2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46 #include <linux/debugobjects.h>
48 #include <asm/uaccess.h>
51 * ktime_get - get the monotonic time in ktime_t format
53 * returns the time in ktime_t format
55 ktime_t
ktime_get(void)
61 return timespec_to_ktime(now
);
63 EXPORT_SYMBOL_GPL(ktime_get
);
66 * ktime_get_real - get the real (wall-) time in ktime_t format
68 * returns the time in ktime_t format
70 ktime_t
ktime_get_real(void)
76 return timespec_to_ktime(now
);
79 EXPORT_SYMBOL_GPL(ktime_get_real
);
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
90 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
96 .index
= CLOCK_REALTIME
,
97 .get_time
= &ktime_get_real
,
98 .resolution
= KTIME_LOW_RES
,
101 .index
= CLOCK_MONOTONIC
,
102 .get_time
= &ktime_get
,
103 .resolution
= KTIME_LOW_RES
,
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
116 void ktime_get_ts(struct timespec
*ts
)
118 struct timespec tomono
;
122 seq
= read_seqbegin(&xtime_lock
);
124 tomono
= wall_to_monotonic
;
126 } while (read_seqretry(&xtime_lock
, seq
));
128 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
129 ts
->tv_nsec
+ tomono
.tv_nsec
);
131 EXPORT_SYMBOL_GPL(ktime_get_ts
);
134 * Get the coarse grained time at the softirq based on xtime and
137 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
139 ktime_t xtim
, tomono
;
140 struct timespec xts
, tom
;
144 seq
= read_seqbegin(&xtime_lock
);
145 xts
= current_kernel_time();
146 tom
= wall_to_monotonic
;
147 } while (read_seqretry(&xtime_lock
, seq
));
149 xtim
= timespec_to_ktime(xts
);
150 tomono
= timespec_to_ktime(tom
);
151 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
152 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
153 ktime_add(xtim
, tomono
);
157 * Functions and macros which are different for UP/SMP systems are kept in a
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
175 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
176 unsigned long *flags
)
178 struct hrtimer_clock_base
*base
;
182 if (likely(base
!= NULL
)) {
183 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
184 if (likely(base
== timer
->base
))
186 /* The timer has migrated to another CPU: */
187 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
194 * Switch the timer base to the current CPU when possible.
196 static inline struct hrtimer_clock_base
*
197 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
199 struct hrtimer_clock_base
*new_base
;
200 struct hrtimer_cpu_base
*new_cpu_base
;
202 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
203 new_base
= &new_cpu_base
->clock_base
[base
->index
];
205 if (base
!= new_base
) {
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
215 if (unlikely(hrtimer_callback_running(timer
)))
218 /* See the comment in lock_timer_base() */
220 spin_unlock(&base
->cpu_base
->lock
);
221 spin_lock(&new_base
->cpu_base
->lock
);
222 timer
->base
= new_base
;
227 #else /* CONFIG_SMP */
229 static inline struct hrtimer_clock_base
*
230 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
232 struct hrtimer_clock_base
*base
= timer
->base
;
234 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
239 # define switch_hrtimer_base(t, b) (b)
241 #endif /* !CONFIG_SMP */
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
247 #if BITS_PER_LONG < 64
248 # ifndef CONFIG_KTIME_SCALAR
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
252 * @nsec: the scalar nsec value to add
254 * Returns the sum of kt and nsec in ktime_t format
256 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
260 if (likely(nsec
< NSEC_PER_SEC
)) {
263 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
265 tmp
= ktime_set((long)nsec
, rem
);
268 return ktime_add(kt
, tmp
);
271 EXPORT_SYMBOL_GPL(ktime_add_ns
);
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
276 * @nsec: the scalar nsec value to subtract
278 * Returns the subtraction of @nsec from @kt in ktime_t format
280 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
284 if (likely(nsec
< NSEC_PER_SEC
)) {
287 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
289 tmp
= ktime_set((long)nsec
, rem
);
292 return ktime_sub(kt
, tmp
);
295 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
296 # endif /* !CONFIG_KTIME_SCALAR */
299 * Divide a ktime value by a nanosecond value
301 u64
ktime_divns(const ktime_t kt
, s64 div
)
306 dclc
= ktime_to_ns(kt
);
307 /* Make sure the divisor is less than 2^32: */
313 do_div(dclc
, (unsigned long) div
);
317 #endif /* BITS_PER_LONG >= 64 */
320 * Add two ktime values and do a safety check for overflow:
322 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
324 ktime_t res
= ktime_add(lhs
, rhs
);
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
330 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
331 res
= ktime_set(KTIME_SEC_MAX
