Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/mini2440.git] / drivers / mtd / nand / nandsim.c
blobae7c57781a68e76885ca286b9a68a16d218358be
1 /*
2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
42 /* Default simulator parameters values */
43 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
48 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
50 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
51 #endif
53 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
54 #define CONFIG_NANDSIM_ACCESS_DELAY 25
55 #endif
56 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58 #endif
59 #ifndef CONFIG_NANDSIM_ERASE_DELAY
60 #define CONFIG_NANDSIM_ERASE_DELAY 2
61 #endif
62 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64 #endif
65 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
66 #define CONFIG_NANDSIM_INPUT_CYCLE 50
67 #endif
68 #ifndef CONFIG_NANDSIM_BUS_WIDTH
69 #define CONFIG_NANDSIM_BUS_WIDTH 8
70 #endif
71 #ifndef CONFIG_NANDSIM_DO_DELAYS
72 #define CONFIG_NANDSIM_DO_DELAYS 0
73 #endif
74 #ifndef CONFIG_NANDSIM_LOG
75 #define CONFIG_NANDSIM_LOG 0
76 #endif
77 #ifndef CONFIG_NANDSIM_DBG
78 #define CONFIG_NANDSIM_DBG 0
79 #endif
81 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
82 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
83 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
84 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
85 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
86 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
87 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
88 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
89 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
90 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
91 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
92 static uint log = CONFIG_NANDSIM_LOG;
93 static uint dbg = CONFIG_NANDSIM_DBG;
94 static unsigned long parts[MAX_MTD_DEVICES];
95 static unsigned int parts_num;
96 static char *badblocks = NULL;
97 static char *weakblocks = NULL;
98 static char *weakpages = NULL;
99 static unsigned int bitflips = 0;
100 static char *gravepages = NULL;
101 static unsigned int rptwear = 0;
102 static unsigned int overridesize = 0;
104 module_param(first_id_byte, uint, 0400);
105 module_param(second_id_byte, uint, 0400);
106 module_param(third_id_byte, uint, 0400);
107 module_param(fourth_id_byte, uint, 0400);
108 module_param(access_delay, uint, 0400);
109 module_param(programm_delay, uint, 0400);
110 module_param(erase_delay, uint, 0400);
111 module_param(output_cycle, uint, 0400);
112 module_param(input_cycle, uint, 0400);
113 module_param(bus_width, uint, 0400);
114 module_param(do_delays, uint, 0400);
115 module_param(log, uint, 0400);
116 module_param(dbg, uint, 0400);
117 module_param_array(parts, ulong, &parts_num, 0400);
118 module_param(badblocks, charp, 0400);
119 module_param(weakblocks, charp, 0400);
120 module_param(weakpages, charp, 0400);
121 module_param(bitflips, uint, 0400);
122 module_param(gravepages, charp, 0400);
123 module_param(rptwear, uint, 0400);
124 module_param(overridesize, uint, 0400);
126 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
127 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
131 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
132 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
133 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
134 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
135 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
136 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
137 MODULE_PARM_DESC(log, "Perform logging if not zero");
138 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
139 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
140 /* Page and erase block positions for the following parameters are independent of any partitions */
141 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
142 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143 " separated by commas e.g. 113:2 means eb 113"
144 " can be erased only twice before failing");
145 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
146 " separated by commas e.g. 1401:2 means page 1401"
147 " can be written only twice before failing");
148 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
149 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
150 " separated by commas e.g. 1401:2 means page 1401"
151 " can be read only twice before failing");
152 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
153 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
154 "The size is specified in erase blocks and as the exponent of a power of two"
155 " e.g. 5 means a size of 32 erase blocks");
157 /* The largest possible page size */
158 #define NS_LARGEST_PAGE_SIZE 2048
160 /* The prefix for simulator output */
161 #define NS_OUTPUT_PREFIX "[nandsim]"
163 /* Simulator's output macros (logging, debugging, warning, error) */
164 #define NS_LOG(args...) \
165 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166 #define NS_DBG(args...) \
167 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168 #define NS_WARN(args...) \
169 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
170 #define NS_ERR(args...) \
171 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
172 #define NS_INFO(args...) \
173 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
175 /* Busy-wait delay macros (microseconds, milliseconds) */
176 #define NS_UDELAY(us) \
177 do { if (do_delays) udelay(us); } while(0)
178 #define NS_MDELAY(us) \
179 do { if (do_delays) mdelay(us); } while(0)
181 /* Is the nandsim structure initialized ? */
182 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
184 /* Good operation completion status */
185 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
187 /* Operation failed completion status */
188 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
190 /* Calculate the page offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET(ns) \
192 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
194 /* Calculate the OOB offset in flash RAM image by (row, column) address */
195 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
197 /* After a command is input, the simulator goes to one of the following states */
198 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
199 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
200 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
201 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
202 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
203 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
204 #define STATE_CMD_STATUS 0x00000007 /* read status */
205 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
206 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
207 #define STATE_CMD_READID 0x0000000A /* read ID */
208 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
209 #define STATE_CMD_RESET 0x0000000C /* reset */
210 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
211 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
212 #define STATE_CMD_MASK 0x0000000F /* command states mask */
214 /* After an address is input, the simulator goes to one of these states */
215 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
216 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
217 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
218 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
219 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
221 /* Durind data input/output the simulator is in these states */
222 #define STATE_DATAIN 0x00000100 /* waiting for data input */
223 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
225 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
226 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
227 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
228 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
229 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
231 /* Previous operation is done, ready to accept new requests */
232 #define STATE_READY 0x00000000
234 /* This state is used to mark that the next state isn't known yet */
235 #define STATE_UNKNOWN 0x10000000
237 /* Simulator's actions bit masks */
238 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
239 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
240 #define ACTION_SECERASE 0x00300000 /* erase sector */
241 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
242 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
243 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
244 #define ACTION_MASK 0x00700000 /* action mask */
246 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
247 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
249 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
250 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
251 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
252 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
253 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
254 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
255 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
256 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
257 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
259 /* Remove action bits ftom state */
260 #define NS_STATE(x) ((x) & ~ACTION_MASK)
263 * Maximum previous states which need to be saved. Currently saving is
264 * only needed for page programm operation with preceeded read command
265 * (which is only valid for 512-byte pages).
267 #define NS_MAX_PREVSTATES 1
270 * A union to represent flash memory contents and flash buffer.
272 union ns_mem {
273 u_char *byte; /* for byte access */
274 uint16_t *word; /* for 16-bit word access */
278 * The structure which describes all the internal simulator data.
