2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version
[] __devinitdata
= "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
82 * These are checked at init time to see if they are at least 256KB
83 * and increased to 256KB if they are not. This is done to avoid ending
84 * up with socket buffers smaller than the MTU size,
86 extern __u32 sysctl_wmem_max
;
87 extern __u32 sysctl_rmem_max
;
89 static int __devinit
rr_init_one(struct pci_dev
*pdev
,
90 const struct pci_device_id
*ent
)
92 struct net_device
*dev
;
93 static int version_disp
;
95 struct rr_private
*rrpriv
;
100 dev
= alloc_hippi_dev(sizeof(struct rr_private
));
104 ret
= pci_enable_device(pdev
);
110 rrpriv
= netdev_priv(dev
);
112 SET_NETDEV_DEV(dev
, &pdev
->dev
);
114 if (pci_request_regions(pdev
, "rrunner")) {
119 pci_set_drvdata(pdev
, dev
);
121 rrpriv
->pci_dev
= pdev
;
123 spin_lock_init(&rrpriv
->lock
);
125 dev
->irq
= pdev
->irq
;
126 dev
->open
= &rr_open
;
127 dev
->hard_start_xmit
= &rr_start_xmit
;
128 dev
->stop
= &rr_close
;
129 dev
->do_ioctl
= &rr_ioctl
;
131 dev
->base_addr
= pci_resource_start(pdev
, 0);
133 /* display version info if adapter is found */
135 /* set display flag to TRUE so that */
136 /* we only display this string ONCE */
141 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &pci_latency
);
142 if (pci_latency
<= 0x58){
144 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, pci_latency
);
147 pci_set_master(pdev
);
149 printk(KERN_INFO
"%s: Essential RoadRunner serial HIPPI "
150 "at 0x%08lx, irq %i, PCI latency %i\n", dev
->name
,
151 dev
->base_addr
, dev
->irq
, pci_latency
);
154 * Remap the regs into kernel space.
157 rrpriv
->regs
= ioremap(dev
->base_addr
, 0x1000);
160 printk(KERN_ERR
"%s: Unable to map I/O register, "
161 "RoadRunner will be disabled.\n", dev
->name
);
166 tmpptr
= pci_alloc_consistent(pdev
, TX_TOTAL_SIZE
, &ring_dma
);
167 rrpriv
->tx_ring
= tmpptr
;
168 rrpriv
->tx_ring_dma
= ring_dma
;
175 tmpptr
= pci_alloc_consistent(pdev
, RX_TOTAL_SIZE
, &ring_dma
);
176 rrpriv
->rx_ring
= tmpptr
;
177 rrpriv
->rx_ring_dma
= ring_dma
;
184 tmpptr
= pci_alloc_consistent(pdev
, EVT_RING_SIZE
, &ring_dma
);
185 rrpriv
->evt_ring
= tmpptr
;
186 rrpriv
->evt_ring_dma
= ring_dma
;
194 * Don't access any register before this point!
197 writel(readl(&rrpriv
->regs
->HostCtrl
) | NO_SWAP
,
198 &rrpriv
->regs
->HostCtrl
);
201 * Need to add a case for little-endian 64-bit hosts here.
208 ret
= register_netdev(dev
);
215 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rrpriv
->rx_ring
,
216 rrpriv
->rx_ring_dma
);
218 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rrpriv
->tx_ring
,
219 rrpriv
->tx_ring_dma
);
221 iounmap(rrpriv
->regs
);
223 pci_release_regions(pdev
);
224 pci_set_drvdata(pdev
, NULL
);
232 static void __devexit
rr_remove_one (struct pci_dev
*pdev
)
234 struct net_device
*dev
= pci_get_drvdata(pdev
);
237 struct rr_private
*rr
= netdev_priv(dev
);
239 if (!(readl(&rr
->regs
->HostCtrl
) & NIC_HALTED
)){
240 printk(KERN_ERR
"%s: trying to unload running NIC\n",
242 writel(HALT_NIC
, &rr
->regs
->HostCtrl
);
245 pci_free_consistent(pdev
, EVT_RING_SIZE
, rr
->evt_ring
,
247 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rr
->rx_ring
,
249 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rr
->tx_ring
,
251 unregister_netdev(dev
);
254 pci_release_regions(pdev
);
255 pci_disable_device(pdev
);
256 pci_set_drvdata(pdev
, NULL
);
262 * Commands are considered to be slow, thus there is no reason to
265 static void rr_issue_cmd(struct rr_private
*rrpriv
, struct cmd
*cmd
)
267 struct rr_regs __iomem
*regs
;
272 * This is temporary - it will go away in the final version.
273 * We probably also want to make this function inline.
275 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
276 printk("issuing command for halted NIC, code 0x%x, "
277 "HostCtrl %08x\n", cmd
->code
, readl(®s
->HostCtrl
));
278 if (readl(®s
->Mode
) & FATAL_ERR
)
279 printk("error codes Fail1 %02x, Fail2 %02x\n",
280 readl(®s
->Fail1
), readl(®s
->Fail2
));
283 idx
= rrpriv
->info
->cmd_ctrl
.pi
;
285 writel(*(u32
*)(cmd
), ®s
->CmdRing
[idx
]);
288 idx
= (idx
- 1) % CMD_RING_ENTRIES
;
289 rrpriv
->info
->cmd_ctrl
.pi
= idx
;
292 if (readl(®s
->Mode
) & FATAL_ERR
)
293 printk("error code %02x\n", readl(®s
->Fail1
));
298 * Reset the board in a sensible manner. The NIC is already halted
299 * when we get here and a spin-lock is held.