, 0);
336 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338 static struct debug_obj_descr hrtimer_debug_descr
;
341 * fixup_init is called when:
342 * - an active object is initialized
344 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
346 struct hrtimer
*timer
= addr
;
349 case ODEBUG_STATE_ACTIVE
:
350 hrtimer_cancel(timer
);
351 debug_object_init(timer
, &hrtimer_debug_descr
);
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
363 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
367 case ODEBUG_STATE_NOTAVAILABLE
:
371 case ODEBUG_STATE_ACTIVE
:
380 * fixup_free is called when:
381 * - an active object is freed
383 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
385 struct hrtimer
*timer
= addr
;
388 case ODEBUG_STATE_ACTIVE
:
389 hrtimer_cancel(timer
);
390 debug_object_free(timer
, &hrtimer_debug_descr
);
397 static struct debug_obj_descr hrtimer_debug_descr
= {
399 .fixup_init
= hrtimer_fixup_init
,
400 .fixup_activate
= hrtimer_fixup_activate
,
401 .fixup_free
= hrtimer_fixup_free
,
404 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
406 debug_object_init(timer
, &hrtimer_debug_descr
);
409 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
411 debug_object_activate(timer
, &hrtimer_debug_descr
);
414 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
416 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
419 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
421 debug_object_free(timer
, &hrtimer_debug_descr
);
424 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
425 enum hrtimer_mode mode
);
427 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
428 enum hrtimer_mode mode
)
430 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
431 __hrtimer_init(timer
, clock_id
, mode
);
434 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
436 debug_object_free(timer
, &hrtimer_debug_descr
);
440 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
441 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
445 /* High resolution timer related functions */
446 #ifdef CONFIG_HIGH_RES_TIMERS
449 * High resolution timer enabled ?
451 static int hrtimer_hres_enabled __read_mostly
= 1;
454 * Enable / Disable high resolution mode
456 static int __init
setup_hrtimer_hres(char *str
)
458 if (!strcmp(str
, "off"))
459 hrtimer_hres_enabled
= 0;
460 else if (!strcmp(str
, "on"))
461 hrtimer_hres_enabled
= 1;
467 __setup("highres=", setup_hrtimer_hres
);
470 * hrtimer_high_res_enabled - query, if the highres mode is enabled
472 static inline int hrtimer_is_hres_enabled(void)
474 return hrtimer_hres_enabled
;
478 * Is the high resolution mode active ?
480 static inline int hrtimer_hres_active(void)
482 return __get_cpu_var(hrtimer_bases
).hres_active
;
486 * Reprogram the event source with checking both queues for the
488 * Called with interrupts disabled and base->lock held
490 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
493 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
496 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
498 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
499 struct hrtimer
*timer
;
503 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
504 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
505 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
506 cpu_base
->expires_next
= expires
;
509 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
510 tick_program_event(cpu_base
->expires_next
, 1);
514 * Shared reprogramming for clock_realtime and clock_monotonic
516 * When a timer is enqueued and expires earlier than the already enqueued
517 * timers, we have to check, whether it expires earlier than the timer for
518 * which the clock event device was armed.
520 * Called with interrupts disabled and base->cpu_base.lock held
522 static int hrtimer_reprogram(struct hrtimer
*timer
,
523 struct hrtimer_clock_base
*base
)
525 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
526 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
529 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
532 * When the callback is running, we do not reprogram the clock event
533 * device. The timer callback is either running on a different CPU or
534 * the callback is executed in the hrtimer_interrupt context. The
535 * reprogramming is handled either by the softirq, which called the
536 * callback or at the end of the hrtimer_interrupt.
538 if (hrtimer_callback_running(timer
))
542 * CLOCK_REALTIME timer might be requested with an absolute
543 * expiry time which is less than base->offset. Nothing wrong
544 * about that, just avoid to call into the tick code, which
545 * has now objections against negative expiry values.
547 if (expires
.tv64
< 0)
550 if (expires
.tv64
>= expires_next
->tv64
)
554 * Clockevents returns -ETIME, when the event was in the past.
