2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
42 /* Default simulator parameters values */
43 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
48 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
50 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
53 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
54 #define CONFIG_NANDSIM_ACCESS_DELAY 25
56 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
59 #ifndef CONFIG_NANDSIM_ERASE_DELAY
60 #define CONFIG_NANDSIM_ERASE_DELAY 2
62 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
65 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
66 #define CONFIG_NANDSIM_INPUT_CYCLE 50
68 #ifndef CONFIG_NANDSIM_BUS_WIDTH
69 #define CONFIG_NANDSIM_BUS_WIDTH 8
71 #ifndef CONFIG_NANDSIM_DO_DELAYS
72 #define CONFIG_NANDSIM_DO_DELAYS 0
74 #ifndef CONFIG_NANDSIM_LOG
75 #define CONFIG_NANDSIM_LOG 0
77 #ifndef CONFIG_NANDSIM_DBG
78 #define CONFIG_NANDSIM_DBG 0
81 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
82 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
83 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
84 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
85 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
86 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
87 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
88 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
89 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
90 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
91 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
92 static uint log
= CONFIG_NANDSIM_LOG
;
93 static uint dbg
= CONFIG_NANDSIM_DBG
;
94 static unsigned long parts
[MAX_MTD_DEVICES
];
95 static unsigned int parts_num
;
96 static char *badblocks
= NULL
;
97 static char *weakblocks
= NULL
;
98 static char *weakpages
= NULL
;
99 static unsigned int bitflips
= 0;
100 static char *gravepages
= NULL
;
101 static unsigned int rptwear
= 0;
102 static unsigned int overridesize
= 0;
104 module_param(first_id_byte
, uint
, 0400);
105 module_param(second_id_byte
, uint
, 0400);
106 module_param(third_id_byte
, uint
, 0400);
107 module_param(fourth_id_byte
, uint
, 0400);
108 module_param(access_delay
, uint
, 0400);
109 module_param(programm_delay
, uint
, 0400);
110 module_param(erase_delay
, uint
, 0400);
111 module_param(output_cycle
, uint
, 0400);
112 module_param(input_cycle
, uint
, 0400);
113 module_param(bus_width
, uint
, 0400);
114 module_param(do_delays
, uint
, 0400);
115 module_param(log
, uint
, 0400);
116 module_param(dbg
, uint
, 0400);
117 module_param_array(parts
, ulong
, &parts_num
, 0400);
118 module_param(badblocks
, charp
, 0400);
119 module_param(weakblocks
, charp
, 0400);
120 module_param(weakpages
, charp
, 0400);
121 module_param(bitflips
, uint
, 0400);
122 module_param(gravepages
, charp
, 0400);
123 module_param(rptwear
, uint
, 0400);
124 module_param(overridesize
, uint
, 0400);
126 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
127 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microiseconds)");
131 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
132 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
133 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
134 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
135 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
136 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
137 MODULE_PARM_DESC(log
, "Perform logging if not zero");
138 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
139 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
140 /* Page and erase block positions for the following parameters are independent of any partitions */
141 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
142 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143 " separated by commas e.g. 113:2 means eb 113"
144 " can be erased only twice before failing");
145 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
146 " separated by commas e.g. 1401:2 means page 1401"
147 " can be written only twice before failing");
148 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
149 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
150 " separated by commas e.g. 1401:2 means page 1401"
151 " can be read only twice before failing");
152 MODULE_PARM_DESC(rptwear
, "Number of erases inbetween reporting wear, if not zero");
153 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
154 "The size is specified in erase blocks and as the exponent of a power of two"
155 " e.g. 5 means a size of 32 erase blocks");
157 /* The largest possible page size */
158 #define NS_LARGEST_PAGE_SIZE 2048
160 /* The prefix for simulator output */
161 #define NS_OUTPUT_PREFIX "[nandsim]"
163 /* Simulator's output macros (logging, debugging, warning, error) */
164 #define NS_LOG(args...) \
165 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166 #define NS_DBG(args...) \
167 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168 #define NS_WARN(args...) \
169 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
170 #define NS_ERR(args...) \
171 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
172 #define NS_INFO(args...) \
173 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
175 /* Busy-wait delay macros (microseconds, milliseconds) */
176 #define NS_UDELAY(us) \
177 do { if (do_delays) udelay(us); } while(0)
178 #define NS_MDELAY(us) \
179 do { if (do_delays) mdelay(us); } while(0)
181 /* Is the nandsim structure initialized ? */
182 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
184 /* Good operation completion status */
185 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
187 /* Operation failed completion status */
188 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
190 /* Calculate the page offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET(ns) \
192 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
194 /* Calculate the OOB offset in flash RAM image by (row, column) address */
195 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
197 /* After a command is input, the simulator goes to one of the following states */
198 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
199 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
200 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
201 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
202 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
203 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
204 #define STATE_CMD_STATUS 0x00000007 /* read status */
205 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
206 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
207 #define STATE_CMD_READID 0x0000000A /* read ID */
208 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
209 #define STATE_CMD_RESET 0x0000000C /* reset */
210 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
211 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
212 #define STATE_CMD_MASK 0x0000000F /* command states mask */
214 /* After an address is input, the simulator goes to one of these states */
215 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
216 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
217 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
218 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
219 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
221 /* Durind data input/output the simulator is in these states */
222 #define STATE_DATAIN 0x00000100 /* waiting for data input */
223 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
225 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
226 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
227 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
228 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
229 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
231 /* Previous operation is done, ready to accept new requests */
232 #define STATE_READY 0x00000000
234 /* This state is used to mark that the next state isn't known yet */
235 #define STATE_UNKNOWN 0x10000000
237 /* Simulator's actions bit masks */
238 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
239 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
240 #define ACTION_SECERASE 0x00300000 /* erase sector */
241 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
242 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
243 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
244 #define ACTION_MASK 0x00700000 /* action mask */
246 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
247 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
249 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
250 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
251 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
252 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
253 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
254 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
255 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
256 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
257 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
259 /* Remove action bits ftom state */
260 #define NS_STATE(x) ((x) & ~ACTION_MASK)
263 * Maximum previous states which need to be saved. Currently saving is
264 * only needed for page programm operation with preceeded read command
265 * (which is only valid for 512-byte pages).
