1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
3 * (c) Copyright 1998 Red Hat Software Inc
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
12 * Thanks to 3Com for making this possible by providing me with the
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
24 static const char *version
=
25 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" Richard Procter <rnp@paradise.net.nz>\n";
28 * DOC: Traps for the unwary
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
44 * DOC: Theory Of Operation
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
85 #include <linux/module.h>
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
107 #include <asm/semaphore.h>
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
115 MODULE_LICENSE("GPL");
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
121 static const char* cardname
= DRV_NAME
;
123 /* use 0 for production, 1 for verification, >2 for debug */
130 static unsigned int mc32_debug
= NET_DEBUG
;
132 /* The number of low I/O ports used by the ethercard. */
133 #define MC32_IO_EXTENT 8
135 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
136 #define TX_RING_LEN 32 /* Typically the card supports 37 */
137 #define RX_RING_LEN 8 /* " " " */
139 /* Copy break point, see above for details.
140 * Setting to > 1512 effectively disables this feature. */
141 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
143 /* Issue the 82586 workaround command - this is for "busy lans", but
144 * basically means for all lans now days - has a performance (latency)
145 * cost, but best set. */
146 static const int WORKAROUND_82586
=1;
148 /* Pointers to buffers and their on-card records */
149 struct mc32_ring_desc
151 volatile struct skb_header
*p
;
155 /* Information that needs to be kept for each board. */
161 struct net_device_stats net_stats
;
162 volatile struct mc32_mailbox
*rx_box
;
163 volatile struct mc32_mailbox
*tx_box
;
164 volatile struct mc32_mailbox
*exec_box
;
165 volatile struct mc32_stats
*stats
; /* Start of on-card statistics */
166 u16 tx_chain
; /* Transmit list start offset */
167 u16 rx_chain
; /* Receive list start offset */
168 u16 tx_len
; /* Transmit list count */
169 u16 rx_len
; /* Receive list count */
171 u16 xceiver_desired_state
; /* HALTED or RUNNING */
172 u16 cmd_nonblocking
; /* Thread is uninterested in command result */
173 u16 mc_reload_wait
; /* A multicast load request is pending */
174 u32 mc_list_valid
; /* True when the mclist is set */
176 struct mc32_ring_desc tx_ring
[TX_RING_LEN
]; /* Host Transmit ring */
177 struct mc32_ring_desc rx_ring
[RX_RING_LEN
]; /* Host Receive ring */
179 atomic_t tx_count
; /* buffers left */
180 atomic_t tx_ring_head
; /* index to tx en-queue end */
181 u16 tx_ring_tail
; /* index to tx de-queue end */
183 u16 rx_ring_tail
; /* index to rx de-queue end */
185 struct semaphore cmd_mutex
; /* Serialises issuing of execute commands */
186 struct completion execution_cmd
; /* Card has completed an execute command */
187 struct completion xceiver_cmd
; /* Card has completed a tx or rx command */
190 /* The station (ethernet) address prefix, used for a sanity check. */
191 #define SA_ADDR0 0x02
192 #define SA_ADDR1 0x60
193 #define SA_ADDR2 0xAC
195 struct mca_adapters_t
{
200 static const struct mca_adapters_t mc32_adapters
[] = {
201 { 0x0041, "3COM EtherLink MC/32" },
202 { 0x8EF5, "IBM High Performance Lan Adapter" },
207 /* Macros for ring index manipulations */
208 static inline u16
next_rx(u16 rx
) { return (rx
+1)&(RX_RING_LEN
-1); };
209 static inline u16
prev_rx(u16 rx
) { return (rx
-1)&(RX_RING_LEN
-1); };
211 static inline u16
next_tx(u16 tx
) { return (tx
+1)&(TX_RING_LEN
-1); };
214 /* Index to functions, as function prototypes. */
215 static int mc32_probe1(struct net_device
*dev
, int ioaddr
);
216 static int mc32_command(struct net_device
*dev
, u16 cmd
, void *data
, int len
);
217 static int mc32_open(struct net_device
*dev
);
218 static void mc32_timeout(struct net_device
*dev
);
219 static int mc32_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
220 static irqreturn_t
mc32_interrupt(int irq
, void *dev_id
);
221 static int mc32_close(struct net_device
*dev
);
222 static struct net_device_stats
*mc32_get_stats(struct net_device
*dev
);
223 static void mc32_set_multicast_list(struct net_device
*dev
);
224 static void mc32_reset_multicast_list(struct net_device
*dev
);
225 static const struct ethtool_ops netdev_ethtool_ops
;
227 static void cleanup_card(struct net_device
*dev
)
229 struct mc32_local
*lp
= netdev_priv(dev
);
230 unsigned slot
= lp
->slot
;
231 mca_mark_as_unused(slot
);
232 mca_set_adapter_name(slot
, NULL
);
233 free_irq(dev
->irq
, dev
);
234 release_region(dev
->base_addr
, MC32_IO_EXTENT
);
238 * mc32_probe - Search for supported boards
239 * @unit: interface number to use
241 * Because MCA bus is a real bus and we can scan for cards we could do a
242 * single scan for all boards here. Right now we use the passed in device
243 * structure and scan for only one board. This needs fixing for modules
247 struct net_device
*__init
mc32_probe(int unit
)
249 struct net_device
*dev
= alloc_etherdev(sizeof(struct mc32_local
));
250 static int current_mca_slot
= -1;
255 return ERR_PTR(-ENOMEM
);
258 sprintf(dev
->name
, "eth%d", unit
);
260 /* Do not check any supplied i/o locations.
