KVM: Add local get_mtrr_type() to support MTRR
[linux-2.6/mini2440.git] / arch / x86 / kvm / x86.c
blob0edf75339f3ac8cab3b0a6a5b81b0018a6270b52
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/intel-iommu.h>
39 #include <asm/uaccess.h>
40 #include <asm/msr.h>
41 #include <asm/desc.h>
42 #include <asm/mtrr.h>
44 #define MAX_IO_MSRS 256
45 #define CR0_RESERVED_BITS \
46 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
47 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
48 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
49 #define CR4_RESERVED_BITS \
50 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
51 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
52 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
53 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
55 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
56 /* EFER defaults:
57 * - enable syscall per default because its emulated by KVM
58 * - enable LME and LMA per default on 64 bit KVM
60 #ifdef CONFIG_X86_64
61 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
62 #else
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
64 #endif
66 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
67 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
69 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
70 struct kvm_cpuid_entry2 __user *entries);
72 struct kvm_x86_ops *kvm_x86_ops;
73 EXPORT_SYMBOL_GPL(kvm_x86_ops);
75 struct kvm_stats_debugfs_item debugfs_entries[] = {
76 { "pf_fixed", VCPU_STAT(pf_fixed) },
77 { "pf_guest", VCPU_STAT(pf_guest) },
78 { "tlb_flush", VCPU_STAT(tlb_flush) },
79 { "invlpg", VCPU_STAT(invlpg) },
80 { "exits", VCPU_STAT(exits) },
81 { "io_exits", VCPU_STAT(io_exits) },
82 { "mmio_exits", VCPU_STAT(mmio_exits) },
83 { "signal_exits", VCPU_STAT(signal_exits) },
84 { "irq_window", VCPU_STAT(irq_window_exits) },
85 { "nmi_window", VCPU_STAT(nmi_window_exits) },
86 { "halt_exits", VCPU_STAT(halt_exits) },
87 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
88 { "hypercalls", VCPU_STAT(hypercalls) },
89 { "request_irq", VCPU_STAT(request_irq_exits) },
90 { "request_nmi", VCPU_STAT(request_nmi_exits) },
91 { "irq_exits", VCPU_STAT(irq_exits) },
92 { "host_state_reload", VCPU_STAT(host_state_reload) },
93 { "efer_reload", VCPU_STAT(efer_reload) },
94 { "fpu_reload", VCPU_STAT(fpu_reload) },
95 { "insn_emulation", VCPU_STAT(insn_emulation) },
96 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
97 { "irq_injections", VCPU_STAT(irq_injections) },
98 { "nmi_injections", VCPU_STAT(nmi_injections) },
99 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
100 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
101 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
102 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
103 { "mmu_flooded", VM_STAT(mmu_flooded) },
104 { "mmu_recycled", VM_STAT(mmu_recycled) },
105 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
106 { "mmu_unsync", VM_STAT(mmu_unsync) },
107 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
108 { "largepages", VM_STAT(lpages) },
109 { NULL }
112 unsigned long segment_base(u16 selector)
114 struct descriptor_table gdt;
115 struct desc_struct *d;
116 unsigned long table_base;
117 unsigned long v;
119 if (selector == 0)
120 return 0;
122 asm("sgdt %0" : "=m"(gdt));
123 table_base = gdt.base;
125 if (selector & 4) { /* from ldt */
126 u16 ldt_selector;
128 asm("sldt %0" : "=g"(ldt_selector));
129 table_base = segment_base(ldt_selector);
131 d = (struct desc_struct *)(table_base + (selector & ~7));
132 v = d->base0 | ((unsigned long)d->base1 << 16) |
133 ((unsigned long)d->base2 << 24);
134 #ifdef CONFIG_X86_64
135 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
136 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
137 #endif
138 return v;
140 EXPORT_SYMBOL_GPL(segment_base);
142 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
144 if (irqchip_in_kernel(vcpu->kvm))
145 return vcpu->arch.apic_base;
146 else
147 return vcpu->arch.apic_base;
149 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
151 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
153 /* TODO: reserve bits check */
154 if (irqchip_in_kernel(vcpu->kvm))
155 kvm_lapic_set_base(vcpu, data);
156 else
157 vcpu->arch.apic_base = data;
159 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
161 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
163 WARN_ON(vcpu->arch.exception.pending);
164 vcpu->arch.exception.pending = true;
165 vcpu->arch.exception.has_error_code = false;
166 vcpu->arch.exception.nr = nr;
168 EXPORT_SYMBOL_GPL(kvm_queue_exception);
170 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
171 u32 error_code)
173 ++vcpu->stat.pf_guest;
174 if (vcpu->arch.exception.pending) {
175 if (vcpu->arch.exception.nr == PF_VECTOR) {
176 printk(KERN_DEBUG "kvm: inject_page_fault:"
177 " double fault 0x%lx\n", addr);
178 vcpu->arch.exception.nr = DF_VECTOR;
179 vcpu->arch.exception.error_code = 0;
180 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
181 /* triple fault -> shutdown */
182 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
184 return;
186 vcpu->arch.cr2 = addr;
187 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
190 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
192 vcpu->arch.nmi_pending = 1;
194 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
196 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
198 WARN_ON(vcpu->arch.exception.pending);
199 vcpu->arch.exception.pending = true;
200 vcpu->arch.exception.has_error_code = true;
201 vcpu->arch.exception.nr = nr;
202 vcpu->arch.exception.error_code = error_code;
204 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
206 static void __queue_exception(struct kvm_vcpu *vcpu)
208 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
209 vcpu->arch.exception.has_error_code,
210 vcpu->arch.exception.error_code);
214 * Load the pae pdptrs. Return true is they are all valid.
216 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
218 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
219 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
220 int i;
221 int ret;
222 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
224 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
225 offset * sizeof(u64), sizeof(pdpte));
226 if (ret < 0) {
227 ret = 0;
228 goto out;
230 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
231 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
232 ret = 0;
233 goto out;
236 ret = 1;
238 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
239 out:
241 return ret;
243 EXPORT_SYMBOL_GPL(load_pdptrs);
245 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
247 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248 bool changed = true;
249 int r;
251 if (is_long_mode(vcpu) || !is_pae(vcpu))
252 return false;
254 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
255 if (r < 0)
256 goto out;
257 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
258 out:
260 return changed;
263 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
265 if (cr0 & CR0_RESERVED_BITS) {
266 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
267 cr0, vcpu->arch.cr0);
268 kvm_inject_gp(vcpu, 0);
269 return;
272 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
273 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
274 kvm_inject_gp(vcpu, 0);
275 return;
278 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
279 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
280 "and a clear PE flag\n");
281 kvm_inject_gp(vcpu, 0);
282 return;
285 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
286 #ifdef CONFIG_X86_64
287 if ((vcpu->arch.shadow_efer & EFER_LME)) {
288 int cs_db, cs_l;
290 if (!is_pae(vcpu)) {
291 printk(KERN_DEBUG "set_cr0: #GP, start paging "
292 "in long mode while PAE is disabled\n");
293 kvm_inject_gp(vcpu, 0);
294 return;
296 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
297 if (cs_l) {
298 printk(KERN_DEBUG "set_cr0: #GP, start paging "
299 "in long mode while CS.L == 1\n");
300 kvm_inject_gp(vcpu, 0);
301 return;
304 } else
305 #endif
306 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
307 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
308 "reserved bits\n");
309 kvm_inject_gp(vcpu, 0);
310 return;
315 kvm_x86_ops->set_cr0(vcpu, cr0);
316 vcpu->arch.cr0 = cr0;
318 kvm_mmu_reset_context(vcpu);
319 return;
321 EXPORT_SYMBOL_GPL(kvm_set_cr0);
323 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
325 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
326 KVMTRACE_1D(LMSW, vcpu,
327 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
328 handler);
330 EXPORT_SYMBOL_GPL(kvm_lmsw);
332 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
334 if (cr4 & CR4_RESERVED_BITS) {
335 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
340 if (is_long_mode(vcpu)) {
341 if (!(cr4 & X86_CR4_PAE)) {
342 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
343 "in long mode\n");
344 kvm_inject_gp(vcpu, 0);
345 return;
347 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
348 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
349 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
350 kvm_inject_gp(vcpu, 0);
351 return;
354 if (cr4 & X86_CR4_VMXE) {
355 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
356 kvm_inject_gp(vcpu, 0);
357 return;
359 kvm_x86_ops->set_cr4(vcpu, cr4);
360 vcpu->arch.cr4 = cr4;
361 kvm_mmu_reset_context(vcpu);
363 EXPORT_SYMBOL_GPL(kvm_set_cr4);
365 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
367 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
368 kvm_mmu_sync_roots(vcpu);
369 kvm_mmu_flush_tlb(vcpu);
370 return;
373 if (is_long_mode(vcpu)) {
374 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
375 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
376 kvm_inject_gp(vcpu, 0);
377 return;
379 } else {
380 if (is_pae(vcpu)) {
381 if (cr3 & CR3_PAE_RESERVED_BITS) {
382 printk(KERN_DEBUG
383 "set_cr3: #GP, reserved bits\n");
384 kvm_inject_gp(vcpu, 0);
385 return;
387 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
388 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
389 "reserved bits\n");
390 kvm_inject_gp(vcpu, 0);
391 return;
395 * We don't check reserved bits in nonpae mode, because
396 * this isn't enforced, and VMware depends on this.
401 * Does the new cr3 value map to physical memory? (Note, we
402 * catch an invalid cr3 even in real-mode, because it would
403 * cause trouble later on when we turn on paging anyway.)
405 * A real CPU would silently accept an invalid cr3 and would
406 * attempt to use it - with largely undefined (and often hard
407 * to debug) behavior on the guest side.
409 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
410 kvm_inject_gp(vcpu, 0);
411 else {
412 vcpu->arch.cr3 = cr3;
413 vcpu->arch.mmu.new_cr3(vcpu);
416 EXPORT_SYMBOL_GPL(kvm_set_cr3);
418 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
420 if (cr8 & CR8_RESERVED_BITS) {
421 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
422 kvm_inject_gp(vcpu, 0);
423 return;
425 if (irqchip_in_kernel(vcpu->kvm))
426 kvm_lapic_set_tpr(vcpu, cr8);
427 else
428 vcpu->arch.cr8 = cr8;
430 EXPORT_SYMBOL_GPL(kvm_set_cr8);
432 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
434 if (irqchip_in_kernel(vcpu->kvm))
435 return kvm_lapic_get_cr8(vcpu);
436 else
437 return vcpu->arch.cr8;
439 EXPORT_SYMBOL_GPL(kvm_get_cr8);
442 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
443 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
445 * This list is modified at module load time to reflect the
446 * capabilities of the host cpu.
448 static u32 msrs_to_save[] = {
449 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
450 MSR_K6_STAR,
451 #ifdef CONFIG_X86_64
452 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
453 #endif
454 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
455 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
458 static unsigned num_msrs_to_save;
460 static u32 emulated_msrs[] = {
461 MSR_IA32_MISC_ENABLE,
464 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
466 if (efer & efer_reserved_bits) {
467 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
468 efer);
469 kvm_inject_gp(vcpu, 0);
470 return;
473 if (is_paging(vcpu)
474 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
475 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
476 kvm_inject_gp(vcpu, 0);
477 return;
480 kvm_x86_ops->set_efer(vcpu, efer);
482 efer &= ~EFER_LMA;
483 efer |= vcpu->arch.shadow_efer & EFER_LMA;
485 vcpu->arch.shadow_efer = efer;
488 void kvm_enable_efer_bits(u64 mask)
490 efer_reserved_bits &= ~mask;
492 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
496 * Writes msr value into into the appropriate "register".
497 * Returns 0 on success, non-0 otherwise.
498 * Assumes vcpu_load() was already called.
500 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
502 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
506 * Adapt set_msr() to msr_io()'s calling convention
508 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
510 return kvm_set_msr(vcpu, index, *data);
513 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
515 static int version;
516 struct pvclock_wall_clock wc;
517 struct timespec now, sys, boot;
519 if (!wall_clock)
520 return;
522 version++;
524 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
527 * The guest calculates current wall clock time by adding
528 * system time (updated by kvm_write_guest_time below) to the
529 * wall clock specified here. guest system time equals host
530 * system time for us, thus we must fill in host boot time here.