267 #define NS_MAX_PREVSTATES 1
270 * A union to represent flash memory contents and flash buffer.
273 u_char
*byte
; /* for byte access */
274 uint16_t *word
; /* for 16-bit word access */
278 * The structure which describes all the internal simulator data.
281 struct mtd_partition partitions
[MAX_MTD_DEVICES
];
282 unsigned int nbparts
;
284 uint busw
; /* flash chip bus width (8 or 16) */
285 u_char ids
[4]; /* chip's ID bytes */
286 uint32_t options
; /* chip's characteristic bits */
287 uint32_t state
; /* current chip state */
288 uint32_t nxstate
; /* next expected state */
290 uint32_t *op
; /* current operation, NULL operations isn't known yet */
291 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
292 uint16_t npstates
; /* number of previous states saved */
293 uint16_t stateidx
; /* current state index */
295 /* The simulated NAND flash pages array */
298 /* Internal buffer of page + OOB size bytes */
301 /* NAND flash "geometry" */
302 struct nandsin_geometry
{
303 uint64_t totsz
; /* total flash size, bytes */
304 uint32_t secsz
; /* flash sector (erase block) size, bytes */
305 uint pgsz
; /* NAND flash page size, bytes */
306 uint oobsz
; /* page OOB area size, bytes */
307 uint64_t totszoob
; /* total flash size including OOB, bytes */
308 uint pgszoob
; /* page size including OOB , bytes*/
309 uint secszoob
; /* sector size including OOB, bytes */
310 uint pgnum
; /* total number of pages */
311 uint pgsec
; /* number of pages per sector */
312 uint secshift
; /* bits number in sector size */
313 uint pgshift
; /* bits number in page size */
314 uint oobshift
; /* bits number in OOB size */
315 uint pgaddrbytes
; /* bytes per page address */
316 uint secaddrbytes
; /* bytes per sector address */
317 uint idbytes
; /* the number ID bytes that this chip outputs */
320 /* NAND flash internal registers */
321 struct nandsim_regs
{
322 unsigned command
; /* the command register */
323 u_char status
; /* the status register */
324 uint row
; /* the page number */
325 uint column
; /* the offset within page */
326 uint count
; /* internal counter */
327 uint num
; /* number of bytes which must be processed */
328 uint off
; /* fixed page offset */
331 /* NAND flash lines state */
332 struct ns_lines_status
{
333 int ce
; /* chip Enable */
334 int cle
; /* command Latch Enable */
335 int ale
; /* address Latch Enable */
336 int wp
; /* write Protect */
341 * Operations array. To perform any operation the simulator must pass
342 * through the correspondent states chain.
344 static struct nandsim_operations
{
345 uint32_t reqopts
; /* options which are required to perform the operation */
346 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
347 } ops
[NS_OPER_NUM
] = {
348 /* Read page + OOB from the beginning */
349 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
350 STATE_DATAOUT
, STATE_READY
}},
351 /* Read page + OOB from the second half */
352 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
353 STATE_DATAOUT
, STATE_READY
}},
355 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
356 STATE_DATAOUT
, STATE_READY
}},
357 /* Programm page starting from the beginning */
358 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
359 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
360 /* Programm page starting from the beginning */
361 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
362 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
363 /* Programm page starting from the second half */
364 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
365 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
367 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
368 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
370 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
372 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
373 /* Read multi-plane status */
374 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
376 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
377 /* Large page devices read page */
378 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
379 STATE_DATAOUT
, STATE_READY
}},
380 /* Large page devices random page read */
381 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
382 STATE_DATAOUT
, STATE_READY
}},
386 struct list_head list
;
387 unsigned int erase_block_no
;
388 unsigned int max_erases
;
389 unsigned int erases_done
;
392 static LIST_HEAD(weak_blocks
);
395 struct list_head list
;
396 unsigned int page_no
;
397 unsigned int max_writes
;
398 unsigned int writes_done
;
401 static LIST_HEAD(weak_pages
);
404 struct list_head list
;
405 unsigned int page_no
;
406 unsigned int max_reads
;
407 unsigned int reads_done
;
410 static LIST_HEAD(grave_pages
);
412 static unsigned long *erase_block_wear
= NULL
;
413 static unsigned int wear_eb_count
= 0;
414 static unsigned long total_wear
= 0;
415 static unsigned int rptwear_cnt
= 0;
417 /* MTD structure for NAND controller */
418 static struct mtd_info
*nsmtd
;
420 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
423 * Allocate array of page pointers and initialize the array to NULL
426 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
428 static int alloc_device(struct nandsim
*ns
)
432 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
434 NS_ERR("alloc_map: unable to allocate page array\n");
437 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
438 ns
->pages
[i
].byte
= NULL
;
445 * Free any allocated pages, and free the array of page pointers.
447 static void free_device(struct nandsim
*ns
)
452 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
453 if (ns
->pages
[i
].byte
)
454 kfree(ns
->pages
[i
].byte
);
460 static char *get_partition_name(int i
)
463 sprintf(buf
, "NAND simulator partition %d", i
);
464 return kstrdup(buf
, GFP_KERNEL
);
467 static u_int64_t
divide(u_int64_t n
, u_int32_t d
)
474 * Initialize the nandsim structure.
476 * RETURNS: 0 if success, -ERRNO if failure.
