1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/config.h>
118 #include <linux/kernel.h>
119 #include <linux/types.h>
120 #include <linux/string.h>
121 #include <linux/ioport.h>
122 #include <linux/delay.h>
123 #include <linux/spinlock.h>
124 #include <linux/completion.h>
125 #include <linux/sched.h>
126 #include <linux/init.h>
127 #include <linux/proc_fs.h>
128 #include <linux/blkdev.h>
129 #include <linux/module.h>
130 #include <linux/interrupt.h>
131 #include <linux/device.h>
133 #include <asm/system.h>
135 #include <asm/pgtable.h>
136 #include <asm/byteorder.h>
138 #include <scsi/scsi.h>
139 #include <scsi/scsi_cmnd.h>
140 #include <scsi/scsi_dbg.h>
141 #include <scsi/scsi_eh.h>
142 #include <scsi/scsi_host.h>
143 #include <scsi/scsi_tcq.h>
144 #include <scsi/scsi_transport.h>
145 #include <scsi/scsi_transport_spi.h>
149 /* NOTE: For 64 bit drivers there are points in the code where we use
150 * a non dereferenceable pointer to point to a structure in dma-able
151 * memory (which is 32 bits) so that we can use all of the structure
152 * operations but take the address at the end. This macro allows us
153 * to truncate the 64 bit pointer down to 32 bits without the compiler
155 #define to32bit(x) ((__u32)((unsigned long)(x)))
160 #define STATIC static
163 MODULE_AUTHOR("James Bottomley");
164 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
165 MODULE_LICENSE("GPL");
167 /* This is the script */
168 #include "53c700_d.h"
171 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
172 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
173 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
174 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
175 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
176 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
177 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
178 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
179 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
);
180 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
182 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
184 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
186 struct NCR_700_sense
{
187 unsigned char cmnd
[MAX_COMMAND_SIZE
];
190 static char *NCR_700_phase
[] = {
193 "before command phase",
194 "after command phase",
195 "after status phase",
196 "after data in phase",
197 "after data out phase",
201 static char *NCR_700_condition
[] = {
209 "REJECT_MSG RECEIVED",
210 "DISCONNECT_MSG RECEIVED",
216 static char *NCR_700_fatal_messages
[] = {
217 "unexpected message after reselection",
218 "still MSG_OUT after message injection",
219 "not MSG_IN after selection",
220 "Illegal message length received",
223 static char *NCR_700_SBCL_bits
[] = {
234 static char *NCR_700_SBCL_to_phase
[] = {
245 /* This translates the SDTR message offset and period to a value
246 * which can be loaded into the SXFER_REG.
248 * NOTE: According to SCSI-2, the true transfer period (in ns) is
249 * actually four times this period value */
251 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
252 __u8 offset
, __u8 period
)
256 __u8 min_xferp
= (hostdata
->chip710
257 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
258 __u8 max_offset
= (hostdata
->chip710
259 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
264 if(period
< hostdata
->min_period
) {
265 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
266 period
= hostdata
->min_period
;
268 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
269 if(offset
> max_offset
) {
270 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
274 if(XFERP
< min_xferp
) {
275 printk(KERN_WARNING
"53c700: XFERP %d is less than minium, setting to %d\n",
279 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
283 NCR_700_get_SXFER(struct scsi_device
*SDp
)
285 struct NCR_700_Host_Parameters
*hostdata
=
286 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
288 return NCR_700_offset_period_to_sxfer(hostdata
,
289 spi_offset(SDp
->sdev_target
),
290 spi_period(SDp
->sdev_target
));
294 NCR_700_detect(struct scsi_host_template
*tpnt
,
295 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
297 dma_addr_t pScript
, pSlots
;
300 struct Scsi_Host
*host
;
301 static int banner
= 0;
304 if(tpnt
->sdev_attrs
== NULL
)
305 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
307 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
308 &pScript
, GFP_KERNEL
);
310 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
314 script
= (__u32
*)memory
;
315 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
316 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
317 hostdata
->status
= memory
+ STATUS_OFFSET
;
318 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
319 * if this isn't sufficient separation to avoid dma flushing issues */
320 BUG_ON(!dma_is_consistent(pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
321 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
324 pSlots
= pScript
+ SLOTS_OFFSET
;
326 /* Fill in the missing routines from the host template */
327 tpnt
->queuecommand
= NCR_700_queuecommand
;
328 tpnt
->eh_abort_handler
= NCR_700_abort
;
329 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
330 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
331 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
332 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
333 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
334 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
335 tpnt
->slave_configure
= NCR_700_slave_configure
;
336 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
337 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
338 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
340 if(tpnt
->name
== NULL
)
341 tpnt
->name
= "53c700";
342 if(tpnt
->proc_name
== NULL
)
343 tpnt
->proc_name
= "53c700";
345 host
= scsi_host_alloc(tpnt
, 4);
348 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
349 * NCR_700_COMMAND_SLOTS_PER_HOST
);
350 for (j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
351 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
352 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
353 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
355 hostdata
->free_list
= &hostdata
->slots
[j
];
357 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
358 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
361 for (j
= 0; j
< ARRAY_SIZE(SCRIPT
); j
++)
362 script
[j
] = bS_to_host(SCRIPT
[j
]);
364 /* adjust all labels to be bus physical */
365 for (j
= 0; j
< PATCHES
; j
++)
366 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
367 /* now patch up fixed addresses. */
368 script_patch_32(script
, MessageLocation
,
369 pScript
+ MSGOUT_OFFSET
);
370 script_patch_32(script
, StatusAddress
,
371 pScript
+ STATUS_OFFSET
);
372 script_patch_32(script
, ReceiveMsgAddress
,
373 pScript
+ MSGIN_OFFSET
);
375 hostdata
->script
= script
;
376 hostdata
->pScript
= pScript
;
377 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
378 hostdata
->state
= NCR_700_HOST_FREE
;
379 hostdata
->cmd
= NULL
;
381 host
->max_lun
= NCR_700_MAX_LUNS
;
382 BUG_ON(NCR_700_transport_template
== NULL
);
383 host
->transportt
= NCR_700_transport_template
;
384 host
->unique_id
= (unsigned long)hostdata
->base
;
385 hostdata
->eh_complete
= NULL
;
386 host
->hostdata
[0] = (unsigned long)hostdata
;
388 NCR_700_writeb(0xff, host
, CTEST9_REG
);
389 if (hostdata
->chip710
)
390 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
392 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
393 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
395 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
398 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
399 hostdata
->chip710
? "53c710" :
400 (hostdata
->fast
? "53c700-66" : "53c700"),
401 hostdata
->rev
, hostdata
->differential
?
