byteorder: make swab.h include asm/swab.h like a regular header
[linux-2.6/mini2440.git] / drivers / net / sungem.c
blob86c765d83de1148239ced6790c2aabd820685b87
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/in.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
59 #include <linux/mm.h>
61 #include <asm/system.h>
62 #include <asm/io.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
65 #include <asm/irq.h>
67 #ifdef CONFIG_SPARC
68 #include <asm/idprom.h>
69 #include <asm/prom.h>
70 #endif
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
74 #include <asm/prom.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
77 #endif
79 #include "sungem_phy.h"
80 #include "sungem.h"
82 /* Stripping FCS is causing problems, disabled for now */
83 #undef STRIP_FCS
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
86 NETIF_MSG_PROBE | \
87 NETIF_MSG_LINK)
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
92 SUPPORTED_Pause | SUPPORTED_Autoneg)
94 #define DRV_NAME "sungem"
95 #define DRV_VERSION "0.98"
96 #define DRV_RELDATE "8/24/03"
97 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99 static char version[] __devinitdata =
100 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
102 MODULE_AUTHOR(DRV_AUTHOR);
103 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
104 MODULE_LICENSE("GPL");
106 #define GEM_MODULE_NAME "gem"
107 #define PFX GEM_MODULE_NAME ": "
109 static struct pci_device_id gem_pci_tbl[] = {
110 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 /* These models only differ from the original GEM in
114 * that their tx/rx fifos are of a different size and
115 * they only support 10/100 speeds. -DaveM
117 * Apple's GMAC does support gigabit on machines with
118 * the BCM54xx PHYs. -BenH
120 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
121 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 {0, }
137 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
139 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
141 u32 cmd;
142 int limit = 10000;
144 cmd = (1 << 30);
145 cmd |= (2 << 28);
146 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
147 cmd |= (reg << 18) & MIF_FRAME_REGAD;
148 cmd |= (MIF_FRAME_TAMSB);
149 writel(cmd, gp->regs + MIF_FRAME);
151 while (limit--) {
152 cmd = readl(gp->regs + MIF_FRAME);
153 if (cmd & MIF_FRAME_TALSB)
154 break;
156 udelay(10);
159 if (!limit)
160 cmd = 0xffff;
162 return cmd & MIF_FRAME_DATA;
165 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
167 struct gem *gp = netdev_priv(dev);
168 return __phy_read(gp, mii_id, reg);
171 static inline u16 phy_read(struct gem *gp, int reg)
173 return __phy_read(gp, gp->mii_phy_addr, reg);
176 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
178 u32 cmd;
179 int limit = 10000;
181 cmd = (1 << 30);
182 cmd |= (1 << 28);
183 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
184 cmd |= (reg << 18) & MIF_FRAME_REGAD;
185 cmd |= (MIF_FRAME_TAMSB);
186 cmd |= (val & MIF_FRAME_DATA);
187 writel(cmd, gp->regs + MIF_FRAME);
189 while (limit--) {
190 cmd = readl(gp->regs + MIF_FRAME);
191 if (cmd & MIF_FRAME_TALSB)
192 break;
194 udelay(10);
198 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
200 struct gem *gp = netdev_priv(dev);
201 __phy_write(gp, mii_id, reg, val & 0xffff);
204 static inline void phy_write(struct gem *gp, int reg, u16 val)
206 __phy_write(gp, gp->mii_phy_addr, reg, val);
209 static inline void gem_enable_ints(struct gem *gp)
211 /* Enable all interrupts but TXDONE */
212 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215 static inline void gem_disable_ints(struct gem *gp)
217 /* Disable all interrupts, including TXDONE */
218 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221 static void gem_get_cell(struct gem *gp)
223 BUG_ON(gp->cell_enabled < 0);
224 gp->cell_enabled++;
225 #ifdef CONFIG_PPC_PMAC
226 if (gp->cell_enabled == 1) {
227 mb();
228 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
229 udelay(10);
231 #endif /* CONFIG_PPC_PMAC */
234 /* Turn off the chip's clock */
235 static void gem_put_cell(struct gem *gp)
237 BUG_ON(gp->cell_enabled <= 0);
238 gp->cell_enabled--;
239 #ifdef CONFIG_PPC_PMAC
240 if (gp->cell_enabled == 0) {
241 mb();
242 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
243 udelay(10);
245 #endif /* CONFIG_PPC_PMAC */
248 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 if (netif_msg_intr(gp))
251 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
257 u32 pcs_miistat;
259 if (netif_msg_intr(gp))
260 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
261 gp->dev->name, pcs_istat);
263 if (!(pcs_istat & PCS_ISTAT_LSC)) {
264 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
265 dev->name);
266 return 0;
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 printk(KERN_INFO "%s: PCS AutoNEG complete, "
285 "RemoteFault\n", dev->name);
286 else
287 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
288 dev->name);
291 if (pcs_miistat & PCS_MIISTAT_LS) {
292 printk(KERN_INFO "%s: PCS link is now up.\n",
293 dev->name);
294 netif_carrier_on(gp->dev);
295 } else {
296 printk(KERN_INFO "%s: PCS link is now down.\n",
297 dev->name);
298 netif_carrier_off(gp->dev);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp->link_timer))
303 return 1;
306 return 0;
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313 if (netif_msg_intr(gp))
314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp->dev->name, txmac_stat);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 !(txmac_stat & ~MAC_TXSTAT_DTE))
322 return 0;
324 if (txmac_stat & MAC_TXSTAT_URUN) {
325 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
326 dev->name);
327 gp->net_stats.tx_fifo_errors++;
330 if (txmac_stat & MAC_TXSTAT_MPE) {
331 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
332 dev->name);
333 gp->net_stats.tx_errors++;
336 /* The rest are all cases of one of the 16-bit TX
337 * counters expiring.
339 if (txmac_stat & MAC_TXSTAT_NCE)
340 gp->net_stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_ECE) {
343 gp->net_stats.tx_aborted_errors += 0x10000;
344 gp->net_stats.collisions += 0x10000;
347 if (txmac_stat & MAC_TXSTAT_LCE) {
348 gp->net_stats.tx_aborted_errors += 0x10000;
349 gp->net_stats.collisions += 0x10000;
352 /* We do not keep track of MAC_TXSTAT_FCE and
353 * MAC_TXSTAT_PCE events.
355 return 0;
358 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
359 * so we do the following.
361 * If any part of the reset goes wrong, we return 1 and that causes the
362 * whole chip to be reset.
364 static int gem_rxmac_reset(struct gem *gp)
366 struct net_device *dev = gp->dev;
367 int limit, i;
368 u64 desc_dma;
369 u32 val;
371 /* First, reset & disable MAC RX. */
372 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
373 for (limit = 0; limit < 5000; limit++) {
374 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
375 break;
376 udelay(10);
378 if (limit == 5000) {
379 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
380 "chip.\n", dev->name);
381 return 1;
384 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
385 gp->regs + MAC_RXCFG);
386 for (limit = 0; limit < 5000; limit++) {
387 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
388 break;
389 udelay(10);
391 if (limit == 5000) {
392 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
393 "chip.\n", dev->name);
394 return 1;
397 /* Second, disable RX DMA. */
398 writel(0, gp->regs + RXDMA_CFG);
399 for (limit = 0; limit < 5000; limit++) {
400 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
401 break;
402 udelay(10);
404 if (limit == 5000) {
405 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
406 "chip.\n", dev->name);
407 return 1;
410 udelay(5000);
412 /* Execute RX reset command. */
413 writel(gp->swrst_base | GREG_SWRST_RXRST,
414 gp->regs + GREG_SWRST);
415 for (limit = 0; limit < 5000; limit++) {
416 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
417 break;
418 udelay(10);
420 if (limit == 5000) {
421 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
422 "whole chip.\n", dev->name);
423 return 1;
426 /* Refresh the RX ring. */
427 for (i = 0; i < RX_RING_SIZE; i++) {
428 struct gem_rxd *rxd = &gp->init_block->rxd[i];
430 if (gp->rx_skbs[i] == NULL) {
431 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
432 "whole chip.\n", dev->name);
433 return 1;
436 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
438 gp->rx_new = gp->rx_old = 0;
440 /* Now we must reprogram the rest of RX unit. */
441 desc_dma = (u64) gp->gblock_dvma;
442 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
443 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
444 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
445 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
446 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
447 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
448 writel(val, gp->regs + RXDMA_CFG);
449 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
450 writel(((5 & RXDMA_BLANK_IPKTS) |
451 ((8 << 12) & RXDMA_BLANK_ITIME)),
452 gp->regs + RXDMA_BLANK);
453 else
454 writel(((5 & RXDMA_BLANK_IPKTS) |
455 ((4 << 12) & RXDMA_BLANK_ITIME)),
456 gp->regs + RXDMA_BLANK);
457 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
458 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
459 writel(val, gp->regs + RXDMA_PTHRESH);
460 val = readl(gp->regs + RXDMA_CFG);
461 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
462 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
463 val = readl(gp->regs + MAC_RXCFG);
464 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466 return 0;
469 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
471 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
472 int ret = 0;
474 if (netif_msg_intr(gp))
475 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
476 gp->dev->name, rxmac_stat);
478 if (rxmac_stat & MAC_RXSTAT_OFLW) {
479 u32 smac = readl(gp->regs + MAC_SMACHINE);
481 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
482 dev->name, smac);
483 gp->net_stats.rx_over_errors++;
484 gp->net_stats.rx_fifo_errors++;
486 ret = gem_rxmac_reset(gp);
489 if (rxmac_stat & MAC_RXSTAT_ACE)
490 gp->net_stats.rx_frame_errors += 0x10000;
492 if (rxmac_stat & MAC_RXSTAT_CCE)
493 gp->net_stats.rx_crc_errors += 0x10000;
495 if (rxmac_stat & MAC_RXSTAT_LCE)
496 gp->net_stats.rx_length_errors += 0x10000;
498 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
499 * events.
501 return ret;
504 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
506 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
508 if (netif_msg_intr(gp))
509 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
510 gp->dev->name, mac_cstat);
512 /* This interrupt is just for pause frame and pause
513 * tracking. It is useful for diagnostics and debug
514 * but probably by default we will mask these events.
516 if (mac_cstat & MAC_CSTAT_PS)
517 gp->pause_entered++;
519 if (mac_cstat & MAC_CSTAT_PRCV)
520 gp->pause_last_time_recvd = (mac_cstat >> 16);
522 return 0;
525 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 u32 mif_status = readl(gp->regs + MIF_STATUS);
528 u32 reg_val, changed_bits;
530 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
531 changed_bits = (mif_status & MIF_STATUS_STAT);
533 gem_handle_mif_event(gp, reg_val, changed_bits);
535 return 0;
538 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
540 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
542 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
543 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
544 printk(KERN_ERR "%s: PCI error [%04x] ",
545 dev->name, pci_estat);
547 if (pci_estat & GREG_PCIESTAT_BADACK)
548 printk("<No ACK64# during ABS64 cycle> ");
549 if (pci_estat & GREG_PCIESTAT_DTRTO)
550 printk("<Delayed transaction timeout> ");
551 if (pci_estat & GREG_PCIESTAT_OTHER)
552 printk("<other>");
553 printk("\n");
554 } else {
555 pci_estat |= GREG_PCIESTAT_OTHER;
556 printk(KERN_ERR "%s: PCI error\n", dev->name);
559 if (pci_estat & GREG_PCIESTAT_OTHER) {
560 u16 pci_cfg_stat;
562 /* Interrogate PCI config space for the
563 * true cause.