478 static int init_nandsim(struct mtd_info
*mtd
)
480 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
481 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
484 u_int64_t next_offset
;
486 if (NS_IS_INITIALIZED(ns
)) {
487 NS_ERR("init_nandsim: nandsim is already initialized\n");
491 /* Force mtd to not do delays */
492 chip
->chip_delay
= 0;
494 /* Initialize the NAND flash parameters */
495 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
496 ns
->geom
.totsz
= mtd
->size
;
497 ns
->geom
.pgsz
= mtd
->writesize
;
498 ns
->geom
.oobsz
= mtd
->oobsize
;
499 ns
->geom
.secsz
= mtd
->erasesize
;
500 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
501 ns
->geom
.pgnum
= divide(ns
->geom
.totsz
, ns
->geom
.pgsz
);
502 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
503 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
504 ns
->geom
.pgshift
= chip
->page_shift
;
505 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
506 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
507 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
510 if (ns
->geom
.pgsz
== 256) {
511 ns
->options
|= OPT_PAGE256
;
513 else if (ns
->geom
.pgsz
== 512) {
514 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
516 ns
->options
|= OPT_PAGE512_8BIT
;
517 } else if (ns
->geom
.pgsz
== 2048) {
518 ns
->options
|= OPT_PAGE2048
;
520 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
524 if (ns
->options
& OPT_SMALLPAGE
) {
525 if (ns
->geom
.totsz
<= (32 << 20)) {
526 ns
->geom
.pgaddrbytes
= 3;
527 ns
->geom
.secaddrbytes
= 2;
529 ns
->geom
.pgaddrbytes
= 4;
530 ns
->geom
.secaddrbytes
= 3;
533 if (ns
->geom
.totsz
<= (128 << 20)) {
534 ns
->geom
.pgaddrbytes
= 4;
535 ns
->geom
.secaddrbytes
= 2;
537 ns
->geom
.pgaddrbytes
= 5;
538 ns
->geom
.secaddrbytes
= 3;
542 /* Fill the partition_info structure */
543 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
544 NS_ERR("too many partitions.\n");
548 remains
= ns
->geom
.totsz
;
550 for (i
= 0; i
< parts_num
; ++i
) {
551 u_int64_t part_sz
= (u_int64_t
)parts
[i
] * ns
->geom
.secsz
;
553 if (!part_sz
|| part_sz
> remains
) {
554 NS_ERR("bad partition size.\n");
558 ns
->partitions
[i
].name
= get_partition_name(i
);
559 ns
->partitions
[i
].offset
= next_offset
;
560 ns
->partitions
[i
].size
= part_sz
;
561 next_offset
+= ns
->partitions
[i
].size
;
562 remains
-= ns
->partitions
[i
].size
;
564 ns
->nbparts
= parts_num
;
566 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
567 NS_ERR("too many partitions.\n");
571 ns
->partitions
[i
].name
= get_partition_name(i
);
572 ns
->partitions
[i
].offset
= next_offset
;
573 ns
->partitions
[i
].size
= remains
;
577 /* Detect how many ID bytes the NAND chip outputs */
578 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
579 if (second_id_byte
!= nand_flash_ids
[i
].id
)
581 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
582 ns
->options
|= OPT_AUTOINCR
;
586 NS_WARN("16-bit flashes support wasn't tested\n");
588 printk("flash size: %llu MiB\n",
589 (unsigned long long)ns
->geom
.totsz
>> 20);
590 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
591 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
592 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
593 printk("pages number: %u\n", ns
->geom
.pgnum
);
594 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
595 printk("bus width: %u\n", ns
->busw
);
596 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
597 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
598 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
599 printk("flash size with OOB: %llu KiB\n",
600 (unsigned long long)ns
->geom
.totszoob
>> 10);
601 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
602 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
603 printk("options: %#x\n", ns
->options
);
605 if ((ret
= alloc_device(ns
)) != 0)
608 /* Allocate / initialize the internal buffer */
609 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
611 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
616 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
627 * Free the nandsim structure.
629 static void free_nandsim(struct nandsim
*ns
)
637 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
641 unsigned int erase_block_no
;
648 zero_ok
= (*w
== '0' ? 1 : 0);
649 erase_block_no
= simple_strtoul(w
, &w
, 0);
650 if (!zero_ok
&& !erase_block_no
) {
651 NS_ERR("invalid badblocks.\n");
654 offset
= erase_block_no
* ns
->geom
.secsz
;
655 if (mtd
->block_markbad(mtd
, offset
)) {
656 NS_ERR("invalid badblocks.\n");
665 static int parse_weakblocks(void)
669 unsigned int erase_block_no
;
670 unsigned int max_erases
;
671 struct weak_block
*wb
;
677 zero_ok
= (*w
== '0' ? 1 : 0);
678 erase_block_no
= simple_strtoul(w
, &w
, 0);
679 if (!zero_ok
&& !erase_block_no
) {
680 NS_ERR("invalid weakblocks.\n");
686 max_erases
= simple_strtoul(w
, &w
, 0);
690 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
692 NS_ERR("unable to allocate memory.\n");
695 wb
->erase_block_no
= erase_block_no
;
696 wb
->max_erases
= max_erases
;
697 list_add(&wb
->list
, &weak_blocks
);
702 static int erase_error(unsigned int erase_block_no
)
704 struct weak_block
*wb
;
706 list_for_each_entry(wb
, &weak_blocks
, list
)
707 if (wb
->erase_block_no
== erase_block_no
) {
708 if (wb
->erases_done
>= wb
->max_erases