556 res
= tick_program_event(expires
, 0);
557 if (!IS_ERR_VALUE(res
))
558 *expires_next
= expires
;
564 * Retrigger next event is called after clock was set
566 * Called with interrupts disabled via on_each_cpu()
568 static void retrigger_next_event(void *arg
)
570 struct hrtimer_cpu_base
*base
;
571 struct timespec realtime_offset
;
574 if (!hrtimer_hres_active())
578 seq
= read_seqbegin(&xtime_lock
);
579 set_normalized_timespec(&realtime_offset
,
580 -wall_to_monotonic
.tv_sec
,
581 -wall_to_monotonic
.tv_nsec
);
582 } while (read_seqretry(&xtime_lock
, seq
));
584 base
= &__get_cpu_var(hrtimer_bases
);
586 /* Adjust CLOCK_REALTIME offset */
587 spin_lock(&base
->lock
);
588 base
->clock_base
[CLOCK_REALTIME
].offset
=
589 timespec_to_ktime(realtime_offset
);
591 hrtimer_force_reprogram(base
);
592 spin_unlock(&base
->lock
);
596 * Clock realtime was set
598 * Change the offset of the realtime clock vs. the monotonic
601 * We might have to reprogram the high resolution timer interrupt. On
602 * SMP we call the architecture specific code to retrigger _all_ high
603 * resolution timer interrupts. On UP we just disable interrupts and
604 * call the high resolution interrupt code.
606 void clock_was_set(void)
608 /* Retrigger the CPU local events everywhere */
609 on_each_cpu(retrigger_next_event
, NULL
, 1);
613 * During resume we might have to reprogram the high resolution timer
614 * interrupt (on the local CPU):
616 void hres_timers_resume(void)
618 /* Retrigger the CPU local events: */
619 retrigger_next_event(NULL
);
623 * Initialize the high resolution related parts of cpu_base
625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
627 base
->expires_next
.tv64
= KTIME_MAX
;
628 base
->hres_active
= 0;
632 * Initialize the high resolution related parts of a hrtimer
634 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
638 static void __run_hrtimer(struct hrtimer
*timer
);
641 * When High resolution timers are active, try to reprogram. Note, that in case
642 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
643 * check happens. The timer gets enqueued into the rbtree. The reprogramming
644 * and expiry check is done in the hrtimer_interrupt or in the softirq.
646 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
647 struct hrtimer_clock_base
*base
)
649 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
651 * XXX: recursion check?
652 * hrtimer_forward() should round up with timer granularity
653 * so that we never get into inf recursion here,
654 * it doesn't do that though
656 __run_hrtimer(timer
);
663 * Switch to high resolution mode
665 static int hrtimer_switch_to_hres(void)
667 int cpu
= smp_processor_id();
668 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
671 if (base
->hres_active
)
674 local_irq_save(flags
);
676 if (tick_init_highres()) {
677 local_irq_restore(flags
);
678 printk(KERN_WARNING
"Could not switch to high resolution "
679 "mode on CPU %d\n", cpu
);
682 base
->hres_active
= 1;
683 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
684 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
686 tick_setup_sched_timer();
688 /* "Retrigger" the interrupt to get things going */
689 retrigger_next_event(NULL
);
690 local_irq_restore(flags
);
691 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
698 static inline int hrtimer_hres_active(void) { return 0; }
699 static inline int hrtimer_is_hres_enabled(void) { return 0; }
700 static inline int hrtimer_switch_to_hres(void) { return 0; }
701 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
702 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
703 struct hrtimer_clock_base
*base
)
707 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
708 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
709 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
710 struct hrtimer_clock_base
*base
)
715 #endif /* CONFIG_HIGH_RES_TIMERS */
717 #ifdef CONFIG_TIMER_STATS
718 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
720 if (timer
->start_site
)
723 timer
->start_site
= addr
;
724 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
725 timer
->start_pid
= current
->pid
;
730 * Counterpart to lock_hrtimer_base above:
733 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
735 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
739 * hrtimer_forward - forward the timer expiry
740 * @timer: hrtimer to forward
741 * @now: forward past this time
742 * @interval: the interval to forward
744 * Forward the timer expiry so it will expire in the future.
745 * Returns the number of overruns.