565 pci_read_config_word(gp->pdev, PCI_STATUS,
566 &pci_cfg_stat);
567 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
568 dev->name, pci_cfg_stat);
569 if (pci_cfg_stat & PCI_STATUS_PARITY)
570 printk(KERN_ERR "%s: PCI parity error detected.\n",
571 dev->name);
572 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
573 printk(KERN_ERR "%s: PCI target abort.\n",
574 dev->name);
575 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
576 printk(KERN_ERR "%s: PCI master acks target abort.\n",
577 dev->name);
578 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
579 printk(KERN_ERR "%s: PCI master abort.\n",
580 dev->name);
581 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
582 printk(KERN_ERR "%s: PCI system error SERR#.\n",
583 dev->name);
584 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
585 printk(KERN_ERR "%s: PCI parity error.\n",
586 dev->name);
588 /* Write the error bits back to clear them. */
589 pci_cfg_stat &= (PCI_STATUS_PARITY |
590 PCI_STATUS_SIG_TARGET_ABORT |
591 PCI_STATUS_REC_TARGET_ABORT |
592 PCI_STATUS_REC_MASTER_ABORT |
593 PCI_STATUS_SIG_SYSTEM_ERROR |
594 PCI_STATUS_DETECTED_PARITY);
595 pci_write_config_word(gp->pdev,
596 PCI_STATUS, pci_cfg_stat);
599 /* For all PCI errors, we should reset the chip. */
600 return 1;
603 /* All non-normal interrupt conditions get serviced here.
604 * Returns non-zero if we should just exit the interrupt
605 * handler right now (ie. if we reset the card which invalidates
606 * all of the other original irq status bits).
608 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
610 if (gem_status & GREG_STAT_RXNOBUF) {
611 /* Frame arrived, no free RX buffers available. */
612 if (netif_msg_rx_err(gp))
613 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
614 gp->dev->name);
615 gp->net_stats.rx_dropped++;
618 if (gem_status & GREG_STAT_RXTAGERR) {
619 /* corrupt RX tag framing */
620 if (netif_msg_rx_err(gp))
621 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
622 gp->dev->name);
623 gp->net_stats.rx_errors++;
625 goto do_reset;
628 if (gem_status & GREG_STAT_PCS) {
629 if (gem_pcs_interrupt(dev, gp, gem_status))
630 goto do_reset;
633 if (gem_status & GREG_STAT_TXMAC) {
634 if (gem_txmac_interrupt(dev, gp, gem_status))
635 goto do_reset;
638 if (gem_status & GREG_STAT_RXMAC) {
639 if (gem_rxmac_interrupt(dev, gp, gem_status))
640 goto do_reset;
643 if (gem_status & GREG_STAT_MAC) {
644 if (gem_mac_interrupt(dev, gp, gem_status))
645 goto do_reset;
648 if (gem_status & GREG_STAT_MIF) {
649 if (gem_mif_interrupt(dev, gp, gem_status))
650 goto do_reset;
653 if (gem_status & GREG_STAT_PCIERR) {
654 if (gem_pci_interrupt(dev, gp, gem_status))
655 goto do_reset;
658 return 0;
660 do_reset:
661 gp->reset_task_pending = 1;
662 schedule_work(&gp->reset_task);
664 return 1;
667 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
669 int entry, limit;
671 if (netif_msg_intr(gp))
672 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
673 gp->dev->name, gem_status);
675 entry = gp->tx_old;
676 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
677 while (entry != limit) {
678 struct sk_buff *skb;
679 struct gem_txd *txd;
680 dma_addr_t dma_addr;
681 u32 dma_len;
682 int frag;
684 if (netif_msg_tx_done(gp))
685 printk(KERN_DEBUG "%s: tx done, slot %d\n",
686 gp->dev->name, entry);
687 skb = gp->tx_skbs[entry];
688 if (skb_shinfo(skb)->nr_frags) {
689 int last = entry + skb_shinfo(skb)->nr_frags;
690 int walk = entry;
691 int incomplete = 0;
693 last &= (TX_RING_SIZE - 1);
694 for (;;) {
695 walk = NEXT_TX(walk);
696 if (walk == limit)
697 incomplete = 1;
698 if (walk == last)
699 break;
701 if (incomplete)
702 break;
704 gp->tx_skbs[entry] = NULL;
705 gp->net_stats.tx_bytes += skb->len;
707 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
708 txd = &gp->init_block->txd[entry];
710 dma_addr = le64_to_cpu(txd->buffer);
711 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
713 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
714 entry = NEXT_TX(entry);
717 gp->net_stats.tx_packets++;
718 dev_kfree_skb_irq(skb);
720 gp->tx_old = entry;
722 if (netif_queue_stopped(dev) &&
723 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
724 netif_wake_queue(dev);
727 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
729 int cluster_start, curr, count, kick;
731 cluster_start = curr = (gp->rx_new & ~(4 - 1));
732 count = 0;
733 kick = -1;
734 wmb();
735 while (curr != limit) {
736 curr = NEXT_RX(curr);
737 if (++count == 4) {
738 struct gem_rxd *rxd =
739 &gp->init_block->rxd[cluster_start];
740 for (;;) {
741 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
742 rxd++;
743 cluster_start = NEXT_RX(cluster_start);
744 if (cluster_start == curr)
745 break;
747 kick = curr;
748 count = 0;
751 if (kick >= 0) {
752 mb();
753 writel(kick, gp->regs + RXDMA_KICK);
757 static int gem_rx(struct gem *gp, int work_to_do)
759 int entry, drops, work_done = 0;
760 u32 done;
761 __sum16 csum;
763 if (netif_msg_rx_status(gp))
764 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
765 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767 entry = gp->rx_new;
768 drops = 0;
769 done = readl(gp->regs + RXDMA_DONE);
770 for (;;) {
771 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
772 struct sk_buff *skb;
773 u64 status = le64_to_cpu(rxd->status_word);
774 dma_addr_t dma_addr;
775 int len;
777 if ((status & RXDCTRL_OWN) != 0)
778 break;
780 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
781 break;
783 /* When writing back RX descriptor, GEM writes status
784 * then buffer address, possibly in seperate transactions.
785 * If we don't wait for the chip to write both, we could
786 * post a new buffer to this descriptor then have GEM spam
787 * on the buffer address. We sync on the RX completion
788 * register to prevent this from happening.
790 if (entry == done) {
791 done = readl(gp->regs + RXDMA_DONE);
792 if (entry == done)
793 break;
796 /* We can now account for the work we're about to do */
797 work_done++;
799 skb = gp->rx_skbs[entry];
801 len = (status & RXDCTRL_BUFSZ) >> 16;
802 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
803 gp->net_stats.rx_errors++;
804 if (len < ETH_ZLEN)
805 gp->net_stats.rx_length_errors++;
806 if (len & RXDCTRL_BAD)
807 gp->net_stats.rx_crc_errors++;
809 /* We'll just return it to GEM. */
810 drop_it:
811 gp->net_stats.rx_dropped++;
812 goto next;
815 dma_addr = le64_to_cpu(rxd->buffer);
816 if (len > RX_COPY_THRESHOLD) {
817 struct sk_buff *new_skb;
819 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
820 if (new_skb == NULL) {
821 drops++;
822 goto drop_it;
824 pci_unmap_page(gp->pdev, dma_addr,
825 RX_BUF_ALLOC_SIZE(gp),
826 PCI_DMA_FROMDEVICE);
827 gp->rx_skbs[entry] = new_skb;
828 new_skb->dev = gp->dev;
829 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
830 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
831 virt_to_page(new_skb->data),
832 offset_in_page(new_skb->data),
833 RX_BUF_ALLOC_SIZE(gp),
834 PCI_DMA_FROMDEVICE));
835 skb_reserve(new_skb, RX_OFFSET);
837 /* Trim the original skb for the netif. */
838 skb_trim(skb, len);
839 } else {
840 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
842 if (copy_skb == NULL) {
843 drops++;
844 goto drop_it;
847 skb_reserve(copy_skb, 2);
848 skb_put(copy_skb, len);
849 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850 skb_copy_from_linear_data(skb, copy_skb->data, len);
851 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 /* We'll reuse the original ring buffer. */
854 skb = copy_skb;
857 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
858 skb->csum = csum_unfold(csum);
859 skb->ip_summed = CHECKSUM_COMPLETE;
860 skb->protocol = eth_type_trans(skb, gp->dev);
862 netif_receive_skb(skb);
864 gp->net_stats.rx_packets++;
865 gp->net_stats.rx_bytes += len;
867 next:
868 entry = NEXT_RX(entry);
871 gem_post_rxds(gp, entry);
873 gp->rx_new = entry;
875 if (drops)
876 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
877 gp->dev->name);
879 return work_done;
882 static int gem_poll(struct napi_struct *napi, int budget)
884 struct gem *gp = container_of(napi, struct gem, napi);
885 struct net_device *dev = gp->dev;
886 unsigned long flags;
887 int work_done;
890 * NAPI locking nightmare: See comment at head of driver
892 spin_lock_irqsave(&gp->lock, flags);
894 work_done = 0;
895 do {
896 /* Handle anomalies */
897 if (gp->status & GREG_STAT_ABNORMAL) {
898 if (gem_abnormal_irq(dev, gp, gp->status))
899 break;
902 /* Run TX completion thread */
903 spin_lock(&gp->tx_lock);
904 gem_tx(dev, gp, gp->status);
905 spin_unlock(&gp->tx_lock);
907 spin_unlock_irqrestore(&gp->lock, flags);
909 /* Run RX thread. We don't use any locking here,
910 * code willing to do bad things - like cleaning the
911 * rx ring - must call napi_disable(), which
912 * schedule_timeout()'s if polling is already disabled.
914 work_done += gem_rx(gp, budget - work_done);
916 if (work_done >= budget)
917 return work_done;
919 spin_lock_irqsave(&gp->lock, flags);
921 gp->status = readl(gp->regs + GREG_STAT);
922 } while (gp->status & GREG_STAT_NAPI);
924 __netif_rx_complete(napi);
925 gem_enable_ints(gp);
927 spin_unlock_irqrestore(&gp->lock, flags);
929 return work_done;
932 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 struct net_device *dev = dev_id;
935 struct gem *gp = netdev_priv(dev);
936 unsigned long flags;
938 /* Swallow interrupts when shutting the chip down, though
939 * that shouldn't happen, we should have done free_irq() at
940 * this point...
942 if (!gp->running)
943 return IRQ_HANDLED;
945 spin_lock_irqsave(&gp->lock, flags);
947 if (netif_rx_schedule_prep(&gp->napi)) {
948 u32 gem_status = readl(gp->regs + GREG_STAT);
950 if (gem_status == 0) {
951 napi_enable(&gp->napi);
952 spin_unlock_irqrestore(&gp->lock, flags);
953 return IRQ_NONE;
955 gp->status = gem_status;
956 gem_disable_ints(gp);
957 __netif_rx_schedule(&gp->napi);
960 spin_unlock_irqrestore(&gp->lock, flags);
962 /* If polling was disabled at the time we received that
963 * interrupt, we may return IRQ_HANDLED here while we
964 * should return IRQ_NONE. No big deal...