)
710 wb
->erases_done
+= 1;
716 static int parse_weakpages(void)
720 unsigned int page_no
;
721 unsigned int max_writes
;
722 struct weak_page
*wp
;
728 zero_ok
= (*w
== '0' ? 1 : 0);
729 page_no
= simple_strtoul(w
, &w
, 0);
730 if (!zero_ok
&& !page_no
) {
731 NS_ERR("invalid weakpagess.\n");
737 max_writes
= simple_strtoul(w
, &w
, 0);
741 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
743 NS_ERR("unable to allocate memory.\n");
746 wp
->page_no
= page_no
;
747 wp
->max_writes
= max_writes
;
748 list_add(&wp
->list
, &weak_pages
);
753 static int write_error(unsigned int page_no
)
755 struct weak_page
*wp
;
757 list_for_each_entry(wp
, &weak_pages
, list
)
758 if (wp
->page_no
== page_no
) {
759 if (wp
->writes_done
>= wp
->max_writes
)
761 wp
->writes_done
+= 1;
767 static int parse_gravepages(void)
771 unsigned int page_no
;
772 unsigned int max_reads
;
773 struct grave_page
*gp
;
779 zero_ok
= (*g
== '0' ? 1 : 0);
780 page_no
= simple_strtoul(g
, &g
, 0);
781 if (!zero_ok
&& !page_no
) {
782 NS_ERR("invalid gravepagess.\n");
788 max_reads
= simple_strtoul(g
, &g
, 0);
792 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
794 NS_ERR("unable to allocate memory.\n");
797 gp
->page_no
= page_no
;
798 gp
->max_reads
= max_reads
;
799 list_add(&gp
->list
, &grave_pages
);
804 static int read_error(unsigned int page_no
)
806 struct grave_page
*gp
;
808 list_for_each_entry(gp
, &grave_pages
, list
)
809 if (gp
->page_no
== page_no
) {
810 if (gp
->reads_done
>= gp
->max_reads
)
818 static void free_lists(void)
820 struct list_head
*pos
, *n
;
821 list_for_each_safe(pos
, n
, &weak_blocks
) {
823 kfree(list_entry(pos
, struct weak_block
, list
));
825 list_for_each_safe(pos
, n
, &weak_pages
) {
827 kfree(list_entry(pos
, struct weak_page
, list
));
829 list_for_each_safe(pos
, n
, &grave_pages
) {
831 kfree(list_entry(pos
, struct grave_page
, list
));
833 kfree(erase_block_wear
);
836 static int setup_wear_reporting(struct mtd_info
*mtd
)
842 wear_eb_count
= divide(mtd
->size
, mtd
->erasesize
);
843 mem
= wear_eb_count
* sizeof(unsigned long);
844 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
845 NS_ERR("Too many erase blocks for wear reporting\n");
848 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
849 if (!erase_block_wear
) {
850 NS_ERR("Too many erase blocks for wear reporting\n");
856 static void update_wear(unsigned int erase_block_no
)
858 unsigned long wmin
= -1, wmax
= 0, avg
;
859 unsigned long deciles
[10], decile_max
[10], tot
= 0;
862 if (!erase_block_wear
)
866 NS_ERR("Erase counter total overflow\n");
867 erase_block_wear
[erase_block_no
] += 1;
868 if (erase_block_wear
[erase_block_no
] == 0)
869 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
871 if (rptwear_cnt
< rptwear
)
874 /* Calc wear stats */
875 for (i
= 0; i
< wear_eb_count
; ++i
) {
876 unsigned long wear
= erase_block_wear
[i
];
883 for (i
= 0; i
< 9; ++i
) {
885 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
888 decile_max
[9] = wmax
;
889 for (i
= 0; i
< wear_eb_count
; ++i
) {
891 unsigned long wear
= erase_block_wear
[i
];
892 for (d
= 0; d
< 10; ++d
)
893 if (wear
<= decile_max
[d
]) {
898 avg
= tot
/ wear_eb_count
;
899 /* Output wear report */
900 NS_INFO("*** Wear Report ***\n");
901 NS_INFO("Total numbers of erases: %lu\n", tot
);
902 NS_INFO("Number of erase blocks: %u\n", wear_eb_count
);
903 NS_INFO("Average number of erases: %lu\n", avg
);
904 NS_INFO("Maximum number of erases: %lu\n", wmax
);
905 NS_INFO("Minimum number of erases: %lu\n", wmin
);
906 for (i
= 0; i
< 10; ++i
) {
907 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
908 if (from
> decile_max
[i
])
910 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
915 NS_INFO("*** End of Wear Report ***\n");
919 * Returns the string representation of 'state' state.
921 static char *get_state_name(uint32_t state
)
923 switch (NS_STATE(state
)) {
924 case STATE_CMD_READ0
:
925 return "STATE_CMD_READ0";
926 case STATE_CMD_READ1
:
927 return "STATE_CMD_READ1";
928 case STATE_CMD_PAGEPROG
:
929 return "STATE_CMD_PAGEPROG";
930 case STATE_CMD_READOOB
:
931 return "STATE_CMD_READOOB";
932 case STATE_CMD_READSTART
:
933 return "STATE_CMD_READSTART";
934 case STATE_CMD_ERASE1
:
935 return "STATE_CMD_ERASE1";
936 case STATE_CMD_STATUS
:
937 return "STATE_CMD_STATUS";
938 case STATE_CMD_STATUS_M
:
939 return "STATE_CMD_STATUS_M";
940 case STATE_CMD_SEQIN
:
941 return "STATE_CMD_SEQIN";
942 case STATE_CMD_READID
:
943 return "STATE_CMD_READID";
944 case STATE_CMD_ERASE2
:
945 return "STATE_CMD_ERASE2";
946 case STATE_CMD_RESET
:
947 return "STATE_CMD_RESET";
948 case STATE_CMD_RNDOUT
:
949 return "STATE_CMD_RNDOUT";
950 case STATE_CMD_RNDOUTSTART
:
951 return "STATE_CMD_RNDOUTSTART";
952 case STATE_ADDR_PAGE
:
953 return "STATE_ADDR_PAGE";
955 return "STATE_ADDR_SEC";
956 case STATE_ADDR_ZERO
:
957 return "STATE_ADDR_ZERO";
958 case STATE_ADDR_COLUMN
:
959 return "STATE_ADDR_COLUMN";
961 return "STATE_DATAIN";
963 return "STATE_DATAOUT";
964 case STATE_DATAOUT_ID
:
965 return "STATE_DATAOUT_ID";
966 case STATE_DATAOUT_STATUS
:
967 return "STATE_DATAOUT_STATUS";
968 case STATE_DATAOUT_STATUS_M
:
969 return "STATE_DATAOUT_STATUS_M";
971 return "STATE_READY";
973 return "STATE_UNKNOWN";
976 NS_ERR("get_state_name: unknown state, BUG\n");
981 * Check if command is valid.