747 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
752 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
757 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
758 interval
.tv64
= timer
->base
->resolution
.tv64
;
760 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
761 s64 incr
= ktime_to_ns(interval
);
763 orun
= ktime_divns(delta
, incr
);
764 hrtimer_add_expires_ns(timer
, incr
* orun
);
765 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
768 * This (and the ktime_add() below) is the
769 * correction for exact:
773 hrtimer_add_expires(timer
, interval
);
777 EXPORT_SYMBOL_GPL(hrtimer_forward
);
780 * enqueue_hrtimer - internal function to (re)start a timer
782 * The timer is inserted in expiry order. Insertion into the
783 * red black tree is O(log(n)). Must hold the base lock.
785 static void enqueue_hrtimer(struct hrtimer
*timer
,
786 struct hrtimer_clock_base
*base
, int reprogram
)
788 struct rb_node
**link
= &base
->active
.rb_node
;
789 struct rb_node
*parent
= NULL
;
790 struct hrtimer
*entry
;
793 debug_hrtimer_activate(timer
);
796 * Find the right place in the rbtree:
800 entry
= rb_entry(parent
, struct hrtimer
, node
);
802 * We dont care about collisions. Nodes with
803 * the same expiry time stay together.
805 if (hrtimer_get_expires_tv64(timer
) <
806 hrtimer_get_expires_tv64(entry
)) {
807 link
= &(*link
)->rb_left
;
809 link
= &(*link
)->rb_right
;
815 * Insert the timer to the rbtree and check whether it
816 * replaces the first pending timer
820 * Reprogram the clock event device. When the timer is already
821 * expired hrtimer_enqueue_reprogram has either called the
822 * callback or added it to the pending list and raised the
825 * This is a NOP for !HIGHRES
827 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
830 base
->first
= &timer
->node
;
833 rb_link_node(&timer
->node
, parent
, link
);
834 rb_insert_color(&timer
->node
, &base
->active
);
836 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
837 * state of a possibly running callback.
839 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
843 * __remove_hrtimer - internal function to remove a timer
845 * Caller must hold the base lock.
847 * High resolution timer mode reprograms the clock event device when the
848 * timer is the one which expires next. The caller can disable this by setting
849 * reprogram to zero. This is useful, when the context does a reprogramming
850 * anyway (e.g. timer interrupt)
852 static void __remove_hrtimer(struct hrtimer
*timer
,
853 struct hrtimer_clock_base
*base
,
854 unsigned long newstate
, int reprogram
)
856 if (timer
->state
& HRTIMER_STATE_ENQUEUED
) {
858 * Remove the timer from the rbtree and replace the
859 * first entry pointer if necessary.
861 if (base
->first
== &timer
->node
) {
862 base
->first
= rb_next(&timer
->node
);
863 /* Reprogram the clock event device. if enabled */
864 if (reprogram
&& hrtimer_hres_active())
865 hrtimer_force_reprogram(base
->cpu_base
);
867 rb_erase(&timer
->node
, &base
->active
);
869 timer
->state
= newstate
;
873 * remove hrtimer, called with base lock held
876 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
878 if (hrtimer_is_queued(timer
)) {
882 * Remove the timer and force reprogramming when high
883 * resolution mode is active and the timer is on the current
884 * CPU. If we remove a timer on another CPU, reprogramming is
885 * skipped. The interrupt event on this CPU is fired and
886 * reprogramming happens in the interrupt handler. This is a
887 * rare case and less expensive than a smp call.
889 debug_hrtimer_deactivate(timer
);
890 timer_stats_hrtimer_clear_start_info(timer
);
891 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
892 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
900 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
901 * @timer: the timer to be added
903 * @delta_ns: "slack" range for the timer
904 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
908 * 1 when the timer was active
911 hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
, unsigned long delta_ns
,
912 const enum hrtimer_mode mode
)
914 struct hrtimer_clock_base
*base
, *new_base
;
918 base
= lock_hrtimer_base(timer
, &flags
);
920 /* Remove an active timer from the queue: */
921 ret
= remove_hrtimer(timer
, base
);
923 /* Switch the timer base, if necessary: */
924 new_base
= switch_hrtimer_base(timer
, base
);
926 if (mode
== HRTIMER_MODE_REL
) {
927 tim
= ktime_add_safe(tim
, new_base
->get_time());
929 * CONFIG_TIME_LOW_RES is a temporary way for architectures
930 * to signal that they simply return xtime in
931 * do_gettimeoffset(). In this case we want to round up by
932 * resolution when starting a relative timer, to avoid short
933 * timeouts. This will go away with the GTOD framework.