966 return IRQ_HANDLED;
969 #ifdef CONFIG_NET_POLL_CONTROLLER
970 static void gem_poll_controller(struct net_device *dev)
972 /* gem_interrupt is safe to reentrance so no need
973 * to disable_irq here.
975 gem_interrupt(dev->irq, dev);
977 #endif
979 static void gem_tx_timeout(struct net_device *dev)
981 struct gem *gp = netdev_priv(dev);
983 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
984 if (!gp->running) {
985 printk("%s: hrm.. hw not running !\n", dev->name);
986 return;
988 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
989 dev->name,
990 readl(gp->regs + TXDMA_CFG),
991 readl(gp->regs + MAC_TXSTAT),
992 readl(gp->regs + MAC_TXCFG));
993 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
994 dev->name,
995 readl(gp->regs + RXDMA_CFG),
996 readl(gp->regs + MAC_RXSTAT),
997 readl(gp->regs + MAC_RXCFG));
999 spin_lock_irq(&gp->lock);
1000 spin_lock(&gp->tx_lock);
1002 gp->reset_task_pending = 1;
1003 schedule_work(&gp->reset_task);
1005 spin_unlock(&gp->tx_lock);
1006 spin_unlock_irq(&gp->lock);
1009 static __inline__ int gem_intme(int entry)
1011 /* Algorithm: IRQ every 1/2 of descriptors. */
1012 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1013 return 1;
1015 return 0;
1018 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 struct gem *gp = netdev_priv(dev);
1021 int entry;
1022 u64 ctrl;
1023 unsigned long flags;
1025 ctrl = 0;
1026 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1027 const u64 csum_start_off = skb_transport_offset(skb);
1028 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1030 ctrl = (TXDCTRL_CENAB |
1031 (csum_start_off << 15) |
1032 (csum_stuff_off << 21));
1035 local_irq_save(flags);
1036 if (!spin_trylock(&gp->tx_lock)) {
1037 /* Tell upper layer to requeue */
1038 local_irq_restore(flags);
1039 return NETDEV_TX_LOCKED;
1041 /* We raced with gem_do_stop() */
1042 if (!gp->running) {
1043 spin_unlock_irqrestore(&gp->tx_lock, flags);
1044 return NETDEV_TX_BUSY;
1047 /* This is a hard error, log it. */
1048 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1049 netif_stop_queue(dev);
1050 spin_unlock_irqrestore(&gp->tx_lock, flags);
1051 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1052 dev->name);
1053 return NETDEV_TX_BUSY;
1056 entry = gp->tx_new;
1057 gp->tx_skbs[entry] = skb;
1059 if (skb_shinfo(skb)->nr_frags == 0) {
1060 struct gem_txd *txd = &gp->init_block->txd[entry];
1061 dma_addr_t mapping;
1062 u32 len;
1064 len = skb->len;
1065 mapping = pci_map_page(gp->pdev,
1066 virt_to_page(skb->data),
1067 offset_in_page(skb->data),
1068 len, PCI_DMA_TODEVICE);
1069 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1070 if (gem_intme(entry))
1071 ctrl |= TXDCTRL_INTME;
1072 txd->buffer = cpu_to_le64(mapping);
1073 wmb();
1074 txd->control_word = cpu_to_le64(ctrl);
1075 entry = NEXT_TX(entry);
1076 } else {
1077 struct gem_txd *txd;
1078 u32 first_len;
1079 u64 intme;
1080 dma_addr_t first_mapping;
1081 int frag, first_entry = entry;
1083 intme = 0;
1084 if (gem_intme(entry))
1085 intme |= TXDCTRL_INTME;
1087 /* We must give this initial chunk to the device last.
1088 * Otherwise we could race with the device.
1090 first_len = skb_headlen(skb);
1091 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1092 offset_in_page(skb->data),
1093 first_len, PCI_DMA_TODEVICE);
1094 entry = NEXT_TX(entry);
1096 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1097 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1098 u32 len;
1099 dma_addr_t mapping;
1100 u64 this_ctrl;
1102 len = this_frag->size;
1103 mapping = pci_map_page(gp->pdev,
1104 this_frag->page,
1105 this_frag->page_offset,
1106 len, PCI_DMA_TODEVICE);
1107 this_ctrl = ctrl;
1108 if (frag == skb_shinfo(skb)->nr_frags - 1)
1109 this_ctrl |= TXDCTRL_EOF;
1111 txd = &gp->init_block->txd[entry];
1112 txd->buffer = cpu_to_le64(mapping);
1113 wmb();
1114 txd->control_word = cpu_to_le64(this_ctrl | len);
1116 if (gem_intme(entry))
1117 intme |= TXDCTRL_INTME;
1119 entry = NEXT_TX(entry);
1121 txd = &gp->init_block->txd[first_entry];
1122 txd->buffer = cpu_to_le64(first_mapping);
1123 wmb();
1124 txd->control_word =
1125 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1128 gp->tx_new = entry;
1129 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1130 netif_stop_queue(dev);
1132 if (netif_msg_tx_queued(gp))
1133 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1134 dev->name, entry, skb->len);
1135 mb();
1136 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1137 spin_unlock_irqrestore(&gp->tx_lock, flags);
1139 dev->trans_start = jiffies;
1141 return NETDEV_TX_OK;
1144 static void gem_pcs_reset(struct gem *gp)
1146 int limit;
1147 u32 val;
1149 /* Reset PCS unit. */
1150 val = readl(gp->regs + PCS_MIICTRL);
1151 val |= PCS_MIICTRL_RST;
1152 writel(val, gp->regs + PCS_MIICTRL);
1154 limit = 32;
1155 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1156 udelay(100);
1157 if (limit-- <= 0)
1158 break;
1160 if (limit <= 0)
1161 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1162 gp->dev->name);
1165 static void gem_pcs_reinit_adv(struct gem *gp)
1167 u32 val;
1169 /* Make sure PCS is disabled while changing advertisement
1170 * configuration.
1172 val = readl(gp->regs + PCS_CFG);
1173 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1174 writel(val, gp->regs + PCS_CFG);
1176 /* Advertise all capabilities except assymetric
1177 * pause.
1179 val = readl(gp->regs + PCS_MIIADV);
1180 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1181 PCS_MIIADV_SP | PCS_MIIADV_AP);
1182 writel(val, gp->regs + PCS_MIIADV);
1184 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1185 * and re-enable PCS.
1187 val = readl(gp->regs + PCS_MIICTRL);
1188 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1189 val &= ~PCS_MIICTRL_WB;
1190 writel(val, gp->regs + PCS_MIICTRL);
1192 val = readl(gp->regs + PCS_CFG);
1193 val |= PCS_CFG_ENABLE;
1194 writel(val, gp->regs + PCS_CFG);
1196 /* Make sure serialink loopback is off. The meaning
1197 * of this bit is logically inverted based upon whether
1198 * you are in Serialink or SERDES mode.
1200 val = readl(gp->regs + PCS_SCTRL);
1201 if (gp->phy_type == phy_serialink)
1202 val &= ~PCS_SCTRL_LOOP;
1203 else
1204 val |= PCS_SCTRL_LOOP;
1205 writel(val, gp->regs + PCS_SCTRL);
1208 #define STOP_TRIES 32
1210 /* Must be invoked under gp->lock and gp->tx_lock. */
1211 static void gem_reset(struct gem *gp)
1213 int limit;
1214 u32 val;
1216 /* Make sure we won't get any more interrupts */
1217 writel(0xffffffff, gp->regs + GREG_IMASK);
1219 /* Reset the chip */
1220 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1221 gp->regs + GREG_SWRST);
1223 limit = STOP_TRIES;
1225 do {
1226 udelay(20);
1227 val = readl(gp->regs + GREG_SWRST);
1228 if (limit-- <= 0)
1229 break;
1230 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1232 if (limit <= 0)
1233 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1235 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1236 gem_pcs_reinit_adv(gp);
1239 /* Must be invoked under gp->lock and gp->tx_lock. */
1240 static void gem_start_dma(struct gem *gp)
1242 u32 val;
1244 /* We are ready to rock, turn everything on. */
1245 val = readl(gp->regs + TXDMA_CFG);
1246 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1247 val = readl(gp->regs + RXDMA_CFG);
1248 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1249 val = readl(gp->regs + MAC_TXCFG);
1250 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1251 val = readl(gp->regs + MAC_RXCFG);
1252 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1254 (void) readl(gp->regs + MAC_RXCFG);
1255 udelay(100);
1257 gem_enable_ints(gp);
1259 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1262 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1263 * actually stopped before about 4ms tho ...
1265 static void gem_stop_dma(struct gem *gp)
1267 u32 val;
1269 /* We are done rocking, turn everything off. */
1270 val = readl(gp->regs + TXDMA_CFG);
1271 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1272 val = readl(gp->regs + RXDMA_CFG);
1273 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1274 val = readl(gp->regs + MAC_TXCFG);
1275 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1276 val = readl(gp->regs + MAC_RXCFG);
1277 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1279 (void) readl(gp->regs + MAC_RXCFG);
1281 /* Need to wait a bit ... done by the caller */
1285 /* Must be invoked under gp->lock and gp->tx_lock. */
1286 // XXX dbl check what that function should do when called on PCS PHY
1287 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1289 u32 advertise, features;
1290 int autoneg;
1291 int speed;
1292 int duplex;
1294 if (gp->phy_type != phy_mii_mdio0 &&
1295 gp->phy_type != phy_mii_mdio1)
1296 goto non_mii;
1298 /* Setup advertise */
1299 if (found_mii_phy(gp))
1300 features = gp->phy_mii.def->features;
1301 else
1302 features = 0;
1304 advertise = features & ADVERTISE_MASK;
1305 if (gp->phy_mii.advertising != 0)
1306 advertise &= gp->phy_mii.advertising;
1308 autoneg = gp->want_autoneg;
1309 speed = gp->phy_mii.speed;
1310 duplex = gp->phy_mii.duplex;
1312 /* Setup link parameters */
1313 if (!ep)
1314 goto start_aneg;
1315 if (ep->autoneg == AUTONEG_ENABLE) {
1316 advertise = ep->advertising;
1317 autoneg = 1;
1318 } else {
1319 autoneg = 0;
1320 speed = ep->speed;
1321 duplex = ep->duplex;
1324 start_aneg:
1325 /* Sanitize settings based on PHY capabilities */
1326 if ((features & SUPPORTED_Autoneg) == 0)
1327 autoneg = 0;
1328 if (speed == SPEED_1000 &&
1329 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1330 speed = SPEED_100;
1331 if (speed == SPEED_100 &&
1332 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1333 speed = SPEED_10;
1334 if (duplex == DUPLEX_FULL &&
1335 !(features & (SUPPORTED_1000baseT_Full |
1336 SUPPORTED_100baseT_Full |
1337 SUPPORTED_10baseT_Full)))
1338 duplex = DUPLEX_HALF;
1339 if (speed == 0)
1340 speed = SPEED_10;
1342 /* If we are asleep, we don't try to actually setup the PHY, we
1343 * just store the settings
1345 if (gp->asleep) {
1346 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1347 gp->phy_mii.speed = speed;
1348 gp->phy_mii.duplex = duplex;
1349 return;
1352 /* Configure PHY & start aneg */
1353 gp->want_autoneg = autoneg;
1354 if (autoneg) {
1355 if (found_mii_phy(gp))
1356 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1357 gp->lstate = link_aneg;
1358 } else {
1359 if (found_mii_phy(gp))
1360 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1361 gp->lstate = link_force_ok;
1364 non_mii:
1365 gp->timer_ticks = 0;
1366 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1369 /* A link-up condition has occurred, initialize and enable the
1370 * rest of the chip.