301 static int rr_reset(struct net_device
*dev
)
303 struct rr_private
*rrpriv
;
304 struct rr_regs __iomem
*regs
;
305 struct eeprom
*hw
= NULL
;
309 rrpriv
= netdev_priv(dev
);
312 rr_load_firmware(dev
);
314 writel(0x01000000, ®s
->TX_state
);
315 writel(0xff800000, ®s
->RX_state
);
316 writel(0, ®s
->AssistState
);
317 writel(CLEAR_INTA
, ®s
->LocalCtrl
);
318 writel(0x01, ®s
->BrkPt
);
319 writel(0, ®s
->Timer
);
320 writel(0, ®s
->TimerRef
);
321 writel(RESET_DMA
, ®s
->DmaReadState
);
322 writel(RESET_DMA
, ®s
->DmaWriteState
);
323 writel(0, ®s
->DmaWriteHostHi
);
324 writel(0, ®s
->DmaWriteHostLo
);
325 writel(0, ®s
->DmaReadHostHi
);
326 writel(0, ®s
->DmaReadHostLo
);
327 writel(0, ®s
->DmaReadLen
);
328 writel(0, ®s
->DmaWriteLen
);
329 writel(0, ®s
->DmaWriteLcl
);
330 writel(0, ®s
->DmaWriteIPchecksum
);
331 writel(0, ®s
->DmaReadLcl
);
332 writel(0, ®s
->DmaReadIPchecksum
);
333 writel(0, ®s
->PciState
);
334 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
335 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_SWAP
, ®s
->Mode
);
336 #elif (BITS_PER_LONG == 64)
337 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
339 writel(SWAP_DATA
| PTR32BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
344 * Don't worry, this is just black magic.
346 writel(0xdf000, ®s
->RxBase
);
347 writel(0xdf000, ®s
->RxPrd
);
348 writel(0xdf000, ®s
->RxCon
);
349 writel(0xce000, ®s
->TxBase
);
350 writel(0xce000, ®s
->TxPrd
);
351 writel(0xce000, ®s
->TxCon
);
352 writel(0, ®s
->RxIndPro
);
353 writel(0, ®s
->RxIndCon
);
354 writel(0, ®s
->RxIndRef
);
355 writel(0, ®s
->TxIndPro
);
356 writel(0, ®s
->TxIndCon
);
357 writel(0, ®s
->TxIndRef
);
358 writel(0xcc000, ®s
->pad10
[0]);
359 writel(0, ®s
->DrCmndPro
);
360 writel(0, ®s
->DrCmndCon
);
361 writel(0, ®s
->DwCmndPro
);
362 writel(0, ®s
->DwCmndCon
);
363 writel(0, ®s
->DwCmndRef
);
364 writel(0, ®s
->DrDataPro
);
365 writel(0, ®s
->DrDataCon
);
366 writel(0, ®s
->DrDataRef
);
367 writel(0, ®s
->DwDataPro
);
368 writel(0, ®s
->DwDataCon
);
369 writel(0, ®s
->DwDataRef
);
372 writel(0xffffffff, ®s
->MbEvent
);
373 writel(0, ®s
->Event
);
375 writel(0, ®s
->TxPi
);
376 writel(0, ®s
->IpRxPi
);
378 writel(0, ®s
->EvtCon
);
379 writel(0, ®s
->EvtPrd
);
381 rrpriv
->info
->evt_ctrl
.pi
= 0;
383 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
384 writel(0, ®s
->CmdRing
[i
]);
387 * Why 32 ? is this not cache line size dependent?
389 writel(RBURST_64
|WBURST_64
, ®s
->PciState
);
392 start_pc
= rr_read_eeprom_word(rrpriv
, &hw
->rncd_info
.FwStart
);
395 printk("%s: Executing firmware at address 0x%06x\n",
396 dev
->name
, start_pc
);
399 writel(start_pc
+ 0x800, ®s
->Pc
);
403 writel(start_pc
, ®s
->Pc
);
411 * Read a string from the EEPROM.
413 static unsigned int rr_read_eeprom(struct rr_private
*rrpriv
,
414 unsigned long offset
,
416 unsigned long length
)
418 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
419 u32 misc
, io
, host
, i
;
421 io
= readl(®s
->ExtIo
);
422 writel(0, ®s
->ExtIo
);
423 misc
= readl(®s
->LocalCtrl
);
424 writel(0, ®s
->LocalCtrl
);
425 host
= readl(®s
->HostCtrl
);
426 writel(host
| HALT_NIC
, ®s
->HostCtrl
);
429 for (i
= 0; i
< length
; i
++){
430 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
432 buf
[i
] = (readl(®s
->WinData
) >> 24) & 0xff;
436 writel(host
, ®s
->HostCtrl
);
437 writel(misc
, ®s
->LocalCtrl
);
438 writel(io
, ®s
->ExtIo
);
445 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
446 * it to our CPU byte-order.
448 static u32
rr_read_eeprom_word(struct rr_private
*rrpriv
,
453 if ((rr_read_eeprom(rrpriv
, (unsigned long)offset
,
454 (char *)&word
, 4) == 4))
455 return be32_to_cpu(word
);
461 * Write a string to the EEPROM.
463 * This is only called when the firmware is not running.