935 #ifdef CONFIG_TIME_LOW_RES
936 tim
= ktime_add_safe(tim
, base
->resolution
);
940 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
942 timer_stats_hrtimer_set_start_info(timer
);
945 * Only allow reprogramming if the new base is on this CPU.
946 * (it might still be on another CPU if the timer was pending)
948 enqueue_hrtimer(timer
, new_base
,
949 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
951 unlock_hrtimer_base(timer
, &flags
);
955 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
958 * hrtimer_start - (re)start an hrtimer on the current CPU
959 * @timer: the timer to be added
961 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
965 * 1 when the timer was active
968 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
970 return hrtimer_start_range_ns(timer
, tim
, 0, mode
);
972 EXPORT_SYMBOL_GPL(hrtimer_start
);
976 * hrtimer_try_to_cancel - try to deactivate a timer
977 * @timer: hrtimer to stop
980 * 0 when the timer was not active
981 * 1 when the timer was active
982 * -1 when the timer is currently excuting the callback function and
985 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
987 struct hrtimer_clock_base
*base
;
991 base
= lock_hrtimer_base(timer
, &flags
);
993 if (!hrtimer_callback_running(timer
))
994 ret
= remove_hrtimer(timer
, base
);
996 unlock_hrtimer_base(timer
, &flags
);
1001 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1004 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1005 * @timer: the timer to be cancelled
1008 * 0 when the timer was not active
1009 * 1 when the timer was active
1011 int hrtimer_cancel(struct hrtimer
*timer
)
1014 int ret
= hrtimer_try_to_cancel(timer
);
1021 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1024 * hrtimer_get_remaining - get remaining time for the timer
1025 * @timer: the timer to read
1027 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1029 struct hrtimer_clock_base
*base
;
1030 unsigned long flags
;
1033 base
= lock_hrtimer_base(timer
, &flags
);
1034 rem
= hrtimer_expires_remaining(timer
);
1035 unlock_hrtimer_base(timer
, &flags
);
1039 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1043 * hrtimer_get_next_event - get the time until next expiry event
1045 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1048 ktime_t
hrtimer_get_next_event(void)
1050 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1051 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1052 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1053 unsigned long flags
;
1056 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1058 if (!hrtimer_hres_active()) {
1059 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1060 struct hrtimer
*timer
;
1065 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1066 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1067 delta
= ktime_sub(delta
, base
->get_time());
1068 if (delta
.tv64
< mindelta
.tv64
)
1069 mindelta
.tv64
= delta
.tv64
;
1073 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1075 if (mindelta
.tv64
< 0)
1081 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1082 enum hrtimer_mode mode
)
1084 struct hrtimer_cpu_base
*cpu_base
;
1086 memset(timer
, 0, sizeof(struct hrtimer
));
1088 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1090 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1091 clock_id
= CLOCK_MONOTONIC
;
1093 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1094 INIT_LIST_HEAD(&timer
->cb_entry
);
1095 hrtimer_init_timer_hres(timer
);
1097 #ifdef CONFIG_TIMER_STATS
1098 timer
->start_site
= NULL
;
1099 timer
->start_pid
= -1;
1100 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1105 * hrtimer_init - initialize a timer to the given clock
1106 * @timer: the timer to be initialized
1107 * @clock_id: the clock to be used
1108 * @mode: timer mode abs/rel
1110 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1111 enum hrtimer_mode mode
)
1113 debug_hrtimer_init(timer
);
1114 __hrtimer_init(timer
, clock_id
, mode
);
1116 EXPORT_SYMBOL_GPL(hrtimer_init
);
1119 * hrtimer_get_res - get the timer resolution for a clock
1120 * @which_clock: which clock to query
1121 * @tp: pointer to timespec variable to store the resolution
1123 * Store the resolution of the clock selected by @which_clock in the
1124 * variable pointed to by @tp.