1372 * Must be invoked under gp->lock and gp->tx_lock.
1374 static int gem_set_link_modes(struct gem *gp)
1376 u32 val;
1377 int full_duplex, speed, pause;
1379 full_duplex = 0;
1380 speed = SPEED_10;
1381 pause = 0;
1383 if (found_mii_phy(gp)) {
1384 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1385 return 1;
1386 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1387 speed = gp->phy_mii.speed;
1388 pause = gp->phy_mii.pause;
1389 } else if (gp->phy_type == phy_serialink ||
1390 gp->phy_type == phy_serdes) {
1391 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1393 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1394 full_duplex = 1;
1395 speed = SPEED_1000;
1398 if (netif_msg_link(gp))
1399 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1400 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1402 if (!gp->running)
1403 return 0;
1405 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1406 if (full_duplex) {
1407 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1408 } else {
1409 /* MAC_TXCFG_NBO must be zero. */
1411 writel(val, gp->regs + MAC_TXCFG);
1413 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1414 if (!full_duplex &&
1415 (gp->phy_type == phy_mii_mdio0 ||
1416 gp->phy_type == phy_mii_mdio1)) {
1417 val |= MAC_XIFCFG_DISE;
1418 } else if (full_duplex) {
1419 val |= MAC_XIFCFG_FLED;
1422 if (speed == SPEED_1000)
1423 val |= (MAC_XIFCFG_GMII);
1425 writel(val, gp->regs + MAC_XIFCFG);
1427 /* If gigabit and half-duplex, enable carrier extension
1428 * mode. Else, disable it.
1430 if (speed == SPEED_1000 && !full_duplex) {
1431 val = readl(gp->regs + MAC_TXCFG);
1432 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1434 val = readl(gp->regs + MAC_RXCFG);
1435 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1436 } else {
1437 val = readl(gp->regs + MAC_TXCFG);
1438 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1440 val = readl(gp->regs + MAC_RXCFG);
1441 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1444 if (gp->phy_type == phy_serialink ||
1445 gp->phy_type == phy_serdes) {
1446 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1448 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1449 pause = 1;
1452 if (netif_msg_link(gp)) {
1453 if (pause) {
1454 printk(KERN_INFO "%s: Pause is enabled "
1455 "(rxfifo: %d off: %d on: %d)\n",
1456 gp->dev->name,
1457 gp->rx_fifo_sz,
1458 gp->rx_pause_off,
1459 gp->rx_pause_on);
1460 } else {
1461 printk(KERN_INFO "%s: Pause is disabled\n",
1462 gp->dev->name);
1466 if (!full_duplex)
1467 writel(512, gp->regs + MAC_STIME);
1468 else
1469 writel(64, gp->regs + MAC_STIME);
1470 val = readl(gp->regs + MAC_MCCFG);
1471 if (pause)
1472 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1473 else
1474 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1475 writel(val, gp->regs + MAC_MCCFG);
1477 gem_start_dma(gp);
1479 return 0;
1482 /* Must be invoked under gp->lock and gp->tx_lock. */
1483 static int gem_mdio_link_not_up(struct gem *gp)
1485 switch (gp->lstate) {
1486 case link_force_ret:
1487 if (netif_msg_link(gp))
1488 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1489 " forced mode\n", gp->dev->name);
1490 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1491 gp->last_forced_speed, DUPLEX_HALF);
1492 gp->timer_ticks = 5;
1493 gp->lstate = link_force_ok;
1494 return 0;
1495 case link_aneg:
1496 /* We try forced modes after a failed aneg only on PHYs that don't
1497 * have "magic_aneg" bit set, which means they internally do the
1498 * while forced-mode thingy. On these, we just restart aneg
1500 if (gp->phy_mii.def->magic_aneg)
1501 return 1;
1502 if (netif_msg_link(gp))
1503 printk(KERN_INFO "%s: switching to forced 100bt\n",
1504 gp->dev->name);
1505 /* Try forced modes. */
1506 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1507 DUPLEX_HALF);
1508 gp->timer_ticks = 5;
1509 gp->lstate = link_force_try;
1510 return 0;
1511 case link_force_try:
1512 /* Downgrade from 100 to 10 Mbps if necessary.
1513 * If already at 10Mbps, warn user about the
1514 * situation every 10 ticks.
1516 if (gp->phy_mii.speed == SPEED_100) {
1517 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1518 DUPLEX_HALF);
1519 gp->timer_ticks = 5;
1520 if (netif_msg_link(gp))
1521 printk(KERN_INFO "%s: switching to forced 10bt\n",
1522 gp->dev->name);
1523 return 0;
1524 } else
1525 return 1;
1526 default:
1527 return 0;
1531 static void gem_link_timer(unsigned long data)
1533 struct gem *gp = (struct gem *) data;
1534 int restart_aneg = 0;
1536 if (gp->asleep)
1537 return;
1539 spin_lock_irq(&gp->lock);
1540 spin_lock(&gp->tx_lock);
1541 gem_get_cell(gp);
1543 /* If the reset task is still pending, we just
1544 * reschedule the link timer
1546 if (gp->reset_task_pending)
1547 goto restart;
1549 if (gp->phy_type == phy_serialink ||
1550 gp->phy_type == phy_serdes) {
1551 u32 val = readl(gp->regs + PCS_MIISTAT);
1553 if (!(val & PCS_MIISTAT_LS))
1554 val = readl(gp->regs + PCS_MIISTAT);
1556 if ((val & PCS_MIISTAT_LS) != 0) {
1557 if (gp->lstate == link_up)
1558 goto restart;
1560 gp->lstate = link_up;
1561 netif_carrier_on(gp->dev);
1562 (void)gem_set_link_modes(gp);
1564 goto restart;
1566 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1567 /* Ok, here we got a link. If we had it due to a forced
1568 * fallback, and we were configured for autoneg, we do
1569 * retry a short autoneg pass. If you know your hub is
1570 * broken, use ethtool ;)
1572 if (gp->lstate == link_force_try && gp->want_autoneg) {
1573 gp->lstate = link_force_ret;
1574 gp->last_forced_speed = gp->phy_mii.speed;
1575 gp->timer_ticks = 5;
1576 if (netif_msg_link(gp))
1577 printk(KERN_INFO "%s: Got link after fallback, retrying"
1578 " autoneg once...\n", gp->dev->name);
1579 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1580 } else if (gp->lstate != link_up) {
1581 gp->lstate = link_up;
1582 netif_carrier_on(gp->dev);
1583 if (gem_set_link_modes(gp))
1584 restart_aneg = 1;
1586 } else {
1587 /* If the link was previously up, we restart the
1588 * whole process
1590 if (gp->lstate == link_up) {
1591 gp->lstate = link_down;
1592 if (netif_msg_link(gp))
1593 printk(KERN_INFO "%s: Link down\n",
1594 gp->dev->name);
1595 netif_carrier_off(gp->dev);
1596 gp->reset_task_pending = 1;
1597 schedule_work(&gp->reset_task);
1598 restart_aneg = 1;
1599 } else if (++gp->timer_ticks > 10) {
1600 if (found_mii_phy(gp))
1601 restart_aneg = gem_mdio_link_not_up(gp);
1602 else
1603 restart_aneg = 1;
1606 if (restart_aneg) {
1607 gem_begin_auto_negotiation(gp, NULL);
1608 goto out_unlock;
1610 restart:
1611 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1612 out_unlock:
1613 gem_put_cell(gp);
1614 spin_unlock(&gp->tx_lock);
1615 spin_unlock_irq(&gp->lock);
1618 /* Must be invoked under gp->lock and gp->tx_lock. */
1619 static void gem_clean_rings(struct gem *gp)
1621 struct gem_init_block *gb = gp->init_block;
1622 struct sk_buff *skb;
1623 int i;
1624 dma_addr_t dma_addr;
1626 for (i = 0; i < RX_RING_SIZE; i++) {
1627 struct gem_rxd *rxd;
1629 rxd = &gb->rxd[i];
1630 if (gp->rx_skbs[i] != NULL) {
1631 skb = gp->rx_skbs[i];
1632 dma_addr = le64_to_cpu(rxd->buffer);
1633 pci_unmap_page(gp->pdev, dma_addr,
1634 RX_BUF_ALLOC_SIZE(gp),
1635 PCI_DMA_FROMDEVICE);
1636 dev_kfree_skb_any(skb);
1637 gp->rx_skbs[i] = NULL;
1639 rxd->status_word = 0;
1640 wmb();
1641 rxd->buffer = 0;
1644 for (i = 0; i < TX_RING_SIZE; i++) {
1645 if (gp->tx_skbs[i] != NULL) {
1646 struct gem_txd *txd;
1647 int frag;
1649 skb = gp->tx_skbs[i];
1650 gp->tx_skbs[i] = NULL;
1652 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1653 int ent = i & (TX_RING_SIZE - 1);
1655 txd = &gb->txd[ent];
1656 dma_addr = le64_to_cpu(txd->buffer);
1657 pci_unmap_page(gp->pdev, dma_addr,
1658 le64_to_cpu(txd->control_word) &
1659 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1661 if (frag != skb_shinfo(skb)->nr_frags)
1662 i++;
1664 dev_kfree_skb_any(skb);
1669 /* Must be invoked under gp->lock and gp->tx_lock. */
1670 static void gem_init_rings(struct gem *gp)
1672 struct gem_init_block *gb = gp->init_block;
1673 struct net_device *dev = gp->dev;
1674 int i;
1675 dma_addr_t dma_addr;
1677 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1679 gem_clean_rings(gp);
1681 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1682 (unsigned)VLAN_ETH_FRAME_LEN);
1684 for (i = 0; i < RX_RING_SIZE; i++) {
1685 struct sk_buff *skb;
1686 struct gem_rxd *rxd = &gb->rxd[i];
1688 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1689 if (!skb) {
1690 rxd->buffer = 0;
1691 rxd->status_word = 0;
1692 continue;
1695 gp->rx_skbs[i] = skb;
1696 skb->dev = dev;
1697 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1698 dma_addr = pci_map_page(gp->pdev,
1699 virt_to_page(skb->data),
1700 offset_in_page(skb->data),
1701 RX_BUF_ALLOC_SIZE(gp),
1702 PCI_DMA_FROMDEVICE);
1703 rxd->buffer = cpu_to_le64(dma_addr);
1704 wmb();
1705 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1706 skb_reserve(skb, RX_OFFSET);
1709 for (i = 0; i < TX_RING_SIZE; i++) {
1710 struct gem_txd *txd = &gb->txd[i];
1712 txd->control_word = 0;
1713 wmb();
1714 txd->buffer = 0;
1716 wmb();
1719 /* Init PHY interface and start link poll state machine */
1720 static void gem_init_phy(struct gem *gp)
1722 u32 mifcfg;
1724 /* Revert MIF CFG setting done on stop_phy */
1725 mifcfg = readl(gp->regs + MIF_CFG);
1726 mifcfg &= ~MIF_CFG_BBMODE;
1727 writel(mifcfg, gp->regs + MIF_CFG);
1729 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1730 int i;
1732 /* Those delay sucks, the HW seem to love them though, I'll
1733 * serisouly consider breaking some locks here to be able
1734 * to schedule instead