532 now = current_kernel_time();
533 ktime_get_ts(&sys);
534 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
536 wc.sec = boot.tv_sec;
537 wc.nsec = boot.tv_nsec;
538 wc.version = version;
540 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
542 version++;
543 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
546 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
548 uint32_t quotient, remainder;
550 /* Don't try to replace with do_div(), this one calculates
551 * "(dividend << 32) / divisor" */
552 __asm__ ( "divl %4"
553 : "=a" (quotient), "=d" (remainder)
554 : "0" (0), "1" (dividend), "r" (divisor) );
555 return quotient;
558 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
560 uint64_t nsecs = 1000000000LL;
561 int32_t shift = 0;
562 uint64_t tps64;
563 uint32_t tps32;
565 tps64 = tsc_khz * 1000LL;
566 while (tps64 > nsecs*2) {
567 tps64 >>= 1;
568 shift--;
571 tps32 = (uint32_t)tps64;
572 while (tps32 <= (uint32_t)nsecs) {
573 tps32 <<= 1;
574 shift++;
577 hv_clock->tsc_shift = shift;
578 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
580 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
581 __func__, tsc_khz, hv_clock->tsc_shift,
582 hv_clock->tsc_to_system_mul);
585 static void kvm_write_guest_time(struct kvm_vcpu *v)
587 struct timespec ts;
588 unsigned long flags;
589 struct kvm_vcpu_arch *vcpu = &v->arch;
590 void *shared_kaddr;
592 if ((!vcpu->time_page))
593 return;
595 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
596 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
597 vcpu->hv_clock_tsc_khz = tsc_khz;
600 /* Keep irq disabled to prevent changes to the clock */
601 local_irq_save(flags);
602 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
603 &vcpu->hv_clock.tsc_timestamp);
604 ktime_get_ts(&ts);
605 local_irq_restore(flags);
607 /* With all the info we got, fill in the values */
609 vcpu->hv_clock.system_time = ts.tv_nsec +
610 (NSEC_PER_SEC * (u64)ts.tv_sec);
612 * The interface expects us to write an even number signaling that the
613 * update is finished. Since the guest won't see the intermediate
614 * state, we just increase by 2 at the end.
616 vcpu->hv_clock.version += 2;
618 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
620 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
621 sizeof(vcpu->hv_clock));
623 kunmap_atomic(shared_kaddr, KM_USER0);
625 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
628 static bool msr_mtrr_valid(unsigned msr)
630 switch (msr) {
631 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
632 case MSR_MTRRfix64K_00000:
633 case MSR_MTRRfix16K_80000:
634 case MSR_MTRRfix16K_A0000:
635 case MSR_MTRRfix4K_C0000:
636 case MSR_MTRRfix4K_C8000:
637 case MSR_MTRRfix4K_D0000:
638 case MSR_MTRRfix4K_D8000:
639 case MSR_MTRRfix4K_E0000:
640 case MSR_MTRRfix4K_E8000:
641 case MSR_MTRRfix4K_F0000:
642 case MSR_MTRRfix4K_F8000:
643 case MSR_MTRRdefType:
644 case MSR_IA32_CR_PAT:
645 return true;
646 case 0x2f8:
647 return true;
649 return false;
652 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
654 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
656 if (!msr_mtrr_valid(msr))
657 return 1;
659 if (msr == MSR_MTRRdefType) {
660 vcpu->arch.mtrr_state.def_type = data;
661 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
662 } else if (msr == MSR_MTRRfix64K_00000)
663 p[0] = data;
664 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
665 p[1 + msr - MSR_MTRRfix16K_80000] = data;
666 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
667 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
668 else if (msr == MSR_IA32_CR_PAT)
669 vcpu->arch.pat = data;
670 else { /* Variable MTRRs */
671 int idx, is_mtrr_mask;
672 u64 *pt;
674 idx = (msr - 0x200) / 2;
675 is_mtrr_mask = msr - 0x200 - 2 * idx;
676 if (!is_mtrr_mask)
677 pt =
678 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
679 else
680 pt =
681 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
682 *pt = data;
685 kvm_mmu_reset_context(vcpu);
686 return 0;
689 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
691 switch (msr) {
692 case MSR_EFER:
693 set_efer(vcpu, data);
694 break;
695 case MSR_IA32_MC0_STATUS:
696 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
697 __func__, data);
698 break;
699 case MSR_IA32_MCG_STATUS:
700 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
701 __func__, data);
702 break;
703 case MSR_IA32_MCG_CTL:
704 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
705 __func__, data);
706 break;
707 case MSR_IA32_DEBUGCTLMSR:
708 if (!data) {
709 /* We support the non-activated case already */
710 break;
711 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
712 /* Values other than LBR and BTF are vendor-specific,
713 thus reserved and should throw a #GP */
714 return 1;
716 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
717 __func__, data);
718 break;
719 case MSR_IA32_UCODE_REV:
720 case MSR_IA32_UCODE_WRITE:
721 break;
722 case 0x200 ... 0x2ff:
723 return set_msr_mtrr(vcpu, msr, data);
724 case MSR_IA32_APICBASE:
725 kvm_set_apic_base(vcpu, data);
726 break;
727 case MSR_IA32_MISC_ENABLE:
728 vcpu->arch.ia32_misc_enable_msr = data;
729 break;
730 case MSR_KVM_WALL_CLOCK:
731 vcpu->kvm->arch.wall_clock = data;
732 kvm_write_wall_clock(vcpu->kvm, data);
733 break;
734 case MSR_KVM_SYSTEM_TIME: {
735 if (vcpu->arch.time_page) {
736 kvm_release_page_dirty(vcpu->arch.time_page);
737 vcpu->arch.time_page = NULL;
740 vcpu->arch.time = data;
742 /* we verify if the enable bit is set... */
743 if (!(data & 1))
744 break;
746 /* ...but clean it before doing the actual write */
747 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
749 vcpu->arch.time_page =
750 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
752 if (is_error_page(vcpu->arch.time_page)) {
753 kvm_release_page_clean(vcpu->arch.time_page);
754 vcpu->arch.time_page = NULL;
757 kvm_write_guest_time(vcpu);
758 break;
760 default:
761 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
762 return 1;
764 return 0;
766 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
770 * Reads an msr value (of 'msr_index') into 'pdata'.
771 * Returns 0 on success, non-0 otherwise.
772 * Assumes vcpu_load() was already called.
774 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
776 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
779 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
781 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
783 if (!msr_mtrr_valid(msr))
784 return 1;
786 if (msr == MSR_MTRRdefType)
787 *pdata = vcpu->arch.mtrr_state.def_type +
788 (vcpu->arch.mtrr_state.enabled << 10);
789 else if (msr == MSR_MTRRfix64K_00000)
790 *pdata = p[0];
791 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
792 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
793 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
794 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
795 else if (msr == MSR_IA32_CR_PAT)
796 *pdata = vcpu->arch.pat;
797 else { /* Variable MTRRs */
798 int idx, is_mtrr_mask;
799 u64 *pt;
801 idx = (msr - 0x200) / 2;
802 is_mtrr_mask = msr - 0x200 - 2 * idx;
803 if (!is_mtrr_mask)
804 pt =
805 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
806 else
807 pt =
808 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
809 *pdata = *pt;
812 return 0;
815 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
817 u64 data;
819 switch (msr) {
820 case 0xc0010010: /* SYSCFG */
821 case 0xc0010015: /* HWCR */
822 case MSR_IA32_PLATFORM_ID:
823 case MSR_IA32_P5_MC_ADDR:
824 case MSR_IA32_P5_MC_TYPE:
825 case MSR_IA32_MC0_CTL:
826 case MSR_IA32_MCG_STATUS:
827 case MSR_IA32_MCG_CAP:
828 case MSR_IA32_MCG_CTL:
829 case MSR_IA32_MC0_MISC:
830 case MSR_IA32_MC0_MISC+4:
831 case MSR_IA32_MC0_MISC+8:
832 case MSR_IA32_MC0_MISC+12:
833 case MSR_IA32_MC0_MISC+16:
834 case MSR_IA32_MC0_MISC+20:
835 case MSR_IA32_UCODE_REV:
836 case MSR_IA32_EBL_CR_POWERON:
837 case MSR_IA32_DEBUGCTLMSR:
838 case MSR_IA32_LASTBRANCHFROMIP:
839 case MSR_IA32_LASTBRANCHTOIP:
840 case MSR_IA32_LASTINTFROMIP:
841 case MSR_IA32_LASTINTTOIP:
842 data = 0;
843 break;
844 case MSR_MTRRcap:
845 data = 0x500 | KVM_NR_VAR_MTRR;
846 break;
847 case 0x200 ... 0x2ff:
848 return get_msr_mtrr(vcpu, msr, pdata);
849 case 0xcd: /* fsb frequency */
850 data = 3;
851 break;
852 case MSR_IA32_APICBASE:
853 data = kvm_get_apic_base(vcpu);
854 break;
855 case MSR_IA32_MISC_ENABLE:
856 data = vcpu->arch.ia32_misc_enable_msr;
857 break;
858 case MSR_IA32_PERF_STATUS:
859 /* TSC increment by tick */
860 data = 1000ULL;
861 /* CPU multiplier */
862 data |= (((uint64_t)4ULL) << 40);
863 break;
864 case MSR_EFER:
865 data = vcpu->arch.shadow_efer;
866 break;
867 case MSR_KVM_WALL_CLOCK:
868 data = vcpu->kvm->arch.wall_clock;
869 break;
870 case MSR_KVM_SYSTEM_TIME:
871 data = vcpu->arch.time;
872 break;
873 default:
874 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
875 return 1;
877 *pdata = data;
878 return 0;
880 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
883 * Read or write a bunch of msrs. All parameters are kernel addresses.
885 * @return number of msrs set successfully.
887 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
888 struct kvm_msr_entry *entries,
889 int (*do_msr)(struct kvm_vcpu *vcpu,
890 unsigned index, u64 *data))
892 int i;
894 vcpu_load(vcpu);
896 down_read(&vcpu->kvm->slots_lock);
897 for (i = 0; i < msrs->nmsrs; ++i)
898 if (do_msr(vcpu, entries[i].index, &entries[i].data))
899 break;
900 up_read(&vcpu->kvm->slots_lock);
902 vcpu_put(vcpu);
904 return i;
908 * Read or write a bunch of msrs. Parameters are user addresses.
910 * @return number of msrs set successfully.
