2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
35 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 * Isolate one page from the LRU lists. If successful put it onto
39 * the indicated list with elevated page count.
42 * -EBUSY: page not on LRU list
43 * 0: page removed from LRU list and added to the specified list.
45 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
50 struct zone
*zone
= page_zone(page
);
52 spin_lock_irq(&zone
->lru_lock
);
53 if (PageLRU(page
) && get_page_unless_zero(page
)) {
57 del_page_from_active_list(zone
, page
);
59 del_page_from_inactive_list(zone
, page
);
60 list_add_tail(&page
->lru
, pagelist
);
62 spin_unlock_irq(&zone
->lru_lock
);
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
84 static inline void move_to_lru(struct page
*page
)
86 if (PageActive(page
)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page
);
92 lru_cache_add_active(page
);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head
*l
)
110 list_for_each_entry_safe(page
, page2
, l
, lru
) {
111 list_del(&page
->lru
);
118 static inline int is_swap_pte(pte_t pte
)
120 return !pte_none(pte
) && !pte_present(pte
) && !pte_file(pte
);
124 * Restore a potential migration pte to a working pte entry
126 static void remove_migration_pte(struct vm_area_struct
*vma
,
127 struct page
*old
, struct page
*new)
129 struct mm_struct
*mm
= vma
->vm_mm
;
136 unsigned long addr
= page_address_in_vma(new, vma
);
141 pgd
= pgd_offset(mm
, addr
);
142 if (!pgd_present(*pgd
))
145 pud
= pud_offset(pgd
, addr
);
146 if (!pud_present(*pud
))
149 pmd
= pmd_offset(pud
, addr
);
150 if (!pmd_present(*pmd
))
153 ptep
= pte_offset_map(pmd
, addr
);
155 if (!is_swap_pte(*ptep
)) {
160 ptl
= pte_lockptr(mm
, pmd
);
163 if (!is_swap_pte(pte
))
166 entry
= pte_to_swp_entry(pte
);
168 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
172 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
173 if (is_write_migration_entry(entry
))
174 pte
= pte_mkwrite(pte
);
175 flush_cache_page(vma
, addr
, pte_pfn(pte
));
176 set_pte_at(mm
, addr
, ptep
, pte
);
179 page_add_anon_rmap(new, vma
, addr
);
181 page_add_file_rmap(new);
183 /* No need to invalidate - it was non-present before */
184 update_mmu_cache(vma
, addr
, pte
);
187 pte_unmap_unlock(ptep
, ptl
);
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
194 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
196 struct vm_area_struct
*vma
;
197 struct address_space
*mapping
= page_mapping(new);
198 struct prio_tree_iter iter
;
199 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
204 spin_lock(&mapping
->i_mmap_lock
);
206 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
207 remove_migration_pte(vma
, old
, new);
209 spin_unlock(&mapping
->i_mmap_lock
);
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
216 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
218 struct anon_vma
*anon_vma
;
219 struct vm_area_struct
*vma
;
220 unsigned long mapping
;
222 mapping
= (unsigned long)new->mapping
;
224 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
231 spin_lock(&anon_vma
->lock
);
233 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
234 remove_migration_pte(vma
, old
, new);
236 spin_unlock(&anon_vma
->lock
);
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
243 static void remove_migration_ptes(struct page
*old
, struct page
*new)
246 remove_anon_migration_ptes(old
, new);
248 remove_file_migration_ptes(old
, new);
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
256 * This function is called from do_swap_page().
258 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
259 unsigned long address
)
266 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
268 if (!is_swap_pte(pte
))
271 entry
= pte_to_swp_entry(pte
);
272 if (!is_migration_entry(entry
))
275 page
= migration_entry_to_page(entry
);
278 pte_unmap_unlock(ptep
, ptl
);
279 wait_on_page_locked(page
);
283 pte_unmap_unlock(ptep
, ptl
);
287 * Replace the page in the mapping.
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
294 static int migrate_page_move_mapping(struct address_space
*mapping
,
295 struct page
*newpage
, struct page
*page
)
300 /* Anonymous page without mapping */
301 if (page_count(page
) != 1)
306 write_lock_irq(&mapping
->tree_lock
);
308 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
311 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
312 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
313 write_unlock_irq(&mapping
->tree_lock
);
318 * Now we know that no one else is looking at the page.