1126 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1128 struct hrtimer_cpu_base
*cpu_base
;
1130 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1131 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1135 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1137 static void __run_hrtimer(struct hrtimer
*timer
)
1139 struct hrtimer_clock_base
*base
= timer
->base
;
1140 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1141 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1144 WARN_ON(!irqs_disabled());
1146 debug_hrtimer_deactivate(timer
);
1147 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1148 timer_stats_account_hrtimer(timer
);
1149 fn
= timer
->function
;
1152 * Because we run timers from hardirq context, there is no chance
1153 * they get migrated to another cpu, therefore its safe to unlock
1156 spin_unlock(&cpu_base
->lock
);
1157 restart
= fn(timer
);
1158 spin_lock(&cpu_base
->lock
);
1161 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1162 * reprogramming of the event hardware. This happens at the end of this
1165 if (restart
!= HRTIMER_NORESTART
) {
1166 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1167 enqueue_hrtimer(timer
, base
, 0);
1169 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1172 #ifdef CONFIG_HIGH_RES_TIMERS
1175 * High resolution timer interrupt
1176 * Called with interrupts disabled
1178 void hrtimer_interrupt(struct clock_event_device
*dev
)
1180 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1181 struct hrtimer_clock_base
*base
;
1182 ktime_t expires_next
, now
;
1185 BUG_ON(!cpu_base
->hres_active
);
1186 cpu_base
->nr_events
++;
1187 dev
->next_event
.tv64
= KTIME_MAX
;
1192 expires_next
.tv64
= KTIME_MAX
;
1194 base
= cpu_base
->clock_base
;
1196 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1198 struct rb_node
*node
;
1200 spin_lock(&cpu_base
->lock
);
1202 basenow
= ktime_add(now
, base
->offset
);
1204 while ((node
= base
->first
)) {
1205 struct hrtimer
*timer
;
1207 timer
= rb_entry(node
, struct hrtimer
, node
);
1210 * The immediate goal for using the softexpires is
1211 * minimizing wakeups, not running timers at the
1212 * earliest interrupt after their soft expiration.
1213 * This allows us to avoid using a Priority Search
1214 * Tree, which can answer a stabbing querry for
1215 * overlapping intervals and instead use the simple
1216 * BST we already have.
1217 * We don't add extra wakeups by delaying timers that
1218 * are right-of a not yet expired timer, because that
1219 * timer will have to trigger a wakeup anyway.
1222 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1225 expires
= ktime_sub(hrtimer_get_expires(timer
),
1227 if (expires
.tv64
< expires_next
.tv64
)
1228 expires_next
= expires
;
1232 __run_hrtimer(timer
);
1234 spin_unlock(&cpu_base
->lock
);
1238 cpu_base
->expires_next
= expires_next
;
1240 /* Reprogramming necessary ? */
1241 if (expires_next
.tv64
!= KTIME_MAX
) {
1242 if (tick_program_event(expires_next
, 0))
1248 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1250 * hrtimer_peek_ahead_timers will peek at the timer queue of
1251 * the current cpu and check if there are any timers for which
1252 * the soft expires time has passed. If any such timers exist,
1253 * they are run immediately and then removed from the timer queue.
1256 void hrtimer_peek_ahead_timers(void)
1258 struct tick_device
*td
;
1259 unsigned long flags
;
1261 if (!hrtimer_hres_active())
1264 local_irq_save(flags
);
1265 td
= &__get_cpu_var(tick_cpu_device
);
1266 if (td
&& td
->evtdev
)
1267 hrtimer_interrupt(td
->evtdev
);
1268 local_irq_restore(flags
);
1271 #endif /* CONFIG_HIGH_RES_TIMERS */
1274 * Called from timer softirq every jiffy, expire hrtimers:
1276 * For HRT its the fall back code to run the softirq in the timer
1277 * softirq context in case the hrtimer initialization failed or has
1278 * not been done yet.
1280 void hrtimer_run_pending(void)
1282 if (hrtimer_hres_active())
1286 * This _is_ ugly: We have to check in the softirq context,
1287 * whether we can switch to highres and / or nohz mode. The
1288 * clocksource switch happens in the timer interrupt with
1289 * xtime_lock held. Notification from there only sets the
1290 * check bit in the tick_oneshot code, otherwise we might
1291 * deadlock vs. xtime_lock.
