++;
1492 * Do we miss much more than hit in this file? If so,
1493 * stop bothering with read-ahead. It will only hurt.
1495 if (ra->mmap_miss > MMAP_LOTSAMISS)
1496 goto no_cached_page;
1499 * To keep the pgmajfault counter straight, we need to
1500 * check did_readaround, as this is an inner loop.
1502 if (!did_readaround) {
1503 ret = VM_FAULT_MAJOR;
1504 count_vm_event(PGMAJFAULT);
1506 did_readaround = 1;
1507 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1508 if (ra_pages) {
1509 pgoff_t start = 0;
1511 if (vmf->pgoff > ra_pages / 2)
1512 start = vmf->pgoff - ra_pages / 2;
1513 do_page_cache_readahead(mapping, file, start, ra_pages);
1515 page = find_lock_page(mapping, vmf->pgoff);
1516 if (!page)
1517 goto no_cached_page;
1520 if (!did_readaround)
1521 ra->mmap_miss--;
1524 * We have a locked page in the page cache, now we need to check
1525 * that it's up-to-date. If not, it is going to be due to an error.
1527 if (unlikely(!PageUptodate(page)))
1528 goto page_not_uptodate;
1530 /* Must recheck i_size under page lock */
1531 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1532 if (unlikely(vmf->pgoff >= size)) {
1533 unlock_page(page);
1534 page_cache_release(page);
1535 return VM_FAULT_SIGBUS;
1539 * Found the page and have a reference on it.
1541 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1542 vmf->page = page;
1543 return ret | VM_FAULT_LOCKED;
1545 no_cached_page:
1547 * We're only likely to ever get here if MADV_RANDOM is in
1548 * effect.
1550 error = page_cache_read(file, vmf->pgoff);
1553 * The page we want has now been added to the page cache.
1554 * In the unlikely event that someone removed it in the
1555 * meantime, we'll just come back here and read it again.
1557 if (error >= 0)
1558 goto retry_find;
1561 * An error return from page_cache_read can result if the
1562 * system is low on memory, or a problem occurs while trying
1563 * to schedule I/O.
1565 if (error == -ENOMEM)
1566 return VM_FAULT_OOM;
1567 return VM_FAULT_SIGBUS;
1569 page_not_uptodate:
1570 /* IO error path */
1571 if (!did_readaround) {
1572 ret = VM_FAULT_MAJOR;
1573 count_vm_event(PGMAJFAULT);
1577 * Umm, take care of errors if the page isn't up-to-date.
1578 * Try to re-read it _once_. We do this synchronously,
1579 * because there really aren't any performance issues here
1580 * and we need to check for errors.
1582 ClearPageError(page);
1583 error = mapping->a_ops->readpage(file, page);
1584 if (!error) {
1585 wait_on_page_locked(page);
1586 if (!PageUptodate(page))
1587 error = -EIO;
1589 page_cache_release(page);
1591 if (!error || error == AOP_TRUNCATED_PAGE)
1592 goto retry_find;
1594 /* Things didn't work out. Return zero to tell the mm layer so. */
1595 shrink_readahead_size_eio(file, ra);
1596 return VM_FAULT_SIGBUS;
1598 EXPORT_SYMBOL(filemap_fault);
1600 struct vm_operations_struct generic_file_vm_ops = {
1601 .fault = filemap_fault,
1604 /* This is used for a general mmap of a disk file */
1606 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1608 struct address_space *mapping = file->f_mapping;
1610 if (!mapping->a_ops->readpage)
1611 return -ENOEXEC;
1612 file_accessed(file);
1613 vma->vm_ops = &generic_file_vm_ops;
1614 vma->vm_flags |= VM_CAN_NONLINEAR;
1615 return 0;
1619 * This is for filesystems which do not implement ->writepage.