465 static unsigned int write_eeprom(struct rr_private
*rrpriv
,
466 unsigned long offset
,
468 unsigned long length
)
470 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
471 u32 misc
, io
, data
, i
, j
, ready
, error
= 0;
473 io
= readl(®s
->ExtIo
);
474 writel(0, ®s
->ExtIo
);
475 misc
= readl(®s
->LocalCtrl
);
476 writel(ENABLE_EEPROM_WRITE
, ®s
->LocalCtrl
);
479 for (i
= 0; i
< length
; i
++){
480 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
484 * Only try to write the data if it is not the same
487 if ((readl(®s
->WinData
) & 0xff000000) != data
){
488 writel(data
, ®s
->WinData
);
494 if ((readl(®s
->WinData
) & 0xff000000) ==
499 printk("data mismatch: %08x, "
500 "WinData %08x\n", data
,
501 readl(®s
->WinData
));
509 writel(misc
, ®s
->LocalCtrl
);
510 writel(io
, ®s
->ExtIo
);
517 static int __devinit
rr_init(struct net_device
*dev
)
519 struct rr_private
*rrpriv
;
520 struct rr_regs __iomem
*regs
;
521 struct eeprom
*hw
= NULL
;
523 DECLARE_MAC_BUF(mac
);
525 rrpriv
= netdev_priv(dev
);
528 rev
= readl(®s
->FwRev
);
529 rrpriv
->fw_rev
= rev
;
530 if (rev
> 0x00020024)
531 printk(" Firmware revision: %i.%i.%i\n", (rev
>> 16),
532 ((rev
>> 8) & 0xff), (rev
& 0xff));
533 else if (rev
>= 0x00020000) {
534 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
535 "later is recommended)\n", (rev
>> 16),
536 ((rev
>> 8) & 0xff), (rev
& 0xff));
538 printk(" Firmware revision too old: %i.%i.%i, please "
539 "upgrade to 2.0.37 or later.\n",
540 (rev
>> 16), ((rev
>> 8) & 0xff), (rev
& 0xff));
544 printk(" Maximum receive rings %i\n", readl(®s
->MaxRxRng
));
548 * Read the hardware address from the eeprom. The HW address
549 * is not really necessary for HIPPI but awfully convenient.
550 * The pointer arithmetic to put it in dev_addr is ugly, but
551 * Donald Becker does it this way for the GigE version of this
552 * card and it's shorter and more portable than any
553 * other method I've seen. -VAL
556 *(u16
*)(dev
->dev_addr
) =
557 htons(rr_read_eeprom_word(rrpriv
, &hw
->manf
.BoardULA
));
558 *(u32
*)(dev
->dev_addr
+2) =
559 htonl(rr_read_eeprom_word(rrpriv
, &hw
->manf
.BoardULA
[4]));
561 printk(" MAC: %s\n", print_mac(mac
, dev
->dev_addr
));
563 sram_size
= rr_read_eeprom_word(rrpriv
, (void *)8);
564 printk(" SRAM size 0x%06x\n", sram_size
);
566 if (sysctl_rmem_max
< 262144){
567 printk(" Receive socket buffer limit too low (%i), "
568 "setting to 262144\n", sysctl_rmem_max
);
569 sysctl_rmem_max
= 262144;
572 if (sysctl_wmem_max
< 262144){
573 printk(" Transmit socket buffer limit too low (%i), "
574 "setting to 262144\n", sysctl_wmem_max
);
575 sysctl_wmem_max
= 262144;
582 static int rr_init1(struct net_device
*dev
)
584 struct rr_private
*rrpriv
;
585 struct rr_regs __iomem
*regs
;
586 unsigned long myjif
, flags
;
592 rrpriv
= netdev_priv(dev
);
595 spin_lock_irqsave(&rrpriv
->lock
, flags
);
597 hostctrl
= readl(®s
->HostCtrl
);
598 writel(hostctrl
| HALT_NIC
| RR_CLEAR_INT
, ®s
->HostCtrl
);
601 if (hostctrl
& PARITY_ERR
){
602 printk("%s: Parity error halting NIC - this is serious!\n",
604 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
609 set_rxaddr(regs
, rrpriv
->rx_ctrl_dma
);
610 set_infoaddr(regs
, rrpriv
->info_dma
);
612 rrpriv
->info
->evt_ctrl
.entry_size
= sizeof(struct event
);
613 rrpriv
->info
->evt_ctrl
.entries
= EVT_RING_ENTRIES
;
614 rrpriv
->info
->evt_ctrl
.mode
= 0;
615 rrpriv
->info
->evt_ctrl
.pi
= 0;
616 set_rraddr(&rrpriv
->info
->evt_ctrl
.rngptr
, rrpriv
->evt_ring_dma
);
618 rrpriv
->info
->cmd_ctrl
.entry_size
= sizeof(struct cmd
);
619 rrpriv
->info
->cmd_ctrl
.entries
= CMD_RING_ENTRIES
;
620 rrpriv
->info
->cmd_ctrl
.mode
= 0;
621 rrpriv
->info
->cmd_ctrl
.pi
= 15;
623 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++) {
624 writel(0, ®s
->CmdRing
[i
]);
627 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
628 rrpriv
->tx_ring
[i
].size
= 0;
629 set_rraddr(&rrpriv
->tx_ring
[i
].addr
, 0);
630 rrpriv
->tx_skbuff
[i
] = NULL
;
632 rrpriv
->info
->tx_ctrl
.entry_size
= sizeof(struct tx_desc
);
633 rrpriv
->info
->tx_ctrl
.entries
= TX_RING_ENTRIES
;
634 rrpriv
->info
->tx_ctrl
.mode
= 0;
635 rrpriv
->info
->tx_ctrl
.pi
= 0;
636 set_rraddr(&rrpriv
->info
->tx_ctrl
.rngptr
, rrpriv
->tx_ring_dma
);
639 * Set dirty_tx before we start receiving interrupts, otherwise
640 * the interrupt handler might think it is supposed to process
641 * tx ints before we are up and running, which may cause a null
642 * pointer access in the int handler.
646 rrpriv
->dirty_rx
= rrpriv
->dirty_tx
= 0;
651 writel(0x5000, ®s
->ConRetry
);
652 writel(0x100, ®s
->ConRetryTmr
);
653 writel(0x500000, ®s
->ConTmout
);
654 writel(0x60, ®s
->IntrTmr
);
655 writel(0x500000, ®s
->TxDataMvTimeout
);
656 writel(0x200000, ®s
->RxDataMvTimeout
);
657 writel(0x80, ®s
->WriteDmaThresh
);
658 writel(0x80, ®s
->ReadDmaThresh
);
660 rrpriv
->fw_running
= 0;
663 hostctrl
&= ~(HALT_NIC
| INVALID_INST_B
| PARITY_ERR
);
664 writel(hostctrl
, ®s
->HostCtrl
);
667 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
669 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
673 rrpriv
->rx_ring
[i
].mode
= 0;
674 skb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
, GFP_ATOMIC
);
676 printk(KERN_WARNING
"%s: Unable to allocate memory "
677 "for receive ring - halting NIC\n", dev
->name
);
681 rrpriv
->rx_skbuff
[i
] = skb
;
682 addr
= pci_map_single(rrpriv
->pci_dev
, skb
->data
,
683 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
685 * Sanity test to see if we conflict with the DMA
686 * limitations of the Roadrunner.