912 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
913 int (*do_msr)(struct kvm_vcpu *vcpu,
914 unsigned index, u64 *data),
915 int writeback)
917 struct kvm_msrs msrs;
918 struct kvm_msr_entry *entries;
919 int r, n;
920 unsigned size;
922 r = -EFAULT;
923 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
924 goto out;
926 r = -E2BIG;
927 if (msrs.nmsrs >= MAX_IO_MSRS)
928 goto out;
930 r = -ENOMEM;
931 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
932 entries = vmalloc(size);
933 if (!entries)
934 goto out;
936 r = -EFAULT;
937 if (copy_from_user(entries, user_msrs->entries, size))
938 goto out_free;
940 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
941 if (r < 0)
942 goto out_free;
944 r = -EFAULT;
945 if (writeback && copy_to_user(user_msrs->entries, entries, size))
946 goto out_free;
948 r = n;
950 out_free:
951 vfree(entries);
952 out:
953 return r;
956 int kvm_dev_ioctl_check_extension(long ext)
958 int r;
960 switch (ext) {
961 case KVM_CAP_IRQCHIP:
962 case KVM_CAP_HLT:
963 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
964 case KVM_CAP_USER_MEMORY:
965 case KVM_CAP_SET_TSS_ADDR:
966 case KVM_CAP_EXT_CPUID:
967 case KVM_CAP_CLOCKSOURCE:
968 case KVM_CAP_PIT:
969 case KVM_CAP_NOP_IO_DELAY:
970 case KVM_CAP_MP_STATE:
971 case KVM_CAP_SYNC_MMU:
972 r = 1;
973 break;
974 case KVM_CAP_COALESCED_MMIO:
975 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
976 break;
977 case KVM_CAP_VAPIC:
978 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
979 break;
980 case KVM_CAP_NR_VCPUS:
981 r = KVM_MAX_VCPUS;
982 break;
983 case KVM_CAP_NR_MEMSLOTS:
984 r = KVM_MEMORY_SLOTS;
985 break;
986 case KVM_CAP_PV_MMU:
987 r = !tdp_enabled;
988 break;
989 case KVM_CAP_IOMMU:
990 r = intel_iommu_found();
991 break;
992 default:
993 r = 0;
994 break;
996 return r;
1000 long kvm_arch_dev_ioctl(struct file *filp,
1001 unsigned int ioctl, unsigned long arg)
1003 void __user *argp = (void __user *)arg;
1004 long r;
1006 switch (ioctl) {
1007 case KVM_GET_MSR_INDEX_LIST: {
1008 struct kvm_msr_list __user *user_msr_list = argp;
1009 struct kvm_msr_list msr_list;
1010 unsigned n;
1012 r = -EFAULT;
1013 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1014 goto out;
1015 n = msr_list.nmsrs;
1016 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1017 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1018 goto out;
1019 r = -E2BIG;
1020 if (n < num_msrs_to_save)
1021 goto out;
1022 r = -EFAULT;
1023 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1024 num_msrs_to_save * sizeof(u32)))
1025 goto out;
1026 if (copy_to_user(user_msr_list->indices
1027 + num_msrs_to_save * sizeof(u32),
1028 &emulated_msrs,
1029 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1030 goto out;
1031 r = 0;
1032 break;
1034 case KVM_GET_SUPPORTED_CPUID: {
1035 struct kvm_cpuid2 __user *cpuid_arg = argp;
1036 struct kvm_cpuid2 cpuid;
1038 r = -EFAULT;
1039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1040 goto out;
1041 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1042 cpuid_arg->entries);
1043 if (r)
1044 goto out;
1046 r = -EFAULT;
1047 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1048 goto out;
1049 r = 0;
1050 break;
1052 default:
1053 r = -EINVAL;
1055 out:
1056 return r;
1059 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1061 kvm_x86_ops->vcpu_load(vcpu, cpu);
1062 kvm_write_guest_time(vcpu);
1065 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1067 kvm_x86_ops->vcpu_put(vcpu);
1068 kvm_put_guest_fpu(vcpu);
1071 static int is_efer_nx(void)
1073 u64 efer;
1075 rdmsrl(MSR_EFER, efer);
1076 return efer & EFER_NX;
1079 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1081 int i;
1082 struct kvm_cpuid_entry2 *e, *entry;
1084 entry = NULL;
1085 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1086 e = &vcpu->arch.cpuid_entries[i];
1087 if (e->function == 0x80000001) {
1088 entry = e;
1089 break;
1092 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1093 entry->edx &= ~(1 << 20);
1094 printk(KERN_INFO "kvm: guest NX capability removed\n");
1098 /* when an old userspace process fills a new kernel module */
1099 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1100 struct kvm_cpuid *cpuid,
1101 struct kvm_cpuid_entry __user *entries)
1103 int r, i;
1104 struct kvm_cpuid_entry *cpuid_entries;
1106 r = -E2BIG;
1107 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1108 goto out;
1109 r = -ENOMEM;
1110 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1111 if (!cpuid_entries)
1112 goto out;
1113 r = -EFAULT;
1114 if (copy_from_user(cpuid_entries, entries,
1115 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1116 goto out_free;
1117 for (i = 0; i < cpuid->nent; i++) {
1118 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1119 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1120 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1121 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1122 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1123 vcpu->arch.cpuid_entries[i].index = 0;
1124 vcpu->arch.cpuid_entries[i].flags = 0;
1125 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1126 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1127 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1129 vcpu->arch.cpuid_nent = cpuid->nent;
1130 cpuid_fix_nx_cap(vcpu);
1131 r = 0;
1133 out_free:
1134 vfree(cpuid_entries);
1135 out:
1136 return r;
1139 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1140 struct kvm_cpuid2 *cpuid,
1141 struct kvm_cpuid_entry2 __user *entries)
1143 int r;
1145 r = -E2BIG;
1146 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1147 goto out;
1148 r = -EFAULT;
1149 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1150 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1151 goto out;
1152 vcpu->arch.cpuid_nent = cpuid->nent;
1153 return 0;
1155 out:
1156 return r;
1159 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1160 struct kvm_cpuid2 *cpuid,
1161 struct kvm_cpuid_entry2 __user *entries)
1163 int r;
1165 r = -E2BIG;
1166 if (cpuid->nent < vcpu->arch.cpuid_nent)
1167 goto out;
1168 r = -EFAULT;
1169 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1170 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1171 goto out;
1172 return 0;
1174 out:
1175 cpuid->nent = vcpu->arch.cpuid_nent;
1176 return r;
1179 static inline u32 bit(int bitno)
1181 return 1 << (bitno & 31);
1184 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1185 u32 index)
1187 entry->function = function;
1188 entry->index = index;
1189 cpuid_count(entry->function, entry->index,
1190 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1191 entry->flags = 0;
1194 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1195 u32 index, int *nent, int maxnent)
1197 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1198 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1199 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1200 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1201 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1202 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1203 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1204 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1205 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1206 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1207 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1208 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1209 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1210 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1211 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1212 bit(X86_FEATURE_PGE) |
1213 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1214 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1215 bit(X86_FEATURE_SYSCALL) |
1216 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1217 #ifdef CONFIG_X86_64
1218 bit(X86_FEATURE_LM) |
1219 #endif
1220 bit(X86_FEATURE_MMXEXT) |
1221 bit(X86_FEATURE_3DNOWEXT) |
1222 bit(X86_FEATURE_3DNOW);
1223 const u32 kvm_supported_word3_x86_features =
1224 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1225 const u32 kvm_supported_word6_x86_features =
1226 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1228 /* all func 2 cpuid_count() should be called on the same cpu */
1229 get_cpu();
1230 do_cpuid_1_ent(entry, function, index);
1231 ++*nent;
1233 switch (function) {
1234 case 0:
1235 entry->eax = min(entry->eax, (u32)0xb);
1236 break;
1237 case 1:
1238 entry->edx &= kvm_supported_word0_x86_features;
1239 entry->ecx &= kvm_supported_word3_x86_features;
1240 break;
1241 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1242 * may return different values. This forces us to get_cpu() before
1243 * issuing the first command, and also to emulate this annoying behavior
1244 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1245 case 2: {
1246 int t, times = entry->eax & 0xff;
1248 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1249 for (t = 1; t < times && *nent < maxnent; ++t) {
1250 do_cpuid_1_ent(&entry[t], function, 0);
1251 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1252 ++*nent;
1254 break;
1256 /* function 4 and 0xb have additional index. */
1257 case 4: {
1258 int i, cache_type;
1260 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1261 /* read more entries until cache_type is zero */
1262 for (i = 1; *nent < maxnent; ++i) {
1263 cache_type = entry[i - 1].eax & 0x1f;
1264 if (!cache_type)
1265 break;
1266 do_cpuid_1_ent(&entry[i], function, i);
1267 entry[i].flags |=
1268 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1269 ++*nent;
1271 break;
1273 case 0xb: {
1274 int i, level_type;
1276 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1277 /* read more entries until level_type is zero */
1278 for (i = 1; *nent < maxnent; ++i) {
1279 level_type = entry[i - 1].ecx & 0xff;
1280 if (!level_type)
1281 break;
1282 do_cpuid_1_ent(&entry[i], function, i);
1283 entry[i].flags |=
1284 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1285 ++*nent;
1287 break;
1289 case 0x80000000:
1290 entry->eax = min(entry->eax, 0x8000001a);
1291 break;
1292 case 0x80000001:
1293 entry->edx &= kvm_supported_word1_x86_features;
1294 entry->ecx &= kvm_supported_word6_x86_features;
1295 break;
1297 put_cpu();
1300 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1301 struct kvm_cpuid_entry2 __user *entries)
1303 struct kvm_cpuid_entry2 *cpuid_entries;
1304 int limit, nent = 0, r = -E2BIG;
1305 u32 func;
1307 if (cpuid->nent < 1)
1308 goto out;
1309 r = -ENOMEM;
1310 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1311 if (!cpuid_entries)
1312 goto out;
1314 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1315 limit = cpuid_entries[0].eax;
1316 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1317 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1318 &nent, cpuid->nent);
1319 r = -E2BIG;
1320 if (nent >= cpuid->nent)
1321 goto out_free;
1323 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1324 limit = cpuid_entries[nent - 1].eax;
1325 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1326 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1327 &nent, cpuid->nent);
1328 r = -EFAULT;
1329 if (copy_to_user(entries, cpuid_entries,
1330 nent * sizeof(struct kvm_cpuid_entry2)))
1331 goto out_free;
1332 cpuid->nent = nent;
1333 r = 0;
1335 out_free:
1336 vfree(cpuid_entries);
1337 out:
1338 return r;
1341 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1342 struct kvm_lapic_state *s)
1344 vcpu_load(vcpu);
1345 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1346 vcpu_put(vcpu);
1348 return 0;
1351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1352 struct kvm_lapic_state *s)
1354 vcpu_load(vcpu);
1355 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1356 kvm_apic_post_state_restore(vcpu);
1357 vcpu_put(vcpu);
1359 return 0;
1362 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1363 struct kvm_interrupt *irq)
1365 if (irq->irq < 0 || irq->irq >= 256)
1366 return -EINVAL;
1367 if (irqchip_in_kernel(vcpu->kvm))
1368 return -ENXIO;
1369 vcpu_load(vcpu);
1371 set_bit(irq->irq, vcpu->arch.irq_pending);
1372 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1374 vcpu_put(vcpu);
1376 return 0;
1379 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1381 vcpu_load(vcpu);
1382 kvm_inject_nmi(vcpu);
1383 vcpu_put(vcpu);
1385 return 0;
1388 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1389 struct kvm_tpr_access_ctl *tac)
1391 if (tac->flags)
1392 return -EINVAL;
1393 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1394 return 0;
1397 long kvm_arch_vcpu_ioctl(struct file *filp,
1398 unsigned int ioctl, unsigned long arg)
1400 struct kvm_vcpu *vcpu = filp->private_data;
1401 void __user *argp = (void __user *)arg;
1402 int r;
1403 struct kvm_lapic_state *lapic = NULL;
1405 switch (ioctl) {
1406 case KVM_GET_LAPIC: {
1407 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1409 r = -ENOMEM;
1410 if (!lapic)
1411 goto out;
1412 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1413 if (r)
1414 goto out;
1415 r = -EFAULT;
1416 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1417 goto out;
1418 r = 0;
1419 break;
1421 case KVM_SET_LAPIC: {
1422 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1423 r = -ENOMEM;
1424 if (!lapic)
1425 goto out;
1426 r = -EFAULT;
1427 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1428 goto out;
1429 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1430 if (r)
1431 goto out;
1432 r = 0;
1433 break;
1435 case KVM_INTERRUPT: {
1436 struct kvm_interrupt irq;
1438 r = -EFAULT;
1439 if (copy_from_user(&irq, argp, sizeof irq))
1440 goto out;
1441 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1442 if (r)
1443 goto out;
1444 r = 0;
1445 break;
1447 case KVM_NMI: {
1448 r = kvm_vcpu_ioctl_nmi(vcpu);
1449 if (r)
1450 goto out;
1451 r = 0;
1452 break;
1454 case KVM_SET_CPUID: {
1455 struct kvm_cpuid __user *cpuid_arg = argp;
1456 struct kvm_cpuid cpuid;
1458 r = -EFAULT;
1459 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1460 goto out;
1461 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1462 if (r)
1463 goto out;
1464 break;
1466 case KVM_SET_CPUID2: {
1467 struct kvm_cpuid2 __user *cpuid_arg = argp;
1468 struct kvm_cpuid2 cpuid;
1470 r = -EFAULT;
1471 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1472 goto out;
1473 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1474 cpuid_arg->entries);
1475 if (r)
1476 goto out;
1477 break;
1479 case KVM_GET_CPUID2: {
1480 struct kvm_cpuid2 __user *cpuid_arg = argp;
1481 struct kvm_cpuid2 cpuid;
1483 r = -EFAULT;
1484 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1485 goto out;
1486 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1487 cpuid_arg->entries);
1488 if (r)
1489 goto out;
1490 r = -EFAULT;
1491 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1492 goto out;
1493 r = 0;
1494 break;
1496 case KVM_GET_MSRS:
1497 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1498 break;
1499 case KVM_SET_MSRS:
1500 r = msr_io(vcpu, argp, do_set_msr, 0);
1501 break;
1502 case KVM_TPR_ACCESS_REPORTING: {
1503 struct kvm_tpr_access_ctl tac;
1505 r = -EFAULT;
1506 if (copy_from_user(&tac, argp, sizeof tac))
1507 goto out;
1508 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1509 if (r)
1510 goto out;
1511 r = -EFAULT;
1512 if (copy_to_user(argp, &tac, sizeof tac))
1513 goto out;
1514 r = 0;
1515 break;
1517 case KVM_SET_VAPIC_ADDR: {
1518 struct kvm_vapic_addr va;
1520 r = -EINVAL;
1521 if (!irqchip_in_kernel(vcpu->kvm))
1522 goto out;
1523 r = -EFAULT;
1524 if (copy_from_user(&va, argp, sizeof va))
1525 goto out;
1526 r = 0;
1527 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1528 break;
1530 default:
1531 r = -EINVAL;
1533 out:
1534 if (lapic)
1535 kfree(lapic);
1536 return r;
1539 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1541 int ret;
1543 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1544 return -1;
1545 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1546 return ret;
1549 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1550 u32 kvm_nr_mmu_pages)
1552 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1553 return -EINVAL;
1555 down_write(&kvm->slots_lock);
1557 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1558 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1560 up_write(&kvm->slots_lock);
1561 return 0;
1564 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1566 return kvm->arch.n_alloc_mmu_pages;
1569 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1571 int i;
1572 struct kvm_mem_alias *alias;
1574 for (i = 0; i < kvm->arch.naliases; ++i) {
1575 alias = &kvm->arch.aliases[i];
1576 if (gfn >= alias->base_gfn
1577 && gfn < alias->base_gfn + alias->npages)
1578 return alias->target_gfn + gfn - alias->base_gfn;
1580 return gfn;
1584 * Set a new alias region. Aliases map a portion of physical memory into
1585 * another portion. This is useful for memory windows, for example the PC
1586 * VGA region.