402 "(Differential)" : "");
404 NCR_700_chip_reset(host
);
406 if (scsi_add_host(host
, dev
)) {
407 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
412 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
419 NCR_700_release(struct Scsi_Host
*host
)
421 struct NCR_700_Host_Parameters
*hostdata
=
422 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
424 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
425 hostdata
->script
, hostdata
->pScript
);
430 NCR_700_identify(int can_disconnect
, __u8 lun
)
432 return IDENTIFY_BASE
|
433 ((can_disconnect
) ? 0x40 : 0) |
434 (lun
& NCR_700_LUN_MASK
);
438 * Function : static int data_residual (Scsi_Host *host)
440 * Purpose : return residual data count of what's in the chip. If you
441 * really want to know what this function is doing, it's almost a
442 * direct transcription of the algorithm described in the 53c710
443 * guide, except that the DBC and DFIFO registers are only 6 bits
446 * Inputs : host - SCSI host */
448 NCR_700_data_residual (struct Scsi_Host
*host
) {
449 struct NCR_700_Host_Parameters
*hostdata
=
450 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
451 int count
, synchronous
= 0;
454 if(hostdata
->chip710
) {
455 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
456 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
458 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
459 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
463 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
465 /* get the data direction */
466 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
471 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
473 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
477 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
478 if (sstat
& SODL_REG_FULL
)
480 if (synchronous
&& (sstat
& SODR_REG_FULL
))
485 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
490 /* print out the SCSI wires and corresponding phase from the SBCL register
493 sbcl_to_string(__u8 sbcl
)
496 static char ret
[256];
501 strcat(ret
, NCR_700_SBCL_bits
[i
]);
503 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
508 bitmap_to_number(__u8 bitmap
)
512 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
517 /* Pull a slot off the free list */
518 STATIC
struct NCR_700_command_slot
*
519 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
521 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
525 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
526 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
530 if(slot
->state
!= NCR_700_SLOT_FREE
)
532 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
535 hostdata
->free_list
= slot
->ITL_forw
;
536 slot
->ITL_forw
= NULL
;
539 /* NOTE: set the state to busy here, not queued, since this
540 * indicates the slot is in use and cannot be run by the IRQ
541 * finish routine. If we cannot queue the command when it
542 * is properly build, we then change to NCR_700_SLOT_QUEUED */
543 slot
->state
= NCR_700_SLOT_BUSY
;
545 hostdata
->command_slot_count
++;
551 free_slot(struct NCR_700_command_slot
*slot
,
552 struct NCR_700_Host_Parameters
*hostdata
)
554 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
555 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
557 if(slot
->state
== NCR_700_SLOT_FREE
) {
558 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
561 slot
->resume_offset
= 0;
563 slot
->state
= NCR_700_SLOT_FREE
;
564 slot
->ITL_forw
= hostdata
->free_list
;
565 hostdata
->free_list
= slot
;
566 hostdata
->command_slot_count
--;
570 /* This routine really does very little. The command is indexed on
571 the ITL and (if tagged) the ITLQ lists in _queuecommand */
573 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
574 struct scsi_cmnd
*SCp
, __u32 dsp
)
576 /* Its just possible that this gets executed twice */
578 struct NCR_700_command_slot
*slot
=
579 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
581 slot
->resume_offset
= dsp
;
583 hostdata
->state
= NCR_700_HOST_FREE
;
584 hostdata
->cmd
= NULL
;
588 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
589 struct NCR_700_command_slot
*slot
)
591 if(SCp
->sc_data_direction
!= DMA_NONE
&&
592 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
) {
594 dma_unmap_sg(hostdata
->dev
, SCp
->request_buffer
,
595 SCp
->use_sg
, SCp
->sc_data_direction
);
597 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
,
598 SCp
->request_bufflen
,
599 SCp
->sc_data_direction
);
605 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
606 struct scsi_cmnd
*SCp
, int result
)
608 hostdata
->state
= NCR_700_HOST_FREE
;
609 hostdata
->cmd
= NULL
;
612 struct NCR_700_command_slot
*slot
=
613 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
615 NCR_700_unmap(hostdata
, SCp
, slot
);
616 if (slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
617 struct NCR_700_sense
*sense
= SCp
->device
->hostdata
;
619 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
620 SCp
, SCp
->cmnd
[7], result
);
621 scsi_print_sense("53c700", SCp
);
624 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
625 /* restore the old result if the request sense was
628 result
= sense
->cmnd
[7];
630 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
631 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
633 free_slot(slot
, hostdata
);
635 if(NCR_700_get_depth(SCp
->device
) == 0 ||
636 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
637 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
638 NCR_700_get_depth(SCp
->device
));
639 #endif /* NCR_700_DEBUG */
640 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
642 SCp
->host_scribble
= NULL
;
643 SCp
->result
= result
;
646 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
652 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
655 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
657 NCR_700_writeb(0, host
, SCNTL1_REG
);
662 NCR_700_chip_setup(struct Scsi_Host
*host
)
664 struct NCR_700_Host_Parameters
*hostdata
=
665 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
666 __u32 dcntl_extra
= 0;
668 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
670 if(hostdata
->chip710
) {
671 __u8 burst_disable
= hostdata
->burst_disable
673 dcntl_extra
= COMPAT_700_MODE
;
675 NCR_700_writeb(dcntl_extra
, host
, DCNTL_REG
);
676 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
677 host
, DMODE_710_REG
);
678 NCR_700_writeb(burst_disable
| (hostdata
->differential
?
679 DIFF
: 0), host
, CTEST7_REG
);
680 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
681 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
682 | AUTO_ATN
, host
, SCNTL0_REG
);
684 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
685 host
, DMODE_700_REG
);
686 NCR_700_writeb(hostdata
->differential
?