1293 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1294 hrtimer_switch_to_hres();
1298 * Called from hardirq context every jiffy
1300 void hrtimer_run_queues(void)
1302 struct rb_node
*node
;
1303 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1304 struct hrtimer_clock_base
*base
;
1305 int index
, gettime
= 1;
1307 if (hrtimer_hres_active())
1310 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1311 base
= &cpu_base
->clock_base
[index
];
1317 hrtimer_get_softirq_time(cpu_base
);
1321 spin_lock(&cpu_base
->lock
);
1323 while ((node
= base
->first
)) {
1324 struct hrtimer
*timer
;
1326 timer
= rb_entry(node
, struct hrtimer
, node
);
1327 if (base
->softirq_time
.tv64
<=
1328 hrtimer_get_expires_tv64(timer
))
1331 __run_hrtimer(timer
);
1333 spin_unlock(&cpu_base
->lock
);
1338 * Sleep related functions:
1340 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1342 struct hrtimer_sleeper
*t
=
1343 container_of(timer
, struct hrtimer_sleeper
, timer
);
1344 struct task_struct
*task
= t
->task
;
1348 wake_up_process(task
);
1350 return HRTIMER_NORESTART
;
1353 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1355 sl
->timer
.function
= hrtimer_wakeup
;
1359 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1361 hrtimer_init_sleeper(t
, current
);
1364 set_current_state(TASK_INTERRUPTIBLE
);
1365 hrtimer_start_expires(&t
->timer
, mode
);
1366 if (!hrtimer_active(&t
->timer
))
1369 if (likely(t
->task
))
1372 hrtimer_cancel(&t
->timer
);
1373 mode
= HRTIMER_MODE_ABS
;
1375 } while (t
->task
&& !signal_pending(current
));
1377 __set_current_state(TASK_RUNNING
);
1379 return t
->task
== NULL
;
1382 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1384 struct timespec rmt
;
1387 rem
= hrtimer_expires_remaining(timer
);
1390 rmt
= ktime_to_timespec(rem
);
1392 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1398 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1400 struct hrtimer_sleeper t
;
1401 struct timespec __user
*rmtp
;
1404 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1406 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1408 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1411 rmtp
= restart
->nanosleep
.rmtp
;
1413 ret
= update_rmtp(&t
.timer
, rmtp
);
1418 /* The other values in restart are already filled in */
1419 ret
= -ERESTART_RESTARTBLOCK
;
1421 destroy_hrtimer_on_stack(&t
.timer
);
1425 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1426 const enum hrtimer_mode mode
, const clockid_t clockid
)
1428 struct restart_block
*restart
;
1429 struct hrtimer_sleeper t
;
1431 unsigned long slack
;
1433 slack
= current
->timer_slack_ns
;
1434 if (rt_task(current
))
1437 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1438 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1439 if (do_nanosleep(&t
, mode
))
1442 /* Absolute timers do not update the rmtp value and restart: */
1443 if (mode
== HRTIMER_MODE_ABS
) {
1444 ret
= -ERESTARTNOHAND
;
1449 ret
= update_rmtp(&t
.timer
, rmtp
);
1454 restart
= ¤t_thread_info()->restart_block
;
1455 restart
->fn
= hrtimer_nanosleep_restart
;
1456 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1457 restart
->nanosleep
.rmtp
= rmtp
;
1458 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1460 ret
= -ERESTART_RESTARTBLOCK
;
1462 destroy_hrtimer_on_stack(&t
.timer
);
1467 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1471 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1474 if (!timespec_valid(&tu
))
1477 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1481 * Functions related to boot-time initialization:
1483 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1485 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1488 spin_lock_init(&cpu_base
->lock
);
1490 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1491 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1493 hrtimer_init_hres(cpu_base
);
1496 #ifdef CONFIG_HOTPLUG_CPU
1498 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1499 struct hrtimer_clock_base
*new_base
)
1501 struct hrtimer
*timer
;
1502 struct rb_node
*node
;
1504 while ((node
= rb_first(&old_base
->active
))) {
1505 timer
= rb_entry(node
, struct hrtimer
, node
);
1506 BUG_ON(hrtimer_callback_running(timer
));
1507 debug_hrtimer_deactivate(timer
);
1510 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1511 * timer could be seen as !active and just vanish away
1512 * under us on another CPU
1514 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1515 timer
->base
= new_base
;
1517 * Enqueue the timers on the new cpu, but do not reprogram
1518 * the timer as that would enable a deadlock between
1519 * hrtimer_enqueue_reprogramm() running the timer and us still
1520 * holding a nested base lock.