1588 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1589 struct kvm_memory_alias *alias)
1591 int r, n;
1592 struct kvm_mem_alias *p;
1594 r = -EINVAL;
1595 /* General sanity checks */
1596 if (alias->memory_size & (PAGE_SIZE - 1))
1597 goto out;
1598 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1599 goto out;
1600 if (alias->slot >= KVM_ALIAS_SLOTS)
1601 goto out;
1602 if (alias->guest_phys_addr + alias->memory_size
1603 < alias->guest_phys_addr)
1604 goto out;
1605 if (alias->target_phys_addr + alias->memory_size
1606 < alias->target_phys_addr)
1607 goto out;
1609 down_write(&kvm->slots_lock);
1610 spin_lock(&kvm->mmu_lock);
1612 p = &kvm->arch.aliases[alias->slot];
1613 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1614 p->npages = alias->memory_size >> PAGE_SHIFT;
1615 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1617 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1618 if (kvm->arch.aliases[n - 1].npages)
1619 break;
1620 kvm->arch.naliases = n;
1622 spin_unlock(&kvm->mmu_lock);
1623 kvm_mmu_zap_all(kvm);
1625 up_write(&kvm->slots_lock);
1627 return 0;
1629 out:
1630 return r;
1633 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1635 int r;
1637 r = 0;
1638 switch (chip->chip_id) {
1639 case KVM_IRQCHIP_PIC_MASTER:
1640 memcpy(&chip->chip.pic,
1641 &pic_irqchip(kvm)->pics[0],
1642 sizeof(struct kvm_pic_state));
1643 break;
1644 case KVM_IRQCHIP_PIC_SLAVE:
1645 memcpy(&chip->chip.pic,
1646 &pic_irqchip(kvm)->pics[1],
1647 sizeof(struct kvm_pic_state));
1648 break;
1649 case KVM_IRQCHIP_IOAPIC:
1650 memcpy(&chip->chip.ioapic,
1651 ioapic_irqchip(kvm),
1652 sizeof(struct kvm_ioapic_state));
1653 break;
1654 default:
1655 r = -EINVAL;
1656 break;
1658 return r;
1661 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1663 int r;
1665 r = 0;
1666 switch (chip->chip_id) {
1667 case KVM_IRQCHIP_PIC_MASTER:
1668 memcpy(&pic_irqchip(kvm)->pics[0],
1669 &chip->chip.pic,
1670 sizeof(struct kvm_pic_state));
1671 break;
1672 case KVM_IRQCHIP_PIC_SLAVE:
1673 memcpy(&pic_irqchip(kvm)->pics[1],
1674 &chip->chip.pic,
1675 sizeof(struct kvm_pic_state));
1676 break;
1677 case KVM_IRQCHIP_IOAPIC:
1678 memcpy(ioapic_irqchip(kvm),
1679 &chip->chip.ioapic,
1680 sizeof(struct kvm_ioapic_state));
1681 break;
1682 default:
1683 r = -EINVAL;
1684 break;
1686 kvm_pic_update_irq(pic_irqchip(kvm));
1687 return r;
1690 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1692 int r = 0;
1694 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1695 return r;
1698 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1700 int r = 0;
1702 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1703 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1704 return r;
1708 * Get (and clear) the dirty memory log for a memory slot.
1710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1711 struct kvm_dirty_log *log)
1713 int r;
1714 int n;
1715 struct kvm_memory_slot *memslot;
1716 int is_dirty = 0;
1718 down_write(&kvm->slots_lock);
1720 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1721 if (r)
1722 goto out;
1724 /* If nothing is dirty, don't bother messing with page tables. */
1725 if (is_dirty) {
1726 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1727 kvm_flush_remote_tlbs(kvm);
1728 memslot = &kvm->memslots[log->slot];
1729 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1730 memset(memslot->dirty_bitmap, 0, n);
1732 r = 0;
1733 out:
1734 up_write(&kvm->slots_lock);
1735 return r;
1738 long kvm_arch_vm_ioctl(struct file *filp,
1739 unsigned int ioctl, unsigned long arg)
1741 struct kvm *kvm = filp->private_data;
1742 void __user *argp = (void __user *)arg;
1743 int r = -EINVAL;
1745 * This union makes it completely explicit to gcc-3.x
1746 * that these two variables' stack usage should be
1747 * combined, not added together.
1749 union {
1750 struct kvm_pit_state ps;
1751 struct kvm_memory_alias alias;
1752 } u;
1754 switch (ioctl) {
1755 case KVM_SET_TSS_ADDR:
1756 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1757 if (r < 0)
1758 goto out;
1759 break;
1760 case KVM_SET_MEMORY_REGION: {
1761 struct kvm_memory_region kvm_mem;
1762 struct kvm_userspace_memory_region kvm_userspace_mem;
1764 r = -EFAULT;
1765 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1766 goto out;
1767 kvm_userspace_mem.slot = kvm_mem.slot;
1768 kvm_userspace_mem.flags = kvm_mem.flags;
1769 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1770 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1771 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1772 if (r)
1773 goto out;
1774 break;
1776 case KVM_SET_NR_MMU_PAGES:
1777 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1778 if (r)
1779 goto out;
1780 break;
1781 case KVM_GET_NR_MMU_PAGES:
1782 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1783 break;
1784 case KVM_SET_MEMORY_ALIAS:
1785 r = -EFAULT;
1786 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1787 goto out;
1788 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1789 if (r)
1790 goto out;
1791 break;
1792 case KVM_CREATE_IRQCHIP:
1793 r = -ENOMEM;
1794 kvm->arch.vpic = kvm_create_pic(kvm);
1795 if (kvm->arch.vpic) {
1796 r = kvm_ioapic_init(kvm);
1797 if (r) {
1798 kfree(kvm->arch.vpic);
1799 kvm->arch.vpic = NULL;
1800 goto out;
1802 } else
1803 goto out;
1804 break;
1805 case KVM_CREATE_PIT:
1806 r = -ENOMEM;
1807 kvm->arch.vpit = kvm_create_pit(kvm);
1808 if (kvm->arch.vpit)
1809 r = 0;
1810 break;
1811 case KVM_IRQ_LINE: {
1812 struct kvm_irq_level irq_event;
1814 r = -EFAULT;
1815 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1816 goto out;
1817 if (irqchip_in_kernel(kvm)) {
1818 mutex_lock(&kvm->lock);
1819 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1820 irq_event.irq, irq_event.level);
1821 mutex_unlock(&kvm->lock);
1822 r = 0;
1824 break;
1826 case KVM_GET_IRQCHIP: {
1827 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1828 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1830 r = -ENOMEM;
1831 if (!chip)
1832 goto out;
1833 r = -EFAULT;
1834 if (copy_from_user(chip, argp, sizeof *chip))
1835 goto get_irqchip_out;
1836 r = -ENXIO;
1837 if (!irqchip_in_kernel(kvm))
1838 goto get_irqchip_out;
1839 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1840 if (r)
1841 goto get_irqchip_out;
1842 r = -EFAULT;
1843 if (copy_to_user(argp, chip, sizeof *chip))
1844 goto get_irqchip_out;
1845 r = 0;
1846 get_irqchip_out:
1847 kfree(chip);
1848 if (r)
1849 goto out;
1850 break;
1852 case KVM_SET_IRQCHIP: {
1853 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1854 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1856 r = -ENOMEM;
1857 if (!chip)
1858 goto out;
1859 r = -EFAULT;
1860 if (copy_from_user(chip, argp, sizeof *chip))
1861 goto set_irqchip_out;
1862 r = -ENXIO;
1863 if (!irqchip_in_kernel(kvm))
1864 goto set_irqchip_out;
1865 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1866 if (r)
1867 goto set_irqchip_out;
1868 r = 0;
1869 set_irqchip_out:
1870 kfree(chip);
1871 if (r)
1872 goto out;
1873 break;
1875 case KVM_GET_PIT: {
1876 r = -EFAULT;
1877 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1878 goto out;
1879 r = -ENXIO;
1880 if (!kvm->arch.vpit)
1881 goto out;
1882 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1883 if (r)
1884 goto out;
1885 r = -EFAULT;
1886 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1887 goto out;
1888 r = 0;
1889 break;
1891 case KVM_SET_PIT: {
1892 r = -EFAULT;
1893 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1894 goto out;
1895 r = -ENXIO;
1896 if (!kvm->arch.vpit)
1897 goto out;
1898 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1899 if (r)
1900 goto out;
1901 r = 0;
1902 break;
1904 default:
1907 out:
1908 return r;
1911 static void kvm_init_msr_list(void)
1913 u32 dummy[2];
1914 unsigned i, j;
1916 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1917 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1918 continue;
1919 if (j < i)
1920 msrs_to_save[j] = msrs_to_save[i];
1921 j++;
1923 num_msrs_to_save = j;
1927 * Only apic need an MMIO device hook, so shortcut now..
1929 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1930 gpa_t addr, int len,
1931 int is_write)
1933 struct kvm_io_device *dev;
1935 if (vcpu->arch.apic) {
1936 dev = &vcpu->arch.apic->dev;
1937 if (dev->in_range(dev, addr, len, is_write))
1938 return dev;
1940 return NULL;
1944 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1945 gpa_t addr, int len,
1946 int is_write)
1948 struct kvm_io_device *dev;
1950 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1951 if (dev == NULL)
1952 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1953 is_write);
1954 return dev;
1957 int emulator_read_std(unsigned long addr,
1958 void *val,
1959 unsigned int bytes,
1960 struct kvm_vcpu *vcpu)
1962 void *data = val;
1963 int r = X86EMUL_CONTINUE;
1965 while (bytes) {
1966 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1967 unsigned offset = addr & (PAGE_SIZE-1);
1968 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1969 int ret;
1971 if (gpa == UNMAPPED_GVA) {
1972 r = X86EMUL_PROPAGATE_FAULT;
1973 goto out;
1975 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1976 if (ret < 0) {
1977 r = X86EMUL_UNHANDLEABLE;
1978 goto out;
1981 bytes -= tocopy;
1982 data += tocopy;
1983 addr += tocopy;
1985 out:
1986 return r;
1988 EXPORT_SYMBOL_GPL(emulator_read_std);
1990 static int emulator_read_emulated(unsigned long addr,
1991 void *val,
1992 unsigned int bytes,
1993 struct kvm_vcpu *vcpu)
1995 struct kvm_io_device *mmio_dev;
1996 gpa_t gpa;
1998 if (vcpu->mmio_read_completed) {
1999 memcpy(val, vcpu->mmio_data, bytes);
2000 vcpu->mmio_read_completed = 0;
2001 return X86EMUL_CONTINUE;
2004 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2006 /* For APIC access vmexit */
2007 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2008 goto mmio;
2010 if (emulator_read_std(addr, val, bytes, vcpu)
2011 == X86EMUL_CONTINUE)
2012 return X86EMUL_CONTINUE;
2013 if (gpa == UNMAPPED_GVA)
2014 return X86EMUL_PROPAGATE_FAULT;
2016 mmio:
2018 * Is this MMIO handled locally?
2020 mutex_lock(&vcpu->kvm->lock);
2021 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2022 if (mmio_dev) {
2023 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2024 mutex_unlock(&vcpu->kvm->lock);
2025 return X86EMUL_CONTINUE;
2027 mutex_unlock(&vcpu->kvm->lock);
2029 vcpu->mmio_needed = 1;
2030 vcpu->mmio_phys_addr = gpa;
2031 vcpu->mmio_size = bytes;
2032 vcpu->mmio_is_write = 0;
2034 return X86EMUL_UNHANDLEABLE;
2037 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2038 const void *val, int bytes)
2040 int ret;
2042 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2043 if (ret < 0)
2044 return 0;
2045 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
2046 return 1;
2049 static int emulator_write_emulated_onepage(unsigned long addr,
2050 const void *val,
2051 unsigned int bytes,
2052 struct kvm_vcpu *vcpu)
2054 struct kvm_io_device *mmio_dev;
2055 gpa_t gpa;
2057 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2059 if (gpa == UNMAPPED_GVA) {
2060 kvm_inject_page_fault(vcpu, addr, 2);
2061 return X86EMUL_PROPAGATE_FAULT;
2064 /* For APIC access vmexit */
2065 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2066 goto mmio;
2068 if (emulator_write_phys(vcpu, gpa, val, bytes))
2069 return X86EMUL_CONTINUE;
2071 mmio:
2073 * Is this MMIO handled locally?