687 DIFF
: 0, host
, CTEST7_REG
);
689 /* this is for 700-66, does nothing on 700 */
690 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
691 | GENERATE_RECEIVE_PARITY
, host
,
694 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
695 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
699 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
700 NCR_700_writeb(0, host
, SBCL_REG
);
701 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
703 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
704 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
706 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
707 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
708 if(hostdata
->clock
> 75) {
709 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
710 /* do the best we can, but the async clock will be out
711 * of spec: sync divider 2, async divider 3 */
712 DEBUG(("53c700: sync 2 async 3\n"));
713 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
714 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
715 hostdata
->sync_clock
= hostdata
->clock
/2;
716 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
717 /* sync divider 1.5, async divider 3 */
718 DEBUG(("53c700: sync 1.5 async 3\n"));
719 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
720 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
721 hostdata
->sync_clock
= hostdata
->clock
*2;
722 hostdata
->sync_clock
/= 3;
724 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
725 /* sync divider 1, async divider 2 */
726 DEBUG(("53c700: sync 1 async 2\n"));
727 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
728 NCR_700_writeb(ASYNC_DIV_2_0
| dcntl_extra
, host
, DCNTL_REG
);
729 hostdata
->sync_clock
= hostdata
->clock
;
730 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
731 /* sync divider 1, async divider 1.5 */
732 DEBUG(("53c700: sync 1 async 1.5\n"));
733 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
734 NCR_700_writeb(ASYNC_DIV_1_5
| dcntl_extra
, host
, DCNTL_REG
);
735 hostdata
->sync_clock
= hostdata
->clock
;
737 DEBUG(("53c700: sync 1 async 1\n"));
738 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
739 NCR_700_writeb(ASYNC_DIV_1_0
| dcntl_extra
, host
, DCNTL_REG
);
740 /* sync divider 1, async divider 1 */
741 hostdata
->sync_clock
= hostdata
->clock
;
743 /* Calculate the actual minimum period that can be supported
744 * by our synchronous clock speed. See the 710 manual for
745 * exact details of this calculation which is based on a
746 * setting of the SXFER register */
747 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
748 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
749 if(min_period
> NCR_700_MIN_PERIOD
)
750 hostdata
->min_period
= min_period
;
754 NCR_700_chip_reset(struct Scsi_Host
*host
)
756 struct NCR_700_Host_Parameters
*hostdata
=
757 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
758 if(hostdata
->chip710
) {
759 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
762 NCR_700_writeb(0, host
, ISTAT_REG
);
764 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
767 NCR_700_writeb(0, host
, DCNTL_REG
);
772 NCR_700_chip_setup(host
);
775 /* The heart of the message processing engine is that the instruction
776 * immediately after the INT is the normal case (and so must be CLEAR
777 * ACK). If we want to do something else, we call that routine in
778 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
779 * ACK) so that the routine returns correctly to resume its activity
782 process_extended_message(struct Scsi_Host
*host
,
783 struct NCR_700_Host_Parameters
*hostdata
,
784 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
786 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
787 __u8 pun
= 0xff, lun
= 0xff;
790 pun
= SCp
->device
->id
;
791 lun
= SCp
->device
->lun
;
794 switch(hostdata
->msgin
[2]) {
796 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
797 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
798 __u8 period
= hostdata
->msgin
[3];
799 __u8 offset
= hostdata
->msgin
[4];
801 if(offset
== 0 || period
== 0) {
806 spi_offset(starget
) = offset
;
807 spi_period(starget
) = period
;
809 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
810 spi_display_xfer_agreement(starget
);
811 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
814 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
815 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
817 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
821 /* SDTR message out of the blue, reject it */
822 shost_printk(KERN_WARNING
, host
,
823 "Unexpected SDTR msg\n");
824 hostdata
->msgout
[0] = A_REJECT_MSG
;
825 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
826 script_patch_16(hostdata
->script
, MessageCount
, 1);
827 /* SendMsgOut returns, so set up the return
829 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
834 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
835 host
->host_no
, pun
, lun
);
836 hostdata
->msgout
[0] = A_REJECT_MSG
;
837 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
838 script_patch_16(hostdata
->script
, MessageCount
, 1);
839 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
844 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
845 host
->host_no
, pun
, lun
,
846 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
847 spi_print_msg(hostdata
->msgin
);
850 hostdata
->msgout
[0] = A_REJECT_MSG
;
851 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
852 script_patch_16(hostdata
->script
, MessageCount
, 1);
853 /* SendMsgOut returns, so set up the return
855 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
857 NCR_700_writel(temp
, host
, TEMP_REG
);
858 return resume_offset
;
862 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
863 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
865 /* work out where to return to */
866 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
867 __u8 pun
= 0xff, lun
= 0xff;
870 pun
= SCp
->device
->id
;
871 lun
= SCp
->device
->lun
;
875 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
876 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
877 spi_print_msg(hostdata
->msgin
);
881 switch(hostdata
->msgin
[0]) {
884 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
889 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
890 /* Rejected our sync negotiation attempt */
891 spi_period(SCp
->device
->sdev_target
) =
892 spi_offset(SCp
->device
->sdev_target
) = 0;
893 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
894 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
895 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
896 /* rejected our first simple tag message */
897 scmd_printk(KERN_WARNING
, SCp
,
898 "Rejected first tag queue attempt, turning off tag queueing\n");
899 /* we're done negotiating */
900 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
901 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
902 SCp
->device
->tagged_supported
= 0;
903 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
905 shost_printk(KERN_WARNING
, host
,
906 "(%d:%d) Unexpected REJECT Message %s\n",
908 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
909 /* however, just ignore it */
913 case A_PARITY_ERROR_MSG
:
914 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
916 NCR_700_internal_bus_reset(host
);
918 case A_SIMPLE_TAG_MSG
:
919 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
920 pun
, lun
, hostdata
->msgin
[1],
921 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
925 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
926 host
->host_no
, pun
, lun
,
927 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
929 spi_print_msg(hostdata
->msgin
);
932 hostdata
->msgout
[0] = A_REJECT_MSG
;
933 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
934 script_patch_16(hostdata
->script
, MessageCount
, 1);
935 /* SendMsgOut returns, so set up the return
937 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