688 if ((((unsigned long)skb
->data
) & 0xfff) > ~65320)
689 printk("skb alloc error\n");
691 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, addr
);
692 rrpriv
->rx_ring
[i
].size
= dev
->mtu
+ HIPPI_HLEN
;
695 rrpriv
->rx_ctrl
[4].entry_size
= sizeof(struct rx_desc
);
696 rrpriv
->rx_ctrl
[4].entries
= RX_RING_ENTRIES
;
697 rrpriv
->rx_ctrl
[4].mode
= 8;
698 rrpriv
->rx_ctrl
[4].pi
= 0;
700 set_rraddr(&rrpriv
->rx_ctrl
[4].rngptr
, rrpriv
->rx_ring_dma
);
705 * Now start the FirmWare.
707 cmd
.code
= C_START_FW
;
711 rr_issue_cmd(rrpriv
, &cmd
);
714 * Give the FirmWare time to chew on the `get running' command.
716 myjif
= jiffies
+ 5 * HZ
;
717 while (time_before(jiffies
, myjif
) && !rrpriv
->fw_running
)
720 netif_start_queue(dev
);
726 * We might have gotten here because we are out of memory,
727 * make sure we release everything we allocated before failing
729 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
730 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
733 pci_unmap_single(rrpriv
->pci_dev
,
734 rrpriv
->rx_ring
[i
].addr
.addrlo
,
735 dev
->mtu
+ HIPPI_HLEN
,
737 rrpriv
->rx_ring
[i
].size
= 0;
738 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, 0);
740 rrpriv
->rx_skbuff
[i
] = NULL
;
748 * All events are considered to be slow (RX/TX ints do not generate
749 * events) and are handled here, outside the main interrupt handler,
750 * to reduce the size of the handler.
752 static u32
rr_handle_event(struct net_device
*dev
, u32 prodidx
, u32 eidx
)
754 struct rr_private
*rrpriv
;
755 struct rr_regs __iomem
*regs
;
758 rrpriv
= netdev_priv(dev
);
761 while (prodidx
!= eidx
){
762 switch (rrpriv
->evt_ring
[eidx
].code
){
764 tmp
= readl(®s
->FwRev
);
765 printk(KERN_INFO
"%s: Firmware revision %i.%i.%i "
766 "up and running\n", dev
->name
,
767 (tmp
>> 16), ((tmp
>> 8) & 0xff), (tmp
& 0xff));
768 rrpriv
->fw_running
= 1;
769 writel(RX_RING_ENTRIES
- 1, ®s
->IpRxPi
);
773 printk(KERN_INFO
"%s: Optical link ON\n", dev
->name
);
776 printk(KERN_INFO
"%s: Optical link OFF\n", dev
->name
);
779 printk(KERN_WARNING
"%s: RX data not moving\n",
783 printk(KERN_INFO
"%s: The watchdog is here to see "
787 printk(KERN_ERR
"%s: HIPPI Internal NIC error\n",
789 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
794 printk(KERN_ERR
"%s: Host software error\n",
796 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
804 printk(KERN_WARNING
"%s: Connection rejected\n",
806 dev
->stats
.tx_aborted_errors
++;
809 printk(KERN_WARNING
"%s: Connection timeout\n",
813 printk(KERN_WARNING
"%s: HIPPI disconnect error\n",
815 dev
->stats
.tx_aborted_errors
++;
818 printk(KERN_ERR
"%s: HIPPI Internal Parity error\n",
820 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
825 printk(KERN_WARNING
"%s: Transmitter idle\n",
829 printk(KERN_WARNING
"%s: Link lost during transmit\n",
831 dev
->stats
.tx_aborted_errors
++;
832 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
837 printk(KERN_ERR
"%s: Invalid send ring block\n",
839 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
844 printk(KERN_ERR
"%s: Invalid send buffer address\n",
846 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
851 printk(KERN_ERR
"%s: Invalid descriptor address\n",
853 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
861 printk(KERN_INFO
"%s: Receive ring full\n", dev
->name
);
865 printk(KERN_WARNING
"%s: Receive parity error\n",
869 printk(KERN_WARNING
"%s: Receive LLRC error\n",
873 printk(KERN_WARNING
"%s: Receive packet length "
874 "error\n", dev
->name
);
877 printk(KERN_WARNING
"%s: Data checksum error\n",
881 printk(KERN_WARNING
"%s: Unexpected short burst "
882 "error\n", dev
->name
);
885 printk(KERN_WARNING
"%s: Recv. state transition"
886 " error\n", dev
->name
);
889 printk(KERN_WARNING
"%s: Unexpected data error\n",
893 printk(KERN_WARNING
"%s: Link lost error\n",
897 printk(KERN_WARNING
"%s: Framming Error\n",
901 printk(KERN_WARNING
"%s: Flag sync. lost during"
902 "packet\n", dev
->name
);
905 printk(KERN_ERR
"%s: Invalid receive buffer "
906 "address\n", dev
->name
);
907 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
912 printk(KERN_ERR
"%s: Invalid receive descriptor "
913 "address\n", dev
->name
);
914 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
919 printk(KERN_ERR
"%s: Invalid ring block\n",
921 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
926 /* Label packet to be dropped.