1736 for (i = 0; i < 3; i++) {
1737 #ifdef CONFIG_PPC_PMAC
1738 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1739 msleep(20);
1740 #endif
1741 /* Some PHYs used by apple have problem getting back to us,
1742 * we do an additional reset here
1744 phy_write(gp, MII_BMCR, BMCR_RESET);
1745 msleep(20);
1746 if (phy_read(gp, MII_BMCR) != 0xffff)
1747 break;
1748 if (i == 2)
1749 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1750 gp->dev->name);
1754 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1755 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1756 u32 val;
1758 /* Init datapath mode register. */
1759 if (gp->phy_type == phy_mii_mdio0 ||
1760 gp->phy_type == phy_mii_mdio1) {
1761 val = PCS_DMODE_MGM;
1762 } else if (gp->phy_type == phy_serialink) {
1763 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1764 } else {
1765 val = PCS_DMODE_ESM;
1768 writel(val, gp->regs + PCS_DMODE);
1771 if (gp->phy_type == phy_mii_mdio0 ||
1772 gp->phy_type == phy_mii_mdio1) {
1773 // XXX check for errors
1774 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1776 /* Init PHY */
1777 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1778 gp->phy_mii.def->ops->init(&gp->phy_mii);
1779 } else {
1780 gem_pcs_reset(gp);
1781 gem_pcs_reinit_adv(gp);
1784 /* Default aneg parameters */
1785 gp->timer_ticks = 0;
1786 gp->lstate = link_down;
1787 netif_carrier_off(gp->dev);
1789 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1790 spin_lock_irq(&gp->lock);
1791 gem_begin_auto_negotiation(gp, NULL);
1792 spin_unlock_irq(&gp->lock);
1795 /* Must be invoked under gp->lock and gp->tx_lock. */
1796 static void gem_init_dma(struct gem *gp)
1798 u64 desc_dma = (u64) gp->gblock_dvma;
1799 u32 val;
1801 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1802 writel(val, gp->regs + TXDMA_CFG);
1804 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1805 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1806 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1808 writel(0, gp->regs + TXDMA_KICK);
1810 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1811 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1812 writel(val, gp->regs + RXDMA_CFG);
1814 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1815 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1817 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1819 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1820 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1821 writel(val, gp->regs + RXDMA_PTHRESH);
1823 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1824 writel(((5 & RXDMA_BLANK_IPKTS) |
1825 ((8 << 12) & RXDMA_BLANK_ITIME)),
1826 gp->regs + RXDMA_BLANK);
1827 else
1828 writel(((5 & RXDMA_BLANK_IPKTS) |
1829 ((4 << 12) & RXDMA_BLANK_ITIME)),
1830 gp->regs + RXDMA_BLANK);
1833 /* Must be invoked under gp->lock and gp->tx_lock. */
1834 static u32 gem_setup_multicast(struct gem *gp)
1836 u32 rxcfg = 0;
1837 int i;
1839 if ((gp->dev->flags & IFF_ALLMULTI) ||
1840 (gp->dev->mc_count > 256)) {
1841 for (i=0; i<16; i++)
1842 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1843 rxcfg |= MAC_RXCFG_HFE;
1844 } else if (gp->dev->flags & IFF_PROMISC) {
1845 rxcfg |= MAC_RXCFG_PROM;
1846 } else {
1847 u16 hash_table[16];
1848 u32 crc;
1849 struct dev_mc_list *dmi = gp->dev->mc_list;
1850 int i;
1852 for (i = 0; i < 16; i++)
1853 hash_table[i] = 0;
1855 for (i = 0; i < gp->dev->mc_count; i++) {
1856 char *addrs = dmi->dmi_addr;
1858 dmi = dmi->next;
1860 if (!(*addrs & 1))
1861 continue;
1863 crc = ether_crc_le(6, addrs);
1864 crc >>= 24;
1865 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1867 for (i=0; i<16; i++)
1868 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1869 rxcfg |= MAC_RXCFG_HFE;
1872 return rxcfg;
1875 /* Must be invoked under gp->lock and gp->tx_lock. */
1876 static void gem_init_mac(struct gem *gp)
1878 unsigned char *e = &gp->dev->dev_addr[0];
1880 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1882 writel(0x00, gp->regs + MAC_IPG0);
1883 writel(0x08, gp->regs + MAC_IPG1);
1884 writel(0x04, gp->regs + MAC_IPG2);
1885 writel(0x40, gp->regs + MAC_STIME);
1886 writel(0x40, gp->regs + MAC_MINFSZ);
1888 /* Ethernet payload + header + FCS + optional VLAN tag. */
1889 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1891 writel(0x07, gp->regs + MAC_PASIZE);
1892 writel(0x04, gp->regs + MAC_JAMSIZE);
1893 writel(0x10, gp->regs + MAC_ATTLIM);
1894 writel(0x8808, gp->regs + MAC_MCTYPE);
1896 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1898 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1899 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1900 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1902 writel(0, gp->regs + MAC_ADDR3);
1903 writel(0, gp->regs + MAC_ADDR4);
1904 writel(0, gp->regs + MAC_ADDR5);
1906 writel(0x0001, gp->regs + MAC_ADDR6);
1907 writel(0xc200, gp->regs + MAC_ADDR7);
1908 writel(0x0180, gp->regs + MAC_ADDR8);
1910 writel(0, gp->regs + MAC_AFILT0);
1911 writel(0, gp->regs + MAC_AFILT1);
1912 writel(0, gp->regs + MAC_AFILT2);
1913 writel(0, gp->regs + MAC_AF21MSK);
1914 writel(0, gp->regs + MAC_AF0MSK);
1916 gp->mac_rx_cfg = gem_setup_multicast(gp);
1917 #ifdef STRIP_FCS
1918 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1919 #endif
1920 writel(0, gp->regs + MAC_NCOLL);
1921 writel(0, gp->regs + MAC_FASUCC);
1922 writel(0, gp->regs + MAC_ECOLL);
1923 writel(0, gp->regs + MAC_LCOLL);
1924 writel(0, gp->regs + MAC_DTIMER);
1925 writel(0, gp->regs + MAC_PATMPS);
1926 writel(0, gp->regs + MAC_RFCTR);
1927 writel(0, gp->regs + MAC_LERR);
1928 writel(0, gp->regs + MAC_AERR);
1929 writel(0, gp->regs + MAC_FCSERR);
1930 writel(0, gp->regs + MAC_RXCVERR);
1932 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1933 * them once a link is established.
1935 writel(0, gp->regs + MAC_TXCFG);
1936 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1937 writel(0, gp->regs + MAC_MCCFG);
1938 writel(0, gp->regs + MAC_XIFCFG);
1940 /* Setup MAC interrupts. We want to get all of the interesting
1941 * counter expiration events, but we do not want to hear about
1942 * normal rx/tx as the DMA engine tells us that.
1944 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1945 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1947 /* Don't enable even the PAUSE interrupts for now, we
1948 * make no use of those events other than to record them.
1950 writel(0xffffffff, gp->regs + MAC_MCMASK);
1952 /* Don't enable GEM's WOL in normal operations
1954 if (gp->has_wol)
1955 writel(0, gp->regs + WOL_WAKECSR);
1958 /* Must be invoked under gp->lock and gp->tx_lock. */
1959 static void gem_init_pause_thresholds(struct gem *gp)
1961 u32 cfg;
1963 /* Calculate pause thresholds. Setting the OFF threshold to the
1964 * full RX fifo size effectively disables PAUSE generation which
1965 * is what we do for 10/100 only GEMs which have FIFOs too small
1966 * to make real gains from PAUSE.
1968 if (gp->rx_fifo_sz <= (2 * 1024)) {
1969 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1970 } else {
1971 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1972 int off = (gp->rx_fifo_sz - (max_frame * 2));
1973 int on = off - max_frame;
1975 gp->rx_pause_off = off;
1976 gp->rx_pause_on = on;
1980 /* Configure the chip "burst" DMA mode & enable some
1981 * HW bug fixes on Apple version
1983 cfg = 0;
1984 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1985 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1986 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1987 cfg |= GREG_CFG_IBURST;
1988 #endif
1989 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1990 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1991 writel(cfg, gp->regs + GREG_CFG);
1993 /* If Infinite Burst didn't stick, then use different
1994 * thresholds (and Apple bug fixes don't exist)
1996 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1997 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1998 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1999 writel(cfg, gp->regs + GREG_CFG);
2003 static int gem_check_invariants(struct gem *gp)
2005 struct pci_dev *pdev = gp->pdev;
2006 u32 mif_cfg;
2008 /* On Apple's sungem, we can't rely on registers as the chip
2009 * was been powered down by the firmware. The PHY is looked
2010 * up later on.
2012 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
2013 gp->phy_type = phy_mii_mdio0;
2014 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2015 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2016 gp->swrst_base = 0;
2018 mif_cfg = readl(gp->regs + MIF_CFG);
2019 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2020 mif_cfg |= MIF_CFG_MDI0;
2021 writel(mif_cfg, gp->regs + MIF_CFG);
2022 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2023 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2025 /* We hard-code the PHY address so we can properly bring it out of
2026 * reset later on, we can't really probe it at this point, though
2027 * that isn't an issue.
2029 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2030 gp->mii_phy_addr = 1;
2031 else
2032 gp->mii_phy_addr = 0;
2034 return 0;
2037 mif_cfg = readl(gp->regs + MIF_CFG);
2039 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2040 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2041 /* One of the MII PHYs _must_ be present
2042 * as this chip has no gigabit PHY.
2044 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2045 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2046 mif_cfg);
2047 return -1;
2051 /* Determine initial PHY interface type guess. MDIO1 is the
2052 * external PHY and thus takes precedence over MDIO0.