941 NCR_700_writel(temp
, host
, TEMP_REG
);
942 /* set us up to receive another message */
943 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
944 return resume_offset
;
948 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
949 struct Scsi_Host
*host
,
950 struct NCR_700_Host_Parameters
*hostdata
)
952 __u32 resume_offset
= 0;
953 __u8 pun
= 0xff, lun
=0xff;
956 pun
= SCp
->device
->id
;
957 lun
= SCp
->device
->lun
;
960 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
961 DEBUG((" COMMAND COMPLETE, status=%02x\n",
962 hostdata
->status
[0]));
963 /* OK, if TCQ still under negotiation, we now know it works */
964 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
965 NCR_700_set_tag_neg_state(SCp
->device
,
966 NCR_700_FINISHED_TAG_NEGOTIATION
);
968 /* check for contingent allegiance contitions */
969 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
970 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
971 struct NCR_700_command_slot
*slot
=
972 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
973 if(SCp
->cmnd
[0] == REQUEST_SENSE
) {
974 /* OOPS: bad device, returning another
975 * contingent allegiance condition */
976 scmd_printk(KERN_ERR
, SCp
,
977 "broken device is looping in contingent allegiance: ignoring\n");
978 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
980 struct NCR_700_sense
*sense
= SCp
->device
->hostdata
;
982 scsi_print_command(SCp
);
983 printk(" cmd %p has status %d, requesting sense\n",
984 SCp
, hostdata
->status
[0]);
986 /* we can destroy the command here
987 * because the contingent allegiance
988 * condition will cause a retry which
989 * will re-copy the command from the
990 * saved data_cmnd. We also unmap any
991 * data associated with the command
993 NCR_700_unmap(hostdata
, SCp
, slot
);
994 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
998 sense
->cmnd
[0] = REQUEST_SENSE
;
999 sense
->cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1002 sense
->cmnd
[4] = sizeof(SCp
->sense_buffer
);
1004 /* Here's a quiet hack: the
1005 * REQUEST_SENSE command is six bytes,
1006 * so store a flag indicating that
1007 * this was an internal sense request
1008 * and the original status at the end
1010 sense
->cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1011 sense
->cmnd
[7] = hostdata
->status
[0];
1012 slot
->pCmd
= dma_map_single(hostdata
->dev
, sense
->cmnd
, sizeof(sense
->cmnd
), DMA_TO_DEVICE
);
1013 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1014 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| sizeof(SCp
->sense_buffer
));
1015 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1016 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1017 slot
->SG
[1].pAddr
= 0;
1018 slot
->resume_offset
= hostdata
->pScript
;
1019 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1020 dma_cache_sync(SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1022 /* queue the command for reissue */
1023 slot
->state
= NCR_700_SLOT_QUEUED
;
1024 slot
->flags
= NCR_700_FLAG_AUTOSENSE
;
1025 hostdata
->state
= NCR_700_HOST_FREE
;
1026 hostdata
->cmd
= NULL
;
1029 // Currently rely on the mid layer evaluation
1030 // of the tag queuing capability
1032 //if(status_byte(hostdata->status[0]) == GOOD &&
1033 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1034 // /* Piggy back the tag queueing support
1035 // * on this command */
1036 // dma_sync_single_for_cpu(hostdata->dev,
1037 // slot->dma_handle,
1038 // SCp->request_bufflen,
1039 // DMA_FROM_DEVICE);
1040 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1041 // scmd_printk(KERN_INFO, SCp,
1042 // "Enabling Tag Command Queuing\n");
1043 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1044 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1046 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1047 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1050 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1052 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1053 __u8 i
= (dsps
& 0xf00) >> 8;
1055 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1057 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1058 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1060 scsi_print_command(SCp
);
1062 NCR_700_internal_bus_reset(host
);
1063 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1064 int i
= (dsps
& 0xfff);
1066 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1067 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1068 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1069 printk(KERN_ERR
" msg begins %02x %02x\n",
1070 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1072 NCR_700_internal_bus_reset(host
);
1073 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1074 #ifdef NCR_700_DEBUG
1075 __u8 i
= (dsps
& 0xf00) >> 8;
1077 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1078 host
->host_no
, pun
, lun
,
1079 i
, NCR_700_phase
[i
]);
1081 save_for_reselection(hostdata
, SCp
, dsp
);
1083 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1085 struct NCR_700_command_slot
*slot
;
1086 __u8 reselection_id
= hostdata
->reselection_id
;
1087 struct scsi_device
*SDp
;
1089 lun
= hostdata
->msgin
[0] & 0x1f;
1091 hostdata
->reselection_id
= 0xff;
1092 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1093 host
->host_no
, reselection_id
, lun
));
1094 /* clear the reselection indicator */
1095 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1096 if(unlikely(SDp
== NULL
)) {
1097 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1098 host
->host_no
, reselection_id
, lun
);
1101 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1102 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1103 if(unlikely(SCp
== NULL
)) {
1104 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1105 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1109 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1110 DDEBUG(KERN_DEBUG
, SDp
,
1111 "reselection is tag %d, slot %p(%d)\n",
1112 hostdata
->msgin
[2], slot
, slot
->tag
);
1114 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1115 if(unlikely(SCp
== NULL
)) {
1116 sdev_printk(KERN_ERR
, SDp
,
1117 "no saved request for untagged cmd\n");
1120 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1124 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1125 host
->host_no
, reselection_id
, lun
,
1126 hostdata
->msgin
[0], hostdata
->msgin
[1],
1127 hostdata
->msgin
[2]);
1129 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1130 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1132 resume_offset
= slot
->resume_offset
;
1133 hostdata
->cmd
= slot
->cmnd
;
1135 /* re-patch for this command */
1136 script_patch_32_abs(hostdata
->script
, CommandAddress
,
1138 script_patch_16(hostdata
->script
,
1139 CommandCount
, slot
->cmnd
->cmd_len
);
1140 script_patch_32_abs(hostdata
->script
, SGScriptStartAddress
,
1141 to32bit(&slot
->pSG
[0].ins
));
1143 /* Note: setting SXFER only works if we're
1144 * still in the MESSAGE phase, so it is vital
1145 * that ACK is still asserted when we process
1146 * the reselection message. The resume offset
1147 * should therefore always clear ACK */
1148 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1150 dma_cache_sync(hostdata
->msgin
,
1151 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1152 dma_cache_sync(hostdata
->msgout
,
1153 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1154 /* I'm just being paranoid here, the command should
1155 * already have been flushed from the cache */
1156 dma_cache_sync(slot
->cmnd
->cmnd
,
1157 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1162 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1164 /* This section is full of debugging code because I've
1165 * never managed to reach it. I think what happens is
1166 * that, because the 700 runs with selection
1167 * interrupts enabled the whole time that we take a
1168 * selection interrupt before we manage to get to the