983 * RETURNS: 1 if wrong command, 0 if right.
985 static int check_command(int cmd
)
991 case NAND_CMD_READSTART
:
992 case NAND_CMD_PAGEPROG
:
993 case NAND_CMD_READOOB
:
994 case NAND_CMD_ERASE1
:
995 case NAND_CMD_STATUS
:
997 case NAND_CMD_READID
:
998 case NAND_CMD_ERASE2
:
1000 case NAND_CMD_RNDOUT
:
1001 case NAND_CMD_RNDOUTSTART
:
1004 case NAND_CMD_STATUS_MULTI
:
1011 * Returns state after command is accepted by command number.
1013 static uint32_t get_state_by_command(unsigned command
)
1016 case NAND_CMD_READ0
:
1017 return STATE_CMD_READ0
;
1018 case NAND_CMD_READ1
:
1019 return STATE_CMD_READ1
;
1020 case NAND_CMD_PAGEPROG
:
1021 return STATE_CMD_PAGEPROG
;
1022 case NAND_CMD_READSTART
:
1023 return STATE_CMD_READSTART
;
1024 case NAND_CMD_READOOB
:
1025 return STATE_CMD_READOOB
;
1026 case NAND_CMD_ERASE1
:
1027 return STATE_CMD_ERASE1
;
1028 case NAND_CMD_STATUS
:
1029 return STATE_CMD_STATUS
;
1030 case NAND_CMD_STATUS_MULTI
:
1031 return STATE_CMD_STATUS_M
;
1032 case NAND_CMD_SEQIN
:
1033 return STATE_CMD_SEQIN
;
1034 case NAND_CMD_READID
:
1035 return STATE_CMD_READID
;
1036 case NAND_CMD_ERASE2
:
1037 return STATE_CMD_ERASE2
;
1038 case NAND_CMD_RESET
:
1039 return STATE_CMD_RESET
;
1040 case NAND_CMD_RNDOUT
:
1041 return STATE_CMD_RNDOUT
;
1042 case NAND_CMD_RNDOUTSTART
:
1043 return STATE_CMD_RNDOUTSTART
;
1046 NS_ERR("get_state_by_command: unknown command, BUG\n");
1051 * Move an address byte to the correspondent internal register.
1053 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1055 uint byte
= (uint
)bt
;
1057 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1058 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1060 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1061 ns
->geom
.pgaddrbytes
+
1062 ns
->geom
.secaddrbytes
));
1069 * Switch to STATE_READY state.
1071 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1073 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1075 ns
->state
= STATE_READY
;
1076 ns
->nxstate
= STATE_UNKNOWN
;
1084 ns
->regs
.column
= 0;
1085 ns
->regs
.status
= status
;
1089 * If the operation isn't known yet, try to find it in the global array
1090 * of supported operations.
1092 * Operation can be unknown because of the following.
1093 * 1. New command was accepted and this is the firs call to find the
1094 * correspondent states chain. In this case ns->npstates = 0;
1095 * 2. There is several operations which begin with the same command(s)
1096 * (for example program from the second half and read from the
1097 * second half operations both begin with the READ1 command). In this
1098 * case the ns->pstates[] array contains previous states.
1100 * Thus, the function tries to find operation containing the following
1101 * states (if the 'flag' parameter is 0):
1102 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1104 * If (one and only one) matching operation is found, it is accepted (
1105 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1108 * If there are several maches, the current state is pushed to the
1111 * The operation can be unknown only while commands are input to the chip.
1112 * As soon as address command is accepted, the operation must be known.
1113 * In such situation the function is called with 'flag' != 0, and the
1114 * operation is searched using the following pattern:
1115 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1117 * It is supposed that this pattern must either match one operation on
1118 * none. There can't be ambiguity in that case.
1120 * If no matches found, the functions does the following:
1121 * 1. if there are saved states present, try to ignore them and search
1122 * again only using the last command. If nothing was found, switch
1123 * to the STATE_READY state.
1124 * 2. if there are no saved states, switch to the STATE_READY state.
1126 * RETURNS: -2 - no matched operations found.
1127 * -1 - several matches.
1128 * 0 - operation is found.
1130 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1135 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1139 if (!(ns
->options
& ops
[i
].reqopts
))
1140 /* Ignore operations we can't perform */
1144 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1147 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1151 for (j
= 0; j
< ns
->npstates
; j
++)
1152 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1153 && (ns
->options
& ops
[idx
].reqopts
)) {
1164 if (opsfound
== 1) {
1166 ns
->op
= &ops
[idx
].states
[0];
1169 * In this case the find_operation function was
1170 * called when address has just began input. But it isn't
1171 * yet fully input and the current state must
1172 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1173 * state must be the next state (ns->nxstate).