2075 mutex_lock(&vcpu->kvm->lock);
2076 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2077 if (mmio_dev) {
2078 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2079 mutex_unlock(&vcpu->kvm->lock);
2080 return X86EMUL_CONTINUE;
2082 mutex_unlock(&vcpu->kvm->lock);
2084 vcpu->mmio_needed = 1;
2085 vcpu->mmio_phys_addr = gpa;
2086 vcpu->mmio_size = bytes;
2087 vcpu->mmio_is_write = 1;
2088 memcpy(vcpu->mmio_data, val, bytes);
2090 return X86EMUL_CONTINUE;
2093 int emulator_write_emulated(unsigned long addr,
2094 const void *val,
2095 unsigned int bytes,
2096 struct kvm_vcpu *vcpu)
2098 /* Crossing a page boundary? */
2099 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2100 int rc, now;
2102 now = -addr & ~PAGE_MASK;
2103 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2104 if (rc != X86EMUL_CONTINUE)
2105 return rc;
2106 addr += now;
2107 val += now;
2108 bytes -= now;
2110 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2112 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2114 static int emulator_cmpxchg_emulated(unsigned long addr,
2115 const void *old,
2116 const void *new,
2117 unsigned int bytes,
2118 struct kvm_vcpu *vcpu)
2120 static int reported;
2122 if (!reported) {
2123 reported = 1;
2124 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2126 #ifndef CONFIG_X86_64
2127 /* guests cmpxchg8b have to be emulated atomically */
2128 if (bytes == 8) {
2129 gpa_t gpa;
2130 struct page *page;
2131 char *kaddr;
2132 u64 val;
2134 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2136 if (gpa == UNMAPPED_GVA ||
2137 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2138 goto emul_write;
2140 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2141 goto emul_write;
2143 val = *(u64 *)new;
2145 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2147 kaddr = kmap_atomic(page, KM_USER0);
2148 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2149 kunmap_atomic(kaddr, KM_USER0);
2150 kvm_release_page_dirty(page);
2152 emul_write:
2153 #endif
2155 return emulator_write_emulated(addr, new, bytes, vcpu);
2158 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2160 return kvm_x86_ops->get_segment_base(vcpu, seg);
2163 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2165 kvm_mmu_invlpg(vcpu, address);
2166 return X86EMUL_CONTINUE;
2169 int emulate_clts(struct kvm_vcpu *vcpu)
2171 KVMTRACE_0D(CLTS, vcpu, handler);
2172 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2173 return X86EMUL_CONTINUE;
2176 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2178 struct kvm_vcpu *vcpu = ctxt->vcpu;
2180 switch (dr) {
2181 case 0 ... 3:
2182 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2183 return X86EMUL_CONTINUE;
2184 default:
2185 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2186 return X86EMUL_UNHANDLEABLE;
2190 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2192 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2193 int exception;
2195 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2196 if (exception) {
2197 /* FIXME: better handling */
2198 return X86EMUL_UNHANDLEABLE;
2200 return X86EMUL_CONTINUE;
2203 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2205 u8 opcodes[4];
2206 unsigned long rip = kvm_rip_read(vcpu);
2207 unsigned long rip_linear;
2209 if (!printk_ratelimit())
2210 return;
2212 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2214 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2216 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2217 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2219 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2221 static struct x86_emulate_ops emulate_ops = {
2222 .read_std = emulator_read_std,
2223 .read_emulated = emulator_read_emulated,
2224 .write_emulated = emulator_write_emulated,
2225 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2228 static void cache_all_regs(struct kvm_vcpu *vcpu)
2230 kvm_register_read(vcpu, VCPU_REGS_RAX);
2231 kvm_register_read(vcpu, VCPU_REGS_RSP);
2232 kvm_register_read(vcpu, VCPU_REGS_RIP);
2233 vcpu->arch.regs_dirty = ~0;
2236 int emulate_instruction(struct kvm_vcpu *vcpu,
2237 struct kvm_run *run,
2238 unsigned long cr2,
2239 u16 error_code,
2240 int emulation_type)
2242 int r;
2243 struct decode_cache *c;
2245 kvm_clear_exception_queue(vcpu);
2246 vcpu->arch.mmio_fault_cr2 = cr2;
2248 * TODO: fix x86_emulate.c to use guest_read/write_register
2249 * instead of direct ->regs accesses, can save hundred cycles
2250 * on Intel for instructions that don't read/change RSP, for
2251 * for example.
2253 cache_all_regs(vcpu);
2255 vcpu->mmio_is_write = 0;
2256 vcpu->arch.pio.string = 0;
2258 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2259 int cs_db, cs_l;
2260 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2262 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2263 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2264 vcpu->arch.emulate_ctxt.mode =
2265 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2266 ? X86EMUL_MODE_REAL : cs_l
2267 ? X86EMUL_MODE_PROT64 : cs_db
2268 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2270 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2272 /* Reject the instructions other than VMCALL/VMMCALL when
2273 * try to emulate invalid opcode */
2274 c = &vcpu->arch.emulate_ctxt.decode;
2275 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2276 (!(c->twobyte && c->b == 0x01 &&
2277 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2278 c->modrm_mod == 3 && c->modrm_rm == 1)))
2279 return EMULATE_FAIL;
2281 ++vcpu->stat.insn_emulation;
2282 if (r) {
2283 ++vcpu->stat.insn_emulation_fail;
2284 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2285 return EMULATE_DONE;
2286 return EMULATE_FAIL;
2290 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2292 if (vcpu->arch.pio.string)
2293 return EMULATE_DO_MMIO;
2295 if ((r || vcpu->mmio_is_write) && run) {
2296 run->exit_reason = KVM_EXIT_MMIO;
2297 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2298 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2299 run->mmio.len = vcpu->mmio_size;
2300 run->mmio.is_write = vcpu->mmio_is_write;
2303 if (r) {
2304 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2305 return EMULATE_DONE;
2306 if (!vcpu->mmio_needed) {
2307 kvm_report_emulation_failure(vcpu, "mmio");
2308 return EMULATE_FAIL;
2310 return EMULATE_DO_MMIO;
2313 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2315 if (vcpu->mmio_is_write) {
2316 vcpu->mmio_needed = 0;
2317 return EMULATE_DO_MMIO;
2320 return EMULATE_DONE;
2322 EXPORT_SYMBOL_GPL(emulate_instruction);
2324 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2326 int i;
2328 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2329 if (vcpu->arch.pio.guest_pages[i]) {
2330 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2331 vcpu->arch.pio.guest_pages[i] = NULL;
2335 static int pio_copy_data(struct kvm_vcpu *vcpu)
2337 void *p = vcpu->arch.pio_data;
2338 void *q;
2339 unsigned bytes;
2340 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2342 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2343 PAGE_KERNEL);
2344 if (!q) {
2345 free_pio_guest_pages(vcpu);
2346 return -ENOMEM;
2348 q += vcpu->arch.pio.guest_page_offset;
2349 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2350 if (vcpu->arch.pio.in)
2351 memcpy(q, p, bytes);
2352 else
2353 memcpy(p, q, bytes);
2354 q -= vcpu->arch.pio.guest_page_offset;
2355 vunmap(q);
2356 free_pio_guest_pages(vcpu);
2357 return 0;
2360 int complete_pio(struct kvm_vcpu *vcpu)
2362 struct kvm_pio_request *io = &vcpu->arch.pio;
2363 long delta;
2364 int r;
2365 unsigned long val;
2367 if (!io->string) {
2368 if (io->in) {
2369 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2370 memcpy(&val, vcpu->arch.pio_data, io->size);
2371 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2373 } else {
2374 if (io->in) {
2375 r = pio_copy_data(vcpu);
2376 if (r)
2377 return r;
2380 delta = 1;
2381 if (io->rep) {
2382 delta *= io->cur_count;
2384 * The size of the register should really depend on
2385 * current address size.
2387 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2388 val -= delta;
2389 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2391 if (io->down)
2392 delta = -delta;
2393 delta *= io->size;
2394 if (io->in) {
2395 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2396 val += delta;
2397 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2398 } else {
2399 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2400 val += delta;
2401 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2405 io->count -= io->cur_count;
2406 io->cur_count = 0;
2408 return 0;
2411 static void kernel_pio(struct kvm_io_device *pio_dev,
2412 struct kvm_vcpu *vcpu,
2413 void *pd)
2415 /* TODO: String I/O for in kernel device */
2417 mutex_lock(&vcpu->kvm->lock);
2418 if (vcpu->arch.pio.in)
2419 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2420 vcpu->arch.pio.size,
2421 pd);
2422 else
2423 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2424 vcpu->arch.pio.size,
2425 pd);
2426 mutex_unlock(&vcpu->kvm->lock);
2429 static void pio_string_write(struct kvm_io_device *pio_dev,
2430 struct kvm_vcpu *vcpu)
2432 struct kvm_pio_request *io = &vcpu->arch.pio;
2433 void *pd = vcpu->arch.pio_data;
2434 int i;
2436 mutex_lock(&vcpu->kvm->lock);
2437 for (i = 0; i < io->cur_count; i++) {
2438 kvm_iodevice_write(pio_dev, io->port,
2439 io->size,
2440 pd);
2441 pd += io->size;
2443 mutex_unlock(&vcpu->kvm->lock);
2446 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2447 gpa_t addr, int len,
2448 int is_write)
2450 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2453 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2454 int size, unsigned port)
2456 struct kvm_io_device *pio_dev;
2457 unsigned long val;
2459 vcpu->run->exit_reason = KVM_EXIT_IO;
2460 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2461 vcpu->run->io.size = vcpu->arch.pio.size = size;
2462 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2463 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2464 vcpu->run->io.port = vcpu->arch.pio.port = port;
2465 vcpu->arch.pio.in = in;
2466 vcpu->arch.pio.string = 0;
2467 vcpu->arch.pio.down = 0;
2468 vcpu->arch.pio.guest_page_offset = 0;
2469 vcpu->arch.pio.rep = 0;
2471 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2472 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2473 handler);
2474 else
2475 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2476 handler);
2478 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2479 memcpy(vcpu->arch.pio_data, &val, 4);
2481 kvm_x86_ops->skip_emulated_instruction(vcpu);
2483 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2484 if (pio_dev) {
2485 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2486 complete_pio(vcpu);
2487 return 1;
2489 return 0;
2491 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2493 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2494 int size, unsigned long count, int down,
2495 gva_t address, int rep, unsigned port)
2497 unsigned now, in_page;
2498 int i, ret = 0;
2499 int nr_pages = 1;
2500 struct page *page;
2501 struct kvm_io_device *pio_dev;
2503 vcpu->run->exit_reason = KVM_EXIT_IO;
2504 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2505 vcpu->run->io.size = vcpu->arch.pio.size = size;
2506 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2507 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2508 vcpu->run->io.port = vcpu->arch.pio.port = port;
2509 vcpu->arch.pio.in = in;
2510 vcpu->arch.pio.string = 1;
2511 vcpu->arch.pio.down = down;
2512 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2513 vcpu->arch.pio.rep = rep;
2515 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2516 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2517 handler);
2518 else
2519 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2520 handler);
2522 if (!count) {
2523 kvm_x86_ops->skip_emulated_instruction(vcpu);
2524 return 1;
2527 if (!down)
2528 in_page = PAGE_SIZE - offset_in_page(address);
2529 else
2530 in_page = offset_in_page(address) + size;
2531 now = min(count, (unsigned long)in_page / size);
2532 if (!now) {
2534 * String I/O straddles page boundary. Pin two guest pages
2535 * so that we satisfy atomicity constraints. Do just one
2536 * transaction to avoid complexity.
2538 nr_pages = 2;
2539 now = 1;
2541 if (down) {
2543 * String I/O in reverse. Yuck. Kill the guest, fix later.