280 struct nandsim {
281 struct mtd_partition partitions[MAX_MTD_DEVICES];
282 unsigned int nbparts;
284 uint busw; /* flash chip bus width (8 or 16) */
285 u_char ids[4]; /* chip's ID bytes */
286 uint32_t options; /* chip's characteristic bits */
287 uint32_t state; /* current chip state */
288 uint32_t nxstate; /* next expected state */
290 uint32_t *op; /* current operation, NULL operations isn't known yet */
291 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
292 uint16_t npstates; /* number of previous states saved */
293 uint16_t stateidx; /* current state index */
295 /* The simulated NAND flash pages array */
296 union ns_mem *pages;
298 /* Internal buffer of page + OOB size bytes */
299 union ns_mem buf;
301 /* NAND flash "geometry" */
302 struct nandsin_geometry {
303 uint64_t totsz; /* total flash size, bytes */
304 uint32_t secsz; /* flash sector (erase block) size, bytes */
305 uint pgsz; /* NAND flash page size, bytes */
306 uint oobsz; /* page OOB area size, bytes */
307 uint64_t totszoob; /* total flash size including OOB, bytes */
308 uint pgszoob; /* page size including OOB , bytes*/
309 uint secszoob; /* sector size including OOB, bytes */
310 uint pgnum; /* total number of pages */
311 uint pgsec; /* number of pages per sector */
312 uint secshift; /* bits number in sector size */
313 uint pgshift; /* bits number in page size */
314 uint oobshift; /* bits number in OOB size */
315 uint pgaddrbytes; /* bytes per page address */
316 uint secaddrbytes; /* bytes per sector address */
317 uint idbytes; /* the number ID bytes that this chip outputs */
318 } geom;
320 /* NAND flash internal registers */
321 struct nandsim_regs {
322 unsigned command; /* the command register */
323 u_char status; /* the status register */
324 uint row; /* the page number */
325 uint column; /* the offset within page */
326 uint count; /* internal counter */
327 uint num; /* number of bytes which must be processed */
328 uint off; /* fixed page offset */
329 } regs;
331 /* NAND flash lines state */
332 struct ns_lines_status {
333 int ce; /* chip Enable */
334 int cle; /* command Latch Enable */
335 int ale; /* address Latch Enable */
336 int wp; /* write Protect */
337 } lines;
341 * Operations array. To perform any operation the simulator must pass
342 * through the correspondent states chain.
344 static struct nandsim_operations {
345 uint32_t reqopts; /* options which are required to perform the operation */
346 uint32_t states[NS_OPER_STATES]; /* operation's states */
347 } ops[NS_OPER_NUM] = {
348 /* Read page + OOB from the beginning */
349 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
350 STATE_DATAOUT, STATE_READY}},
351 /* Read page + OOB from the second half */
352 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
353 STATE_DATAOUT, STATE_READY}},
354 /* Read OOB */
355 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
356 STATE_DATAOUT, STATE_READY}},
357 /* Programm page starting from the beginning */
358 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
359 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
360 /* Programm page starting from the beginning */
361 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
362 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
363 /* Programm page starting from the second half */
364 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
365 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
366 /* Programm OOB */
367 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
368 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
369 /* Erase sector */
370 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
371 /* Read status */
372 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
373 /* Read multi-plane status */
374 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
375 /* Read ID */
376 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
377 /* Large page devices read page */
378 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
379 STATE_DATAOUT, STATE_READY}},
380 /* Large page devices random page read */
381 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
382 STATE_DATAOUT, STATE_READY}},
385 struct weak_block {
386 struct list_head list;
387 unsigned int erase_block_no;
388 unsigned int max_erases;
389 unsigned int erases_done;
392 static LIST_HEAD(weak_blocks);
394 struct weak_page {
395 struct list_head list;
396 unsigned int page_no;
397 unsigned int max_writes;
398 unsigned int writes_done;
401 static LIST_HEAD(weak_pages);
403 struct grave_page {
404 struct list_head list;
405 unsigned int page_no;
406 unsigned int max_reads;
407 unsigned int reads_done;
410 static LIST_HEAD(grave_pages);
412 static unsigned long *erase_block_wear = NULL;
413 static unsigned int wear_eb_count = 0;
414 static unsigned long total_wear = 0;
415 static unsigned int rptwear_cnt = 0;
417 /* MTD structure for NAND controller */
418 static struct mtd_info *nsmtd;
420 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
423 * Allocate array of page pointers and initialize the array to NULL
424 * pointers.
426 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
428 static int alloc_device(struct nandsim *ns)
430 int i;
432 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
433 if (!ns->pages) {
434 NS_ERR("alloc_map: unable to allocate page array\n");
435 return -ENOMEM;
437 for (i = 0; i < ns->geom.pgnum; i++) {
438 ns->pages[i].byte = NULL;
441 return 0;
445 * Free any allocated pages, and free the array of page pointers.
447 static void free_device(struct nandsim *ns)
449 int i;
451 if (ns->pages) {
452 for (i = 0; i < ns->geom.pgnum; i++) {
453 if (ns->pages[i].byte)
454 kfree(ns->pages[i].byte);
456 vfree(ns->pages);
460 static char *get_partition_name(int i)
462 char buf[64];
463 sprintf(buf, "NAND simulator partition %d", i);
464 return kstrdup(buf, GFP_KERNEL);
467 static u_int64_t divide(u_int64_t n, u_int32_t d)
469 do_div(n, d);
470 return n;
474 * Initialize the nandsim structure.
476 * RETURNS: 0 if success, -ERRNO if failure.