1175 ns
->stateidx
= ns
->npstates
- 1;
1177 ns
->stateidx
= ns
->npstates
;
1180 ns
->state
= ns
->op
[ns
->stateidx
];
1181 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1182 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1183 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1187 if (opsfound
== 0) {
1188 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1189 if (ns
->npstates
!= 0) {
1190 NS_DBG("find_operation: no operation found, try again with state %s\n",
1191 get_state_name(ns
->state
));
1193 return find_operation(ns
, 0);
1196 NS_DBG("find_operation: no operations found\n");
1197 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1202 /* This shouldn't happen */
1203 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1207 NS_DBG("find_operation: there is still ambiguity\n");
1209 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1215 * Returns a pointer to the current page.
1217 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1219 return &(ns
->pages
[ns
->regs
.row
]);
1223 * Retuns a pointer to the current byte, within the current page.
1225 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1227 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1231 * Fill the NAND buffer with data read from the specified page.
1233 static void read_page(struct nandsim
*ns
, int num
)
1235 union ns_mem
*mypage
;
1237 mypage
= NS_GET_PAGE(ns
);
1238 if (mypage
->byte
== NULL
) {
1239 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1240 memset(ns
->buf
.byte
, 0xFF, num
);
1242 unsigned int page_no
= ns
->regs
.row
;
1243 NS_DBG("read_page: page %d allocated, reading from %d\n",
1244 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1245 if (read_error(page_no
)) {
1247 memset(ns
->buf
.byte
, 0xFF, num
);
1248 for (i
= 0; i
< num
; ++i
)
1249 ns
->buf
.byte
[i
] = random32();
1250 NS_WARN("simulating read error in page %u\n", page_no
);
1253 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1254 if (bitflips
&& random32() < (1 << 22)) {
1257 flips
= (random32() % (int) bitflips
) + 1;
1259 int pos
= random32() % (num
* 8);
1260 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1261 NS_WARN("read_page: flipping bit %d in page %d "
1262 "reading from %d ecc: corrected=%u failed=%u\n",
1263 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1264 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1271 * Erase all pages in the specified sector.
1273 static void erase_sector(struct nandsim
*ns
)
1275 union ns_mem
*mypage
;
1278 mypage
= NS_GET_PAGE(ns
);
1279 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1280 if (mypage
->byte
!= NULL
) {
1281 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1282 kfree(mypage
->byte
);
1283 mypage
->byte
= NULL
;
1290 * Program the specified page with the contents from the NAND buffer.
1292 static int prog_page(struct nandsim
*ns
, int num
)
1295 union ns_mem
*mypage
;
1298 mypage
= NS_GET_PAGE(ns
);
1299 if (mypage
->byte
== NULL
) {
1300 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1302 * We allocate memory with GFP_NOFS because a flash FS may
1303 * utilize this. If it is holding an FS lock, then gets here,
1304 * then kmalloc runs writeback which goes to the FS again
1305 * and deadlocks. This was seen in practice.
1307 mypage
->byte
= kmalloc(ns
->geom
.pgszoob
, GFP_NOFS
);
1308 if (mypage
->byte
== NULL
) {
1309 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1312 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1315 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1316 for (i
= 0; i
< num
; i
++)
1317 pg_off
[i
] &= ns
->buf
.byte
[i
];
1323 * If state has any action bit, perform this action.
1325 * RETURNS: 0 if success, -1 if error.
1327 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1330 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1331 unsigned int erase_block_no
, page_no
;
1333 action
&= ACTION_MASK
;
1335 /* Check that page address input is correct */
1336 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1337 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1345 * Copy page data to the internal buffer.
1348 /* Column shouldn't be very large */
1349 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1350 NS_ERR("do_state_action: column number is too large\n");
1353 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1356 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1357 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1359 if (ns
->regs
.off
== 0)
1360 NS_LOG("read page %d\n", ns
->regs
.row
);
1361 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1362 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1364 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1366 NS_UDELAY(access_delay
);
1367 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1371 case ACTION_SECERASE
:
1377 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1381 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1382 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1383 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1387 ns
->regs
.row
= (ns
->regs
.row
<<
1388 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1389 ns
->regs
.column
= 0;
1391 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1393 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1394 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1395 NS_LOG("erase sector %u\n", erase_block_no
);
1399 NS_MDELAY(erase_delay
);
1401 if (erase_block_wear
)
1402 update_wear(erase_block_no
);
1404 if (erase_error(erase_block_no
)) {
1405 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1411 case ACTION_PRGPAGE
:
1413 * Programm page - move internal buffer data to the page.
1417 NS_WARN("do_state_action: device is write-protected, programm\n");
1421 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1422 if (num
!= ns
->regs
.count
) {
1423 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1424 ns
->regs
.count
, num
);
1428 if (prog_page(ns
, num
) == -1)
1431 page_no
= ns
->regs
.row
;
1433 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1434 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1435 NS_LOG("programm page %d\n", ns
->regs
.row
);
1437 NS_UDELAY(programm_delay
);
1438 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1440 if (write_error(page_no
)) {
1441 NS_WARN("simulating write failure in page %u\n", page_no
);
1447 case ACTION_ZEROOFF
:
1448 NS_DBG("do_state_action: set internal offset to 0\n");
1452 case ACTION_HALFOFF
:
1453 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1454 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1455 "byte page size 8x chips\n");
1458 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1459 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1463 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1464 ns
->regs
.off
= ns
->geom
.pgsz
;
1468 NS_DBG("do_state_action: BUG! unknown action\n");
1475 * Switch simulator's state.
1477 static void switch_state(struct nandsim
*ns
)
1481 * The current operation have already been identified.
1482 * Just follow the states chain.
1486 ns
->state
= ns
->nxstate
;
1487 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1489 NS_DBG("switch_state: operation is known, switch to the next state, "
1490 "state: %s, nxstate: %s\n",
1491 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1493 /* See, whether we need to do some action */
1494 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1495 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1501 * We don't yet know which operation we perform.
1502 * Try to identify it.