2545 pr_unimpl(vcpu, "guest string pio down\n");
2546 kvm_inject_gp(vcpu, 0);
2547 return 1;
2549 vcpu->run->io.count = now;
2550 vcpu->arch.pio.cur_count = now;
2552 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2553 kvm_x86_ops->skip_emulated_instruction(vcpu);
2555 for (i = 0; i < nr_pages; ++i) {
2556 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2557 vcpu->arch.pio.guest_pages[i] = page;
2558 if (!page) {
2559 kvm_inject_gp(vcpu, 0);
2560 free_pio_guest_pages(vcpu);
2561 return 1;
2565 pio_dev = vcpu_find_pio_dev(vcpu, port,
2566 vcpu->arch.pio.cur_count,
2567 !vcpu->arch.pio.in);
2568 if (!vcpu->arch.pio.in) {
2569 /* string PIO write */
2570 ret = pio_copy_data(vcpu);
2571 if (ret >= 0 && pio_dev) {
2572 pio_string_write(pio_dev, vcpu);
2573 complete_pio(vcpu);
2574 if (vcpu->arch.pio.count == 0)
2575 ret = 1;
2577 } else if (pio_dev)
2578 pr_unimpl(vcpu, "no string pio read support yet, "
2579 "port %x size %d count %ld\n",
2580 port, size, count);
2582 return ret;
2584 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2586 int kvm_arch_init(void *opaque)
2588 int r;
2589 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2591 if (kvm_x86_ops) {
2592 printk(KERN_ERR "kvm: already loaded the other module\n");
2593 r = -EEXIST;
2594 goto out;
2597 if (!ops->cpu_has_kvm_support()) {
2598 printk(KERN_ERR "kvm: no hardware support\n");
2599 r = -EOPNOTSUPP;
2600 goto out;
2602 if (ops->disabled_by_bios()) {
2603 printk(KERN_ERR "kvm: disabled by bios\n");
2604 r = -EOPNOTSUPP;
2605 goto out;
2608 r = kvm_mmu_module_init();
2609 if (r)
2610 goto out;
2612 kvm_init_msr_list();
2614 kvm_x86_ops = ops;
2615 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2616 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2617 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2618 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2619 return 0;
2621 out:
2622 return r;
2625 void kvm_arch_exit(void)
2627 kvm_x86_ops = NULL;
2628 kvm_mmu_module_exit();
2631 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2633 ++vcpu->stat.halt_exits;
2634 KVMTRACE_0D(HLT, vcpu, handler);
2635 if (irqchip_in_kernel(vcpu->kvm)) {
2636 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2637 return 1;
2638 } else {
2639 vcpu->run->exit_reason = KVM_EXIT_HLT;
2640 return 0;
2643 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2645 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2646 unsigned long a1)
2648 if (is_long_mode(vcpu))
2649 return a0;
2650 else
2651 return a0 | ((gpa_t)a1 << 32);
2654 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2656 unsigned long nr, a0, a1, a2, a3, ret;
2657 int r = 1;
2659 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2660 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2661 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2662 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2663 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2665 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2667 if (!is_long_mode(vcpu)) {
2668 nr &= 0xFFFFFFFF;
2669 a0 &= 0xFFFFFFFF;
2670 a1 &= 0xFFFFFFFF;
2671 a2 &= 0xFFFFFFFF;
2672 a3 &= 0xFFFFFFFF;
2675 switch (nr) {
2676 case KVM_HC_VAPIC_POLL_IRQ:
2677 ret = 0;
2678 break;
2679 case KVM_HC_MMU_OP:
2680 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2681 break;
2682 default:
2683 ret = -KVM_ENOSYS;
2684 break;
2686 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2687 ++vcpu->stat.hypercalls;
2688 return r;
2690 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2692 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2694 char instruction[3];
2695 int ret = 0;
2696 unsigned long rip = kvm_rip_read(vcpu);
2700 * Blow out the MMU to ensure that no other VCPU has an active mapping
2701 * to ensure that the updated hypercall appears atomically across all
2702 * VCPUs.
2704 kvm_mmu_zap_all(vcpu->kvm);
2706 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2707 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2708 != X86EMUL_CONTINUE)
2709 ret = -EFAULT;
2711 return ret;
2714 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2716 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2719 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2721 struct descriptor_table dt = { limit, base };
2723 kvm_x86_ops->set_gdt(vcpu, &dt);
2726 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2728 struct descriptor_table dt = { limit, base };
2730 kvm_x86_ops->set_idt(vcpu, &dt);
2733 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2734 unsigned long *rflags)
2736 kvm_lmsw(vcpu, msw);
2737 *rflags = kvm_x86_ops->get_rflags(vcpu);
2740 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2742 unsigned long value;
2744 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2745 switch (cr) {
2746 case 0:
2747 value = vcpu->arch.cr0;
2748 break;
2749 case 2:
2750 value = vcpu->arch.cr2;
2751 break;
2752 case 3:
2753 value = vcpu->arch.cr3;
2754 break;
2755 case 4:
2756 value = vcpu->arch.cr4;
2757 break;
2758 case 8:
2759 value = kvm_get_cr8(vcpu);
2760 break;
2761 default:
2762 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2763 return 0;
2765 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2766 (u32)((u64)value >> 32), handler);
2768 return value;
2771 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2772 unsigned long *rflags)
2774 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2775 (u32)((u64)val >> 32), handler);
2777 switch (cr) {
2778 case 0:
2779 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2780 *rflags = kvm_x86_ops->get_rflags(vcpu);
2781 break;
2782 case 2:
2783 vcpu->arch.cr2 = val;
2784 break;
2785 case 3:
2786 kvm_set_cr3(vcpu, val);
2787 break;
2788 case 4:
2789 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2790 break;
2791 case 8:
2792 kvm_set_cr8(vcpu, val & 0xfUL);
2793 break;
2794 default:
2795 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2799 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2801 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2802 int j, nent = vcpu->arch.cpuid_nent;
2804 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2805 /* when no next entry is found, the current entry[i] is reselected */
2806 for (j = i + 1; j == i; j = (j + 1) % nent) {
2807 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2808 if (ej->function == e->function) {
2809 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2810 return j;
2813 return 0; /* silence gcc, even though control never reaches here */
2816 /* find an entry with matching function, matching index (if needed), and that
2817 * should be read next (if it's stateful) */
2818 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2819 u32 function, u32 index)
2821 if (e->function != function)
2822 return 0;
2823 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2824 return 0;
2825 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2826 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2827 return 0;
2828 return 1;
2831 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2833 int i;
2834 u32 function, index;
2835 struct kvm_cpuid_entry2 *e, *best;
2837 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2838 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2839 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2840 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2841 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2842 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2843 best = NULL;
2844 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2845 e = &vcpu->arch.cpuid_entries[i];
2846 if (is_matching_cpuid_entry(e, function, index)) {
2847 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2848 move_to_next_stateful_cpuid_entry(vcpu, i);
2849 best = e;
2850 break;
2853 * Both basic or both extended?
2855 if (((e->function ^ function) & 0x80000000) == 0)
2856 if (!best || e->function > best->function)
2857 best = e;
2859 if (best) {
2860 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2861 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2862 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2863 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2865 kvm_x86_ops->skip_emulated_instruction(vcpu);
2866 KVMTRACE_5D(CPUID, vcpu, function,
2867 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2868 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2869 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2870 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2872 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2875 * Check if userspace requested an interrupt window, and that the
2876 * interrupt window is open.
2878 * No need to exit to userspace if we already have an interrupt queued.
2880 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2881 struct kvm_run *kvm_run)
2883 return (!vcpu->arch.irq_summary &&
2884 kvm_run->request_interrupt_window &&
2885 vcpu->arch.interrupt_window_open &&
2886 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2890 * Check if userspace requested a NMI window, and that the NMI window
2891 * is open.
2893 * No need to exit to userspace if we already have a NMI queued.
2895 static int dm_request_for_nmi_injection(struct kvm_vcpu *vcpu,
2896 struct kvm_run *kvm_run)
2898 return (!vcpu->arch.nmi_pending &&
2899 kvm_run->request_nmi_window &&
2900 vcpu->arch.nmi_window_open);
2903 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2904 struct kvm_run *kvm_run)
2906 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2907 kvm_run->cr8 = kvm_get_cr8(vcpu);
2908 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2909 if (irqchip_in_kernel(vcpu->kvm)) {
2910 kvm_run->ready_for_interrupt_injection = 1;
2911 kvm_run->ready_for_nmi_injection = 1;
2912 } else {
2913 kvm_run->ready_for_interrupt_injection =
2914 (vcpu->arch.interrupt_window_open &&
2915 vcpu->arch.irq_summary == 0);
2916 kvm_run->ready_for_nmi_injection =
2917 (vcpu->arch.nmi_window_open &&
2918 vcpu->arch.nmi_pending == 0);
2922 static void vapic_enter(struct kvm_vcpu *vcpu)
2924 struct kvm_lapic *apic = vcpu->arch.apic;
2925 struct page *page;
2927 if (!apic || !apic->vapic_addr)
2928 return;
2930 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2932 vcpu->arch.apic->vapic_page = page;
2935 static void vapic_exit(struct kvm_vcpu *vcpu)
2937 struct kvm_lapic *apic = vcpu->arch.apic;
2939 if (!apic || !apic->vapic_addr)
2940 return;
2942 down_read(&vcpu->kvm->slots_lock);
2943 kvm_release_page_dirty(apic->vapic_page);
2944 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2945 up_read(&vcpu->kvm->slots_lock);
2948 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2950 int r;
2952 if (vcpu->requests)
2953 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2954 kvm_mmu_unload(vcpu);
2956 r = kvm_mmu_reload(vcpu);
2957 if (unlikely(r))
2958 goto out;
2960 if (vcpu->requests) {
2961 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2962 __kvm_migrate_timers(vcpu);
2963 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2964 kvm_mmu_sync_roots(vcpu);
2965 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2966 kvm_x86_ops->tlb_flush(vcpu);
2967 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2968 &vcpu->requests)) {
2969 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2970 r = 0;
2971 goto out;
2973 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2974 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2975 r = 0;
2976 goto out;
2980 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2981 kvm_inject_pending_timer_irqs(vcpu);
2983 preempt_disable();
2985 kvm_x86_ops->prepare_guest_switch(vcpu);
2986 kvm_load_guest_fpu(vcpu);
2988 local_irq_disable();
2990 if (vcpu->requests || need_resched() || signal_pending(current)) {
2991 local_irq_enable();
2992 preempt_enable();
2993 r = 1;
2994 goto out;
2997 if (vcpu->guest_debug.enabled)
2998 kvm_x86_ops->guest_debug_pre(vcpu);
3000 vcpu->guest_mode = 1;
3002 * Make sure that guest_mode assignment won't happen after
3003 * testing the pending IRQ vector bitmap.
3005 smp_wmb();
3007 if (vcpu->arch.exception.pending)
3008 __queue_exception(vcpu);
3009 else if (irqchip_in_kernel(vcpu->kvm))
3010 kvm_x86_ops->inject_pending_irq(vcpu);
3011 else
3012 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3014 kvm_lapic_sync_to_vapic(vcpu);
3016 up_read(&vcpu->kvm->slots_lock);
3018 kvm_guest_enter();
3021 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3022 kvm_x86_ops->run(vcpu, kvm_run);
3024 vcpu->guest_mode = 0;
3025 local_irq_enable();
3027 ++vcpu->stat.exits;
3030 * We must have an instruction between local_irq_enable() and
3031 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3032 * the interrupt shadow. The stat.exits increment will do nicely.
3033 * But we need to prevent reordering, hence this barrier():
3035 barrier();
3037 kvm_guest_exit();
3039 preempt_enable();
3041 down_read(&vcpu->kvm->slots_lock);
3044 * Profile KVM exit RIPs:
3046 if (unlikely(prof_on == KVM_PROFILING)) {
3047 unsigned long rip = kvm_rip_read(vcpu);
3048 profile_hit(KVM_PROFILING, (void *)rip);
3051 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3052 vcpu->arch.exception.pending = false;
3054 kvm_lapic_sync_from_vapic(vcpu);
3056 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3057 out:
3058 return r;
3061 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3063 int r;
3065 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3066 pr_debug("vcpu %d received sipi with vector # %x\n",
3067 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3068 kvm_lapic_reset(vcpu);
3069 r = kvm_arch_vcpu_reset(vcpu);
3070 if (r)
3071 return r;
3072 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3075 down_read(&vcpu->kvm->slots_lock);
3076 vapic_enter(vcpu);
3078 r = 1;
3079 while (r > 0) {
3080 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3081 r = vcpu_enter_guest(vcpu, kvm_run);
3082 else {
3083 up_read(&vcpu->kvm->slots_lock);
3084 kvm_vcpu_block(vcpu);
3085 down_read(&vcpu->kvm->slots_lock);
3086 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3087 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3088 vcpu->arch.mp_state =
3089 KVM_MP_STATE_RUNNABLE;
3090 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3091 r = -EINTR;
3094 if (r > 0) {
3095 if (dm_request_for_nmi_injection(vcpu, kvm_run)) {
3096 r = -EINTR;
3097 kvm_run->exit_reason = KVM_EXIT_NMI;
3098 ++vcpu->stat.request_nmi_exits;
3100 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3101 r = -EINTR;
3102 kvm_run->exit_reason = KVM_EXIT_INTR;
3103 ++vcpu->stat.request_irq_exits;
3105 if (signal_pending(current)) {
3106 r = -EINTR;
3107 kvm_run->exit_reason = KVM_EXIT_INTR;
3108 ++vcpu->stat.signal_exits;
3110 if (need_resched()) {
3111 up_read(&vcpu->kvm->slots_lock);
3112 kvm_resched(vcpu);
3113 down_read(&vcpu->kvm->slots_lock);
3118 up_read(&vcpu->kvm->slots_lock);
3119 post_kvm_run_save(vcpu, kvm_run);
3121 vapic_exit(vcpu);
3123 return r;
3126 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3128 int r;
3129 sigset_t sigsaved;
3131 vcpu_load(vcpu);
3133 if (vcpu->sigset_active)
3134 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3136 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3137 kvm_vcpu_block(vcpu);
3138 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3139 r = -EAGAIN;
3140 goto out;
3143 /* re-sync apic's tpr */
3144 if (!irqchip_in_kernel(vcpu->kvm))
3145 kvm_set_cr8(vcpu, kvm_run->cr8);
3147 if (vcpu->arch.pio.cur_count) {
3148 r = complete_pio(vcpu);
3149 if (r)
3150 goto out;
3152 #if CONFIG_HAS_IOMEM
3153 if (vcpu->mmio_needed) {
3154 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3155 vcpu->mmio_read_completed = 1;
3156 vcpu->mmio_needed = 0;
3158 down_read(&vcpu->kvm->slots_lock);
3159 r = emulate_instruction(vcpu, kvm_run,
3160 vcpu->arch.mmio_fault_cr2, 0,
3161 EMULTYPE_NO_DECODE);
3162 up_read(&vcpu->kvm->slots_lock);
3163 if (r == EMULATE_DO_MMIO) {
3165 * Read-modify-write. Back to userspace.