1621 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1623 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1624 return -EINVAL;
1625 return generic_file_mmap(file, vma);
1627 #else
1628 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1630 return -ENOSYS;
1632 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1634 return -ENOSYS;
1636 #endif /* CONFIG_MMU */
1638 EXPORT_SYMBOL(generic_file_mmap);
1639 EXPORT_SYMBOL(generic_file_readonly_mmap);
1641 static struct page *__read_cache_page(struct address_space *mapping,
1642 pgoff_t index,
1643 int (*filler)(void *,struct page*),
1644 void *data)
1646 struct page *page;
1647 int err;
1648 repeat:
1649 page = find_get_page(mapping, index);
1650 if (!page) {
1651 page = page_cache_alloc_cold(mapping);
1652 if (!page)
1653 return ERR_PTR(-ENOMEM);
1654 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655 if (unlikely(err)) {
1656 page_cache_release(page);
1657 if (err == -EEXIST)
1658 goto repeat;
1659 /* Presumably ENOMEM for radix tree node */
1660 return ERR_PTR(err);
1662 err = filler(data, page);
1663 if (err < 0) {
1664 page_cache_release(page);
1665 page = ERR_PTR(err);
1668 return page;
1672 * read_cache_page_async - read into page cache, fill it if needed
1673 * @mapping: the page's address_space
1674 * @index: the page index
1675 * @filler: function to perform the read
1676 * @data: destination for read data
1678 * Same as read_cache_page, but don't wait for page to become unlocked
1679 * after submitting it to the filler.
1681 * Read into the page cache. If a page already exists, and PageUptodate() is
1682 * not set, try to fill the page but don't wait for it to become unlocked.
1684 * If the page does not get brought uptodate, return -EIO.
1686 struct page *read_cache_page_async(struct address_space *mapping,
1687 pgoff_t index,
1688 int (*filler)(void *,struct page*),
1689 void *data)
1691 struct page *page;
1692 int err;
1694 retry:
1695 page = __read_cache_page(mapping, index, filler, data);
1696 if (IS_ERR(page))
1697 return page;
1698 if (PageUptodate(page))
1699 goto out;
1701 lock_page(page);
1702 if (!page->mapping) {
1703 unlock_page(page);
1704 page_cache_release(page);
1705 goto retry;
1707 if (PageUptodate(page)) {
1708 unlock_page(page);
1709 goto out;
1711 err = filler(data, page);
1712 if (err < 0) {
1713 page_cache_release(page);
1714 return ERR_PTR(err);
1716 out:
1717 mark_page_accessed(page);
1718 return page;
1720 EXPORT_SYMBOL(read_cache_page_async);
1723 * read_cache_page - read into page cache, fill it if needed
1724 * @mapping: the page's address_space
1725 * @index: the page index
1726 * @filler: function to perform the read
1727 * @data: destination for read data
1729 * Read into the page cache. If a page already exists, and PageUptodate() is
1730 * not set, try to fill the page then wait for it to become unlocked.
1732 * If the page does not get brought uptodate, return -EIO.
1734 struct page *read_cache_page(struct address_space *mapping,
1735 pgoff_t index,
1736 int (*filler)(void *,struct page*),
1737 void *data)
1739 struct page *page;
1741 page = read_cache_page_async(mapping, index, filler, data);
1742 if (IS_ERR(page))
1743 goto out;
1744 wait_on_page_locked(page);
1745 if (!PageUptodate(page)) {
1746 page_cache_release(page);
1747 page = ERR_PTR(-EIO);
1749 out:
1750 return page;
1752 EXPORT_SYMBOL(read_cache_page);
1755 * The logic we want is
1757 * if suid or (sgid and xgrp)
1758 * remove privs
1760 int should_remove_suid(struct dentry *dentry)
1762 mode_t mode = dentry->d_inode->i_mode;
1763 int kill = 0;
1765 /* suid always must be killed */
1766 if (unlikely(mode & S_ISUID))
1767 kill = ATTR_KILL_SUID;
1770 * sgid without any exec bits is just a mandatory locking mark; leave
1771 * it alone. If some exec bits are set, it's a real sgid; kill it.