1506 * The only event causing the switch_state function to
1507 * be called with yet unknown operation is new command.
1509 ns
->state
= get_state_by_command(ns
->regs
.command
);
1511 NS_DBG("switch_state: operation is unknown, try to find it\n");
1513 if (find_operation(ns
, 0) != 0)
1516 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1517 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1522 /* For 16x devices column means the page offset in words */
1523 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1524 NS_DBG("switch_state: double the column number for 16x device\n");
1525 ns
->regs
.column
<<= 1;
1528 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1530 * The current state is the last. Return to STATE_READY
1533 u_char status
= NS_STATUS_OK(ns
);
1535 /* In case of data states, see if all bytes were input/output */
1536 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1537 && ns
->regs
.count
!= ns
->regs
.num
) {
1538 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1539 ns
->regs
.num
- ns
->regs
.count
);
1540 status
= NS_STATUS_FAILED(ns
);
1543 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1545 switch_to_ready_state(ns
, status
);
1548 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1550 * If the next state is data input/output, switch to it now
1553 ns
->state
= ns
->nxstate
;
1554 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1555 ns
->regs
.num
= ns
->regs
.count
= 0;
1557 NS_DBG("switch_state: the next state is data I/O, switch, "
1558 "state: %s, nxstate: %s\n",
1559 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1562 * Set the internal register to the count of bytes which
1563 * are expected to be input or output
1565 switch (NS_STATE(ns
->state
)) {
1568 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1571 case STATE_DATAOUT_ID
:
1572 ns
->regs
.num
= ns
->geom
.idbytes
;
1575 case STATE_DATAOUT_STATUS
:
1576 case STATE_DATAOUT_STATUS_M
:
1577 ns
->regs
.count
= ns
->regs
.num
= 0;
1581 NS_ERR("switch_state: BUG! unknown data state\n");
1584 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1586 * If the next state is address input, set the internal
1587 * register to the number of expected address bytes
1592 switch (NS_STATE(ns
->nxstate
)) {
1593 case STATE_ADDR_PAGE
:
1594 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1597 case STATE_ADDR_SEC
:
1598 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1601 case STATE_ADDR_ZERO
:
1605 case STATE_ADDR_COLUMN
:
1606 /* Column address is always 2 bytes */
1607 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1611 NS_ERR("switch_state: BUG! unknown address state\n");
1615 * Just reset internal counters.
1623 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1625 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1628 /* Sanity and correctness checks */
1629 if (!ns
->lines
.ce
) {
1630 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1633 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1634 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1637 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1638 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1639 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1643 /* Status register may be read as many times as it is wanted */
1644 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1645 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1646 return ns
->regs
.status
;
1649 /* Check if there is any data in the internal buffer which may be read */
1650 if (ns
->regs
.count
== ns
->regs
.num
) {
1651 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1655 switch (NS_STATE(ns
->state
)) {
1657 if (ns
->busw
== 8) {
1658 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1659 ns
->regs
.count
+= 1;
1661 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1662 ns
->regs
.count
+= 2;
1665 case STATE_DATAOUT_ID
:
1666 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1667 outb
= ns
->ids
[ns
->regs
.count
];
1668 ns
->regs
.count
+= 1;
1674 if (ns
->regs
.count
== ns
->regs
.num
) {
1675 NS_DBG("read_byte: all bytes were read\n");
1678 * The OPT_AUTOINCR allows to read next conseqitive pages without
1679 * new read operation cycle.
1681 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1683 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1685 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1686 do_state_action(ns
, ACTION_CPY
);
1688 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1696 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1698 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1700 /* Sanity and correctness checks */
1701 if (!ns
->lines
.ce
) {
1702 NS_ERR("write_byte: chip is disabled, ignore write\n");
1705 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1706 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1710 if (ns
->lines
.cle
== 1) {
1712 * The byte written is a command.
1715 if (byte
== NAND_CMD_RESET
) {
1716 NS_LOG("reset chip\n");
1717 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1721 /* Check that the command byte is correct */
1722 if (check_command(byte
)) {
1723 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1727 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1728 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1729 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1730 int row
= ns
->regs
.row
;
1733 if (byte
== NAND_CMD_RNDOUT
)
1737 /* Check if chip is expecting command */
1738 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1740 * We are in situation when something else (not command)
1741 * was expected but command was input. In this case ignore
1742 * previous command(s)/state(s) and accept the last one.
1744 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1745 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1746 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1749 NS_DBG("command byte corresponding to %s state accepted\n",
1750 get_state_name(get_state_by_command(byte
)));
1751 ns
->regs
.command
= byte
;
1754 } else if (ns
->lines
.ale
== 1) {
1756 * The byte written is an address.
1759 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1761 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1763 if (find_operation(ns
, 1) < 0)
1766 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1767 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1772 switch (NS_STATE(ns
->nxstate
)) {
1773 case STATE_ADDR_PAGE
:
1774 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1776 case STATE_ADDR_SEC
:
1777 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1779 case STATE_ADDR_ZERO
:
1787 /* Check that chip is expecting address */
1788 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
1789 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1790 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1791 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1795 /* Check if this is expected byte */
1796 if (ns
->regs
.count
== ns
->regs
.num
) {
1797 NS_ERR("write_byte: no more address bytes expected\n");
1798 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1802 accept_addr_byte(ns
, byte
);
1804 ns
->regs
.count
+= 1;
1806 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1807 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
1809 if (ns
->regs
.count
== ns
->regs
.num
) {
1810 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
1816 * The byte written is an input data.