927 * Actual dropping occurs in rx
930 * The index of packet we get to drop is
931 * the index of the packet following
932 * the bad packet. -kbf
935 u16 index
= rrpriv
->evt_ring
[eidx
].index
;
936 index
= (index
+ (RX_RING_ENTRIES
- 1)) %
938 rrpriv
->rx_ring
[index
].mode
|=
939 (PACKET_BAD
| PACKET_END
);
943 printk(KERN_WARNING
"%s: Unhandled event 0x%02x\n",
944 dev
->name
, rrpriv
->evt_ring
[eidx
].code
);
946 eidx
= (eidx
+ 1) % EVT_RING_ENTRIES
;
949 rrpriv
->info
->evt_ctrl
.pi
= eidx
;
955 static void rx_int(struct net_device
*dev
, u32 rxlimit
, u32 index
)
957 struct rr_private
*rrpriv
= netdev_priv(dev
);
958 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
961 struct rx_desc
*desc
;
964 desc
= &(rrpriv
->rx_ring
[index
]);
965 pkt_len
= desc
->size
;
967 printk("index %i, rxlimit %i\n", index
, rxlimit
);
968 printk("len %x, mode %x\n", pkt_len
, desc
->mode
);
970 if ( (rrpriv
->rx_ring
[index
].mode
& PACKET_BAD
) == PACKET_BAD
){
971 dev
->stats
.rx_dropped
++;
976 struct sk_buff
*skb
, *rx_skb
;
978 rx_skb
= rrpriv
->rx_skbuff
[index
];
980 if (pkt_len
< PKT_COPY_THRESHOLD
) {
981 skb
= alloc_skb(pkt_len
, GFP_ATOMIC
);
983 printk(KERN_WARNING
"%s: Unable to allocate skb (%i bytes), deferring packet\n", dev
->name
, pkt_len
);
984 dev
->stats
.rx_dropped
++;
987 pci_dma_sync_single_for_cpu(rrpriv
->pci_dev
,
992 memcpy(skb_put(skb
, pkt_len
),
993 rx_skb
->data
, pkt_len
);
995 pci_dma_sync_single_for_device(rrpriv
->pci_dev
,
1001 struct sk_buff
*newskb
;
1003 newskb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
,
1008 pci_unmap_single(rrpriv
->pci_dev
,
1009 desc
->addr
.addrlo
, dev
->mtu
+
1010 HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1012 skb_put(skb
, pkt_len
);
1013 rrpriv
->rx_skbuff
[index
] = newskb
;
1014 addr
= pci_map_single(rrpriv
->pci_dev
,
1016 dev
->mtu
+ HIPPI_HLEN
,
1017 PCI_DMA_FROMDEVICE
);
1018 set_rraddr(&desc
->addr
, addr
);
1020 printk("%s: Out of memory, deferring "
1021 "packet\n", dev
->name
);
1022 dev
->stats
.rx_dropped
++;
1026 skb
->protocol
= hippi_type_trans(skb
, dev
);
1028 netif_rx(skb
); /* send it up */
1030 dev
->last_rx
= jiffies
;
1031 dev
->stats
.rx_packets
++;
1032 dev
->stats
.rx_bytes
+= pkt_len
;
1036 desc
->size
= dev
->mtu
+ HIPPI_HLEN
;
1038 if ((index
& 7) == 7)
1039 writel(index
, ®s
->IpRxPi
);
1041 index
= (index
+ 1) % RX_RING_ENTRIES
;
1042 } while(index
!= rxlimit
);
1044 rrpriv
->cur_rx
= index
;
1049 static irqreturn_t
rr_interrupt(int irq
, void *dev_id
)
1051 struct rr_private
*rrpriv
;
1052 struct rr_regs __iomem
*regs
;
1053 struct net_device
*dev
= (struct net_device
*)dev_id
;
1054 u32 prodidx
, rxindex
, eidx
, txcsmr
, rxlimit
, txcon
;
1056 rrpriv
= netdev_priv(dev
);
1057 regs
= rrpriv
->regs
;
1059 if (!(readl(®s
->HostCtrl
) & RR_INT
))
1062 spin_lock(&rrpriv
->lock
);
1064 prodidx
= readl(®s
->EvtPrd
);
1065 txcsmr
= (prodidx
>> 8) & 0xff;
1066 rxlimit
= (prodidx
>> 16) & 0xff;
1070 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev
->name
,
1071 prodidx
, rrpriv
->info
->evt_ctrl
.pi
);
1074 * Order here is important. We must handle events
1075 * before doing anything else in order to catch
1076 * such things as LLRC errors, etc -kbf
1079 eidx
= rrpriv
->info
->evt_ctrl
.pi
;
1080 if (prodidx
!= eidx
)
1081 eidx
= rr_handle_event(dev
, prodidx
, eidx
);
1083 rxindex
= rrpriv
->cur_rx
;
1084 if (rxindex
!= rxlimit
)
1085 rx_int(dev
, rxlimit
, rxindex
);
1087 txcon
= rrpriv
->dirty_tx
;
1088 if (txcsmr
!= txcon
) {
1090 /* Due to occational firmware TX producer/consumer out
1091 * of sync. error need to check entry in ring -kbf
1093 if(rrpriv
->tx_skbuff
[txcon
]){
1094 struct tx_desc
*desc
;
1095 struct sk_buff
*skb
;
1097 desc
= &(rrpriv
->tx_ring
[txcon
]);
1098 skb
= rrpriv
->tx_skbuff
[txcon
];
1100 dev
->stats
.tx_packets
++;
1101 dev
->stats
.tx_bytes
+= skb
->len
;
1103 pci_unmap_single(rrpriv
->pci_dev
,
1104 desc
->addr
.addrlo
, skb
->len
,
1106 dev_kfree_skb_irq(skb
);
1108 rrpriv
->tx_skbuff
[txcon
] = NULL
;
1110 set_rraddr(&rrpriv
->tx_ring
[txcon
].addr
, 0);
1113 txcon
= (txcon
+ 1) % TX_RING_ENTRIES
;
1114 } while (txcsmr
!= txcon
);
1117 rrpriv
->dirty_tx
= txcon
;
1118 if (rrpriv
->tx_full
&& rr_if_busy(dev
) &&
1119 (((rrpriv
->info
->tx_ctrl
.pi
+ 1) % TX_RING_ENTRIES
)
1120 != rrpriv
->dirty_tx
)){
1121 rrpriv
->tx_full
= 0;
1122 netif_wake_queue(dev
);
1126 eidx
|= ((txcsmr
<< 8) | (rxlimit
<< 16));
1127 writel(eidx
, ®s
->EvtCon
);
1130 spin_unlock(&rrpriv
->lock
);
1134 static inline void rr_raz_tx(struct rr_private
*rrpriv
,
1135 struct net_device
*dev
)
1139 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
1140 struct sk_buff
*skb
= rrpriv
->tx_skbuff
[i
];
1143 struct tx_desc
*desc
= &(rrpriv
->tx_ring
[i
]);
1145 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1146 skb
->len
, PCI_DMA_TODEVICE
);
1148 set_rraddr(&desc
->addr
, 0);
1150 rrpriv
->tx_skbuff
[i
] = NULL
;
1156 static inline void rr_raz_rx(struct rr_private
*rrpriv
,
1157 struct net_device
*dev
)
1161 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
1162 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
1165 struct rx_desc
*desc
= &(rrpriv
->rx_ring
[i
]);
1167 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1168 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1170 set_rraddr(&desc