1169 * reselected script interrupt */
1171 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1172 struct NCR_700_command_slot
*slot
;
1174 /* Take out our own ID */
1175 reselection_id
&= ~(1<<host
->this_id
);
1177 /* I've never seen this happen, so keep this as a printk rather
1179 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1180 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1183 /* FIXME: DEBUGGING CODE */
1184 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1187 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1188 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1189 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1192 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1193 SCp
= hostdata
->slots
[i
].cmnd
;
1197 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1198 /* change slot from busy to queued to redo command */
1199 slot
->state
= NCR_700_SLOT_QUEUED
;
1201 hostdata
->cmd
= NULL
;
1203 if(reselection_id
== 0) {
1204 if(hostdata
->reselection_id
== 0xff) {
1205 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1208 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1210 reselection_id
= hostdata
->reselection_id
;
1214 /* convert to real ID */
1215 reselection_id
= bitmap_to_number(reselection_id
);
1217 hostdata
->reselection_id
= reselection_id
;
1218 /* just in case we have a stale simple tag message, clear it */
1219 hostdata
->msgin
[1] = 0;
1220 dma_cache_sync(hostdata
->msgin
,
1221 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1222 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1223 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1225 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1227 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1228 /* we've just disconnected from the bus, do nothing since
1229 * a return here will re-run the queued command slot
1230 * that may have been interrupted by the initial selection */
1231 DEBUG((" SELECTION COMPLETED\n"));
1232 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1233 resume_offset
= process_message(host
, hostdata
, SCp
,
1235 } else if((dsps
& 0xfffff000) == 0) {
1236 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1237 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1238 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1239 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1241 scsi_print_command(SCp
);
1244 for(i
= 0; i
< SCp
->use_sg
+ 1; i
++) {
1245 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, ((struct scatterlist
*)SCp
->request_buffer
)[i
].length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1249 NCR_700_internal_bus_reset(host
);
1250 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1251 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1252 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1253 resume_offset
= dsp
;
1255 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1256 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1257 NCR_700_internal_bus_reset(host
);
1259 return resume_offset
;
1262 /* We run the 53c700 with selection interrupts always enabled. This
1263 * means that the chip may be selected as soon as the bus frees. On a
1264 * busy bus, this can be before the scripts engine finishes its
1265 * processing. Therefore, part of the selection processing has to be
1266 * to find out what the scripts engine is doing and complete the
1267 * function if necessary (i.e. process the pending disconnect or save
1268 * the interrupted initial selection */
1270 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1272 __u8 id
= 0; /* Squash compiler warning */
1274 __u32 resume_offset
= 0;
1275 struct NCR_700_Host_Parameters
*hostdata
=
1276 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1277 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1280 for(count
= 0; count
< 5; count
++) {
1281 id
= NCR_700_readb(host
, hostdata
->chip710
?
1282 CTEST9_REG
: SFBR_REG
);
1284 /* Take out our own ID */
1285 id
&= ~(1<<host
->this_id
);
1290 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1291 if((sbcl
& SBCL_IO
) == 0) {
1292 /* mark as having been selected rather than reselected */
1295 /* convert to real ID */
1296 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1297 DEBUG(("scsi%d: Reselected by %d\n",
1298 host
->host_no
, id
));
1300 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1301 struct NCR_700_command_slot
*slot
=
1302 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1303 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1305 switch(dsp
- hostdata
->pScript
) {
1306 case Ent_Disconnect1
:
1307 case Ent_Disconnect2
:
1308 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1310 case Ent_Disconnect3
:
1311 case Ent_Disconnect4
:
1312 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1314 case Ent_Disconnect5
:
1315 case Ent_Disconnect6
:
1316 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1318 case Ent_Disconnect7
:
1319 case Ent_Disconnect8
:
1320 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1324 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1328 slot
->state
= NCR_700_SLOT_QUEUED
;
1332 hostdata
->state
= NCR_700_HOST_BUSY
;
1333 hostdata
->cmd
= NULL
;
1334 /* clear any stale simple tag message */
1335 hostdata
->msgin
[1] = 0;
1336 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
,
1340 /* Selected as target, Ignore */
1341 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1342 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1343 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1345 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1347 return resume_offset
;
1351 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1352 const struct NCR_700_Host_Parameters
*hostdata
1353 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1354 if(hostdata
->chip710
) {
1355 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1357 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1362 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1363 const struct NCR_700_Host_Parameters
*hostdata
1364 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1365 if(hostdata
->chip710
) {
1366 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1368 NCR_700_writeb(0, host
, CTEST8_REG
);
1370 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1372 NCR_700_writeb(0, host
, DFIFO_REG
);
1377 /* The queue lock with interrupts disabled must be held on entry to
1380 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1382 struct NCR_700_command_slot
*slot
=
1383 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1384 struct NCR_700_Host_Parameters
*hostdata
=
1385 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1386 __u16 count
= 1; /* for IDENTIFY message */
1388 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1389 /* keep this inside the lock to close the race window where
1390 * the running command finishes on another CPU while we don't
1391 * change the state to queued on this one */
1392 slot
->state
= NCR_700_SLOT_QUEUED
;
1394 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1395 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1398 hostdata
->state
= NCR_700_HOST_BUSY
;
1399 hostdata
->cmd
= SCp
;
1400 slot
->state
= NCR_700_SLOT_BUSY
;
1401 /* keep interrupts disabled until we have the command correctly
1402 * set up so we cannot take a selection interrupt */
1404 hostdata
->msgout
[0] = NCR_700_identify((SCp
->cmnd
[0] != REQUEST_SENSE
&&
1405 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
),
1407 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1408 * if the negotiated transfer parameters still hold, so
1409 * always renegotiate them */
1410 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
||
1411 slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
1412 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1415 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1416 * If a contingent allegiance condition exists, the device