2055 if (mif_cfg & MIF_CFG_MDI1) {
2056 gp->phy_type = phy_mii_mdio1;
2057 mif_cfg |= MIF_CFG_PSELECT;
2058 writel(mif_cfg, gp->regs + MIF_CFG);
2059 } else if (mif_cfg & MIF_CFG_MDI0) {
2060 gp->phy_type = phy_mii_mdio0;
2061 mif_cfg &= ~MIF_CFG_PSELECT;
2062 writel(mif_cfg, gp->regs + MIF_CFG);
2063 } else {
2064 gp->phy_type = phy_serialink;
2066 if (gp->phy_type == phy_mii_mdio1 ||
2067 gp->phy_type == phy_mii_mdio0) {
2068 int i;
2070 for (i = 0; i < 32; i++) {
2071 gp->mii_phy_addr = i;
2072 if (phy_read(gp, MII_BMCR) != 0xffff)
2073 break;
2075 if (i == 32) {
2076 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2077 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2078 return -1;
2080 gp->phy_type = phy_serdes;
2084 /* Fetch the FIFO configurations now too. */
2085 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2086 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2088 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2089 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2090 if (gp->tx_fifo_sz != (9 * 1024) ||
2091 gp->rx_fifo_sz != (20 * 1024)) {
2092 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2093 gp->tx_fifo_sz, gp->rx_fifo_sz);
2094 return -1;
2096 gp->swrst_base = 0;
2097 } else {
2098 if (gp->tx_fifo_sz != (2 * 1024) ||
2099 gp->rx_fifo_sz != (2 * 1024)) {
2100 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2101 gp->tx_fifo_sz, gp->rx_fifo_sz);
2102 return -1;
2104 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2108 return 0;
2111 /* Must be invoked under gp->lock and gp->tx_lock. */
2112 static void gem_reinit_chip(struct gem *gp)
2114 /* Reset the chip */
2115 gem_reset(gp);
2117 /* Make sure ints are disabled */
2118 gem_disable_ints(gp);
2120 /* Allocate & setup ring buffers */
2121 gem_init_rings(gp);
2123 /* Configure pause thresholds */
2124 gem_init_pause_thresholds(gp);
2126 /* Init DMA & MAC engines */
2127 gem_init_dma(gp);
2128 gem_init_mac(gp);
2132 /* Must be invoked with no lock held. */
2133 static void gem_stop_phy(struct gem *gp, int wol)
2135 u32 mifcfg;
2136 unsigned long flags;
2138 /* Let the chip settle down a bit, it seems that helps
2139 * for sleep mode on some models
2141 msleep(10);
2143 /* Make sure we aren't polling PHY status change. We
2144 * don't currently use that feature though
2146 mifcfg = readl(gp->regs + MIF_CFG);
2147 mifcfg &= ~MIF_CFG_POLL;
2148 writel(mifcfg, gp->regs + MIF_CFG);
2150 if (wol && gp->has_wol) {
2151 unsigned char *e = &gp->dev->dev_addr[0];
2152 u32 csr;
2154 /* Setup wake-on-lan for MAGIC packet */
2155 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2156 gp->regs + MAC_RXCFG);
2157 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2158 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2159 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2161 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2162 csr = WOL_WAKECSR_ENABLE;
2163 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2164 csr |= WOL_WAKECSR_MII;
2165 writel(csr, gp->regs + WOL_WAKECSR);
2166 } else {
2167 writel(0, gp->regs + MAC_RXCFG);
2168 (void)readl(gp->regs + MAC_RXCFG);
2169 /* Machine sleep will die in strange ways if we
2170 * dont wait a bit here, looks like the chip takes
2171 * some time to really shut down
2173 msleep(10);
2176 writel(0, gp->regs + MAC_TXCFG);
2177 writel(0, gp->regs + MAC_XIFCFG);
2178 writel(0, gp->regs + TXDMA_CFG);
2179 writel(0, gp->regs + RXDMA_CFG);
2181 if (!wol) {
2182 spin_lock_irqsave(&gp->lock, flags);
2183 spin_lock(&gp->tx_lock);
2184 gem_reset(gp);
2185 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2186 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2187 spin_unlock(&gp->tx_lock);
2188 spin_unlock_irqrestore(&gp->lock, flags);
2190 /* No need to take the lock here */
2192 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2193 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2195 /* According to Apple, we must set the MDIO pins to this begnign
2196 * state or we may 1) eat more current, 2) damage some PHYs
2198 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2199 writel(0, gp->regs + MIF_BBCLK);
2200 writel(0, gp->regs + MIF_BBDATA);
2201 writel(0, gp->regs + MIF_BBOENAB);
2202 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2203 (void) readl(gp->regs + MAC_XIFCFG);
2208 static int gem_do_start(struct net_device *dev)
2210 struct gem *gp = netdev_priv(dev);
2211 unsigned long flags;
2213 spin_lock_irqsave(&gp->lock, flags);
2214 spin_lock(&gp->tx_lock);
2216 /* Enable the cell */
2217 gem_get_cell(gp);
2219 /* Init & setup chip hardware */
2220 gem_reinit_chip(gp);
2222 gp->running = 1;
2224 if (gp->lstate == link_up) {
2225 netif_carrier_on(gp->dev);
2226 gem_set_link_modes(gp);
2229 netif_wake_queue(gp->dev);
2231 spin_unlock(&gp->tx_lock);
2232 spin_unlock_irqrestore(&gp->lock, flags);
2234 if (request_irq(gp->pdev->irq, gem_interrupt,
2235 IRQF_SHARED, dev->name, (void *)dev)) {
2236 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2238 spin_lock_irqsave(&gp->lock, flags);
2239 spin_lock(&gp->tx_lock);
2241 gp->running = 0;
2242 gem_reset(gp);
2243 gem_clean_rings(gp);
2244 gem_put_cell(gp);
2246 spin_unlock(&gp->tx_lock);
2247 spin_unlock_irqrestore(&gp->lock, flags);
2249 return -EAGAIN;
2252 return 0;
2255 static void gem_do_stop(struct net_device *dev, int wol)
2257 struct gem *gp = netdev_priv(dev);
2258 unsigned long flags;
2260 spin_lock_irqsave(&gp->lock, flags);
2261 spin_lock(&gp->tx_lock);
2263 gp->running = 0;
2265 /* Stop netif queue */
2266 netif_stop_queue(dev);
2268 /* Make sure ints are disabled */
2269 gem_disable_ints(gp);
2271 /* We can drop the lock now */
2272 spin_unlock(&gp->tx_lock);
2273 spin_unlock_irqrestore(&gp->lock, flags);
2275 /* If we are going to sleep with WOL */
2276 gem_stop_dma(gp);
2277 msleep(10);
2278 if (!wol)
2279 gem_reset(gp);
2280 msleep(10);
2282 /* Get rid of rings */
2283 gem_clean_rings(gp);
2285 /* No irq needed anymore */
2286 free_irq(gp->pdev->irq, (void *) dev);
2288 /* Cell not needed neither if no WOL */
2289 if (!wol) {
2290 spin_lock_irqsave(&gp->lock, flags);
2291 gem_put_cell(gp);
2292 spin_unlock_irqrestore(&gp->lock, flags);
2296 static void gem_reset_task(struct work_struct *work)
2298 struct gem *gp = container_of(work, struct gem, reset_task);
2300 mutex_lock(&gp->pm_mutex);
2302 if (gp->opened)
2303 napi_disable(&gp->napi);
2305 spin_lock_irq(&gp->lock);
2306 spin_lock(&gp->tx_lock);
2308 if (gp->running) {
2309 netif_stop_queue(gp->dev);
2311 /* Reset the chip & rings */
2312 gem_reinit_chip(gp);
2313 if (gp->lstate == link_up)
2314 gem_set_link_modes(gp);
2315 netif_wake_queue(gp->dev);
2318 gp->reset_task_pending = 0;
2320 spin_unlock(&gp->tx_lock);
2321 spin_unlock_irq(&gp->lock);
2323 if (gp->opened)
2324 napi_enable(&gp->napi);
2326 mutex_unlock(&gp->pm_mutex);
2330 static int gem_open(struct net_device *dev)
2332 struct gem *gp = netdev_priv(dev);
2333 int rc = 0;
2335 mutex_lock(&gp->pm_mutex);
2337 /* We need the cell enabled */
2338 if (!gp->asleep)
2339 rc = gem_do_start(dev);
2340 gp->opened = (rc == 0);
2341 if (gp->opened)
2342 napi_enable(&gp->napi);
2344 mutex_unlock(&gp->pm_mutex);
2346 return rc;
2349 static int gem_close(struct net_device *dev)
2351 struct gem *gp = netdev_priv(dev);
2353 mutex_lock(&gp->pm_mutex);
2355 napi_disable(&gp->napi);
2357 gp->opened = 0;
2358 if (!gp->asleep)
2359 gem_do_stop(dev, 0);
2361 mutex_unlock(&gp->pm_mutex);
2363 return 0;
2366 #ifdef CONFIG_PM
2367 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2369 struct net_device *dev = pci_get_drvdata(pdev);
2370 struct gem *gp = netdev_priv(dev);
2371 unsigned long flags;
2373 mutex_lock(&gp->pm_mutex);
2375 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2376 dev->name,
2377 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2379 /* Keep the cell enabled during the entire operation */
2380 spin_lock_irqsave(&gp->lock, flags);
2381 spin_lock(&gp->tx_lock);
2382 gem_get_cell(gp);
2383 spin_unlock(&gp->tx_lock);
2384 spin_unlock_irqrestore(&gp->lock, flags);
2386 /* If the driver is opened, we stop the MAC */
2387 if (gp->opened) {
2388 napi_disable(&gp->napi);
2390 /* Stop traffic, mark us closed */
2391 netif_device_detach(dev);
2393 /* Switch off MAC, remember WOL setting */
2394 gp->asleep_wol = gp->wake_on_lan;
2395 gem_do_stop(dev, gp->asleep_wol);
2396 } else
2397 gp->asleep_wol = 0;
2399 /* Mark us asleep */
2400 gp->asleep = 1;
2401 wmb();
2403 /* Stop the link timer */
2404 del_timer_sync(&gp->link_timer);
2406 /* Now we release the mutex to not block the reset task who
2407 * can take it too. We are marked asleep, so there will be no
2408 * conflict here
2410 mutex_unlock(&gp->pm_mutex);
2412 /* Wait for a pending reset task to complete */
2413 while (gp->reset_task_pending)
2414 yield();
2415 flush_scheduled_work();
2417 /* Shut the PHY down eventually and setup WOL */
2418 gem_stop_phy(gp, gp->asleep_wol);
2420 /* Make sure bus master is disabled */
2421 pci_disable_device(gp->pdev);
2423 /* Release the cell, no need to take a lock at this point since
2424 * nothing else can happen now
2426 gem_put_cell(gp);
2428 return 0;
2431 static int gem_resume(struct pci_dev *pdev)
2433 struct net_device *dev = pci_get_drvdata(pdev);
2434 struct gem *gp = netdev_priv(dev);
2435 unsigned long flags;
2437 printk(KERN_INFO "%s: resuming\n", dev->name);
2439 mutex_lock(&gp->pm_mutex);
2441 /* Keep the cell enabled during the entire operation, no need to
2442 * take a lock here tho since nothing else can happen while we are
2443 * marked asleep
2445 gem_get_cell(gp);
2447 /* Make sure PCI access and bus master are enabled */
2448 if (pci_enable_device(gp->pdev)) {
2449 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2450 dev->name);
2451 /* Put cell and forget it for now, it will be considered as
2452 * still asleep, a new sleep cycle may bring it back
2454 gem_put_cell(gp);
2455 mutex_unlock(&gp->pm_mutex);
2456 return 0;
2458 pci_set_master(gp->pdev);
2460 /* Reset everything */
2461 gem_reset(gp);
2463 /* Mark us woken up */
2464 gp->asleep = 0;
2465 wmb();
2467 /* Bring the PHY back. Again, lock is useless at this point as
2468 * nothing can be happening until we restart the whole thing
2470 gem_init_phy(gp);
2472 /* If we were opened, bring everything back */
2473 if (gp->opened) {
2474 /* Restart MAC */
2475 gem_do_start(dev);
2477 /* Re-attach net device */
2478 netif_device_attach(dev);
2480 napi_enable(&gp->napi);
2483 spin_lock_irqsave(&gp->lock, flags);
2484 spin_lock(&gp->tx_lock);
2486 /* If we had WOL enabled, the cell clock was never turned off during
2487 * sleep, so we end up beeing unbalanced. Fix that here
2489 if (gp->asleep_wol)
2490 gem_put_cell(gp);
2492 /* This function doesn't need to hold the cell, it will be held if the
2493 * driver is open by gem_do_start().