478 static int init_nandsim(struct mtd_info *mtd)
480 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
481 struct nandsim *ns = (struct nandsim *)(chip->priv);
482 int i, ret = 0;
483 u_int64_t remains;
484 u_int64_t next_offset;
486 if (NS_IS_INITIALIZED(ns)) {
487 NS_ERR("init_nandsim: nandsim is already initialized\n");
488 return -EIO;
491 /* Force mtd to not do delays */
492 chip->chip_delay = 0;
494 /* Initialize the NAND flash parameters */
495 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
496 ns->geom.totsz = mtd->size;
497 ns->geom.pgsz = mtd->writesize;
498 ns->geom.oobsz = mtd->oobsize;
499 ns->geom.secsz = mtd->erasesize;
500 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
501 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
502 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
503 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
504 ns->geom.pgshift = chip->page_shift;
505 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
506 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
507 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
508 ns->options = 0;
510 if (ns->geom.pgsz == 256) {
511 ns->options |= OPT_PAGE256;
513 else if (ns->geom.pgsz == 512) {
514 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
515 if (ns->busw == 8)
516 ns->options |= OPT_PAGE512_8BIT;
517 } else if (ns->geom.pgsz == 2048) {
518 ns->options |= OPT_PAGE2048;
519 } else {
520 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
521 return -EIO;
524 if (ns->options & OPT_SMALLPAGE) {
525 if (ns->geom.totsz <= (32 << 20)) {
526 ns->geom.pgaddrbytes = 3;
527 ns->geom.secaddrbytes = 2;
528 } else {
529 ns->geom.pgaddrbytes = 4;
530 ns->geom.secaddrbytes = 3;
532 } else {
533 if (ns->geom.totsz <= (128 << 20)) {
534 ns->geom.pgaddrbytes = 4;
535 ns->geom.secaddrbytes = 2;
536 } else {
537 ns->geom.pgaddrbytes = 5;
538 ns->geom.secaddrbytes = 3;
542 /* Fill the partition_info structure */
543 if (parts_num > ARRAY_SIZE(ns->partitions)) {
544 NS_ERR("too many partitions.\n");
545 ret = -EINVAL;
546 goto error;
548 remains = ns->geom.totsz;
549 next_offset = 0;
550 for (i = 0; i < parts_num; ++i) {
551 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
553 if (!part_sz || part_sz > remains) {
554 NS_ERR("bad partition size.\n");
555 ret = -EINVAL;
556 goto error;
558 ns->partitions[i].name = get_partition_name(i);
559 ns->partitions[i].offset = next_offset;
560 ns->partitions[i].size = part_sz;
561 next_offset += ns->partitions[i].size;
562 remains -= ns->partitions[i].size;
564 ns->nbparts = parts_num;
565 if (remains) {
566 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
567 NS_ERR("too many partitions.\n");
568 ret = -EINVAL;
569 goto error;
571 ns->partitions[i].name = get_partition_name(i);
572 ns->partitions[i].offset = next_offset;
573 ns->partitions[i].size = remains;
574 ns->nbparts += 1;
577 /* Detect how many ID bytes the NAND chip outputs */
578 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
579 if (second_id_byte != nand_flash_ids[i].id)
580 continue;
581 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
582 ns->options |= OPT_AUTOINCR;
585 if (ns->busw == 16)
586 NS_WARN("16-bit flashes support wasn't tested\n");
588 printk("flash size: %llu MiB\n",
589 (unsigned long long)ns->geom.totsz >> 20);
590 printk("page size: %u bytes\n", ns->geom.pgsz);
591 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
592 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
593 printk("pages number: %u\n", ns->geom.pgnum);
594 printk("pages per sector: %u\n", ns->geom.pgsec);
595 printk("bus width: %u\n", ns->busw);
596 printk("bits in sector size: %u\n", ns->geom.secshift);
597 printk("bits in page size: %u\n", ns->geom.pgshift);
598 printk("bits in OOB size: %u\n", ns->geom.oobshift);
599 printk("flash size with OOB: %llu KiB\n",
600 (unsigned long long)ns->geom.totszoob >> 10);
601 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
602 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
603 printk("options: %#x\n", ns->options);
605 if ((ret = alloc_device(ns)) != 0)
606 goto error;
608 /* Allocate / initialize the internal buffer */
609 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
610 if (!ns->buf.byte) {
611 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
612 ns->geom.pgszoob);
613 ret = -ENOMEM;
614 goto error;
616 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
618 return 0;
620 error:
621 free_device(ns);
623 return ret;
627 * Free the nandsim structure.
629 static void free_nandsim(struct nandsim *ns)
631 kfree(ns->buf.byte);
632 free_device(ns);
634 return;
637 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
639 char *w;
640 int zero_ok;
641 unsigned int erase_block_no;
642 loff_t offset;
644 if (!badblocks)
645 return 0;
646 w = badblocks;
647 do {
648 zero_ok = (*w == '0' ? 1 : 0);
649 erase_block_no = simple_strtoul(w, &w, 0);
650 if (!zero_ok && !erase_block_no) {
651 NS_ERR("invalid badblocks.\n");
652 return -EINVAL;
654 offset = erase_block_no * ns->geom.secsz;
655 if (mtd->block_markbad(mtd, offset)) {
656 NS_ERR("invalid badblocks.\n");
657 return -EINVAL;
659 if (*w == ',')
660 w += 1;
661 } while (*w);
662 return 0;
665 static int parse_weakblocks(void)
667 char *w;
668 int zero_ok;
669 unsigned int erase_block_no;
670 unsigned int max_erases;
671 struct weak_block *wb;
673 if (!weakblocks)
674 return 0;
675 w = weakblocks;
676 do {
677 zero_ok = (*w == '0' ? 1 : 0);
678 erase_block_no = simple_strtoul(w, &w, 0);
679 if (!zero_ok && !erase_block_no) {
680 NS_ERR("invalid weakblocks.\n");
681 return -EINVAL;
683 max_erases = 3;
684 if (*w == ':') {
685 w += 1;
686 max_erases = simple_strtoul(w, &w, 0);
688 if (*w == ',')
689 w += 1;
690 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
691 if (!wb) {
692 NS_ERR("unable to allocate memory.\n");
693 return -ENOMEM;
695 wb->erase_block_no = erase_block_no;
696 wb->max_erases = max_erases;
697 list_add(&wb->list, &weak_blocks);
698 } while (*w);
699 return 0;
702 static int erase_error(unsigned int erase_block_no)
704 struct weak_block *wb;
706 list_for_each_entry(wb, &weak_blocks, list)
707 if (wb->erase_block_no == erase_block_no) {
708 if (wb->erases_done >= wb->max_erases)
709 return 1;
710 wb->erases_done += 1;
711 return 0;
713 return 0;
716 static int parse_weakpages(void)
718 char *w;
719 int zero_ok;
720 unsigned int page_no;