3167 r = 0;
3168 goto out;
3171 #endif
3172 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3173 kvm_register_write(vcpu, VCPU_REGS_RAX,
3174 kvm_run->hypercall.ret);
3176 r = __vcpu_run(vcpu, kvm_run);
3178 out:
3179 if (vcpu->sigset_active)
3180 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3182 vcpu_put(vcpu);
3183 return r;
3186 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3188 vcpu_load(vcpu);
3190 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3191 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3192 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3193 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3194 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3195 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3196 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3197 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3198 #ifdef CONFIG_X86_64
3199 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3200 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3201 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3202 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3203 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3204 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3205 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3206 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3207 #endif
3209 regs->rip = kvm_rip_read(vcpu);
3210 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3213 * Don't leak debug flags in case they were set for guest debugging
3215 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3216 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3218 vcpu_put(vcpu);
3220 return 0;
3223 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3225 vcpu_load(vcpu);
3227 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3228 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3229 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3230 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3231 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3232 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3233 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3234 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3235 #ifdef CONFIG_X86_64
3236 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3237 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3238 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3239 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3240 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3241 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3242 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3243 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3245 #endif
3247 kvm_rip_write(vcpu, regs->rip);
3248 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3251 vcpu->arch.exception.pending = false;
3253 vcpu_put(vcpu);
3255 return 0;
3258 void kvm_get_segment(struct kvm_vcpu *vcpu,
3259 struct kvm_segment *var, int seg)
3261 kvm_x86_ops->get_segment(vcpu, var, seg);
3264 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3266 struct kvm_segment cs;
3268 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3269 *db = cs.db;
3270 *l = cs.l;
3272 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3274 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3275 struct kvm_sregs *sregs)
3277 struct descriptor_table dt;
3278 int pending_vec;
3280 vcpu_load(vcpu);
3282 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3283 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3284 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3285 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3286 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3287 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3289 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3290 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3292 kvm_x86_ops->get_idt(vcpu, &dt);
3293 sregs->idt.limit = dt.limit;
3294 sregs->idt.base = dt.base;
3295 kvm_x86_ops->get_gdt(vcpu, &dt);
3296 sregs->gdt.limit = dt.limit;
3297 sregs->gdt.base = dt.base;
3299 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3300 sregs->cr0 = vcpu->arch.cr0;
3301 sregs->cr2 = vcpu->arch.cr2;
3302 sregs->cr3 = vcpu->arch.cr3;
3303 sregs->cr4 = vcpu->arch.cr4;
3304 sregs->cr8 = kvm_get_cr8(vcpu);
3305 sregs->efer = vcpu->arch.shadow_efer;
3306 sregs->apic_base = kvm_get_apic_base(vcpu);
3308 if (irqchip_in_kernel(vcpu->kvm)) {
3309 memset(sregs->interrupt_bitmap, 0,
3310 sizeof sregs->interrupt_bitmap);
3311 pending_vec = kvm_x86_ops->get_irq(vcpu);
3312 if (pending_vec >= 0)
3313 set_bit(pending_vec,
3314 (unsigned long *)sregs->interrupt_bitmap);
3315 } else
3316 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3317 sizeof sregs->interrupt_bitmap);
3319 vcpu_put(vcpu);
3321 return 0;
3324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3325 struct kvm_mp_state *mp_state)
3327 vcpu_load(vcpu);
3328 mp_state->mp_state = vcpu->arch.mp_state;
3329 vcpu_put(vcpu);
3330 return 0;
3333 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3334 struct kvm_mp_state *mp_state)
3336 vcpu_load(vcpu);
3337 vcpu->arch.mp_state = mp_state->mp_state;
3338 vcpu_put(vcpu);
3339 return 0;
3342 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3343 struct kvm_segment *var, int seg)
3345 kvm_x86_ops->set_segment(vcpu, var, seg);
3348 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3349 struct kvm_segment *kvm_desct)
3351 kvm_desct->base = seg_desc->base0;
3352 kvm_desct->base |= seg_desc->base1 << 16;
3353 kvm_desct->base |= seg_desc->base2 << 24;
3354 kvm_desct->limit = seg_desc->limit0;
3355 kvm_desct->limit |= seg_desc->limit << 16;
3356 if (seg_desc->g) {
3357 kvm_desct->limit <<= 12;
3358 kvm_desct->limit |= 0xfff;
3360 kvm_desct->selector = selector;
3361 kvm_desct->type = seg_desc->type;
3362 kvm_desct->present = seg_desc->p;
3363 kvm_desct->dpl = seg_desc->dpl;
3364 kvm_desct->db = seg_desc->d;
3365 kvm_desct->s = seg_desc->s;
3366 kvm_desct->l = seg_desc->l;
3367 kvm_desct->g = seg_desc->g;
3368 kvm_desct->avl = seg_desc->avl;
3369 if (!selector)
3370 kvm_desct->unusable = 1;
3371 else
3372 kvm_desct->unusable = 0;
3373 kvm_desct->padding = 0;
3376 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3377 u16 selector,
3378 struct descriptor_table *dtable)
3380 if (selector & 1 << 2) {
3381 struct kvm_segment kvm_seg;
3383 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3385 if (kvm_seg.unusable)
3386 dtable->limit = 0;
3387 else
3388 dtable->limit = kvm_seg.limit;
3389 dtable->base = kvm_seg.base;
3391 else
3392 kvm_x86_ops->get_gdt(vcpu, dtable);
3395 /* allowed just for 8 bytes segments */
3396 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3397 struct desc_struct *seg_desc)
3399 gpa_t gpa;
3400 struct descriptor_table dtable;
3401 u16 index = selector >> 3;
3403 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3405 if (dtable.limit < index * 8 + 7) {
3406 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3407 return 1;
3409 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3410 gpa += index * 8;
3411 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3414 /* allowed just for 8 bytes segments */
3415 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3416 struct desc_struct *seg_desc)
3418 gpa_t gpa;
3419 struct descriptor_table dtable;
3420 u16 index = selector >> 3;
3422 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3424 if (dtable.limit < index * 8 + 7)
3425 return 1;
3426 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3427 gpa += index * 8;
3428 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3431 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3432 struct desc_struct *seg_desc)
3434 u32 base_addr;
3436 base_addr = seg_desc->base0;
3437 base_addr |= (seg_desc->base1 << 16);
3438 base_addr |= (seg_desc->base2 << 24);
3440 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3443 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3445 struct kvm_segment kvm_seg;
3447 kvm_get_segment(vcpu, &kvm_seg, seg);
3448 return kvm_seg.selector;
3451 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3452 u16 selector,
3453 struct kvm_segment *kvm_seg)
3455 struct desc_struct seg_desc;
3457 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3458 return 1;
3459 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3460 return 0;
3463 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3465 struct kvm_segment segvar = {
3466 .base = selector << 4,
3467 .limit = 0xffff,
3468 .selector = selector,
3469 .type = 3,
3470 .present = 1,
3471 .dpl = 3,
3472 .db = 0,
3473 .s = 1,
3474 .l = 0,
3475 .g = 0,
3476 .avl = 0,
3477 .unusable = 0,
3479 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3480 return 0;
3483 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3484 int type_bits, int seg)
3486 struct kvm_segment kvm_seg;
3488 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3489 return kvm_load_realmode_segment(vcpu, selector, seg);
3490 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3491 return 1;
3492 kvm_seg.type |= type_bits;
3494 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3495 seg != VCPU_SREG_LDTR)
3496 if (!kvm_seg.s)
3497 kvm_seg.unusable = 1;
3499 kvm_set_segment(vcpu, &kvm_seg, seg);
3500 return 0;
3503 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3504 struct tss_segment_32 *tss)
3506 tss->cr3 = vcpu->arch.cr3;
3507 tss->eip = kvm_rip_read(vcpu);
3508 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3509 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3510 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3511 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3512 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3513 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3514 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3515 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3516 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3517 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3518 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3519 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3520 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3521 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3522 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3523 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3524 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3527 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3528 struct tss_segment_32 *tss)
3530 kvm_set_cr3(vcpu, tss->cr3);
3532 kvm_rip_write(vcpu, tss->eip);
3533 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3535 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3536 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3537 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3538 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3539 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3540 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3541 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3542 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3544 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3545 return 1;
3547 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3548 return 1;
3550 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3551 return 1;
3553 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3554 return 1;
3556 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3557 return 1;
3559 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3560 return 1;
3562 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3563 return 1;
3564 return 0;
3567 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3568 struct tss_segment_16 *tss)
3570 tss->ip = kvm_rip_read(vcpu);
3571 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3572 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3573 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3574 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3575 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3576 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3577 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3578 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3579 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3581 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3582 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3583 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3584 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3585 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3586 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3589 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3590 struct tss_segment_16 *tss)
3592 kvm_rip_write(vcpu, tss->ip);
3593 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3594 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3595 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3596 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3597 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3598 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3599 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3600 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3601 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3603 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3604 return 1;
3606 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3607 return 1;
3609 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3610 return 1;
3612 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3613 return 1;
3615 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3616 return 1;
3617 return 0;
3620 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3621 u32 old_tss_base,
3622 struct desc_struct *nseg_desc)
3624 struct tss_segment_16 tss_segment_16;
3625 int ret = 0;
3627 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3628 sizeof tss_segment_16))
3629 goto out;
3631 save_state_to_tss16(vcpu, &tss_segment_16);
3633 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3634 sizeof tss_segment_16))
3635 goto out;
3637 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3638 &tss_segment_16, sizeof tss_segment_16))
3639 goto out;
3641 if (load_state_from_tss16(vcpu, &tss_segment_16))
3642 goto out;
3644 ret = 1;
3645 out:
3646 return ret;
3649 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3650 u32 old_tss_base,
3651 struct desc_struct *nseg_desc)
3653 struct tss_segment_32 tss_segment_32;
3654 int ret = 0;
3656 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3657 sizeof tss_segment_32))
3658 goto out;
3660 save_state_to_tss32(vcpu, &tss_segment_32);
3662 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3663 sizeof tss_segment_32))
3664 goto out;
3666 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3667 &tss_segment_32, sizeof tss_segment_32))
3668 goto out;
3670 if (load_state_from_tss32(vcpu, &tss_segment_32))
3671 goto out;
3673 ret = 1;
3674 out:
3675 return ret;
3678 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3680 struct kvm_segment tr_seg;
3681 struct desc_struct cseg_desc;
3682 struct desc_struct nseg_desc;
3683 int ret = 0;
3684 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3685 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3687 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3689 /* FIXME: Handle errors. Failure to read either TSS or their
3690 * descriptors should generate a pagefault.