->addr
, 0);
1172 rrpriv
->rx_skbuff
[i
] = NULL
;
1177 static void rr_timer(unsigned long data
)
1179 struct net_device
*dev
= (struct net_device
*)data
;
1180 struct rr_private
*rrpriv
= netdev_priv(dev
);
1181 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1182 unsigned long flags
;
1184 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
1185 printk("%s: Restarting nic\n", dev
->name
);
1186 memset(rrpriv
->rx_ctrl
, 0, 256 * sizeof(struct ring_ctrl
));
1187 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1190 rr_raz_tx(rrpriv
, dev
);
1191 rr_raz_rx(rrpriv
, dev
);
1193 if (rr_init1(dev
)) {
1194 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1195 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
1197 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1200 rrpriv
->timer
.expires
= RUN_AT(5*HZ
);
1201 add_timer(&rrpriv
->timer
);
1205 static int rr_open(struct net_device
*dev
)
1207 struct rr_private
*rrpriv
= netdev_priv(dev
);
1208 struct pci_dev
*pdev
= rrpriv
->pci_dev
;
1209 struct rr_regs __iomem
*regs
;
1211 unsigned long flags
;
1212 dma_addr_t dma_addr
;
1214 regs
= rrpriv
->regs
;
1216 if (rrpriv
->fw_rev
< 0x00020000) {
1217 printk(KERN_WARNING
"%s: trying to configure device with "
1218 "obsolete firmware\n", dev
->name
);
1223 rrpriv
->rx_ctrl
= pci_alloc_consistent(pdev
,
1224 256 * sizeof(struct ring_ctrl
),
1226 if (!rrpriv
->rx_ctrl
) {
1230 rrpriv
->rx_ctrl_dma
= dma_addr
;
1231 memset(rrpriv
->rx_ctrl
, 0, 256*sizeof(struct ring_ctrl
));
1233 rrpriv
->info
= pci_alloc_consistent(pdev
, sizeof(struct rr_info
),
1235 if (!rrpriv
->info
) {
1239 rrpriv
->info_dma
= dma_addr
;
1240 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1243 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1244 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1245 readl(®s
->HostCtrl
);
1246 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1248 if (request_irq(dev
->irq
, rr_interrupt
, IRQF_SHARED
, dev
->name
, dev
)) {
1249 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1250 dev
->name
, dev
->irq
);
1255 if ((ecode
= rr_init1(dev
)))
1258 /* Set the timer to switch to check for link beat and perhaps switch
1259 to an alternate media type. */
1260 init_timer(&rrpriv
->timer
);
1261 rrpriv
->timer
.expires
= RUN_AT(5*HZ
); /* 5 sec. watchdog */
1262 rrpriv
->timer
.data
= (unsigned long)dev
;
1263 rrpriv
->timer
.function
= &rr_timer
; /* timer handler */
1264 add_timer(&rrpriv
->timer
);
1266 netif_start_queue(dev
);
1271 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1272 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1273 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1276 pci_free_consistent(pdev
, sizeof(struct rr_info
), rrpriv
->info
,
1278 rrpriv
->info
= NULL
;
1280 if (rrpriv
->rx_ctrl
) {
1281 pci_free_consistent(pdev
, sizeof(struct ring_ctrl
),
1282 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1283 rrpriv
->rx_ctrl
= NULL
;
1286 netif_stop_queue(dev
);
1292 static void rr_dump(struct net_device
*dev
)
1294 struct rr_private
*rrpriv
;
1295 struct rr_regs __iomem
*regs
;
1300 rrpriv
= netdev_priv(dev
);
1301 regs
= rrpriv
->regs
;
1303 printk("%s: dumping NIC TX rings\n", dev
->name
);
1305 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1306 readl(®s
->RxPrd
), readl(®s
->TxPrd
),
1307 readl(®s
->EvtPrd
), readl(®s
->TxPi
),
1308 rrpriv
->info
->tx_ctrl
.pi
);
1310 printk("Error code 0x%x\n", readl(®s
->Fail1
));
1312 index
= (((readl(®s
->EvtPrd
) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES
;
1313 cons
= rrpriv
->dirty_tx
;
1314 printk("TX ring index %i, TX consumer %i\n",
1317 if (rrpriv
->tx_skbuff
[index
]){
1318 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[index
]->len
);
1319 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index
, len
, rrpriv
->tx_ring
[index
].size
);
1320 for (i
= 0; i
< len
; i
++){
1323 printk("%02x ", (unsigned char) rrpriv
->tx_skbuff
[index
]->data
[i
]);
1328 if (rrpriv
->tx_skbuff
[cons
]){
1329 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[cons
]->len
);
1330 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons
, len
, rrpriv
->tx_skbuff
[cons
]->len
);
1331 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1332 rrpriv
->tx_ring
[cons
].mode
,
1333 rrpriv
->tx_ring
[cons
].size
,
1334 (unsigned long long) rrpriv
->tx_ring
[cons
].addr
.addrlo
,
1335 (unsigned long)rrpriv
->tx_skbuff
[cons
]->data
,
1336 (unsigned int)rrpriv
->tx_skbuff
[cons
]->truesize
);
1337 for (i
= 0; i
< len
; i
++){
1340 printk("%02x ", (unsigned char)rrpriv
->tx_ring
[cons
].size
);
1345 printk("dumping TX ring info:\n");
1346 for (i
= 0; i
< TX_RING_ENTRIES
; i
++)
1347 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1348 rrpriv
->tx_ring
[i
].mode
,
1349 rrpriv
->tx_ring
[i
].size
,
1350 (unsigned long long) rrpriv
->tx_ring
[i
].addr
.addrlo
);
1355 static int rr_close(struct net_device
*dev
)
1357 struct rr_private
*rrpriv
;
1358 struct rr_regs __iomem
*regs
;
1359 unsigned long flags
;
1363 netif_stop_queue(dev
);
1365 rrpriv
= netdev_priv(dev
);
1366 regs
= rrpriv
->regs
;
1369 * Lock to make sure we are not cleaning up while another CPU
1370 * is handling interrupts.