261 POS registers usually don't fail :) */
263 /* MCA cards have POS registers.
264 Autodetecting MCA cards is extremely simple.
265 Just search for the card. */
267 for(i
= 0; (mc32_adapters
[i
].name
!= NULL
); i
++) {
269 mca_find_unused_adapter(mc32_adapters
[i
].id
, 0);
271 if(current_mca_slot
!= MCA_NOTFOUND
) {
272 if(!mc32_probe1(dev
, current_mca_slot
))
274 mca_set_adapter_name(current_mca_slot
,
275 mc32_adapters
[i
].name
);
276 mca_mark_as_used(current_mca_slot
);
277 err
= register_netdev(dev
);
289 return ERR_PTR(-ENODEV
);
293 * mc32_probe1 - Check a given slot for a board and test the card
294 * @dev: Device structure to fill in
295 * @slot: The MCA bus slot being used by this card
297 * Decode the slot data and configure the card structures. Having done this we
298 * can reset the card and configure it. The card does a full self test cycle
299 * in firmware so we have to wait for it to return and post us either a
300 * failure case or some addresses we use to find the board internals.
303 static int __init
mc32_probe1(struct net_device
*dev
, int slot
)
305 static unsigned version_printed
;
309 struct mc32_local
*lp
= netdev_priv(dev
);
310 static u16 mca_io_bases
[]={
316 static u32 mca_mem_bases
[]={
326 static char *failures
[]={
327 "Processor instruction",
328 "Processor data bus",
329 "Processor data bus",
330 "Processor data bus",
335 "82586 internal loopback",
336 "82586 initialisation failure",
337 "Adapter list configuration error"
339 DECLARE_MAC_BUF(mac
);
341 /* Time to play MCA games */
343 if (mc32_debug
&& version_printed
++ == 0)
344 printk(KERN_DEBUG
"%s", version
);
346 printk(KERN_INFO
"%s: %s found in slot %d:", dev
->name
, cardname
, slot
);
348 POS
= mca_read_stored_pos(slot
, 2);
352 printk(" disabled.\n");
356 /* Fill in the 'dev' fields. */
357 dev
->base_addr
= mca_io_bases
[(POS
>>1)&7];
358 dev
->mem_start
= mca_mem_bases
[(POS
>>4)&7];
360 POS
= mca_read_stored_pos(slot
, 4);
363 printk("memory window disabled.\n");
367 POS
= mca_read_stored_pos(slot
, 5);
372 printk("invalid memory window.\n");
379 dev
->mem_end
=dev
->mem_start
+ i
;
381 dev
->irq
= ((POS
>>2)&3)+9;
383 if(!request_region(dev
->base_addr
, MC32_IO_EXTENT
, cardname
))
385 printk("io 0x%3lX, which is busy.\n", dev
->base_addr
);
389 printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
390 dev
->base_addr
, dev
->irq
, dev
->mem_start
, i
/1024);
393 /* We ought to set the cache line size here.. */
400 /* Retrieve and print the ethernet address. */
401 for (i
= 0; i
< 6; i
++)
403 mca_write_pos(slot
, 6, i
+12);
404 mca_write_pos(slot
, 7, 0);
406 dev
->dev_addr
[i
] = mca_read_pos(slot
,3);
409 printk("%s: Address %s", dev
->name
, print_mac(mac
, dev
->dev_addr
));
411 mca_write_pos(slot
, 6, 0);
412 mca_write_pos(slot
, 7, 0);
414 POS
= mca_read_stored_pos(slot
, 4);