1773 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1774 kill |= ATTR_KILL_SGID;
1776 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1777 return kill;
1779 return 0;
1781 EXPORT_SYMBOL(should_remove_suid);
1783 static int __remove_suid(struct dentry *dentry, int kill)
1785 struct iattr newattrs;
1787 newattrs.ia_valid = ATTR_FORCE | kill;
1788 return notify_change(dentry, &newattrs);
1791 int file_remove_suid(struct file *file)
1793 struct dentry *dentry = file->f_path.dentry;
1794 int killsuid = should_remove_suid(dentry);
1795 int killpriv = security_inode_need_killpriv(dentry);
1796 int error = 0;
1798 if (killpriv < 0)
1799 return killpriv;
1800 if (killpriv)
1801 error = security_inode_killpriv(dentry);
1802 if (!error && killsuid)
1803 error = __remove_suid(dentry, killsuid);
1805 return error;
1807 EXPORT_SYMBOL(file_remove_suid);
1809 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1810 const struct iovec *iov, size_t base, size_t bytes)
1812 size_t copied = 0, left = 0;
1814 while (bytes) {
1815 char __user *buf = iov->iov_base + base;
1816 int copy = min(bytes, iov->iov_len - base);
1818 base = 0;
1819 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1820 copied += copy;
1821 bytes -= copy;
1822 vaddr += copy;
1823 iov++;
1825 if (unlikely(left))
1826 break;
1828 return copied - left;
1832 * Copy as much as we can into the page and return the number of bytes which
1833 * were sucessfully copied. If a fault is encountered then return the number of
1834 * bytes which were copied.
1836 size_t iov_iter_copy_from_user_atomic(struct page *page,
1837 struct iov_iter *i, unsigned long offset, size_t bytes)
1839 char *kaddr;
1840 size_t copied;
1842 BUG_ON(!in_atomic());
1843 kaddr = kmap_atomic(page, KM_USER0);
1844 if (likely(i->nr_segs == 1)) {
1845 int left;
1846 char __user *buf = i->iov->iov_base + i->iov_offset;
1847 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1848 buf, bytes);
1849 copied = bytes - left;
1850 } else {
1851 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1852 i->iov, i->iov_offset, bytes);
1854 kunmap_atomic(kaddr, KM_USER0);
1856 return copied;
1858 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1861 * This has the same sideeffects and return value as
1862 * iov_iter_copy_from_user_atomic().
1863 * The difference is that it attempts to resolve faults.
1864 * Page must not be locked.
1866 size_t iov_iter_copy_from_user(struct page *page,
1867 struct iov_iter *i, unsigned long offset, size_t bytes)
1869 char *kaddr;
1870 size_t copied;
1872 kaddr = kmap(page);
1873 if (likely(i->nr_segs == 1)) {
1874 int left;
1875 char __user *buf = i->iov->iov_base + i->iov_offset;
1876 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1877 copied = bytes - left;
1878 } else {
1879 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1880 i->iov, i->iov_offset, bytes);
1882 kunmap(page);
1883 return copied;
1885 EXPORT_SYMBOL(iov_iter_copy_from_user);
1887 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1889 BUG_ON(i->count < bytes);
1891 if (likely(i->nr_segs == 1)) {
1892 i->iov_offset += bytes;
1893 i->count -= bytes;
1894 } else {
1895 const struct iovec *iov = i->iov;
1896 size_t base = i->iov_offset;
1899 * The !iov->iov_len check ensures we skip over unlikely
1900 * zero-length segments (without overruning the iovec).