3692 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3693 goto out;
3695 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3696 goto out;
3698 if (reason != TASK_SWITCH_IRET) {
3699 int cpl;
3701 cpl = kvm_x86_ops->get_cpl(vcpu);
3702 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3703 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3704 return 1;
3708 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3709 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3710 return 1;
3713 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3714 cseg_desc.type &= ~(1 << 1); //clear the B flag
3715 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3718 if (reason == TASK_SWITCH_IRET) {
3719 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3720 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3723 kvm_x86_ops->skip_emulated_instruction(vcpu);
3725 if (nseg_desc.type & 8)
3726 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3727 &nseg_desc);
3728 else
3729 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3730 &nseg_desc);
3732 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3733 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3734 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3737 if (reason != TASK_SWITCH_IRET) {
3738 nseg_desc.type |= (1 << 1);
3739 save_guest_segment_descriptor(vcpu, tss_selector,
3740 &nseg_desc);
3743 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3744 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3745 tr_seg.type = 11;
3746 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3747 out:
3748 return ret;
3750 EXPORT_SYMBOL_GPL(kvm_task_switch);
3752 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3753 struct kvm_sregs *sregs)
3755 int mmu_reset_needed = 0;
3756 int i, pending_vec, max_bits;
3757 struct descriptor_table dt;
3759 vcpu_load(vcpu);
3761 dt.limit = sregs->idt.limit;
3762 dt.base = sregs->idt.base;
3763 kvm_x86_ops->set_idt(vcpu, &dt);
3764 dt.limit = sregs->gdt.limit;
3765 dt.base = sregs->gdt.base;
3766 kvm_x86_ops->set_gdt(vcpu, &dt);
3768 vcpu->arch.cr2 = sregs->cr2;
3769 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3770 vcpu->arch.cr3 = sregs->cr3;
3772 kvm_set_cr8(vcpu, sregs->cr8);
3774 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3775 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3776 kvm_set_apic_base(vcpu, sregs->apic_base);
3778 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3780 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3781 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3782 vcpu->arch.cr0 = sregs->cr0;
3784 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3785 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3786 if (!is_long_mode(vcpu) && is_pae(vcpu))
3787 load_pdptrs(vcpu, vcpu->arch.cr3);
3789 if (mmu_reset_needed)
3790 kvm_mmu_reset_context(vcpu);
3792 if (!irqchip_in_kernel(vcpu->kvm)) {
3793 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3794 sizeof vcpu->arch.irq_pending);
3795 vcpu->arch.irq_summary = 0;
3796 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3797 if (vcpu->arch.irq_pending[i])
3798 __set_bit(i, &vcpu->arch.irq_summary);
3799 } else {
3800 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3801 pending_vec = find_first_bit(
3802 (const unsigned long *)sregs->interrupt_bitmap,
3803 max_bits);
3804 /* Only pending external irq is handled here */
3805 if (pending_vec < max_bits) {
3806 kvm_x86_ops->set_irq(vcpu, pending_vec);
3807 pr_debug("Set back pending irq %d\n",
3808 pending_vec);
3810 kvm_pic_clear_isr_ack(vcpu->kvm);
3813 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3814 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3815 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3816 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3817 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3818 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3820 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3821 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3823 /* Older userspace won't unhalt the vcpu on reset. */
3824 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3825 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3826 !(vcpu->arch.cr0 & X86_CR0_PE))
3827 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3829 vcpu_put(vcpu);
3831 return 0;
3834 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3835 struct kvm_debug_guest *dbg)
3837 int r;
3839 vcpu_load(vcpu);
3841 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3843 vcpu_put(vcpu);
3845 return r;
3849 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3850 * we have asm/x86/processor.h
3852 struct fxsave {
3853 u16 cwd;
3854 u16 swd;
3855 u16 twd;
3856 u16 fop;
3857 u64 rip;
3858 u64 rdp;
3859 u32 mxcsr;
3860 u32 mxcsr_mask;
3861 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3862 #ifdef CONFIG_X86_64
3863 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3864 #else
3865 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3866 #endif
3870 * Translate a guest virtual address to a guest physical address.
3872 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3873 struct kvm_translation *tr)
3875 unsigned long vaddr = tr->linear_address;
3876 gpa_t gpa;
3878 vcpu_load(vcpu);
3879 down_read(&vcpu->kvm->slots_lock);
3880 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3881 up_read(&vcpu->kvm->slots_lock);
3882 tr->physical_address = gpa;
3883 tr->valid = gpa != UNMAPPED_GVA;
3884 tr->writeable = 1;
3885 tr->usermode = 0;
3886 vcpu_put(vcpu);
3888 return 0;
3891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3893 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3895 vcpu_load(vcpu);
3897 memcpy(fpu->fpr, fxsave->st_space, 128);
3898 fpu->fcw = fxsave->cwd;
3899 fpu->fsw = fxsave->swd;
3900 fpu->ftwx = fxsave->twd;
3901 fpu->last_opcode = fxsave->fop;
3902 fpu->last_ip = fxsave->rip;
3903 fpu->last_dp = fxsave->rdp;
3904 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3906 vcpu_put(vcpu);
3908 return 0;
3911 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3913 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3915 vcpu_load(vcpu);
3917 memcpy(fxsave->st_space, fpu->fpr, 128);
3918 fxsave->cwd = fpu->fcw;
3919 fxsave->swd = fpu->fsw;
3920 fxsave->twd = fpu->ftwx;
3921 fxsave->fop = fpu->last_opcode;
3922 fxsave->rip = fpu->last_ip;
3923 fxsave->rdp = fpu->last_dp;
3924 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3926 vcpu_put(vcpu);
3928 return 0;
3931 void fx_init(struct kvm_vcpu *vcpu)
3933 unsigned after_mxcsr_mask;
3936 * Touch the fpu the first time in non atomic context as if
3937 * this is the first fpu instruction the exception handler
3938 * will fire before the instruction returns and it'll have to
3939 * allocate ram with GFP_KERNEL.
3941 if (!used_math())
3942 kvm_fx_save(&vcpu->arch.host_fx_image);
3944 /* Initialize guest FPU by resetting ours and saving into guest's */
3945 preempt_disable();
3946 kvm_fx_save(&vcpu->arch.host_fx_image);
3947 kvm_fx_finit();
3948 kvm_fx_save(&vcpu->arch.guest_fx_image);
3949 kvm_fx_restore(&vcpu->arch.host_fx_image);
3950 preempt_enable();
3952 vcpu->arch.cr0 |= X86_CR0_ET;
3953 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3954 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3955 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3956 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3958 EXPORT_SYMBOL_GPL(fx_init);
3960 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3962 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3963 return;
3965 vcpu->guest_fpu_loaded = 1;
3966 kvm_fx_save(&vcpu->arch.host_fx_image);
3967 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3969 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3971 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3973 if (!vcpu->guest_fpu_loaded)
3974 return;
3976 vcpu->guest_fpu_loaded = 0;
3977 kvm_fx_save(&vcpu->arch.guest_fx_image);
3978 kvm_fx_restore(&vcpu->arch.host_fx_image);
3979 ++vcpu->stat.fpu_reload;
3981 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3983 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3985 kvm_x86_ops->vcpu_free(vcpu);
3988 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3989 unsigned int id)
3991 return kvm_x86_ops->vcpu_create(kvm, id);
3994 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3996 int r;
3998 /* We do fxsave: this must be aligned. */
3999 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4001 vcpu->arch.mtrr_state.have_fixed = 1;
4002 vcpu_load(vcpu);
4003 r = kvm_arch_vcpu_reset(vcpu);
4004 if (r == 0)
4005 r = kvm_mmu_setup(vcpu);
4006 vcpu_put(vcpu);
4007 if (r < 0)
4008 goto free_vcpu;
4010 return 0;
4011 free_vcpu:
4012 kvm_x86_ops->vcpu_free(vcpu);
4013 return r;
4016 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4018 vcpu_load(vcpu);
4019 kvm_mmu_unload(vcpu);
4020 vcpu_put(vcpu);
4022 kvm_x86_ops->vcpu_free(vcpu);
4025 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4027 vcpu->arch.nmi_pending = false;
4028 vcpu->arch.nmi_injected = false;
4030 return kvm_x86_ops->vcpu_reset(vcpu);
4033 void kvm_arch_hardware_enable(void *garbage)
4035 kvm_x86_ops->hardware_enable(garbage);
4038 void kvm_arch_hardware_disable(void *garbage)
4040 kvm_x86_ops->hardware_disable(garbage);
4043 int kvm_arch_hardware_setup(void)
4045 return kvm_x86_ops->hardware_setup();
4048 void kvm_arch_hardware_unsetup(void)
4050 kvm_x86_ops->hardware_unsetup();
4053 void kvm_arch_check_processor_compat(void *rtn)
4055 kvm_x86_ops->check_processor_compatibility(rtn);
4058 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4060 struct page *page;
4061 struct kvm *kvm;
4062 int r;
4064 BUG_ON(vcpu->kvm == NULL);
4065 kvm = vcpu->kvm;
4067 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4068 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4069 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4070 else
4071 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4073 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4074 if (!page) {
4075 r = -ENOMEM;
4076 goto fail;
4078 vcpu->arch.pio_data = page_address(page);
4080 r = kvm_mmu_create(vcpu);
4081 if (r < 0)
4082 goto fail_free_pio_data;
4084 if (irqchip_in_kernel(kvm)) {
4085 r = kvm_create_lapic(vcpu);
4086 if (r < 0)
4087 goto fail_mmu_destroy;
4090 return 0;
4092 fail_mmu_destroy:
4093 kvm_mmu_destroy(vcpu);
4094 fail_free_pio_data:
4095 free_page((unsigned long)vcpu->arch.pio_data);
4096 fail:
4097 return r;
4100 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4102 kvm_free_lapic(vcpu);
4103 down_read(&vcpu->kvm->slots_lock);
4104 kvm_mmu_destroy(vcpu);
4105 up_read(&vcpu->kvm->slots_lock);
4106 free_page((unsigned long)vcpu->arch.pio_data);
4109 struct kvm *kvm_arch_create_vm(void)
4111 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4113 if (!kvm)
4114 return ERR_PTR(-ENOMEM);
4116 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4117 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4119 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4120 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4122 return kvm;
4125 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4127 vcpu_load(vcpu);
4128 kvm_mmu_unload(vcpu);
4129 vcpu_put(vcpu);
4132 static void kvm_free_vcpus(struct kvm *kvm)
4134 unsigned int i;
4137 * Unpin any mmu pages first.
4139 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4140 if (kvm->vcpus[i])
4141 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4142 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4143 if (kvm->vcpus[i]) {
4144 kvm_arch_vcpu_free(kvm->vcpus[i]);
4145 kvm->vcpus[i] = NULL;
4151 void kvm_arch_destroy_vm(struct kvm *kvm)
4153 kvm_iommu_unmap_guest(kvm);
4154 kvm_free_all_assigned_devices(kvm);
4155 kvm_free_pit(kvm);
4156 kfree(kvm->arch.vpic);
4157 kfree(kvm->arch.vioapic);
4158 kvm_free_vcpus(kvm);
4159 kvm_free_physmem(kvm);
4160 if (kvm->arch.apic_access_page)
4161 put_page(kvm->arch.apic_access_page);
4162 if (kvm->arch.ept_identity_pagetable)
4163 put_page(kvm->arch.ept_identity_pagetable);
4164 kfree(kvm);
4167 int kvm_arch_set_memory_region(struct kvm *kvm,
4168 struct kvm_userspace_memory_region *mem,
4169 struct kvm_memory_slot old,
4170 int user_alloc)
4172 int npages = mem->memory_size >> PAGE_SHIFT;
4173 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4175 /*To keep backward compatibility with older userspace,
4176 *x86 needs to hanlde !user_alloc case.
4178 if (!user_alloc) {
4179 if (npages && !old.rmap) {
4180 unsigned long userspace_addr;
4182 down_write(&current->mm->mmap_sem);
4183 userspace_addr = do_mmap(NULL, 0,
4184 npages * PAGE_SIZE,
4185 PROT_READ | PROT_WRITE,
4186 MAP_PRIVATE | MAP_ANONYMOUS,
4188 up_write(&current->mm->mmap_sem);
4190 if (IS_ERR((void *)userspace_addr))
4191 return PTR_ERR((void *)userspace_addr);
4193 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4194 spin_lock(&kvm->mmu_lock);
4195 memslot->userspace_addr = userspace_addr;
4196 spin_unlock(&kvm->mmu_lock);
4197 } else {
4198 if (!old.user_alloc && old.rmap) {
4199 int ret;
4201 down_write(&current->mm->mmap_sem);
4202 ret = do_munmap(current->mm, old.userspace_addr,
4203 old.npages * PAGE_SIZE);
4204 up_write(&current->mm->mmap_sem);
4205 if (ret < 0)
4206 printk(KERN_WARNING
4207 "kvm_vm_ioctl_set_memory_region: "
4208 "failed to munmap memory\n");
4213 if (!kvm->arch.n_requested_mmu_pages) {
4214 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4215 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4218 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4219 kvm_flush_remote_tlbs(kvm);
4221 return 0;
4224 void kvm_arch_flush_shadow(struct kvm *kvm)
4226 kvm_mmu_zap_all(kvm);
4229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4231 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4232 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4233 || vcpu->arch.nmi_pending;
4236 static void vcpu_kick_intr(void *info)
4238 #ifdef DEBUG
4239 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4240 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4241 #endif
4244 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4246 int ipi_pcpu = vcpu->cpu;
4247 int cpu = get_cpu();
4249 if (waitqueue_active(&vcpu->wq)) {
4250 wake_up_interruptible(&vcpu->wq);
4251 ++vcpu->stat.halt_wakeup;
4254 * We may be called synchronously with irqs disabled in guest mode,
4255 * So need not to call smp_call_function_single() in that case.
4257 if (vcpu->guest_mode && vcpu->cpu != cpu)
4258 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4259 put_cpu();