417 printk(" : BNC port selected.\n");
419 printk(" : AUI port selected.\n");
421 POS
=inb(dev
->base_addr
+HOST_CTRL
);
422 POS
|=HOST_CTRL_ATTN
|HOST_CTRL_RESET
;
423 POS
&=~HOST_CTRL_INTE
;
424 outb(POS
, dev
->base_addr
+HOST_CTRL
);
428 POS
&=~(HOST_CTRL_ATTN
|HOST_CTRL_RESET
);
429 outb(POS
, dev
->base_addr
+HOST_CTRL
);
437 err
= request_irq(dev
->irq
, &mc32_interrupt
, IRQF_SHARED
| IRQF_SAMPLE_RANDOM
, DRV_NAME
, dev
);
439 release_region(dev
->base_addr
, MC32_IO_EXTENT
);
440 printk(KERN_ERR
"%s: unable to get IRQ %d.\n", DRV_NAME
, dev
->irq
);
444 memset(lp
, 0, sizeof(struct mc32_local
));
449 base
= inb(dev
->base_addr
);
456 printk(KERN_ERR
"%s: failed to boot adapter.\n", dev
->name
);
461 if(inb(dev
->base_addr
+2)&(1<<5))
462 base
= inb(dev
->base_addr
);
468 printk(KERN_ERR
"%s: %s%s.\n", dev
->name
, failures
[base
-1],
469 base
<0x0A?" test failure":"");
471 printk(KERN_ERR
"%s: unknown failure %d.\n", dev
->name
, base
);
481 while(!(inb(dev
->base_addr
+2)&(1<<5)))
487 printk(KERN_ERR
"%s: mailbox read fail (%d).\n", dev
->name
, i
);
493 base
|=(inb(dev
->base_addr
)<<(8*i
));
496 lp
->exec_box
=isa_bus_to_virt(dev
->mem_start
+base
);
498 base
=lp
->exec_box
->data
[1]<<16|lp
->exec_box
->data
[0];
500 lp
->base
= dev
->mem_start
+base
;
502 lp
->rx_box
=isa_bus_to_virt(lp
->base
+ lp
->exec_box
->data
[2]);
503 lp
->tx_box
=isa_bus_to_virt(lp
->base
+ lp
->exec_box
->data
[3]);
505 lp
->stats
= isa_bus_to_virt(lp
->base
+ lp
->exec_box
->data
[5]);
508 * Descriptor chains (card relative)
511 lp
->tx_chain
= lp
->exec_box
->data
[8]; /* Transmit list start offset */
512 lp
->rx_chain
= lp
->exec_box
->data
[10]; /* Receive list start offset */
513 lp
->tx_len
= lp
->exec_box
->data
[9]; /* Transmit list count */
514 lp
->rx_len
= lp
->exec_box
->data
[11]; /* Receive list count */
516 init_MUTEX_LOCKED(&lp
->cmd_mutex
);
517 init_completion(&lp
->execution_cmd
);
518 init_completion(&lp
->xceiver_cmd
);
520 printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
521 dev
->name
, lp
->exec_box
->data
[12], lp
->rx_len
, lp
->tx_len
, lp
->base
);
523 dev
->open
= mc32_open
;
524 dev
->stop
= mc32_close
;
525 dev
->hard_start_xmit
= mc32_send_packet
;
526 dev
->get_stats
= mc32_get_stats
;
527 dev
->set_multicast_list
= mc32_set_multicast_list
;
528 dev
->tx_timeout
= mc32_timeout
;
529 dev
->watchdog_timeo
= HZ
*5; /* Board does all the work */
530 dev
->ethtool_ops
= &netdev_ethtool_ops
;
535 free_irq(dev
->irq
, dev
);
537 release_region(dev
->base_addr
, MC32_IO_EXTENT
);
543 * mc32_ready_poll - wait until we can feed it a command
544 * @dev: The device to wait for
546 * Wait until the card becomes ready to accept a command via the
547 * command register. This tells us nothing about the completion
548 * status of any pending commands and takes very little time at all.