1902 while (bytes || unlikely(i->count && !iov->iov_len)) {
1903 int copy;
1905 copy = min(bytes, iov->iov_len - base);
1906 BUG_ON(!i->count || i->count < copy);
1907 i->count -= copy;
1908 bytes -= copy;
1909 base += copy;
1910 if (iov->iov_len == base) {
1911 iov++;
1912 base = 0;
1915 i->iov = iov;
1916 i->iov_offset = base;
1919 EXPORT_SYMBOL(iov_iter_advance);
1922 * Fault in the first iovec of the given iov_iter, to a maximum length
1923 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1924 * accessed (ie. because it is an invalid address).
1926 * writev-intensive code may want this to prefault several iovecs -- that
1927 * would be possible (callers must not rely on the fact that _only_ the
1928 * first iovec will be faulted with the current implementation).
1930 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1932 char __user *buf = i->iov->iov_base + i->iov_offset;
1933 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1934 return fault_in_pages_readable(buf, bytes);
1936 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1939 * Return the count of just the current iov_iter segment.
1941 size_t iov_iter_single_seg_count(struct iov_iter *i)
1943 const struct iovec *iov = i->iov;
1944 if (i->nr_segs == 1)
1945 return i->count;
1946 else
1947 return min(i->count, iov->iov_len - i->iov_offset);
1949 EXPORT_SYMBOL(iov_iter_single_seg_count);
1952 * Performs necessary checks before doing a write
1954 * Can adjust writing position or amount of bytes to write.
1955 * Returns appropriate error code that caller should return or
1956 * zero in case that write should be allowed.
1958 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1960 struct inode *inode = file->f_mapping->host;
1961 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1963 if (unlikely(*pos < 0))
1964 return -EINVAL;
1966 if (!isblk) {
1967 /* FIXME: this is for backwards compatibility with 2.4 */
1968 if (file->f_flags & O_APPEND)
1969 *pos = i_size_read(inode);
1971 if (limit != RLIM_INFINITY) {
1972 if (*pos >= limit) {
1973 send_sig(SIGXFSZ, current, 0);
1974 return -EFBIG;
1976 if (*count > limit - (typeof(limit))*pos) {
1977 *count = limit - (typeof(limit))*pos;
1983 * LFS rule
1985 if (unlikely(*pos + *count > MAX_NON_LFS &&
1986 !(file->f_flags & O_LARGEFILE))) {
1987 if (*pos >= MAX_NON_LFS) {
1988 return -EFBIG;
1990 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1991 *count = MAX_NON_LFS - (unsigned long)*pos;
1996 * Are we about to exceed the fs block limit ?
1998 * If we have written data it becomes a short write. If we have
1999 * exceeded without writing data we send a signal and return EFBIG.
2000 * Linus frestrict idea will clean these up nicely..
2002 if (likely(!isblk)) {
2003 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2004 if (*count || *pos > inode->i_sb->s_maxbytes) {
2005 return -EFBIG;
2007 /* zero-length writes at ->s_maxbytes are OK */
2010 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2011 *count = inode->i_sb->s_maxbytes - *pos;
2012 } else {
2013 #ifdef CONFIG_BLOCK
2014 loff_t isize;
2015 if (bdev_read_only(I_BDEV(inode)))
2016 return -EPERM;
2017 isize = i_size_read(inode);
2018 if (*pos >= isize) {
2019 if (*count || *pos > isize)
2020 return -ENOSPC;
2023 if (*pos + *count > isize)
2024 *count = isize - *pos;
2025 #else
2026 return -EPERM;
2027 #endif
2029 return 0;
2031 EXPORT_SYMBOL(generic_write_checks);
2033 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2034 loff_t pos, unsigned len, unsigned flags,
2035 struct page **pagep, void **fsdata)
2037 const struct address_space_operations *aops = mapping->a_ops;
2039 return aops->write_begin(file, mapping, pos, len, flags,
2040 pagep, fsdata);
2042 EXPORT_SYMBOL(pagecache_write_begin);
2044 int pagecache_write_end(struct file *file, struct address_space *mapping,
2045 loff_t pos, unsigned len, unsigned copied,
2046 struct page *page, void *fsdata)
2048 const struct address_space_operations *aops = mapping->a_ops;
2050 mark_page_accessed(page);
2051 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2053 EXPORT_SYMBOL(pagecache_write_end);
2055 ssize_t
2056 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2057 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2058 size_t count, size_t ocount)
2060 struct file *file = iocb->ki_filp;
2061 struct address_space *mapping = file->f_mapping;
2062 struct inode *inode = mapping->host;
2063 ssize_t written;
2064 size_t write_len;
2065 pgoff_t end;
2067 if (count != ocount)
2068 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2070 write_len = iov_length(iov, *nr_segs);
2071 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2073 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2074 if (written)
2075 goto out;
2078 * After a write we want buffered reads to be sure to go to disk to get
2079 * the new data. We invalidate clean cached page from the region we're
2080 * about to write. We do this *before* the write so that we can return
2081 * without clobbering -EIOCBQUEUED from ->direct_IO().