1372 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1374 tmp
= readl(®s
->HostCtrl
);
1375 if (tmp
& NIC_HALTED
){
1376 printk("%s: NIC already halted\n", dev
->name
);
1379 tmp
|= HALT_NIC
| RR_CLEAR_INT
;
1380 writel(tmp
, ®s
->HostCtrl
);
1381 readl(®s
->HostCtrl
);
1384 rrpriv
->fw_running
= 0;
1386 del_timer_sync(&rrpriv
->timer
);
1388 writel(0, ®s
->TxPi
);
1389 writel(0, ®s
->IpRxPi
);
1391 writel(0, ®s
->EvtCon
);
1392 writel(0, ®s
->EvtPrd
);
1394 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1395 writel(0, ®s
->CmdRing
[i
]);
1397 rrpriv
->info
->tx_ctrl
.entries
= 0;
1398 rrpriv
->info
->cmd_ctrl
.pi
= 0;
1399 rrpriv
->info
->evt_ctrl
.pi
= 0;
1400 rrpriv
->rx_ctrl
[4].entries
= 0;
1402 rr_raz_tx(rrpriv
, dev
);
1403 rr_raz_rx(rrpriv
, dev
);
1405 pci_free_consistent(rrpriv
->pci_dev
, 256 * sizeof(struct ring_ctrl
),
1406 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1407 rrpriv
->rx_ctrl
= NULL
;
1409 pci_free_consistent(rrpriv
->pci_dev
, sizeof(struct rr_info
),
1410 rrpriv
->info
, rrpriv
->info_dma
);
1411 rrpriv
->info
= NULL
;
1413 free_irq(dev
->irq
, dev
);
1414 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1420 static int rr_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1422 struct rr_private
*rrpriv
= netdev_priv(dev
);
1423 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1424 struct hippi_cb
*hcb
= (struct hippi_cb
*) skb
->cb
;
1425 struct ring_ctrl
*txctrl
;
1426 unsigned long flags
;
1427 u32 index
, len
= skb
->len
;
1429 struct sk_buff
*new_skb
;
1431 if (readl(®s
->Mode
) & FATAL_ERR
)
1432 printk("error codes Fail1 %02x, Fail2 %02x\n",
1433 readl(®s
->Fail1
), readl(®s
->Fail2
));
1436 * We probably need to deal with tbusy here to prevent overruns.
1439 if (skb_headroom(skb
) < 8){
1440 printk("incoming skb too small - reallocating\n");
1441 if (!(new_skb
= dev_alloc_skb(len
+ 8))) {
1443 netif_wake_queue(dev
);
1446 skb_reserve(new_skb
, 8);
1447 skb_put(new_skb
, len
);
1448 skb_copy_from_linear_data(skb
, new_skb
->data
, len
);
1453 ifield
= (u32
*)skb_push(skb
, 8);
1456 ifield
[1] = hcb
->ifield
;
1459 * We don't need the lock before we are actually going to start
1460 * fiddling with the control blocks.
1462 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1464 txctrl
= &rrpriv
->info
->tx_ctrl
;
1468 rrpriv
->tx_skbuff
[index
] = skb
;
1469 set_rraddr(&rrpriv
->tx_ring
[index
].addr
, pci_map_single(
1470 rrpriv
->pci_dev
, skb
->data
, len
+ 8, PCI_DMA_TODEVICE
));
1471 rrpriv
->tx_ring
[index
].size
= len
+ 8; /* include IFIELD */
1472 rrpriv
->tx_ring
[index
].mode
= PACKET_START
| PACKET_END
;
1473 txctrl
->pi
= (index
+ 1) % TX_RING_ENTRIES
;
1475 writel(txctrl
->pi
, ®s
->TxPi
);
1477 if (txctrl
->pi
== rrpriv
->dirty_tx
){
1478 rrpriv
->tx_full
= 1;
1479 netif_stop_queue(dev
);
1482 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1484 dev
->trans_start
= jiffies
;
1490 * Read the firmware out of the EEPROM and put it into the SRAM
1491 * (or from user space - later)
1493 * This operation requires the NIC to be halted and is performed with
1494 * interrupts disabled and with the spinlock hold.