721 unsigned int max_writes;
722 struct weak_page *wp;
724 if (!weakpages)
725 return 0;
726 w = weakpages;
727 do {
728 zero_ok = (*w == '0' ? 1 : 0);
729 page_no = simple_strtoul(w, &w, 0);
730 if (!zero_ok && !page_no) {
731 NS_ERR("invalid weakpagess.\n");
732 return -EINVAL;
734 max_writes = 3;
735 if (*w == ':') {
736 w += 1;
737 max_writes = simple_strtoul(w, &w, 0);
739 if (*w == ',')
740 w += 1;
741 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
742 if (!wp) {
743 NS_ERR("unable to allocate memory.\n");
744 return -ENOMEM;
746 wp->page_no = page_no;
747 wp->max_writes = max_writes;
748 list_add(&wp->list, &weak_pages);
749 } while (*w);
750 return 0;
753 static int write_error(unsigned int page_no)
755 struct weak_page *wp;
757 list_for_each_entry(wp, &weak_pages, list)
758 if (wp->page_no == page_no) {
759 if (wp->writes_done >= wp->max_writes)
760 return 1;
761 wp->writes_done += 1;
762 return 0;
764 return 0;
767 static int parse_gravepages(void)
769 char *g;
770 int zero_ok;
771 unsigned int page_no;
772 unsigned int max_reads;
773 struct grave_page *gp;
775 if (!gravepages)
776 return 0;
777 g = gravepages;
778 do {
779 zero_ok = (*g == '0' ? 1 : 0);
780 page_no = simple_strtoul(g, &g, 0);
781 if (!zero_ok && !page_no) {
782 NS_ERR("invalid gravepagess.\n");
783 return -EINVAL;
785 max_reads = 3;
786 if (*g == ':') {
787 g += 1;
788 max_reads = simple_strtoul(g, &g, 0);
790 if (*g == ',')
791 g += 1;
792 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
793 if (!gp) {
794 NS_ERR("unable to allocate memory.\n");
795 return -ENOMEM;
797 gp->page_no = page_no;
798 gp->max_reads = max_reads;
799 list_add(&gp->list, &grave_pages);
800 } while (*g);
801 return 0;
804 static int read_error(unsigned int page_no)
806 struct grave_page *gp;
808 list_for_each_entry(gp, &grave_pages, list)
809 if (gp->page_no == page_no) {
810 if (gp->reads_done >= gp->max_reads)
811 return 1;
812 gp->reads_done += 1;
813 return 0;
815 return 0;
818 static void free_lists(void)
820 struct list_head *pos, *n;
821 list_for_each_safe(pos, n, &weak_blocks) {
822 list_del(pos);
823 kfree(list_entry(pos, struct weak_block, list));
825 list_for_each_safe(pos, n, &weak_pages) {
826 list_del(pos);
827 kfree(list_entry(pos, struct weak_page, list));
829 list_for_each_safe(pos, n, &grave_pages) {
830 list_del(pos);
831 kfree(list_entry(pos, struct grave_page, list));
833 kfree(erase_block_wear);
836 static int setup_wear_reporting(struct mtd_info *mtd)
838 size_t mem;
840 if (!rptwear)
841 return 0;
842 wear_eb_count = divide(mtd->size, mtd->erasesize);
843 mem = wear_eb_count * sizeof(unsigned long);
844 if (mem / sizeof(unsigned long) != wear_eb_count) {
845 NS_ERR("Too many erase blocks for wear reporting\n");
846 return -ENOMEM;
848 erase_block_wear = kzalloc(mem, GFP_KERNEL);
849 if (!erase_block_wear) {
850 NS_ERR("Too many erase blocks for wear reporting\n");
851 return -ENOMEM;
853 return 0;
856 static void update_wear(unsigned int erase_block_no)
858 unsigned long wmin = -1, wmax = 0, avg;
859 unsigned long deciles[10], decile_max[10], tot = 0;
860 unsigned int i;
862 if (!erase_block_wear)
863 return;
864 total_wear += 1;
865 if (total_wear == 0)
866 NS_ERR("Erase counter total overflow\n");
867 erase_block_wear[erase_block_no] += 1;
868 if (erase_block_wear[erase_block_no] == 0)
869 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
870 rptwear_cnt += 1;
871 if (rptwear_cnt < rptwear)
872 return;
873 rptwear_cnt = 0;
874 /* Calc wear stats */
875 for (i = 0; i < wear_eb_count; ++i) {
876 unsigned long wear = erase_block_wear[i];
877 if (wear < wmin)
878 wmin = wear;
879 if (wear > wmax)
880 wmax = wear;
881 tot += wear;
883 for (i = 0; i < 9; ++i) {
884 deciles[i] = 0;
885 decile_max[i] = (wmax * (i + 1) + 5) / 10;
887 deciles[9] = 0;
888 decile_max[9] = wmax;
889 for (i = 0; i < wear_eb_count; ++i) {
890 int d;
891 unsigned long wear = erase_block_wear[i];
892 for (d = 0; d < 10; ++d)
893 if (wear <= decile_max[d]) {
894 deciles[d] += 1;
895 break;
898 avg = tot / wear_eb_count;
899 /* Output wear report */
900 NS_INFO("*** Wear Report ***\n");
901 NS_INFO("Total numbers of erases: %lu\n", tot);
902 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
903 NS_INFO("Average number of erases: %lu\n", avg);
904 NS_INFO("Maximum number of erases: %lu\n", wmax);
905 NS_INFO("Minimum number of erases: %lu\n", wmin);
906 for (i = 0; i < 10; ++i) {
907 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
908 if (from > decile_max[i])
909 continue;
910 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
911 from,
912 decile_max[i],
913 deciles[i]);
915 NS_INFO("*** End of Wear Report ***\n");
919 * Returns the string representation of 'state' state.
921 static char *get_state_name(uint32_t state)
923 switch (NS_STATE(state)) {
924 case STATE_CMD_READ0:
925 return "STATE_CMD_READ0";
926 case STATE_CMD_READ1:
927 return "STATE_CMD_READ1";
928 case STATE_CMD_PAGEPROG:
929 return "STATE_CMD_PAGEPROG";
930 case STATE_CMD_READOOB:
931 return "STATE_CMD_READOOB";
932 case STATE_CMD_READSTART:
933 return "STATE_CMD_READSTART";
934 case STATE_CMD_ERASE1:
935 return "STATE_CMD_ERASE1";
936 case STATE_CMD_STATUS:
937 return "STATE_CMD_STATUS";
938 case STATE_CMD_STATUS_M:
939 return "STATE_CMD_STATUS_M";
940 case STATE_CMD_SEQIN:
941 return "STATE_CMD_SEQIN";
942 case STATE_CMD_READID:
943 return "STATE_CMD_READID";
944 case STATE_CMD_ERASE2:
945 return "STATE_CMD_ERASE2";
946 case STATE_CMD_RESET:
947 return "STATE_CMD_RESET";
948 case STATE_CMD_RNDOUT:
949 return "STATE_CMD_RNDOUT";
950 case STATE_CMD_RNDOUTSTART:
951 return "STATE_CMD_RNDOUTSTART";
952 case STATE_ADDR_PAGE:
953 return "STATE_ADDR_PAGE";
954 case STATE_ADDR_SEC:
955 return "STATE_ADDR_SEC";
956 case STATE_ADDR_ZERO:
957 return "STATE_ADDR_ZERO";
958 case STATE_ADDR_COLUMN:
959 return "STATE_ADDR_COLUMN";
960 case STATE_DATAIN:
961 return "STATE_DATAIN";
962 case STATE_DATAOUT:
963 return "STATE_DATAOUT";
964 case STATE_DATAOUT_ID:
965 return "STATE_DATAOUT_ID";
966 case STATE_DATAOUT_STATUS:
967 return "STATE_DATAOUT_STATUS";
968 case STATE_DATAOUT_STATUS_M:
969 return "STATE_DATAOUT_STATUS_M";
970 case STATE_READY:
971 return "STATE_READY";
972 case STATE_UNKNOWN:
973 return "STATE_UNKNOWN";
976 NS_ERR("get_state_name: unknown state, BUG\n");
977 return NULL;
981 * Check if command is valid.
983 * RETURNS: 1 if wrong command, 0 if right.