1417 * will refuse all tags, so send the request sense as untagged
1419 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1420 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
&&
1421 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
)) {
1422 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1425 if(hostdata
->fast
&&
1426 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1427 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1428 spi_period(SCp
->device
->sdev_target
),
1429 spi_offset(SCp
->device
->sdev_target
));
1430 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1433 script_patch_16(hostdata
->script
, MessageCount
, count
);
1436 script_patch_ID(hostdata
->script
,
1437 Device_ID
, 1<<scmd_id(SCp
));
1439 script_patch_32_abs(hostdata
->script
, CommandAddress
,
1441 script_patch_16(hostdata
->script
, CommandCount
, SCp
->cmd_len
);
1442 /* finally plumb the beginning of the SG list into the script
1444 script_patch_32_abs(hostdata
->script
, SGScriptStartAddress
,
1445 to32bit(&slot
->pSG
[0].ins
));
1446 NCR_700_clear_fifo(SCp
->device
->host
);
1448 if(slot
->resume_offset
== 0)
1449 slot
->resume_offset
= hostdata
->pScript
;
1450 /* now perform all the writebacks and invalidates */
1451 dma_cache_sync(hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1452 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
,
1454 dma_cache_sync(SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1455 dma_cache_sync(hostdata
->status
, 1, DMA_FROM_DEVICE
);
1457 /* set the synchronous period/offset */
1458 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1459 SCp
->device
->host
, SXFER_REG
);
1460 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1461 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1467 NCR_700_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1469 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1470 struct NCR_700_Host_Parameters
*hostdata
=
1471 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1473 __u32 resume_offset
= 0;
1474 __u8 pun
= 0xff, lun
= 0xff;
1475 unsigned long flags
;
1478 /* Use the host lock to serialise acess to the 53c700
1479 * hardware. Note: In future, we may need to take the queue
1480 * lock to enter the done routines. When that happens, we
1481 * need to ensure that for this driver, the host lock and the
1482 * queue lock point to the same thing. */
1483 spin_lock_irqsave(host
->host_lock
, flags
);
1484 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1485 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1487 __u8 sstat0
= 0, dstat
= 0;
1489 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1490 enum NCR_700_Host_State state
;
1493 state
= hostdata
->state
;
1494 SCp
= hostdata
->cmd
;
1496 if(istat
& SCSI_INT_PENDING
) {
1499 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1502 if(istat
& DMA_INT_PENDING
) {
1505 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1508 dsps
= NCR_700_readl(host
, DSPS_REG
);
1509 dsp
= NCR_700_readl(host
, DSP_REG
);
1511 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1512 host
->host_no
, istat
, sstat0
, dstat
,
1513 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1517 pun
= SCp
->device
->id
;
1518 lun
= SCp
->device
->lun
;
1521 if(sstat0
& SCSI_RESET_DETECTED
) {
1522 struct scsi_device
*SDp
;
1525 hostdata
->state
= NCR_700_HOST_BUSY
;
1527 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1528 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1530 scsi_report_bus_reset(host
, 0);
1532 /* clear all the negotiated parameters */
1533 __shost_for_each_device(SDp
, host
)
1534 SDp
->hostdata
= NULL
;
1536 /* clear all the slots and their pending commands */
1537 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1538 struct scsi_cmnd
*SCp
;
1539 struct NCR_700_command_slot
*slot
=
1540 &hostdata
->slots
[i
];
1542 if(slot
->state
== NCR_700_SLOT_FREE
)
1546 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1548 free_slot(slot
, hostdata
);
1549 SCp
->host_scribble
= NULL
;
1550 NCR_700_set_depth(SCp
->device
, 0);
1551 /* NOTE: deadlock potential here: we
1552 * rely on mid-layer guarantees that
1553 * scsi_done won't try to issue the
1554 * command again otherwise we'll
1556 * hostdata->state_lock */
1557 SCp
->result
= DID_RESET
<< 16;
1558 SCp
->scsi_done(SCp
);
1561 NCR_700_chip_setup(host
);
1563 hostdata
->state
= NCR_700_HOST_FREE
;
1564 hostdata
->cmd
= NULL
;
1565 /* signal back if this was an eh induced reset */
1566 if(hostdata
->eh_complete
!= NULL
)
1567 complete(hostdata
->eh_complete
);
1569 } else if(sstat0
& SELECTION_TIMEOUT
) {
1570 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1571 host
->host_no
, pun
, lun
));
1572 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1573 } else if(sstat0
& PHASE_MISMATCH
) {
1574 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1575 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1577 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1578 /* It wants to reply to some part of
1580 #ifdef NCR_700_DEBUG
1581 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1582 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1583 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1585 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1586 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1587 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1588 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1589 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1590 int residual
= NCR_700_data_residual(host
);
1592 #ifdef NCR_700_DEBUG
1593 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1595 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1596 host
->host_no
, pun
, lun
,
1597 SGcount
, data_transfer
);
1598 scsi_print_command(SCp
);
1600 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1601 host
->host_no
, pun
, lun
,
1602 SGcount
, data_transfer
, residual
);
1605 data_transfer
+= residual
;
1607 if(data_transfer
!= 0) {
1613 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1614 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1615 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1616 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1617 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1618 pAddr
+= (count
- data_transfer
);
1619 #ifdef NCR_700_DEBUG
1620 if(pAddr
!= naddr
) {
1621 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1624 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1626 /* set the executed moves to nops */
1627 for(i
=0; i
<SGcount
; i
++) {
1628 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1629 slot
->SG
[i
].pAddr
= 0;
1631 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1632 /* and pretend we disconnected after
1633 * the command phase */
1634 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1635 /* make sure all the data is flushed */
1636 NCR_700_flush_fifo(host
);
1638 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1639 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1640 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1641 NCR_700_internal_bus_reset(host
);
1644 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1645 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1646 host
->host_no
, pun
, lun
);
1647 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1648 } else if(sstat0
& PARITY_ERROR
) {
1649 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1650 host
->host_no
, pun
, lun
);
1651 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1652 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1653 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1654 host
->host_no
, pun
, lun
));
1655 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1656 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1657 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1658 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1659 host
->host_no
, pun
, lun
,
1660 dsp
, dsp
- hostdata
->pScript
);