2083 if (mapping->nrpages) {
2084 written = invalidate_inode_pages2_range(mapping,
2085 pos >> PAGE_CACHE_SHIFT, end);
2087 * If a page can not be invalidated, return 0 to fall back
2088 * to buffered write.
2090 if (written) {
2091 if (written == -EBUSY)
2092 return 0;
2093 goto out;
2097 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2100 * Finally, try again to invalidate clean pages which might have been
2101 * cached by non-direct readahead, or faulted in by get_user_pages()
2102 * if the source of the write was an mmap'ed region of the file
2103 * we're writing. Either one is a pretty crazy thing to do,
2104 * so we don't support it 100%. If this invalidation
2105 * fails, tough, the write still worked...
2107 if (mapping->nrpages) {
2108 invalidate_inode_pages2_range(mapping,
2109 pos >> PAGE_CACHE_SHIFT, end);
2112 if (written > 0) {
2113 loff_t end = pos + written;
2114 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2115 i_size_write(inode, end);
2116 mark_inode_dirty(inode);
2118 *ppos = end;
2122 * Sync the fs metadata but not the minor inode changes and
2123 * of course not the data as we did direct DMA for the IO.
2124 * i_mutex is held, which protects generic_osync_inode() from
2125 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2127 out:
2128 if ((written >= 0 || written == -EIOCBQUEUED) &&
2129 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2130 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2131 if (err < 0)
2132 written = err;
2134 return written;
2136 EXPORT_SYMBOL(generic_file_direct_write);
2139 * Find or create a page at the given pagecache position. Return the locked
2140 * page. This function is specifically for buffered writes.
2142 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2143 pgoff_t index, unsigned flags)
2145 int status;
2146 struct page *page;
2147 gfp_t gfp_notmask = 0;
2148 if (flags & AOP_FLAG_NOFS)
2149 gfp_notmask = __GFP_FS;
2150 repeat:
2151 page = find_lock_page(mapping, index);
2152 if (likely(page))
2153 return page;
2155 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2156 if (!page)
2157 return NULL;
2158 status = add_to_page_cache_lru(page, mapping, index,
2159 GFP_KERNEL & ~gfp_notmask);
2160 if (unlikely(status)) {
2161 page_cache_release(page);
2162 if (status == -EEXIST)
2163 goto repeat;
2164 return NULL;
2166 return page;
2168 EXPORT_SYMBOL(grab_cache_page_write_begin);
2170 static ssize_t generic_perform_write(struct file *file,
2171 struct iov_iter *i, loff_t pos)
2173 struct address_space *mapping = file->f_mapping;
2174 const struct address_space_operations *a_ops = mapping->a_ops;
2175 long status = 0;
2176 ssize_t written = 0;
2177 unsigned int flags = 0;
2180 * Copies from kernel address space cannot fail (NFSD is a big user).