985 static int check_command(int cmd)
987 switch (cmd) {
989 case NAND_CMD_READ0:
990 case NAND_CMD_READ1:
991 case NAND_CMD_READSTART:
992 case NAND_CMD_PAGEPROG:
993 case NAND_CMD_READOOB:
994 case NAND_CMD_ERASE1:
995 case NAND_CMD_STATUS:
996 case NAND_CMD_SEQIN:
997 case NAND_CMD_READID:
998 case NAND_CMD_ERASE2:
999 case NAND_CMD_RESET:
1000 case NAND_CMD_RNDOUT:
1001 case NAND_CMD_RNDOUTSTART:
1002 return 0;
1004 case NAND_CMD_STATUS_MULTI:
1005 default:
1006 return 1;
1011 * Returns state after command is accepted by command number.
1013 static uint32_t get_state_by_command(unsigned command)
1015 switch (command) {
1016 case NAND_CMD_READ0:
1017 return STATE_CMD_READ0;
1018 case NAND_CMD_READ1:
1019 return STATE_CMD_READ1;
1020 case NAND_CMD_PAGEPROG:
1021 return STATE_CMD_PAGEPROG;
1022 case NAND_CMD_READSTART:
1023 return STATE_CMD_READSTART;
1024 case NAND_CMD_READOOB:
1025 return STATE_CMD_READOOB;
1026 case NAND_CMD_ERASE1:
1027 return STATE_CMD_ERASE1;
1028 case NAND_CMD_STATUS:
1029 return STATE_CMD_STATUS;
1030 case NAND_CMD_STATUS_MULTI:
1031 return STATE_CMD_STATUS_M;
1032 case NAND_CMD_SEQIN:
1033 return STATE_CMD_SEQIN;
1034 case NAND_CMD_READID:
1035 return STATE_CMD_READID;
1036 case NAND_CMD_ERASE2:
1037 return STATE_CMD_ERASE2;
1038 case NAND_CMD_RESET:
1039 return STATE_CMD_RESET;
1040 case NAND_CMD_RNDOUT:
1041 return STATE_CMD_RNDOUT;
1042 case NAND_CMD_RNDOUTSTART:
1043 return STATE_CMD_RNDOUTSTART;
1046 NS_ERR("get_state_by_command: unknown command, BUG\n");
1047 return 0;
1051 * Move an address byte to the correspondent internal register.
1053 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1055 uint byte = (uint)bt;
1057 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1058 ns->regs.column |= (byte << 8 * ns->regs.count);
1059 else {
1060 ns->regs.row |= (byte << 8 * (ns->regs.count -
1061 ns->geom.pgaddrbytes +
1062 ns->geom.secaddrbytes));
1065 return;
1069 * Switch to STATE_READY state.
1071 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1073 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1075 ns->state = STATE_READY;
1076 ns->nxstate = STATE_UNKNOWN;
1077 ns->op = NULL;
1078 ns->npstates = 0;
1079 ns->stateidx = 0;
1080 ns->regs.num = 0;
1081 ns->regs.count = 0;
1082 ns->regs.off = 0;
1083 ns->regs.row = 0;
1084 ns->regs.column = 0;
1085 ns->regs.status = status;
1089 * If the operation isn't known yet, try to find it in the global array
1090 * of supported operations.
1092 * Operation can be unknown because of the following.
1093 * 1. New command was accepted and this is the firs call to find the
1094 * correspondent states chain. In this case ns->npstates = 0;
1095 * 2. There is several operations which begin with the same command(s)
1096 * (for example program from the second half and read from the
1097 * second half operations both begin with the READ1 command). In this
1098 * case the ns->pstates[] array contains previous states.
1100 * Thus, the function tries to find operation containing the following
1101 * states (if the 'flag' parameter is 0):
1102 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1104 * If (one and only one) matching operation is found, it is accepted (
1105 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1106 * zeroed).
1108 * If there are several maches, the current state is pushed to the
1109 * ns->pstates.
1111 * The operation can be unknown only while commands are input to the chip.
1112 * As soon as address command is accepted, the operation must be known.
1113 * In such situation the function is called with 'flag' != 0, and the
1114 * operation is searched using the following pattern:
1115 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1117 * It is supposed that this pattern must either match one operation on
1118 * none. There can't be ambiguity in that case.
1120 * If no matches found, the functions does the following:
1121 * 1. if there are saved states present, try to ignore them and search
1122 * again only using the last command. If nothing was found, switch
1123 * to the STATE_READY state.
1124 * 2. if there are no saved states, switch to the STATE_READY state.
1126 * RETURNS: -2 - no matched operations found.
1127 * -1 - several matches.
1128 * 0 - operation is found.
1130 static int find_operation(struct nandsim *ns, uint32_t flag)
1132 int opsfound = 0;
1133 int i, j, idx = 0;
1135 for (i = 0; i < NS_OPER_NUM; i++) {
1137 int found = 1;
1139 if (!(ns->options & ops[i].reqopts))
1140 /* Ignore operations we can't perform */
1141 continue;
1143 if (flag) {
1144 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1145 continue;
1146 } else {
1147 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1148 continue;
1151 for (j = 0; j < ns->npstates; j++)
1152 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1153 && (ns->options & ops[idx].reqopts)) {
1154 found = 0;
1155 break;
1158 if (found) {
1159 idx = i;
1160 opsfound += 1;
1164 if (opsfound == 1) {
1165 /* Exact match */
1166 ns->op = &ops[idx].states[0];
1167 if (flag) {
1169 * In this case the find_operation function was
1170 * called when address has just began input. But it isn't
1171 * yet fully input and the current state must
1172 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1173 * state must be the next state (ns->nxstate).
1175 ns->stateidx = ns->npstates - 1;
1176 } else {
1177 ns->stateidx = ns->npstates;
1179 ns->npstates = 0;
1180 ns->state = ns->op[ns->stateidx];
1181 ns->nxstate = ns->op[ns->stateidx + 1];
1182 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1183 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1184 return 0;
1187 if (opsfound == 0) {
1188 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1189 if (ns->npstates != 0) {
1190 NS_DBG("find_operation: no operation found, try again with state %s\n",
1191 get_state_name(ns->state));
1192 ns->npstates = 0;
1193 return find_operation(ns, 0);
1196 NS_DBG("find_operation: no operations found\n");
1197 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1198 return -2;
1201 if (flag) {
1202 /* This shouldn't happen */
1203 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1204 return -2;
1207 NS_DBG("find_operation: there is still ambiguity\n");
1209 ns->pstates[ns->npstates++] = ns->state;
1211 return -1;
1215 * Returns a pointer to the current page.
1217 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1219 return &(ns->pages[ns->regs.row]);
1223 * Retuns a pointer to the current byte, within the current page.
1225 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1227 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1231 * Fill the NAND buffer with data read from the specified page.