320 get_page(newpage
); /* add cache reference */
322 if (PageSwapCache(page
)) {
323 SetPageSwapCache(newpage
);
324 set_page_private(newpage
, page_private(page
));
328 radix_tree_replace_slot(pslot
, newpage
);
331 * Drop cache reference from old page.
332 * We know this isn't the last reference.
337 * If moved to a different zone then also account
338 * the page for that zone. Other VM counters will be
339 * taken care of when we establish references to the
340 * new page and drop references to the old page.
342 * Note that anonymous pages are accounted for
343 * via NR_FILE_PAGES and NR_ANON_PAGES if they
344 * are mapped to swap space.
346 __dec_zone_page_state(page
, NR_FILE_PAGES
);
347 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
349 write_unlock_irq(&mapping
->tree_lock
);
355 * Copy the page to its new location
357 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
359 copy_highpage(newpage
, page
);
362 SetPageError(newpage
);
363 if (PageReferenced(page
))
364 SetPageReferenced(newpage
);
365 if (PageUptodate(page
))
366 SetPageUptodate(newpage
);
367 if (PageActive(page
))
368 SetPageActive(newpage
);
369 if (PageChecked(page
))
370 SetPageChecked(newpage
);
371 if (PageMappedToDisk(page
))
372 SetPageMappedToDisk(newpage
);
374 if (PageDirty(page
)) {
375 clear_page_dirty_for_io(page
);
376 set_page_dirty(newpage
);
380 ClearPageSwapCache(page
);
382 ClearPageActive(page
);
383 ClearPagePrivate(page
);
384 set_page_private(page
, 0);
385 page
->mapping
= NULL
;
388 * If any waiters have accumulated on the new page then
391 if (PageWriteback(newpage
))
392 end_page_writeback(newpage
);
395 /************************************************************
396 * Migration functions
397 ***********************************************************/
399 /* Always fail migration. Used for mappings that are not movable */
400 int fail_migrate_page(struct address_space
*mapping
,
401 struct page
*newpage
, struct page
*page
)
405 EXPORT_SYMBOL(fail_migrate_page
);
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate.
411 * Pages are locked upon entry and exit.
413 int migrate_page(struct address_space
*mapping
,
414 struct page
*newpage
, struct page
*page
)
418 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
420 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
425 migrate_page_copy(newpage
, page
);
428 EXPORT_SYMBOL(migrate_page
);
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
436 int buffer_migrate_page(struct address_space
*mapping
,
437 struct page
*newpage
, struct page
*page
)
439 struct buffer_head
*bh
, *head
;
442 if (!page_has_buffers(page
))
443 return migrate_page(mapping
, newpage
, page
);
445 head
= page_buffers(page
);
447 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
456 bh
= bh
->b_this_page
;
458 } while (bh
!= head
);
460 ClearPagePrivate(page
);
461 set_page_private(newpage
, page_private(page
));
462 set_page_private(page
, 0);
468 set_bh_page(bh
, newpage
, bh_offset(bh
));
469 bh
= bh
->b_this_page
;
471 } while (bh
!= head
);
473 SetPagePrivate(newpage
);
475 migrate_page_copy(newpage
, page
);
481 bh
= bh
->b_this_page
;
483 } while (bh
!= head
);
487 EXPORT_SYMBOL(buffer_migrate_page
);
491 * Writeback a page to clean the dirty state
493 static int writeout(struct address_space
*mapping
, struct page
*page
)
495 struct writeback_control wbc
= {
496 .sync_mode
= WB_SYNC_NONE
,
499 .range_end
= LLONG_MAX
,
505 if (!mapping
->a_ops
->writepage
)
506 /* No write method for the address space */
509 if (!clear_page_dirty_for_io(page
))
510 /* Someone else already triggered a write */
514 * A dirty page may imply that the underlying filesystem has
515 * the page on some queue. So the page must be clean for
516 * migration. Writeout may mean we loose the lock and the
517 * page state is no longer what we checked for earlier.