2182 if (segment_eq(get_fs(), KERNEL_DS))
2183 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2185 do {
2186 struct page *page;
2187 pgoff_t index; /* Pagecache index for current page */
2188 unsigned long offset; /* Offset into pagecache page */
2189 unsigned long bytes; /* Bytes to write to page */
2190 size_t copied; /* Bytes copied from user */
2191 void *fsdata;
2193 offset = (pos & (PAGE_CACHE_SIZE - 1));
2194 index = pos >> PAGE_CACHE_SHIFT;
2195 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2196 iov_iter_count(i));
2198 again:
2201 * Bring in the user page that we will copy from _first_.
2202 * Otherwise there's a nasty deadlock on copying from the
2203 * same page as we're writing to, without it being marked
2204 * up-to-date.
2206 * Not only is this an optimisation, but it is also required
2207 * to check that the address is actually valid, when atomic
2208 * usercopies are used, below.
2210 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2211 status = -EFAULT;
2212 break;
2215 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2216 &page, &fsdata);
2217 if (unlikely(status))
2218 break;
2220 pagefault_disable();
2221 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2222 pagefault_enable();
2223 flush_dcache_page(page);
2225 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2226 page, fsdata);
2227 if (unlikely(status < 0))
2228 break;
2229 copied = status;
2231 cond_resched();
2233 iov_iter_advance(i, copied);
2234 if (unlikely(copied == 0)) {
2236 * If we were unable to copy any data at all, we must
2237 * fall back to a single segment length write.
2239 * If we didn't fallback here, we could livelock
2240 * because not all segments in the iov can be copied at
2241 * once without a pagefault.
2243 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2244 iov_iter_single_seg_count(i));
2245 goto again;
2247 pos += copied;
2248 written += copied;
2250 balance_dirty_pages_ratelimited(mapping);
2252 } while (iov_iter_count(i));
2254 return written ? written : status;
2257 ssize_t
2258 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2259 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2260 size_t count, ssize_t written)
2262 struct file *file = iocb->ki_filp;
2263 struct address_space *mapping = file->f_mapping;
2264 const struct address_space_operations *a_ops = mapping->a_ops;
2265 struct inode *inode = mapping->host;
2266 ssize_t status;
2267 struct iov_iter i;
2269 iov_iter_init(&i, iov, nr_segs, count, written);
2270 status = generic_perform_write(file, &i, pos);
2272 if (likely(status >= 0)) {
2273 written += status;
2274 *ppos = pos + status;
2277 * For now, when the user asks for O_SYNC, we'll actually give
2278 * O_DSYNC
2280 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2281 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2282 status = generic_osync_inode(inode, mapping,
2283 OSYNC_METADATA|OSYNC_DATA);
2288 * If we get here for O_DIRECT writes then we must have fallen through
2289 * to buffered writes (block instantiation inside i_size). So we sync
2290 * the file data here, to try to honour O_DIRECT expectations.
2292 if (unlikely(file->f_flags & O_DIRECT) && written)
2293 status = filemap_write_and_wait_range(mapping,
2294 pos, pos + written - 1);
2296 return written ? written : status;
2298 EXPORT_SYMBOL(generic_file_buffered_write);
2300 static ssize_t
2301 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2302 unsigned long nr_segs, loff_t *ppos)
2304 struct file *file = iocb->ki_filp;
2305 struct address_space * mapping = file->f_mapping;
2306 size_t ocount; /* original count */
2307 size_t count; /* after file limit checks */
2308 struct inode *inode = mapping->host;
2309 loff_t pos;
2310 ssize_t written;
2311 ssize_t err;
2313 ocount = 0;
2314 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2315 if (err)
2316 return err;
2318 count = ocount;
2319 pos = *ppos;
2321 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2323 /* We can write back this queue in page reclaim */
2324 current->backing_dev_info = mapping->backing_dev_info;
2325 written = 0;
2327 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2328 if (err)
2329 goto out;
2331 if (count == 0)
2332 goto out;
2334 err = file_remove_suid(file);
2335 if (err)
2336 goto out;
2338 file_update_time(file);
2340 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2341 if (unlikely(file->f_flags & O_DIRECT)) {
2342 loff_t endbyte;
2343 ssize_t written_buffered;
2345 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2346 ppos, count, ocount);
2347 if (written < 0 || written == count)
2348 goto out;
2350 * direct-io write to a hole: fall through to buffered I/O
2351 * for completing the rest of the request.