2495 gem_put_cell(gp);
2497 spin_unlock(&gp->tx_lock);
2498 spin_unlock_irqrestore(&gp->lock, flags);
2500 mutex_unlock(&gp->pm_mutex);
2502 return 0;
2504 #endif /* CONFIG_PM */
2506 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2508 struct gem *gp = netdev_priv(dev);
2509 struct net_device_stats *stats = &gp->net_stats;
2511 spin_lock_irq(&gp->lock);
2512 spin_lock(&gp->tx_lock);
2514 /* I have seen this being called while the PM was in progress,
2515 * so we shield against this
2517 if (gp->running) {
2518 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2519 writel(0, gp->regs + MAC_FCSERR);
2521 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2522 writel(0, gp->regs + MAC_AERR);
2524 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2525 writel(0, gp->regs + MAC_LERR);
2527 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2528 stats->collisions +=
2529 (readl(gp->regs + MAC_ECOLL) +
2530 readl(gp->regs + MAC_LCOLL));
2531 writel(0, gp->regs + MAC_ECOLL);
2532 writel(0, gp->regs + MAC_LCOLL);
2535 spin_unlock(&gp->tx_lock);
2536 spin_unlock_irq(&gp->lock);
2538 return &gp->net_stats;
2541 static int gem_set_mac_address(struct net_device *dev, void *addr)
2543 struct sockaddr *macaddr = (struct sockaddr *) addr;
2544 struct gem *gp = netdev_priv(dev);
2545 unsigned char *e = &dev->dev_addr[0];
2547 if (!is_valid_ether_addr(macaddr->sa_data))
2548 return -EADDRNOTAVAIL;
2550 if (!netif_running(dev) || !netif_device_present(dev)) {
2551 /* We'll just catch it later when the
2552 * device is up'd or resumed.
2554 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2555 return 0;
2558 mutex_lock(&gp->pm_mutex);
2559 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2560 if (gp->running) {
2561 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2562 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2563 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2565 mutex_unlock(&gp->pm_mutex);
2567 return 0;
2570 static void gem_set_multicast(struct net_device *dev)
2572 struct gem *gp = netdev_priv(dev);
2573 u32 rxcfg, rxcfg_new;
2574 int limit = 10000;
2577 spin_lock_irq(&gp->lock);
2578 spin_lock(&gp->tx_lock);
2580 if (!gp->running)
2581 goto bail;
2583 netif_stop_queue(dev);
2585 rxcfg = readl(gp->regs + MAC_RXCFG);
2586 rxcfg_new = gem_setup_multicast(gp);
2587 #ifdef STRIP_FCS
2588 rxcfg_new |= MAC_RXCFG_SFCS;
2589 #endif
2590 gp->mac_rx_cfg = rxcfg_new;
2592 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2593 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2594 if (!limit--)
2595 break;
2596 udelay(10);
2599 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2600 rxcfg |= rxcfg_new;
2602 writel(rxcfg, gp->regs + MAC_RXCFG);
2604 netif_wake_queue(dev);
2606 bail:
2607 spin_unlock(&gp->tx_lock);
2608 spin_unlock_irq(&gp->lock);
2611 /* Jumbo-grams don't seem to work :-( */
2612 #define GEM_MIN_MTU 68
2613 #if 1
2614 #define GEM_MAX_MTU 1500
2615 #else
2616 #define GEM_MAX_MTU 9000
2617 #endif
2619 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2621 struct gem *gp = netdev_priv(dev);
2623 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2624 return -EINVAL;
2626 if (!netif_running(dev) || !netif_device_present(dev)) {
2627 /* We'll just catch it later when the
2628 * device is up'd or resumed.
2630 dev->mtu = new_mtu;
2631 return 0;
2634 mutex_lock(&gp->pm_mutex);
2635 spin_lock_irq(&gp->lock);
2636 spin_lock(&gp->tx_lock);
2637 dev->mtu = new_mtu;
2638 if (gp->running) {
2639 gem_reinit_chip(gp);
2640 if (gp->lstate == link_up)
2641 gem_set_link_modes(gp);
2643 spin_unlock(&gp->tx_lock);
2644 spin_unlock_irq(&gp->lock);
2645 mutex_unlock(&gp->pm_mutex);
2647 return 0;
2650 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2652 struct gem *gp = netdev_priv(dev);
2654 strcpy(info->driver, DRV_NAME);
2655 strcpy(info->version, DRV_VERSION);
2656 strcpy(info->bus_info, pci_name(gp->pdev));
2659 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2661 struct gem *gp = netdev_priv(dev);
2663 if (gp->phy_type == phy_mii_mdio0 ||
2664 gp->phy_type == phy_mii_mdio1) {
2665 if (gp->phy_mii.def)
2666 cmd->supported = gp->phy_mii.def->features;
2667 else
2668 cmd->supported = (SUPPORTED_10baseT_Half |
2669 SUPPORTED_10baseT_Full);
2671 /* XXX hardcoded stuff for now */
2672 cmd->port = PORT_MII;
2673 cmd->transceiver = XCVR_EXTERNAL;
2674 cmd->phy_address = 0; /* XXX fixed PHYAD */
2676 /* Return current PHY settings */
2677 spin_lock_irq(&gp->lock);
2678 cmd->autoneg = gp->want_autoneg;
2679 cmd->speed = gp->phy_mii.speed;
2680 cmd->duplex = gp->phy_mii.duplex;
2681 cmd->advertising = gp->phy_mii.advertising;
2683 /* If we started with a forced mode, we don't have a default
2684 * advertise set, we need to return something sensible so
2685 * userland can re-enable autoneg properly.
2687 if (cmd->advertising == 0)
2688 cmd->advertising = cmd->supported;
2689 spin_unlock_irq(&gp->lock);
2690 } else { // XXX PCS ?
2691 cmd->supported =
2692 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2693 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2694 SUPPORTED_Autoneg);
2695 cmd->advertising = cmd->supported;
2696 cmd->speed = 0;
2697 cmd->duplex = cmd->port = cmd->phy_address =
2698 cmd->transceiver = cmd->autoneg = 0;
2700 /* serdes means usually a Fibre connector, with most fixed */
2701 if (gp->phy_type == phy_serdes) {
2702 cmd->port = PORT_FIBRE;
2703 cmd->supported = (SUPPORTED_1000baseT_Half |
2704 SUPPORTED_1000baseT_Full |
2705 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2706 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2707 cmd->advertising = cmd->supported;
2708 cmd->transceiver = XCVR_INTERNAL;
2709 if (gp->lstate == link_up)
2710 cmd->speed = SPEED_1000;
2711 cmd->duplex = DUPLEX_FULL;
2712 cmd->autoneg = 1;
2715 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2717 return 0;
2720 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2722 struct gem *gp = netdev_priv(dev);
2724 /* Verify the settings we care about. */
2725 if (cmd->autoneg != AUTONEG_ENABLE &&
2726 cmd->autoneg != AUTONEG_DISABLE)
2727 return -EINVAL;
2729 if (cmd->autoneg == AUTONEG_ENABLE &&
2730 cmd->advertising == 0)
2731 return -EINVAL;
2733 if (cmd->autoneg == AUTONEG_DISABLE &&
2734 ((cmd->speed != SPEED_1000 &&
2735 cmd->speed != SPEED_100 &&
2736 cmd->speed != SPEED_10) ||
2737 (cmd->duplex != DUPLEX_HALF &&
2738 cmd->duplex != DUPLEX_FULL)))
2739 return -EINVAL;
2741 /* Apply settings and restart link process. */
2742 spin_lock_irq(&gp->lock);
2743 gem_get_cell(gp);
2744 gem_begin_auto_negotiation(gp, cmd);
2745 gem_put_cell(gp);
2746 spin_unlock_irq(&gp->lock);
2748 return 0;
2751 static int gem_nway_reset(struct net_device *dev)
2753 struct gem *gp = netdev_priv(dev);
2755 if (!gp->want_autoneg)
2756 return -EINVAL;
2758 /* Restart link process. */
2759 spin_lock_irq(&gp->lock);
2760 gem_get_cell(gp);
2761 gem_begin_auto_negotiation(gp, NULL);
2762 gem_put_cell(gp);
2763 spin_unlock_irq(&gp->lock);
2765 return 0;
2768 static u32 gem_get_msglevel(struct net_device *dev)
2770 struct gem *gp = netdev_priv(dev);
2771 return gp->msg_enable;
2774 static void gem_set_msglevel(struct net_device *dev, u32 value)
2776 struct gem *gp = netdev_priv(dev);
2777 gp->msg_enable = value;
2781 /* Add more when I understand how to program the chip */
2782 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2784 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2786 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2788 struct gem *gp = netdev_priv(dev);
2790 /* Add more when I understand how to program the chip */
2791 if (gp->has_wol) {
2792 wol->supported = WOL_SUPPORTED_MASK;
2793 wol->wolopts = gp->wake_on_lan;
2794 } else {
2795 wol->supported = 0;
2796 wol->wolopts = 0;
2800 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2802 struct gem *gp = netdev_priv(dev);
2804 if (!gp->has_wol)
2805 return -EOPNOTSUPP;
2806 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2807 return 0;
2810 static const struct ethtool_ops gem_ethtool_ops = {
2811 .get_drvinfo = gem_get_drvinfo,
2812 .get_link = ethtool_op_get_link,
2813 .get_settings = gem_get_settings,
2814 .set_settings = gem_set_settings,
2815 .nway_reset = gem_nway_reset,
2816 .get_msglevel = gem_get_msglevel,
2817 .set_msglevel = gem_set_msglevel,
2818 .get_wol = gem_get_wol,
2819 .set_wol = gem_set_wol,
2822 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2824 struct gem *gp = netdev_priv(dev);
2825 struct mii_ioctl_data *data = if_mii(ifr);
2826 int rc = -EOPNOTSUPP;
2827 unsigned long flags;
2829 /* Hold the PM mutex while doing ioctl's or we may collide
2830 * with power management.