518 * At this point we know that the migration attempt cannot
521 remove_migration_ptes(page
, page
);
523 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
525 /* I/O Error writing */
528 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
529 /* unlocked. Relock */
536 * Default handling if a filesystem does not provide a migration function.
538 static int fallback_migrate_page(struct address_space
*mapping
,
539 struct page
*newpage
, struct page
*page
)
542 return writeout(mapping
, page
);
545 * Buffers may be managed in a filesystem specific way.
546 * We must have no buffers or drop them.
548 if (PagePrivate(page
) &&
549 !try_to_release_page(page
, GFP_KERNEL
))
552 return migrate_page(mapping
, newpage
, page
);
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
559 * The new page will have replaced the old page if this function
562 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
564 struct address_space
*mapping
;
568 * Block others from accessing the page when we get around to
569 * establishing additional references. We are the only one
570 * holding a reference to the new page at this point.
572 if (TestSetPageLocked(newpage
))
575 /* Prepare mapping for the new page.*/
576 newpage
->index
= page
->index
;
577 newpage
->mapping
= page
->mapping
;
579 mapping
= page_mapping(page
);
581 rc
= migrate_page(mapping
, newpage
, page
);
582 else if (mapping
->a_ops
->migratepage
)
584 * Most pages have a mapping and most filesystems
585 * should provide a migration function. Anonymous
586 * pages are part of swap space which also has its
587 * own migration function. This is the most common
588 * path for page migration.
590 rc
= mapping
->a_ops
->migratepage(mapping
,
593 rc
= fallback_migrate_page(mapping
, newpage
, page
);
596 remove_migration_ptes(page
, newpage
);
598 newpage
->mapping
= NULL
;
600 unlock_page(newpage
);
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
609 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
610 struct page
*page
, int force
)
614 struct page
*newpage
= get_new_page(page
, private, &result
);
620 if (page_count(page
) == 1)
621 /* page was freed from under us. So we are done. */
625 if (TestSetPageLocked(page
)) {
631 if (PageWriteback(page
)) {
634 wait_on_page_writeback(page
);
637 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
638 * we cannot notice that anon_vma is freed while we migrates a page.
639 * This rcu_read_lock() delays freeing anon_vma pointer until the end
640 * of migration. File cache pages are no problem because of page_lock()
641 * File Caches may use write_page() or lock_page() in migration, then,
642 * just care Anon page here.
644 if (PageAnon(page
)) {
649 * This is a corner case handling.
650 * When a new swap-cache is read into, it is linked to LRU
651 * and treated as swapcache but has no rmap yet.
652 * Calling try_to_unmap() against a page->mapping==NULL page is
653 * BUG. So handle it here.
657 /* Establish migration ptes or remove ptes */
658 try_to_unmap(page
, 1);
660 if (!page_mapped(page
))
661 rc
= move_to_new_page(newpage
, page
);
664 remove_migration_ptes(page
, page
);
675 * A page that has been migrated has all references
676 * removed and will be freed. A page that has not been
677 * migrated will have kepts its references and be
680 list_del(&page
->lru
);
686 * Move the new page to the LRU. If migration was not successful
687 * then this will free the page.
689 move_to_lru(newpage
);
694 *result
= page_to_nid(newpage
);
702 * The function takes one list of pages to migrate and a function
703 * that determines from the page to be migrated and the private data
704 * the target of the move and allocates the page.
706 * The function returns after 10 attempts or if no pages
707 * are movable anymore because to has become empty
708 * or no retryable pages exist anymore. All pages will be
709 * returned to the LRU or freed.
711 * Return: Number of pages not migrated or error code.
713 int migrate_pages(struct list_head
*from
,
714 new_page_t get_new_page
, unsigned long private)
721 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
725 current
->flags
|= PF_SWAPWRITE
;
727 for(pass
= 0; pass
< 10 && retry
; pass
++) {
730 list_for_each_entry_safe(page
, page2
, from
, lru
) {
733 rc
= unmap_and_move(get_new_page
, private,
745 /* Permanent failure */
754 current
->flags
&= ~PF_SWAPWRITE
;
756 putback_lru_pages(from
);
761 return nr_failed
+ retry
;
766 * Move a list of individual pages
768 struct page_to_node
{
775 static struct page
*new_page_node(struct page
*p
, unsigned long private,
778 struct page_to_node
*pm
= (struct page_to_node
*)private;
780 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
783 if (pm
->node
== MAX_NUMNODES
)
786 *result
= &pm
->status
;
788 return alloc_pages_node(pm
->node
,
789 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
793 * Move a set of pages as indicated in the pm array. The addr
794 * field must be set to the virtual address of the page to be moved
795 * and the node number must contain a valid target node.