2353 pos += written;
2354 count -= written;
2355 written_buffered = generic_file_buffered_write(iocb, iov,
2356 nr_segs, pos, ppos, count,
2357 written);
2359 * If generic_file_buffered_write() retuned a synchronous error
2360 * then we want to return the number of bytes which were
2361 * direct-written, or the error code if that was zero. Note
2362 * that this differs from normal direct-io semantics, which
2363 * will return -EFOO even if some bytes were written.
2365 if (written_buffered < 0) {
2366 err = written_buffered;
2367 goto out;
2371 * We need to ensure that the page cache pages are written to
2372 * disk and invalidated to preserve the expected O_DIRECT
2373 * semantics.
2375 endbyte = pos + written_buffered - written - 1;
2376 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2377 SYNC_FILE_RANGE_WAIT_BEFORE|
2378 SYNC_FILE_RANGE_WRITE|
2379 SYNC_FILE_RANGE_WAIT_AFTER);
2380 if (err == 0) {
2381 written = written_buffered;
2382 invalidate_mapping_pages(mapping,
2383 pos >> PAGE_CACHE_SHIFT,
2384 endbyte >> PAGE_CACHE_SHIFT);
2385 } else {
2387 * We don't know how much we wrote, so just return
2388 * the number of bytes which were direct-written
2391 } else {
2392 written = generic_file_buffered_write(iocb, iov, nr_segs,
2393 pos, ppos, count, written);
2395 out:
2396 current->backing_dev_info = NULL;
2397 return written ? written : err;
2400 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2401 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2403 struct file *file = iocb->ki_filp;
2404 struct address_space *mapping = file->f_mapping;
2405 struct inode *inode = mapping->host;
2406 ssize_t ret;
2408 BUG_ON(iocb->ki_pos != pos);
2410 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2411 &iocb->ki_pos);
2413 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2414 ssize_t err;
2416 err = sync_page_range_nolock(inode, mapping, pos, ret);
2417 if (err < 0)
2418 ret = err;
2420 return ret;
2422 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2424 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2425 unsigned long nr_segs, loff_t pos)
2427 struct file *file = iocb->ki_filp;
2428 struct address_space *mapping = file->f_mapping;
2429 struct inode *inode = mapping->host;
2430 ssize_t ret;
2432 BUG_ON(iocb->ki_pos != pos);
2434 mutex_lock(&inode->i_mutex);
2435 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2436 &iocb->ki_pos);
2437 mutex_unlock(&inode->i_mutex);
2439 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440 ssize_t err;
2442 err = sync_page_range(inode, mapping, pos, ret);
2443 if (err < 0)
2444 ret = err;
2446 return ret;
2448 EXPORT_SYMBOL(generic_file_aio_write);
2451 * try_to_release_page() - release old fs-specific metadata on a page
2453 * @page: the page which the kernel is trying to free
2454 * @gfp_mask: memory allocation flags (and I/O mode)
2456 * The address_space is to try to release any data against the page
2457 * (presumably at page->private). If the release was successful, return `1'.
2458 * Otherwise return zero.
2460 * The @gfp_mask argument specifies whether I/O may be performed to release
2461 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2464 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2466 struct address_space * const mapping = page->mapping;
2468 BUG_ON(!PageLocked(page));
2469 if (PageWriteback(page))
2470 return 0;
2472 if (mapping && mapping->a_ops->releasepage)
2473 return mapping->a_ops->releasepage(page, gfp_mask);
2474 return try_to_free_buffers(page);
2477 EXPORT_SYMBOL(try_to_release_page);