2832 mutex_lock(&gp->pm_mutex);
2834 spin_lock_irqsave(&gp->lock, flags);
2835 gem_get_cell(gp);
2836 spin_unlock_irqrestore(&gp->lock, flags);
2838 switch (cmd) {
2839 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2840 data->phy_id = gp->mii_phy_addr;
2841 /* Fallthrough... */
2843 case SIOCGMIIREG: /* Read MII PHY register. */
2844 if (!gp->running)
2845 rc = -EAGAIN;
2846 else {
2847 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2848 data->reg_num & 0x1f);
2849 rc = 0;
2851 break;
2853 case SIOCSMIIREG: /* Write MII PHY register. */
2854 if (!capable(CAP_NET_ADMIN))
2855 rc = -EPERM;
2856 else if (!gp->running)
2857 rc = -EAGAIN;
2858 else {
2859 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2860 data->val_in);
2861 rc = 0;
2863 break;
2866 spin_lock_irqsave(&gp->lock, flags);
2867 gem_put_cell(gp);
2868 spin_unlock_irqrestore(&gp->lock, flags);
2870 mutex_unlock(&gp->pm_mutex);
2872 return rc;
2875 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2876 /* Fetch MAC address from vital product data of PCI ROM. */
2877 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2879 int this_offset;
2881 for (this_offset = 0x20; this_offset < len; this_offset++) {
2882 void __iomem *p = rom_base + this_offset;
2883 int i;
2885 if (readb(p + 0) != 0x90 ||
2886 readb(p + 1) != 0x00 ||
2887 readb(p + 2) != 0x09 ||
2888 readb(p + 3) != 0x4e ||
2889 readb(p + 4) != 0x41 ||
2890 readb(p + 5) != 0x06)
2891 continue;
2893 this_offset += 6;
2894 p += 6;
2896 for (i = 0; i < 6; i++)
2897 dev_addr[i] = readb(p + i);
2898 return 1;
2900 return 0;
2903 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2905 size_t size;
2906 void __iomem *p = pci_map_rom(pdev, &size);
2908 if (p) {
2909 int found;
2911 found = readb(p) == 0x55 &&
2912 readb(p + 1) == 0xaa &&
2913 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2914 pci_unmap_rom(pdev, p);
2915 if (found)
2916 return;
2919 /* Sun MAC prefix then 3 random bytes. */
2920 dev_addr[0] = 0x08;
2921 dev_addr[1] = 0x00;
2922 dev_addr[2] = 0x20;
2923 get_random_bytes(dev_addr + 3, 3);
2924 return;
2926 #endif /* not Sparc and not PPC */
2928 static int __devinit gem_get_device_address(struct gem *gp)
2930 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2931 struct net_device *dev = gp->dev;
2932 const unsigned char *addr;
2934 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2935 if (addr == NULL) {
2936 #ifdef CONFIG_SPARC
2937 addr = idprom->id_ethaddr;
2938 #else
2939 printk("\n");
2940 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2941 return -1;
2942 #endif
2944 memcpy(dev->dev_addr, addr, 6);
2945 #else
2946 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2947 #endif
2948 return 0;
2951 static void gem_remove_one(struct pci_dev *pdev)
2953 struct net_device *dev = pci_get_drvdata(pdev);
2955 if (dev) {
2956 struct gem *gp = netdev_priv(dev);
2958 unregister_netdev(dev);
2960 /* Stop the link timer */
2961 del_timer_sync(&gp->link_timer);
2963 /* We shouldn't need any locking here */
2964 gem_get_cell(gp);
2966 /* Wait for a pending reset task to complete */
2967 while (gp->reset_task_pending)
2968 yield();
2969 flush_scheduled_work();
2971 /* Shut the PHY down */
2972 gem_stop_phy(gp, 0);
2974 gem_put_cell(gp);
2976 /* Make sure bus master is disabled */
2977 pci_disable_device(gp->pdev);
2979 /* Free resources */
2980 pci_free_consistent(pdev,
2981 sizeof(struct gem_init_block),
2982 gp->init_block,
2983 gp->gblock_dvma);
2984 iounmap(gp->regs);
2985 pci_release_regions(pdev);
2986 free_netdev(dev);
2988 pci_set_drvdata(pdev, NULL);
2992 static const struct net_device_ops gem_netdev_ops = {
2993 .ndo_open = gem_open,
2994 .ndo_stop = gem_close,
2995 .ndo_start_xmit = gem_start_xmit,
2996 .ndo_get_stats = gem_get_stats,
2997 .ndo_set_multicast_list = gem_set_multicast,
2998 .ndo_do_ioctl = gem_ioctl,
2999 .ndo_tx_timeout = gem_tx_timeout,
3000 .ndo_change_mtu = gem_change_mtu,
3001 .ndo_set_mac_address = eth_mac_addr,
3002 .ndo_validate_addr = eth_validate_addr,
3005 static int __devinit gem_init_one(struct pci_dev *pdev,
3006 const struct pci_device_id *ent)
3008 static int gem_version_printed = 0;
3009 unsigned long gemreg_base, gemreg_len;
3010 struct net_device *dev;
3011 struct gem *gp;
3012 int err, pci_using_dac;
3014 if (gem_version_printed++ == 0)
3015 printk(KERN_INFO "%s", version);
3017 /* Apple gmac note: during probe, the chip is powered up by
3018 * the arch code to allow the code below to work (and to let
3019 * the chip be probed on the config space. It won't stay powered
3020 * up until the interface is brought up however, so we can't rely
3021 * on register configuration done at this point.
3023 err = pci_enable_device(pdev);
3024 if (err) {
3025 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
3026 "aborting.\n");
3027 return err;
3029 pci_set_master(pdev);
3031 /* Configure DMA attributes. */
3033 /* All of the GEM documentation states that 64-bit DMA addressing
3034 * is fully supported and should work just fine. However the
3035 * front end for RIO based GEMs is different and only supports
3036 * 32-bit addressing.
3038 * For now we assume the various PPC GEMs are 32-bit only as well.
3040 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3041 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
3042 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3043 pci_using_dac = 1;
3044 } else {
3045 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3046 if (err) {
3047 printk(KERN_ERR PFX "No usable DMA configuration, "
3048 "aborting.\n");
3049 goto err_disable_device;
3051 pci_using_dac = 0;
3054 gemreg_base = pci_resource_start(pdev, 0);
3055 gemreg_len = pci_resource_len(pdev, 0);
3057 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3058 printk(KERN_ERR PFX "Cannot find proper PCI device "
3059 "base address, aborting.\n");
3060 err = -ENODEV;
3061 goto err_disable_device;
3064 dev = alloc_etherdev(sizeof(*gp));
3065 if (!dev) {
3066 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3067 err = -ENOMEM;
3068 goto err_disable_device;
3070 SET_NETDEV_DEV(dev, &pdev->dev);
3072 gp = netdev_priv(dev);
3074 err = pci_request_regions(pdev, DRV_NAME);
3075 if (err) {
3076 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3077 "aborting.\n");
3078 goto err_out_free_netdev;
3081 gp->pdev = pdev;
3082 dev->base_addr = (long) pdev;
3083 gp->dev = dev;
3085 gp->msg_enable = DEFAULT_MSG;
3087 spin_lock_init(&gp->lock);
3088 spin_lock_init(&gp->tx_lock);
3089 mutex_init(&gp->pm_mutex);
3091 init_timer(&gp->link_timer);
3092 gp->link_timer.function = gem_link_timer;
3093 gp->link_timer.data = (unsigned long) gp;
3095 INIT_WORK(&gp->reset_task, gem_reset_task);
3097 gp->lstate = link_down;
3098 gp->timer_ticks = 0;
3099 netif_carrier_off(dev);
3101 gp->regs = ioremap(gemreg_base, gemreg_len);
3102 if (!gp->regs) {
3103 printk(KERN_ERR PFX "Cannot map device registers, "
3104 "aborting.\n");
3105 err = -EIO;
3106 goto err_out_free_res;
3109 /* On Apple, we want a reference to the Open Firmware device-tree
3110 * node. We use it for clock control.
3112 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3113 gp->of_node = pci_device_to_OF_node(pdev);
3114 #endif
3116 /* Only Apple version supports WOL afaik */
3117 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3118 gp->has_wol = 1;
3120 /* Make sure cell is enabled */
3121 gem_get_cell(gp);
3123 /* Make sure everything is stopped and in init state */
3124 gem_reset(gp);
3126 /* Fill up the mii_phy structure (even if we won't use it) */
3127 gp->phy_mii.dev = dev;
3128 gp->phy_mii.mdio_read = _phy_read;
3129 gp->phy_mii.mdio_write = _phy_write;
3130 #ifdef CONFIG_PPC_PMAC
3131 gp->phy_mii.platform_data = gp->of_node;
3132 #endif
3133 /* By default, we start with autoneg */
3134 gp->want_autoneg = 1;
3136 /* Check fifo sizes, PHY type, etc... */
3137 if (gem_check_invariants(gp)) {
3138 err = -ENODEV;
3139 goto err_out_iounmap;
3142 /* It is guaranteed that the returned buffer will be at least
3143 * PAGE_SIZE aligned.
3145 gp->init_block = (struct gem_init_block *)
3146 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3147 &gp->gblock_dvma);
3148 if (!gp->init_block) {
3149 printk(KERN_ERR PFX "Cannot allocate init block, "
3150 "aborting.\n");
3151 err = -ENOMEM;
3152 goto err_out_iounmap;
3155 if (gem_get_device_address(gp))
3156 goto err_out_free_consistent;
3158 dev->netdev_ops = &gem_netdev_ops;
3159 netif_napi_add(dev, &gp->napi, gem_poll, 64);
3160 dev->ethtool_ops = &gem_ethtool_ops;
3161 dev->watchdog_timeo = 5 * HZ;
3162 dev->irq = pdev->irq;
3163 dev->dma = 0;
3164 dev->set_mac_address = gem_set_mac_address;
3165 #ifdef CONFIG_NET_POLL_CONTROLLER
3166 dev->poll_controller = gem_poll_controller;
3167 #endif
3169 /* Set that now, in case PM kicks in now */
3170 pci_set_drvdata(pdev, dev);
3172 /* Detect & init PHY, start autoneg, we release the cell now
3173 * too, it will be managed by whoever needs it
3175 gem_init_phy(gp);
3177 spin_lock_irq(&gp->lock);
3178 gem_put_cell(gp);
3179 spin_unlock_irq(&gp->lock);
3181 /* Register with kernel */
3182 if (register_netdev(dev)) {
3183 printk(KERN_ERR PFX "Cannot register net device, "
3184 "aborting.\n");
3185 err = -ENOMEM;
3186 goto err_out_free_consistent;
3189 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3190 dev->name, dev->dev_addr);
3192 if (gp->phy_type == phy_mii_mdio0 ||
3193 gp->phy_type == phy_mii_mdio1)
3194 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3195 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3197 /* GEM can do it all... */
3198 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3199 if (pci_using_dac)
3200 dev->features |= NETIF_F_HIGHDMA;
3202 return 0;
3204 err_out_free_consistent:
3205 gem_remove_one(pdev);
3206 err_out_iounmap:
3207 gem_put_cell(gp);
3208 iounmap(gp->regs);
3210 err_out_free_res:
3211 pci_release_regions(pdev);
3213 err_out_free_netdev:
3214 free_netdev(dev);
3215 err_disable_device:
3216 pci_disable_device(pdev);
3217 return err;
3222 static struct pci_driver gem_driver = {
3223 .name = GEM_MODULE_NAME,
3224 .id_table = gem_pci_tbl,
3225 .probe = gem_init_one,
3226 .remove = gem_remove_one,
3227 #ifdef CONFIG_PM
3228 .suspend = gem_suspend,
3229 .resume = gem_resume,
3230 #endif /* CONFIG_PM */
3233 static int __init gem_init(void)
3235 return pci_register_driver(&gem_driver);
3238 static void __exit gem_cleanup(void)
3240 pci_unregister_driver(&gem_driver);
3243 module_init(gem_init);
3244 module_exit(gem_cleanup);