797 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
801 struct page_to_node
*pp
;
804 down_read(&mm
->mmap_sem
);
807 * Build a list of pages to migrate
810 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
811 struct vm_area_struct
*vma
;
815 * A valid page pointer that will not match any of the
816 * pages that will be moved.
818 pp
->page
= ZERO_PAGE(0);
821 vma
= find_vma(mm
, pp
->addr
);
822 if (!vma
|| !vma_migratable(vma
))
825 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
830 if (PageReserved(page
)) /* Check for zero page */
834 err
= page_to_nid(page
);
838 * Node already in the right place
843 if (page_mapcount(page
) > 1 &&
847 err
= isolate_lru_page(page
, &pagelist
);
850 * Either remove the duplicate refcount from
851 * isolate_lru_page() or drop the page ref if it was
859 if (!list_empty(&pagelist
))
860 err
= migrate_pages(&pagelist
, new_page_node
,
865 up_read(&mm
->mmap_sem
);
870 * Determine the nodes of a list of pages. The addr in the pm array
871 * must have been set to the virtual address of which we want to determine
874 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
876 down_read(&mm
->mmap_sem
);
878 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
879 struct vm_area_struct
*vma
;
884 vma
= find_vma(mm
, pm
->addr
);
888 page
= follow_page(vma
, pm
->addr
, 0);
890 /* Use PageReserved to check for zero page */
891 if (!page
|| PageReserved(page
))
894 err
= page_to_nid(page
);
899 up_read(&mm
->mmap_sem
);
904 * Move a list of pages in the address space of the currently executing
907 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
908 const void __user
* __user
*pages
,
909 const int __user
*nodes
,
910 int __user
*status
, int flags
)
914 struct task_struct
*task
;
915 nodemask_t task_nodes
;
916 struct mm_struct
*mm
;
917 struct page_to_node
*pm
= NULL
;
920 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
923 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
926 /* Find the mm_struct */
927 read_lock(&tasklist_lock
);
928 task
= pid
? find_task_by_vpid(pid
) : current
;
930 read_unlock(&tasklist_lock
);
933 mm
= get_task_mm(task
);
934 read_unlock(&tasklist_lock
);
940 * Check if this process has the right to modify the specified
941 * process. The right exists if the process has administrative
942 * capabilities, superuser privileges or the same
943 * userid as the target process.
945 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
946 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
947 !capable(CAP_SYS_NICE
)) {
952 err
= security_task_movememory(task
);
957 task_nodes
= cpuset_mems_allowed(task
);
959 /* Limit nr_pages so that the multiplication may not overflow */
960 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
965 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
972 * Get parameters from user space and initialize the pm
973 * array. Return various errors if the user did something wrong.
975 for (i
= 0; i
< nr_pages
; i
++) {
976 const void __user
*p
;
979 if (get_user(p
, pages
+ i
))
982 pm
[i
].addr
= (unsigned long)p
;
986 if (get_user(node
, nodes
+ i
))
990 if (!node_state(node
, N_HIGH_MEMORY
))
994 if (!node_isset(node
, task_nodes
))
999 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1002 pm
[nr_pages
].node
= MAX_NUMNODES
;
1005 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1007 err
= do_pages_stat(mm
, pm
);
1010 /* Return status information */
1011 for (i
= 0; i
< nr_pages
; i
++)
1012 if (put_user(pm
[i
].status
, status
+ i
))
1024 * Call migration functions in the vma_ops that may prepare
1025 * memory in a vm for migration. migration functions may perform
1026 * the migration for vmas that do not have an underlying page struct.
1028 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1029 const nodemask_t
*from
, unsigned long flags
)
1031 struct vm_area_struct
*vma
;
1034 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1035 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1036 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);