551 static inline void mc32_ready_poll(struct net_device
*dev
)
553 int ioaddr
= dev
->base_addr
;
554 while(!(inb(ioaddr
+HOST_STATUS
)&HOST_STATUS_CRR
));
559 * mc32_command_nowait - send a command non blocking
560 * @dev: The 3c527 to issue the command to
561 * @cmd: The command word to write to the mailbox
562 * @data: A data block if the command expects one
563 * @len: Length of the data block
565 * Send a command from interrupt state. If there is a command
566 * currently being executed then we return an error of -1. It
567 * simply isn't viable to wait around as commands may be
568 * slow. This can theoretically be starved on SMP, but it's hard
569 * to see a realistic situation. We do not wait for the command
570 * to complete --- we rely on the interrupt handler to tidy up
574 static int mc32_command_nowait(struct net_device
*dev
, u16 cmd
, void *data
, int len
)
576 struct mc32_local
*lp
= netdev_priv(dev
);
577 int ioaddr
= dev
->base_addr
;
580 if (down_trylock(&lp
->cmd_mutex
) == 0)
582 lp
->cmd_nonblocking
=1;
583 lp
->exec_box
->mbox
=0;
584 lp
->exec_box
->mbox
=cmd
;
585 memcpy((void *)lp
->exec_box
->data
, data
, len
);
586 barrier(); /* the memcpy forgot the volatile so be sure */
588 /* Send the command */
589 mc32_ready_poll(dev
);
590 outb(1<<6, ioaddr
+HOST_CMD
);
594 /* Interrupt handler will signal mutex on completion */
602 * mc32_command - send a command and sleep until completion
603 * @dev: The 3c527 card to issue the command to
604 * @cmd: The command word to write to the mailbox
605 * @data: A data block if the command expects one
606 * @len: Length of the data block
608 * Sends exec commands in a user context. This permits us to wait around
609 * for the replies and also to wait for the command buffer to complete
610 * from a previous command before we execute our command. After our
611 * command completes we will attempt any pending multicast reload
612 * we blocked off by hogging the exec buffer.
614 * You feed the card a command, you wait, it interrupts you get a
615 * reply. All well and good. The complication arises because you use
616 * commands for filter list changes which come in at bh level from things
617 * like IPV6 group stuff.
620 static int mc32_command(struct net_device
*dev
, u16 cmd
, void *data
, int len
)
622 struct mc32_local
*lp
= netdev_priv(dev
);
623 int ioaddr
= dev
->base_addr
;
626 down(&lp
->cmd_mutex
);
632 lp
->cmd_nonblocking
=0;
633 lp
->exec_box
->mbox
=0;
634 lp
->exec_box
->mbox
=cmd
;
635 memcpy((void *)lp
->exec_box
->data
, data
, len
);
636 barrier(); /* the memcpy forgot the volatile so be sure */
638 mc32_ready_poll(dev
);
639 outb(1<<6, ioaddr
+HOST_CMD
);
641 wait_for_completion(&lp
->execution_cmd
);
643 if(lp
->exec_box
->mbox
&(1<<13))
649 * A multicast set got blocked - try it now
652 if(lp
->mc_reload_wait
)
654 mc32_reset_multicast_list(dev
);
662 * mc32_start_transceiver - tell board to restart tx/rx
663 * @dev: The 3c527 card to issue the command to
665 * This may be called from the interrupt state, where it is used
666 * to restart the rx ring if the card runs out of rx buffers.
668 * We must first check if it's ok to (re)start the transceiver. See
669 * mc32_close for details.
672 static void mc32_start_transceiver(struct net_device
*dev
) {
674 struct mc32_local
*lp
= netdev_priv(dev
);
675 int ioaddr
= dev
->base_addr
;
677 /* Ignore RX overflow on device closure */
678 if (lp
->xceiver_desired_state
==HALTED
)
681 /* Give the card the offset to the post-EOL-bit RX descriptor */
682 mc32_ready_poll(dev
);
684 lp
->rx_box
->data
[0]=lp
->rx_ring
[prev_rx(lp
->rx_ring_tail
)].p
->next
;
685 outb(HOST_CMD_START_RX
, ioaddr
+HOST_CMD
);
687 mc32_ready_poll(dev
);
689 outb(HOST_CMD_RESTRT_TX
, ioaddr
+HOST_CMD
); /* card ignores this on RX restart */
691 /* We are not interrupted on start completion */
696 * mc32_halt_transceiver - tell board to stop tx/rx
697 * @dev: The 3c527 card to issue the command to
699 * We issue the commands to halt the card's transceiver. In fact,
700 * after some experimenting we now simply tell the card to
701 * suspend. When issuing aborts occasionally odd things happened.