1661 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1662 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1663 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1664 host
->host_no
, pun
, lun
, dstat
);
1665 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1669 /* NOTE: selection interrupt processing MUST occur
1670 * after script interrupt processing to correctly cope
1671 * with the case where we process a disconnect and
1672 * then get reselected before we process the
1674 if(sstat0
& SELECTED
) {
1675 /* FIXME: It currently takes at least FOUR
1676 * interrupts to complete a command that
1677 * disconnects: one for the disconnect, one
1678 * for the reselection, one to get the
1679 * reselection data and one to complete the
1680 * command. If we guess the reselected
1681 * command here and prepare it, we only need
1682 * to get a reselection data interrupt if we
1683 * guessed wrongly. Since the interrupt
1684 * overhead is much greater than the command
1685 * setup, this would be an efficient
1686 * optimisation particularly as we probably
1687 * only have one outstanding command on a
1688 * target most of the time */
1690 resume_offset
= process_selection(host
, dsp
);
1697 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1698 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1699 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1700 hostdata
->state
= NCR_700_HOST_BUSY
;
1703 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1704 NCR_700_clear_fifo(host
);
1705 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1707 /* There is probably a technical no-no about this: If we're a
1708 * shared interrupt and we got this interrupt because the
1709 * other device needs servicing not us, we're still going to
1710 * check our queued commands here---of course, there shouldn't
1711 * be any outstanding.... */
1712 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1715 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1716 /* fairness: always run the queue from the last
1717 * position we left off */
1718 int j
= (i
+ hostdata
->saved_slot_position
)
1719 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1721 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1723 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1724 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1725 host
->host_no
, &hostdata
->slots
[j
],
1726 hostdata
->slots
[j
].cmnd
));
1727 hostdata
->saved_slot_position
= j
+ 1;
1734 spin_unlock_irqrestore(host
->host_lock
, flags
);
1735 return IRQ_RETVAL(handled
);
1739 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1741 struct NCR_700_Host_Parameters
*hostdata
=
1742 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1744 enum dma_data_direction direction
;
1745 struct NCR_700_command_slot
*slot
;
1747 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1748 /* We're over our allocation, this should never happen
1749 * since we report the max allocation to the mid layer */
1750 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1753 /* check for untagged commands. We cannot have any outstanding
1754 * commands if we accept them. Commands could be untagged because:
1756 * - The tag negotiated bitmap is clear
1757 * - The blk layer sent and untagged command
1759 if(NCR_700_get_depth(SCp
->device
) != 0
1760 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1761 || !blk_rq_tagged(SCp
->request
))) {
1762 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1763 NCR_700_get_depth(SCp
->device
));
1764 return SCSI_MLQUEUE_DEVICE_BUSY
;
1766 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1767 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1768 NCR_700_get_depth(SCp
->device
));
1769 return SCSI_MLQUEUE_DEVICE_BUSY
;
1771 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1773 /* begin the command here */
1774 /* no need to check for NULL, test for command_slot_count above
1775 * ensures a slot is free */
1776 slot
= find_empty_slot(hostdata
);
1780 SCp
->scsi_done
= done
;
1781 SCp
->host_scribble
= (unsigned char *)slot
;
1782 SCp
->SCp
.ptr
= NULL
;
1783 SCp
->SCp
.buffer
= NULL
;
1785 #ifdef NCR_700_DEBUG
1786 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1787 scsi_print_command(SCp
);
1789 if(blk_rq_tagged(SCp
->request
)
1790 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1791 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1792 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1793 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1794 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1797 /* here we may have to process an untagged command. The gate
1798 * above ensures that this will be the only one outstanding,
1799 * so clear the tag negotiated bit.
1801 * FIXME: This will royally screw up on multiple LUN devices
1803 if(!blk_rq_tagged(SCp
->request
)
1804 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1805 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1806 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1809 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1810 && scsi_get_tag_type(SCp
->device
)) {
1811 slot
->tag
= SCp
->request
->tag
;
1812 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1815 slot
->tag
= SCSI_NO_TAG
;
1816 /* must populate current_cmnd for scsi_find_tag to work */
1817 SCp
->device
->current_cmnd
= SCp
;
1819 /* sanity check: some of the commands generated by the mid-layer
1820 * have an eccentric idea of their sc_data_direction */
1821 if(!SCp
->use_sg
&& !SCp
->request_bufflen
1822 && SCp
->sc_data_direction
!= DMA_NONE
) {
1823 #ifdef NCR_700_DEBUG
1824 printk("53c700: Command");
1825 scsi_print_command(SCp
);
1826 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1828 SCp
->sc_data_direction
= DMA_NONE
;
1831 switch (SCp
->cmnd
[0]) {
1833 /* clear the internal sense magic */
1837 /* OK, get it from the command */
1838 switch(SCp
->sc_data_direction
) {
1839 case DMA_BIDIRECTIONAL
:
1841 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1842 scsi_print_command(SCp
);
1849 case DMA_FROM_DEVICE
:
1850 move_ins
= SCRIPT_MOVE_DATA_IN
;
1853 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1858 /* now build the scatter gather list */
1859 direction
= SCp
->sc_data_direction
;
1863 dma_addr_t vPtr
= 0;
1867 sg_count
= dma_map_sg(hostdata
->dev
,
1868 SCp
->request_buffer
, SCp
->use_sg
,
1871 vPtr
= dma_map_single(hostdata
->dev
,
1872 SCp
->request_buffer
,
1873 SCp
->request_bufflen
,
1875 count
= SCp
->request_bufflen
;
1876 slot
->dma_handle
= vPtr
;
1881 for(i
= 0; i
< sg_count
; i
++) {
1884 struct scatterlist
*sg
= SCp
->request_buffer
;
1886 vPtr
= sg_dma_address(&sg
[i
]);
1887 count
= sg_dma_len(&sg
[i
]);
1890 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1891 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1892 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1893 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1895 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1896 slot
->SG
[i
].pAddr
= 0;
1897 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1898 DEBUG((" SETTING %08lx to %x\n",
1899 (&slot
->pSG
[i
].ins
),
1902 slot
->resume_offset
= 0;
1903 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1904 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
1905 NCR_700_start_command(SCp
);
1910 NCR_700_abort(struct scsi_cmnd
* SCp
)
1912 struct NCR_700_command_slot
*slot
;
1914 scmd_printk(KERN_INFO
, SCp
,
1915 "New error handler wants to abort command\n\t");
1916 scsi_print_command(SCp
);
1918 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1921 /* no outstanding command to abort */
1923 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1924 /* FIXME: This is because of a problem in the new
1925 * error handler. When it is in error recovery, it
1926 * will send a TUR to a device it thinks may still be
1927 * showing a problem. If the TUR isn't responded to,
1928 * it will abort it and mark the device off line.