1233 static void read_page(struct nandsim *ns, int num)
1235 union ns_mem *mypage;
1237 mypage = NS_GET_PAGE(ns);
1238 if (mypage->byte == NULL) {
1239 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1240 memset(ns->buf.byte, 0xFF, num);
1241 } else {
1242 unsigned int page_no = ns->regs.row;
1243 NS_DBG("read_page: page %d allocated, reading from %d\n",
1244 ns->regs.row, ns->regs.column + ns->regs.off);
1245 if (read_error(page_no)) {
1246 int i;
1247 memset(ns->buf.byte, 0xFF, num);
1248 for (i = 0; i < num; ++i)
1249 ns->buf.byte[i] = random32();
1250 NS_WARN("simulating read error in page %u\n", page_no);
1251 return;
1253 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1254 if (bitflips && random32() < (1 << 22)) {
1255 int flips = 1;
1256 if (bitflips > 1)
1257 flips = (random32() % (int) bitflips) + 1;
1258 while (flips--) {
1259 int pos = random32() % (num * 8);
1260 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1261 NS_WARN("read_page: flipping bit %d in page %d "
1262 "reading from %d ecc: corrected=%u failed=%u\n",
1263 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1264 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1271 * Erase all pages in the specified sector.
1273 static void erase_sector(struct nandsim *ns)
1275 union ns_mem *mypage;
1276 int i;
1278 mypage = NS_GET_PAGE(ns);
1279 for (i = 0; i < ns->geom.pgsec; i++) {
1280 if (mypage->byte != NULL) {
1281 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1282 kfree(mypage->byte);
1283 mypage->byte = NULL;
1285 mypage++;
1290 * Program the specified page with the contents from the NAND buffer.
1292 static int prog_page(struct nandsim *ns, int num)
1294 int i;
1295 union ns_mem *mypage;
1296 u_char *pg_off;
1298 mypage = NS_GET_PAGE(ns);
1299 if (mypage->byte == NULL) {
1300 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1302 * We allocate memory with GFP_NOFS because a flash FS may
1303 * utilize this. If it is holding an FS lock, then gets here,
1304 * then kmalloc runs writeback which goes to the FS again
1305 * and deadlocks. This was seen in practice.
1307 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1308 if (mypage->byte == NULL) {
1309 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1310 return -1;
1312 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1315 pg_off = NS_PAGE_BYTE_OFF(ns);
1316 for (i = 0; i < num; i++)
1317 pg_off[i] &= ns->buf.byte[i];
1319 return 0;
1323 * If state has any action bit, perform this action.
1325 * RETURNS: 0 if success, -1 if error.
1327 static int do_state_action(struct nandsim *ns, uint32_t action)
1329 int num;
1330 int busdiv = ns->busw == 8 ? 1 : 2;
1331 unsigned int erase_block_no, page_no;
1333 action &= ACTION_MASK;
1335 /* Check that page address input is correct */
1336 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1337 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1338 return -1;
1341 switch (action) {
1343 case ACTION_CPY:
1345 * Copy page data to the internal buffer.
1348 /* Column shouldn't be very large */
1349 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1350 NS_ERR("do_state_action: column number is too large\n");
1351 break;
1353 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1354 read_page(ns, num);
1356 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1357 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1359 if (ns->regs.off == 0)
1360 NS_LOG("read page %d\n", ns->regs.row);
1361 else if (ns->regs.off < ns->geom.pgsz)
1362 NS_LOG("read page %d (second half)\n", ns->regs.row);
1363 else
1364 NS_LOG("read OOB of page %d\n", ns->regs.row);
1366 NS_UDELAY(access_delay);
1367 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1369 break;
1371 case ACTION_SECERASE:
1373 * Erase sector.
1376 if (ns->lines.wp) {
1377 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1378 return -1;
1381 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1382 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1383 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1384 return -1;
1387 ns->regs.row = (ns->regs.row <<
1388 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1389 ns->regs.column = 0;
1391 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1393 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1394 ns->regs.row, NS_RAW_OFFSET(ns));
1395 NS_LOG("erase sector %u\n", erase_block_no);
1397 erase_sector(ns);
1399 NS_MDELAY(erase_delay);
1401 if (erase_block_wear)
1402 update_wear(erase_block_no);
1404 if (erase_error(erase_block_no)) {
1405 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1406 return -1;
1409 break;
1411 case ACTION_PRGPAGE:
1413 * Programm page - move internal buffer data to the page.
1416 if (ns->lines.wp) {
1417 NS_WARN("do_state_action: device is write-protected, programm\n");
1418 return -1;
1421 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1422 if (num != ns->regs.count) {
1423 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1424 ns->regs.count, num);
1425 return -1;
1428 if (prog_page(ns, num) == -1)
1429 return -1;
1431 page_no = ns->regs.row;
1433 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1434 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1435 NS_LOG("programm page %d\n", ns->regs.row);
1437 NS_UDELAY(programm_delay);
1438 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1440 if (write_error(page_no)) {
1441 NS_WARN("simulating write failure in page %u\n", page_no);
1442 return -1;
1445 break;
1447 case ACTION_ZEROOFF:
1448 NS_DBG("do_state_action: set internal offset to 0\n");
1449 ns->regs.off = 0;
1450 break;
1452 case ACTION_HALFOFF:
1453 if (!(ns->options & OPT_PAGE512_8BIT)) {
1454 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1455 "byte page size 8x chips\n");
1456 return -1;
1458 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1459 ns->regs.off = ns->geom.pgsz/2;
1460 break;
1462 case ACTION_OOBOFF:
1463 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1464 ns->regs.off = ns->geom.pgsz;
1465 break;
1467 default:
1468 NS_DBG("do_state_action: BUG! unknown action\n");
1471 return 0;
1475 * Switch simulator's state.
1477 static void switch_state(struct nandsim *ns)
1479 if (ns->op) {
1481 * The current operation have already been identified.
1482 * Just follow the states chain.
1485 ns->stateidx += 1;
1486 ns->state = ns->nxstate;
1487 ns->nxstate = ns->op[ns->stateidx + 1];
1489 NS_DBG("switch_state: operation is known, switch to the next state, "
1490 "state: %s, nxstate: %s\n",
1491 get_state_name(ns->state), get_state_name(ns->nxstate));
1493 /* See, whether we need to do some action */
1494 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1495 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1496 return;
1499 } else {
1501 * We don't yet know which operation we perform.
1502 * Try to identify it.
1506 * The only event causing the switch_state function to
1507 * be called with yet unknown operation is new command.