1522 * Instead we tickle the hrtimer interrupt after the migration
1523 * is done, which will run all expired timers and re-programm
1526 enqueue_hrtimer(timer
, new_base
, 0);
1528 /* Clear the migration state bit */
1529 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1533 static int migrate_hrtimers(int scpu
)
1535 struct hrtimer_cpu_base
*old_base
, *new_base
;
1538 BUG_ON(cpu_online(scpu
));
1539 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1540 new_base
= &get_cpu_var(hrtimer_bases
);
1542 dcpu
= smp_processor_id();
1544 tick_cancel_sched_timer(scpu
);
1546 * The caller is globally serialized and nobody else
1547 * takes two locks at once, deadlock is not possible.
1549 spin_lock_irq(&new_base
->lock
);
1550 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1552 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1553 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1554 &new_base
->clock_base
[i
]);
1557 spin_unlock(&old_base
->lock
);
1558 spin_unlock_irq(&new_base
->lock
);
1559 put_cpu_var(hrtimer_bases
);
1564 static void tickle_timers(void *arg
)
1566 hrtimer_peek_ahead_timers();
1569 #endif /* CONFIG_HOTPLUG_CPU */
1571 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1572 unsigned long action
, void *hcpu
)
1574 int scpu
= (long)hcpu
;
1578 case CPU_UP_PREPARE
:
1579 case CPU_UP_PREPARE_FROZEN
:
1580 init_hrtimers_cpu(scpu
);
1583 #ifdef CONFIG_HOTPLUG_CPU
1585 case CPU_DEAD_FROZEN
:
1589 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1590 dcpu
= migrate_hrtimers(scpu
);
1591 smp_call_function_single(dcpu
, tickle_timers
, NULL
, 0);
1603 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1604 .notifier_call
= hrtimer_cpu_notify
,
1607 void __init
hrtimers_init(void)
1609 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1610 (void *)(long)smp_processor_id());
1611 register_cpu_notifier(&hrtimers_nb
);
1615 * schedule_hrtimeout_range - sleep until timeout
1616 * @expires: timeout value (ktime_t)
1617 * @delta: slack in expires timeout (ktime_t)
1618 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1620 * Make the current task sleep until the given expiry time has
1621 * elapsed. The routine will return immediately unless
1622 * the current task state has been set (see set_current_state()).
1624 * The @delta argument gives the kernel the freedom to schedule the
1625 * actual wakeup to a time that is both power and performance friendly.
1626 * The kernel give the normal best effort behavior for "@expires+@delta",
1627 * but may decide to fire the timer earlier, but no earlier than @expires.
1629 * You can set the task state as follows -
1631 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1632 * pass before the routine returns.
1634 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1635 * delivered to the current task.
1637 * The current task state is guaranteed to be TASK_RUNNING when this
1640 * Returns 0 when the timer has expired otherwise -EINTR
1642 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1643 const enum hrtimer_mode mode
)
1645 struct hrtimer_sleeper t
;
1648 * Optimize when a zero timeout value is given. It does not
1649 * matter whether this is an absolute or a relative time.
1651 if (expires
&& !expires
->tv64
) {
1652 __set_current_state(TASK_RUNNING
);
1657 * A NULL parameter means "inifinte"
1661 __set_current_state(TASK_RUNNING
);
1665 hrtimer_init_on_stack(&t
.timer
, CLOCK_MONOTONIC
, mode
);
1666 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1668 hrtimer_init_sleeper(&t
, current
);
1670 hrtimer_start_expires(&t
.timer
, mode
);
1671 if (!hrtimer_active(&t
.timer
))
1677 hrtimer_cancel(&t
.timer
);
1678 destroy_hrtimer_on_stack(&t
.timer
);
1680 __set_current_state(TASK_RUNNING
);
1682 return !t
.task
? 0 : -EINTR
;
1684 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1687 * schedule_hrtimeout - sleep until timeout
1688 * @expires: timeout value (ktime_t)
1689 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1691 * Make the current task sleep until the given expiry time has
1692 * elapsed. The routine will return immediately unless
1693 * the current task state has been set (see set_current_state()).
1695 * You can set the task state as follows -
1697 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1698 * pass before the routine returns.
1700 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1701 * delivered to the current task.
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1706 * Returns 0 when the timer has expired otherwise -EINTR
1708 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1709 const enum hrtimer_mode mode
)
1711 return schedule_hrtimeout_range(expires
, 0, mode
);
1713 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);