1496 static int rr_load_firmware(struct net_device
*dev
)
1498 struct rr_private
*rrpriv
;
1499 struct rr_regs __iomem
*regs
;
1500 unsigned long eptr
, segptr
;
1502 u32 localctrl
, sptr
, len
, tmp
;
1503 u32 p2len
, p2size
, nr_seg
, revision
, io
, sram_size
;
1504 struct eeprom
*hw
= NULL
;
1506 rrpriv
= netdev_priv(dev
);
1507 regs
= rrpriv
->regs
;
1509 if (dev
->flags
& IFF_UP
)
1512 if (!(readl(®s
->HostCtrl
) & NIC_HALTED
)){
1513 printk("%s: Trying to load firmware to a running NIC.\n",
1518 localctrl
= readl(®s
->LocalCtrl
);
1519 writel(0, ®s
->LocalCtrl
);
1521 writel(0, ®s
->EvtPrd
);
1522 writel(0, ®s
->RxPrd
);
1523 writel(0, ®s
->TxPrd
);
1526 * First wipe the entire SRAM, otherwise we might run into all
1527 * kinds of trouble ... sigh, this took almost all afternoon
1530 io
= readl(®s
->ExtIo
);
1531 writel(0, ®s
->ExtIo
);
1532 sram_size
= rr_read_eeprom_word(rrpriv
, (void *)8);
1534 for (i
= 200; i
< sram_size
/ 4; i
++){
1535 writel(i
* 4, ®s
->WinBase
);
1537 writel(0, ®s
->WinData
);
1540 writel(io
, ®s
->ExtIo
);
1543 eptr
= (unsigned long)rr_read_eeprom_word(rrpriv
,
1544 &hw
->rncd_info
.AddrRunCodeSegs
);
1545 eptr
= ((eptr
& 0x1fffff) >> 3);
1547 p2len
= rr_read_eeprom_word(rrpriv
, (void *)(0x83*4));
1548 p2len
= (p2len
<< 2);
1549 p2size
= rr_read_eeprom_word(rrpriv
, (void *)(0x84*4));
1550 p2size
= ((p2size
& 0x1fffff) >> 3);
1552 if ((eptr
< p2size
) || (eptr
> (p2size
+ p2len
))){
1553 printk("%s: eptr is invalid\n", dev
->name
);
1557 revision
= rr_read_eeprom_word(rrpriv
, &hw
->manf
.HeaderFmt
);
1560 printk("%s: invalid firmware format (%i)\n",
1561 dev
->name
, revision
);
1565 nr_seg
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1568 printk("%s: nr_seg %i\n", dev
->name
, nr_seg
);
1571 for (i
= 0; i
< nr_seg
; i
++){
1572 sptr
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1574 len
= rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1576 segptr
= (unsigned long)rr_read_eeprom_word(rrpriv
, (void *)eptr
);
1577 segptr
= ((segptr
& 0x1fffff) >> 3);
1580 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1581 dev
->name
, i
, sptr
, len
, segptr
);
1583 for (j
= 0; j
< len
; j
++){
1584 tmp
= rr_read_eeprom_word(rrpriv
, (void *)segptr
);
1585 writel(sptr
, ®s
->WinBase
);
1587 writel(tmp
, ®s
->WinData
);
1595 writel(localctrl
, ®s
->LocalCtrl
);
1601 static int rr_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1603 struct rr_private
*rrpriv
;
1604 unsigned char *image
, *oldimage
;
1605 unsigned long flags
;
1607 int error
= -EOPNOTSUPP
;
1609 rrpriv
= netdev_priv(dev
);
1613 if (!capable(CAP_SYS_RAWIO
)){
1617 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1619 printk(KERN_ERR
"%s: Unable to allocate memory "
1620 "for EEPROM image\n", dev
->name
);
1625 if (rrpriv
->fw_running
){
1626 printk("%s: Firmware already running\n", dev
->name
);
1631 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1632 i
= rr_read_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1633 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1634 if (i
!= EEPROM_BYTES
){
1635 printk(KERN_ERR
"%s: Error reading EEPROM\n",
1640 error
= copy_to_user(rq
->ifr_data
, image
, EEPROM_BYTES
);
1648 if (!capable(CAP_SYS_RAWIO
)){
1652 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1653 oldimage
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1654 if (!image
|| !oldimage
) {
1655 printk(KERN_ERR
"%s: Unable to allocate memory "
1656 "for EEPROM image\n", dev
->name
);
1661 error
= copy_from_user(image
, rq
->ifr_data
, EEPROM_BYTES
);
1667 if (rrpriv
->fw_running
){
1668 printk("%s: Firmware already running\n", dev
->name
);
1673 printk("%s: Updating EEPROM firmware\n", dev
->name
);
1675 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1676 error
= write_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1678 printk(KERN_ERR
"%s: Error writing EEPROM\n",
1681 i
= rr_read_eeprom(rrpriv
, 0, oldimage
, EEPROM_BYTES
);
1682 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1684 if (i
!= EEPROM_BYTES
)
1685 printk(KERN_ERR
"%s: Error reading back EEPROM "
1686 "image\n", dev
->name
);
1688 error
= memcmp(image
, oldimage
, EEPROM_BYTES
);
1690 printk(KERN_ERR
"%s: Error verifying EEPROM image\n",
1700 return put_user(0x52523032, (int __user
*)rq
->ifr_data
);
1706 static struct pci_device_id rr_pci_tbl
[] = {
1707 { PCI_VENDOR_ID_ESSENTIAL
, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER
,
1708 PCI_ANY_ID
, PCI_ANY_ID
, },
1711 MODULE_DEVICE_TABLE(pci
, rr_pci_tbl
);
1713 static struct pci_driver rr_driver
= {
1715 .id_table
= rr_pci_tbl
,
1716 .probe
= rr_init_one
,
1717 .remove
= __devexit_p(rr_remove_one
),
1720 static int __init
rr_init_module(void)
1722 return pci_register_driver(&rr_driver
);
1725 static void __exit
rr_cleanup_module(void)
1727 pci_unregister_driver(&rr_driver
);
1730 module_init(rr_init_module
);
1731 module_exit(rr_cleanup_module
);
1735 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"