1509 ns->state = get_state_by_command(ns->regs.command);
1511 NS_DBG("switch_state: operation is unknown, try to find it\n");
1513 if (find_operation(ns, 0) != 0)
1514 return;
1516 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1517 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1518 return;
1522 /* For 16x devices column means the page offset in words */
1523 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1524 NS_DBG("switch_state: double the column number for 16x device\n");
1525 ns->regs.column <<= 1;
1528 if (NS_STATE(ns->nxstate) == STATE_READY) {
1530 * The current state is the last. Return to STATE_READY
1533 u_char status = NS_STATUS_OK(ns);
1535 /* In case of data states, see if all bytes were input/output */
1536 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1537 && ns->regs.count != ns->regs.num) {
1538 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1539 ns->regs.num - ns->regs.count);
1540 status = NS_STATUS_FAILED(ns);
1543 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1545 switch_to_ready_state(ns, status);
1547 return;
1548 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1550 * If the next state is data input/output, switch to it now
1553 ns->state = ns->nxstate;
1554 ns->nxstate = ns->op[++ns->stateidx + 1];
1555 ns->regs.num = ns->regs.count = 0;
1557 NS_DBG("switch_state: the next state is data I/O, switch, "
1558 "state: %s, nxstate: %s\n",
1559 get_state_name(ns->state), get_state_name(ns->nxstate));
1562 * Set the internal register to the count of bytes which
1563 * are expected to be input or output
1565 switch (NS_STATE(ns->state)) {
1566 case STATE_DATAIN:
1567 case STATE_DATAOUT:
1568 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1569 break;
1571 case STATE_DATAOUT_ID:
1572 ns->regs.num = ns->geom.idbytes;
1573 break;
1575 case STATE_DATAOUT_STATUS:
1576 case STATE_DATAOUT_STATUS_M:
1577 ns->regs.count = ns->regs.num = 0;
1578 break;
1580 default:
1581 NS_ERR("switch_state: BUG! unknown data state\n");
1584 } else if (ns->nxstate & STATE_ADDR_MASK) {
1586 * If the next state is address input, set the internal
1587 * register to the number of expected address bytes
1590 ns->regs.count = 0;
1592 switch (NS_STATE(ns->nxstate)) {
1593 case STATE_ADDR_PAGE:
1594 ns->regs.num = ns->geom.pgaddrbytes;
1596 break;
1597 case STATE_ADDR_SEC:
1598 ns->regs.num = ns->geom.secaddrbytes;
1599 break;
1601 case STATE_ADDR_ZERO:
1602 ns->regs.num = 1;
1603 break;
1605 case STATE_ADDR_COLUMN:
1606 /* Column address is always 2 bytes */
1607 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1608 break;
1610 default:
1611 NS_ERR("switch_state: BUG! unknown address state\n");
1613 } else {
1615 * Just reset internal counters.
1618 ns->regs.num = 0;
1619 ns->regs.count = 0;
1623 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1625 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1626 u_char outb = 0x00;
1628 /* Sanity and correctness checks */
1629 if (!ns->lines.ce) {
1630 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1631 return outb;
1633 if (ns->lines.ale || ns->lines.cle) {
1634 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1635 return outb;
1637 if (!(ns->state & STATE_DATAOUT_MASK)) {
1638 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1639 "return %#x\n", get_state_name(ns->state), (uint)outb);
1640 return outb;
1643 /* Status register may be read as many times as it is wanted */
1644 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1645 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1646 return ns->regs.status;
1649 /* Check if there is any data in the internal buffer which may be read */
1650 if (ns->regs.count == ns->regs.num) {
1651 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1652 return outb;
1655 switch (NS_STATE(ns->state)) {
1656 case STATE_DATAOUT:
1657 if (ns->busw == 8) {
1658 outb = ns->buf.byte[ns->regs.count];
1659 ns->regs.count += 1;
1660 } else {
1661 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1662 ns->regs.count += 2;
1664 break;
1665 case STATE_DATAOUT_ID:
1666 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1667 outb = ns->ids[ns->regs.count];
1668 ns->regs.count += 1;
1669 break;
1670 default:
1671 BUG();
1674 if (ns->regs.count == ns->regs.num) {
1675 NS_DBG("read_byte: all bytes were read\n");
1678 * The OPT_AUTOINCR allows to read next conseqitive pages without
1679 * new read operation cycle.
1681 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1682 ns->regs.count = 0;
1683 if (ns->regs.row + 1 < ns->geom.pgnum)
1684 ns->regs.row += 1;
1685 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1686 do_state_action(ns, ACTION_CPY);
1688 else if (NS_STATE(ns->nxstate) == STATE_READY)
1689 switch_state(ns);
1693 return outb;
1696 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1698 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1700 /* Sanity and correctness checks */
1701 if (!ns->lines.ce) {
1702 NS_ERR("write_byte: chip is disabled, ignore write\n");
1703 return;
1705 if (ns->lines.ale && ns->lines.cle) {
1706 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1707 return;
1710 if (ns->lines.cle == 1) {
1712 * The byte written is a command.
1715 if (byte == NAND_CMD_RESET) {
1716 NS_LOG("reset chip\n");
1717 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1718 return;
1721 /* Check that the command byte is correct */
1722 if (check_command(byte)) {
1723 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1724 return;
1727 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1728 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1729 || NS_STATE(ns->state) == STATE_DATAOUT) {
1730 int row = ns->regs.row;
1732 switch_state(ns);
1733 if (byte == NAND_CMD_RNDOUT)
1734 ns->regs.row = row;
1737 /* Check if chip is expecting command */
1738 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1740 * We are in situation when something else (not command)
1741 * was expected but command was input. In this case ignore
1742 * previous command(s)/state(s) and accept the last one.
1744 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1745 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1746 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1749 NS_DBG("command byte corresponding to %s state accepted\n",
1750 get_state_name(get_state_by_command(byte)));
1751 ns->regs.command = byte;
1752 switch_state(ns);
1754 } else if (ns->lines.ale == 1) {
1756 * The byte written is an address.
1759 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1761 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1763 if (find_operation(ns, 1) < 0)
1764 return;
1766 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1767 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1768 return;
1771 ns->regs.count = 0;
1772 switch (NS_STATE(ns->nxstate)) {
1773 case STATE_ADDR_PAGE:
1774 ns->regs.num = ns->geom.pgaddrbytes;
1775 break;
1776 case STATE_ADDR_SEC:
1777 ns->regs.num = ns->geom.secaddrbytes;
1778 break;
1779 case STATE_ADDR_ZERO:
1780 ns->regs.num = 1;
1781 break;
1782 default:
1783 BUG();
1787 /* Check that chip is expecting address */
1788 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1789 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1790 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1791 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1792 return;
1795 /* Check if this is expected byte */
1796 if (ns->regs.count == ns->regs.num) {
1797 NS_ERR("write_byte: no more address bytes expected\n");
1798 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1799 return;
1802 accept_addr_byte(ns, byte);
1804 ns->regs.count += 1;
1806 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1807 (uint)byte, ns->regs.count, ns->regs.num);
1809 if (ns->regs.count == ns->regs.num) {
1810 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1811 switch_state(ns);
1814 } else {
1816 * The byte written is an input data.