1819 /* Check that chip is expecting data input */
1820 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1821 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1822 "switch to %s\n", (uint
)byte
,
1823 get_state_name(ns
->state
), get_state_name(STATE_READY
));
1824 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1828 /* Check if this is expected byte */
1829 if (ns
->regs
.count
== ns
->regs
.num
) {
1830 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1835 if (ns
->busw
== 8) {
1836 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
1837 ns
->regs
.count
+= 1;
1839 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
1840 ns
->regs
.count
+= 2;
1847 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
1849 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1851 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
1852 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
1853 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
1855 if (cmd
!= NAND_CMD_NONE
)
1856 ns_nand_write_byte(mtd
, cmd
);
1859 static int ns_device_ready(struct mtd_info
*mtd
)
1861 NS_DBG("device_ready\n");
1865 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
1867 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1869 NS_DBG("read_word\n");
1871 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
1874 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1876 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1878 /* Check that chip is expecting data input */
1879 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1880 NS_ERR("write_buf: data input isn't expected, state is %s, "
1881 "switch to STATE_READY\n", get_state_name(ns
->state
));
1882 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1886 /* Check if these are expected bytes */
1887 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1888 NS_ERR("write_buf: too many input bytes\n");
1889 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1893 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
1894 ns
->regs
.count
+= len
;
1896 if (ns
->regs
.count
== ns
->regs
.num
) {
1897 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
1901 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
1903 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1905 /* Sanity and correctness checks */
1906 if (!ns
->lines
.ce
) {
1907 NS_ERR("read_buf: chip is disabled\n");
1910 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1911 NS_ERR("read_buf: ALE or CLE pin is high\n");
1914 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1915 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1916 get_state_name(ns
->state
));
1920 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
1923 for (i
= 0; i
< len
; i
++)
1924 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
1929 /* Check if these are expected bytes */
1930 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1931 NS_ERR("read_buf: too many bytes to read\n");
1932 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1936 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
1937 ns
->regs
.count
+= len
;
1939 if (ns
->regs
.count
== ns
->regs
.num
) {
1940 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1942 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1944 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
1945 do_state_action(ns
, ACTION_CPY
);
1947 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1954 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1956 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
1958 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
1959 NS_DBG("verify_buf: the buffer is OK\n");
1962 NS_DBG("verify_buf: the buffer is wrong\n");
1968 * Module initialization function
1970 static int __init
ns_init_module(void)
1972 struct nand_chip
*chip
;
1973 struct nandsim
*nand
;
1974 int retval
= -ENOMEM
, i
;
1976 if (bus_width
!= 8 && bus_width
!= 16) {
1977 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
1981 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1982 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
1983 + sizeof(struct nandsim
), GFP_KERNEL
);
1985 NS_ERR("unable to allocate core structures.\n");
1988 chip
= (struct nand_chip
*)(nsmtd
+ 1);
1989 nsmtd
->priv
= (void *)chip
;
1990 nand
= (struct nandsim
*)(chip
+ 1);
1991 chip
->priv
= (void *)nand
;
1994 * Register simulator's callbacks.
1996 chip
->cmd_ctrl
= ns_hwcontrol
;
1997 chip
->read_byte
= ns_nand_read_byte
;
1998 chip
->dev_ready
= ns_device_ready
;
1999 chip
->write_buf
= ns_nand_write_buf
;
2000 chip
->read_buf
= ns_nand_read_buf
;
2001 chip
->verify_buf
= ns_nand_verify_buf
;
2002 chip
->read_word
= ns_nand_read_word
;
2003 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2004 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2005 /* and 'badblocks' parameters to work */
2006 chip
->options
|= NAND_SKIP_BBTSCAN
;
2009 * Perform minimum nandsim structure initialization to handle
2010 * the initial ID read command correctly
2012 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
2013 nand
->geom
.idbytes
= 4;
2015 nand
->geom
.idbytes
= 2;
2016 nand
->regs
.status
= NS_STATUS_OK(nand
);
2017 nand
->nxstate
= STATE_UNKNOWN
;
2018 nand
->options
|= OPT_PAGE256
; /* temporary value */
2019 nand
->ids
[0] = first_id_byte
;
2020 nand
->ids
[1] = second_id_byte
;
2021 nand
->ids
[2] = third_id_byte
;
2022 nand
->ids
[3] = fourth_id_byte
;
2023 if (bus_width
== 16) {
2025 chip
->options
|= NAND_BUSWIDTH_16
;
2028 nsmtd
->owner
= THIS_MODULE
;
2030 if ((retval
= parse_weakblocks()) != 0)
2033 if ((retval
= parse_weakpages()) != 0)
2036 if ((retval
= parse_gravepages()) != 0)
2039 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
2040 NS_ERR("can't register NAND Simulator\n");
2047 u_int64_t new_size
= (u_int64_t
)nsmtd
->erasesize
<< overridesize
;
2048 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2049 NS_ERR("overridesize is too big\n");
2052 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2053 nsmtd
->size
= new_size
;
2054 chip
->chipsize
= new_size
;
2055 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2056 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2059 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2062 if ((retval
= init_nandsim(nsmtd
)) != 0)
2065 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2068 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2071 /* Register NAND partitions */
2072 if ((retval
= add_mtd_partitions(nsmtd
, &nand
->partitions
[0], nand
->nbparts
)) != 0)
2079 nand_release(nsmtd
);
2080 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2081 kfree(nand
->partitions
[i
].name
);
2089 module_init(ns_init_module
);
2092 * Module clean-up function
2094 static void __exit
ns_cleanup_module(void)
2096 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
2099 free_nandsim(ns
); /* Free nandsim private resources */
2100 nand_release(nsmtd
); /* Unregister driver */
2101 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2102 kfree(ns
->partitions
[i
].name
);
2103 kfree(nsmtd
); /* Free other structures */
2107 module_exit(ns_cleanup_module
);
2109 MODULE_LICENSE ("GPL");
2110 MODULE_AUTHOR ("Artem B. Bityuckiy");
2111 MODULE_DESCRIPTION ("The NAND flash simulator");