1929 * Unfortunately, it does no other error recovery, so
1930 * this would leave us with an outstanding command
1931 * occupying a slot. Rather than allow this to
1932 * happen, we issue a bus reset to force all
1933 * outstanding commands to terminate here. */
1934 NCR_700_internal_bus_reset(SCp
->device
->host
);
1935 /* still drop through and return failed */
1942 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1944 DECLARE_COMPLETION(complete
);
1945 struct NCR_700_Host_Parameters
*hostdata
=
1946 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1948 scmd_printk(KERN_INFO
, SCp
,
1949 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1950 scsi_print_command(SCp
);
1952 /* In theory, eh_complete should always be null because the
1953 * eh is single threaded, but just in case we're handling a
1954 * reset via sg or something */
1955 spin_lock_irq(SCp
->device
->host
->host_lock
);
1956 while (hostdata
->eh_complete
!= NULL
) {
1957 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1958 msleep_interruptible(100);
1959 spin_lock_irq(SCp
->device
->host
->host_lock
);
1962 hostdata
->eh_complete
= &complete
;
1963 NCR_700_internal_bus_reset(SCp
->device
->host
);
1965 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1966 wait_for_completion(&complete
);
1967 spin_lock_irq(SCp
->device
->host
->host_lock
);
1969 hostdata
->eh_complete
= NULL
;
1970 /* Revalidate the transport parameters of the failing device */
1972 spi_schedule_dv_device(SCp
->device
);
1974 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1979 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
1981 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
1982 scsi_print_command(SCp
);
1984 spin_lock_irq(SCp
->device
->host
->host_lock
);
1986 NCR_700_internal_bus_reset(SCp
->device
->host
);
1987 NCR_700_chip_reset(SCp
->device
->host
);
1989 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1995 NCR_700_set_period(struct scsi_target
*STp
, int period
)
1997 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
1998 struct NCR_700_Host_Parameters
*hostdata
=
1999 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2004 if(period
< hostdata
->min_period
)
2005 period
= hostdata
->min_period
;
2007 spi_period(STp
) = period
;
2008 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2009 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2010 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2014 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2016 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2017 struct NCR_700_Host_Parameters
*hostdata
=
2018 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2019 int max_offset
= hostdata
->chip710
2020 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2025 if(offset
> max_offset
)
2026 offset
= max_offset
;
2028 /* if we're currently async, make sure the period is reasonable */
2029 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2030 spi_period(STp
) > 0xff))
2031 spi_period(STp
) = hostdata
->min_period
;
2033 spi_offset(STp
) = offset
;
2034 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2035 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2036 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2042 NCR_700_slave_configure(struct scsi_device
*SDp
)
2044 struct NCR_700_Host_Parameters
*hostdata
=
2045 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2047 SDp
->hostdata
= kmalloc(GFP_KERNEL
, sizeof(struct NCR_700_sense
));
2052 /* to do here: allocate memory; build a queue_full list */
2053 if(SDp
->tagged_supported
) {
2054 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2055 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2056 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2058 /* initialise to default depth */
2059 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2061 if(hostdata
->fast
) {
2062 /* Find the correct offset and period via domain validation */
2063 if (!spi_initial_dv(SDp
->sdev_target
))
2066 spi_offset(SDp
->sdev_target
) = 0;
2067 spi_period(SDp
->sdev_target
) = 0;
2073 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2075 kfree(SDp
->hostdata
);
2076 SDp
->hostdata
= NULL
;
2080 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
)
2082 if (depth
> NCR_700_MAX_TAGS
)
2083 depth
= NCR_700_MAX_TAGS
;
2085 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2089 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2091 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2092 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2093 struct NCR_700_Host_Parameters
*hostdata
=
2094 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2096 scsi_set_tag_type(SDp
, tag_type
);
2098 /* We have a global (per target) flag to track whether TCQ is
2099 * enabled, so we'll be turning it off for the entire target here.
2100 * our tag algorithm will fail if we mix tagged and untagged commands,
2101 * so quiesce the device before doing this */
2103 scsi_target_quiesce(SDp
->sdev_target
);
2106 /* shift back to the default unqueued number of commands
2107 * (the user can still raise this) */
2108 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2109 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2111 /* Here, we cleared the negotiation flag above, so this
2112 * will force the driver to renegotiate */
2113 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2115 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2118 scsi_target_resume(SDp
->sdev_target
);
2124 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2126 struct scsi_device
*SDp
= to_scsi_device(dev
);
2128 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2131 static struct device_attribute NCR_700_active_tags_attr
= {
2133 .name
= "active_tags",
2136 .show
= NCR_700_show_active_tags
,
2139 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2140 &NCR_700_active_tags_attr
,
2144 EXPORT_SYMBOL(NCR_700_detect
);
2145 EXPORT_SYMBOL(NCR_700_release
);
2146 EXPORT_SYMBOL(NCR_700_intr
);
2148 static struct spi_function_template NCR_700_transport_functions
= {
2149 .set_period
= NCR_700_set_period
,
2151 .set_offset
= NCR_700_set_offset
,
2155 static int __init
NCR_700_init(void)
2157 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2158 if(!NCR_700_transport_template
)
2163 static void __exit
NCR_700_exit(void)
2165 spi_release_transport(NCR_700_transport_template
);
2168 module_init(NCR_700_init
);
2169 module_exit(NCR_700_exit
);