1819 /* Check that chip is expecting data input */
1820 if (!(ns->state & STATE_DATAIN_MASK)) {
1821 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1822 "switch to %s\n", (uint)byte,
1823 get_state_name(ns->state), get_state_name(STATE_READY));
1824 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1825 return;
1828 /* Check if this is expected byte */
1829 if (ns->regs.count == ns->regs.num) {
1830 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1831 ns->regs.num);
1832 return;
1835 if (ns->busw == 8) {
1836 ns->buf.byte[ns->regs.count] = byte;
1837 ns->regs.count += 1;
1838 } else {
1839 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1840 ns->regs.count += 2;
1844 return;
1847 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1849 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1851 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1852 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1853 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1855 if (cmd != NAND_CMD_NONE)
1856 ns_nand_write_byte(mtd, cmd);
1859 static int ns_device_ready(struct mtd_info *mtd)
1861 NS_DBG("device_ready\n");
1862 return 1;
1865 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1867 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1869 NS_DBG("read_word\n");
1871 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1874 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1876 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1878 /* Check that chip is expecting data input */
1879 if (!(ns->state & STATE_DATAIN_MASK)) {
1880 NS_ERR("write_buf: data input isn't expected, state is %s, "
1881 "switch to STATE_READY\n", get_state_name(ns->state));
1882 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1883 return;
1886 /* Check if these are expected bytes */
1887 if (ns->regs.count + len > ns->regs.num) {
1888 NS_ERR("write_buf: too many input bytes\n");
1889 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1890 return;
1893 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1894 ns->regs.count += len;
1896 if (ns->regs.count == ns->regs.num) {
1897 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1901 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1903 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1905 /* Sanity and correctness checks */
1906 if (!ns->lines.ce) {
1907 NS_ERR("read_buf: chip is disabled\n");
1908 return;
1910 if (ns->lines.ale || ns->lines.cle) {
1911 NS_ERR("read_buf: ALE or CLE pin is high\n");
1912 return;
1914 if (!(ns->state & STATE_DATAOUT_MASK)) {
1915 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1916 get_state_name(ns->state));
1917 return;
1920 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1921 int i;
1923 for (i = 0; i < len; i++)
1924 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1926 return;
1929 /* Check if these are expected bytes */
1930 if (ns->regs.count + len > ns->regs.num) {
1931 NS_ERR("read_buf: too many bytes to read\n");
1932 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1933 return;
1936 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1937 ns->regs.count += len;
1939 if (ns->regs.count == ns->regs.num) {
1940 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1941 ns->regs.count = 0;
1942 if (ns->regs.row + 1 < ns->geom.pgnum)
1943 ns->regs.row += 1;
1944 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1945 do_state_action(ns, ACTION_CPY);
1947 else if (NS_STATE(ns->nxstate) == STATE_READY)
1948 switch_state(ns);
1951 return;
1954 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1956 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1958 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1959 NS_DBG("verify_buf: the buffer is OK\n");
1960 return 0;
1961 } else {
1962 NS_DBG("verify_buf: the buffer is wrong\n");
1963 return -EFAULT;
1968 * Module initialization function
1970 static int __init ns_init_module(void)
1972 struct nand_chip *chip;
1973 struct nandsim *nand;
1974 int retval = -ENOMEM, i;
1976 if (bus_width != 8 && bus_width != 16) {
1977 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1978 return -EINVAL;
1981 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1982 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1983 + sizeof(struct nandsim), GFP_KERNEL);
1984 if (!nsmtd) {
1985 NS_ERR("unable to allocate core structures.\n");
1986 return -ENOMEM;
1988 chip = (struct nand_chip *)(nsmtd + 1);
1989 nsmtd->priv = (void *)chip;
1990 nand = (struct nandsim *)(chip + 1);
1991 chip->priv = (void *)nand;
1994 * Register simulator's callbacks.
1996 chip->cmd_ctrl = ns_hwcontrol;
1997 chip->read_byte = ns_nand_read_byte;
1998 chip->dev_ready = ns_device_ready;
1999 chip->write_buf = ns_nand_write_buf;
2000 chip->read_buf = ns_nand_read_buf;
2001 chip->verify_buf = ns_nand_verify_buf;
2002 chip->read_word = ns_nand_read_word;
2003 chip->ecc.mode = NAND_ECC_SOFT;
2004 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2005 /* and 'badblocks' parameters to work */
2006 chip->options |= NAND_SKIP_BBTSCAN;
2009 * Perform minimum nandsim structure initialization to handle
2010 * the initial ID read command correctly
2012 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2013 nand->geom.idbytes = 4;
2014 else
2015 nand->geom.idbytes = 2;
2016 nand->regs.status = NS_STATUS_OK(nand);
2017 nand->nxstate = STATE_UNKNOWN;
2018 nand->options |= OPT_PAGE256; /* temporary value */
2019 nand->ids[0] = first_id_byte;
2020 nand->ids[1] = second_id_byte;
2021 nand->ids[2] = third_id_byte;
2022 nand->ids[3] = fourth_id_byte;
2023 if (bus_width == 16) {
2024 nand->busw = 16;
2025 chip->options |= NAND_BUSWIDTH_16;
2028 nsmtd->owner = THIS_MODULE;
2030 if ((retval = parse_weakblocks()) != 0)
2031 goto error;
2033 if ((retval = parse_weakpages()) != 0)
2034 goto error;
2036 if ((retval = parse_gravepages()) != 0)
2037 goto error;
2039 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2040 NS_ERR("can't register NAND Simulator\n");
2041 if (retval > 0)
2042 retval = -ENXIO;
2043 goto error;
2046 if (overridesize) {
2047 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2048 if (new_size >> overridesize != nsmtd->erasesize) {
2049 NS_ERR("overridesize is too big\n");
2050 goto err_exit;
2052 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2053 nsmtd->size = new_size;
2054 chip->chipsize = new_size;
2055 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2056 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2059 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2060 goto err_exit;
2062 if ((retval = init_nandsim(nsmtd)) != 0)
2063 goto err_exit;
2065 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2066 goto err_exit;
2068 if ((retval = nand_default_bbt(nsmtd)) != 0)
2069 goto err_exit;
2071 /* Register NAND partitions */
2072 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2073 goto err_exit;
2075 return 0;
2077 err_exit:
2078 free_nandsim(nand);
2079 nand_release(nsmtd);
2080 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2081 kfree(nand->partitions[i].name);
2082 error:
2083 kfree(nsmtd);
2084 free_lists();
2086 return retval;
2089 module_init(ns_init_module);
2092 * Module clean-up function
2094 static void __exit ns_cleanup_module(void)
2096 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2097 int i;
2099 free_nandsim(ns); /* Free nandsim private resources */
2100 nand_release(nsmtd); /* Unregister driver */
2101 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2102 kfree(ns->partitions[i].name);
2103 kfree(nsmtd); /* Free other structures */
2104 free_lists();
2107 module_exit(ns_cleanup_module);
2109 MODULE_LICENSE ("GPL");
2110 MODULE_AUTHOR ("Artem B. Bityuckiy");
2111 MODULE_DESCRIPTION ("The NAND flash simulator");