703 * We then sleep until the card has notified us that both rx and
704 * tx have been suspended.
707 static void mc32_halt_transceiver(struct net_device
*dev
)
709 struct mc32_local
*lp
= netdev_priv(dev
);
710 int ioaddr
= dev
->base_addr
;
712 mc32_ready_poll(dev
);
714 outb(HOST_CMD_SUSPND_RX
, ioaddr
+HOST_CMD
);
715 wait_for_completion(&lp
->xceiver_cmd
);
717 mc32_ready_poll(dev
);
719 outb(HOST_CMD_SUSPND_TX
, ioaddr
+HOST_CMD
);
720 wait_for_completion(&lp
->xceiver_cmd
);
725 * mc32_load_rx_ring - load the ring of receive buffers
726 * @dev: 3c527 to build the ring for
728 * This initalises the on-card and driver datastructures to
729 * the point where mc32_start_transceiver() can be called.
731 * The card sets up the receive ring for us. We are required to use the
732 * ring it provides, although the size of the ring is configurable.
734 * We allocate an sk_buff for each ring entry in turn and
735 * initalise its house-keeping info. At the same time, we read
736 * each 'next' pointer in our rx_ring array. This reduces slow
737 * shared-memory reads and makes it easy to access predecessor
740 * We then set the end-of-list bit for the last entry so that the
741 * card will know when it has run out of buffers.
744 static int mc32_load_rx_ring(struct net_device
*dev
)
746 struct mc32_local
*lp
= netdev_priv(dev
);
749 volatile struct skb_header
*p
;
751 rx_base
=lp
->rx_chain
;
753 for(i
=0; i
<RX_RING_LEN
; i
++) {
754 lp
->rx_ring
[i
].skb
=alloc_skb(1532, GFP_KERNEL
);
755 if (lp
->rx_ring
[i
].skb
==NULL
) {
757 kfree_skb(lp
->rx_ring
[i
].skb
);
760 skb_reserve(lp
->rx_ring
[i
].skb
, 18);
762 p
=isa_bus_to_virt(lp
->base
+rx_base
);
765 p
->data
=isa_virt_to_bus(lp
->rx_ring
[i
].skb
->data
);
773 lp
->rx_ring
[i
-1].p
->control
|= CONTROL_EOL
;
782 * mc32_flush_rx_ring - free the ring of receive buffers
783 * @lp: Local data of 3c527 to flush the rx ring of
785 * Free the buffer for each ring slot. This may be called
786 * before mc32_load_rx_ring(), eg. on error in mc32_open().
787 * Requires rx skb pointers to point to a valid skb, or NULL.
790 static void mc32_flush_rx_ring(struct net_device
*dev
)
792 struct mc32_local
*lp
= netdev_priv(dev
);
795 for(i
=0; i
< RX_RING_LEN
; i
++)
797 if (lp
->rx_ring
[i
].skb
) {
798 dev_kfree_skb(lp
->rx_ring
[i
].skb
);
799 lp
->rx_ring
[i
].skb
= NULL
;
801 lp
->rx_ring
[i
].p
=NULL
;
807 * mc32_load_tx_ring - load transmit ring
808 * @dev: The 3c527 card to issue the command to
810 * This sets up the host transmit data-structures.
812 * First, we obtain from the card it's current postion in the tx
813 * ring, so that we will know where to begin transmitting
816 * Then, we read the 'next' pointers from the on-card tx ring into
817 * our tx_ring array to reduce slow shared-mem reads. Finally, we
818 * intitalise the tx house keeping variables.
822 static void mc32_load_tx_ring(struct net_device
*dev
)
824 struct mc32_local
*lp
= netdev_priv(dev
);
825 volatile struct skb_header
*p
;
829 tx_base
=lp
->tx_box
->data
[0];
831 for(i
=0 ; i
<TX_RING_LEN
; i
++)
833 p
=isa_bus_to_virt(lp
->base
+tx_base
);
835 lp
->tx_ring
[i
].skb
=NULL
;
840 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
841 /* see mc32_tx_ring */
843 atomic_set(&lp
->tx_count
, TX_RING_LEN
-1);
844 atomic_set(&lp
->tx_ring_head
, 0);
850 * mc32_flush_tx_ring - free transmit ring
851 * @lp: Local data of 3c527 to flush the tx ring of
853 * If the ring is non-empty, zip over the it, freeing any
854 * allocated skb_buffs. The tx ring house-keeping variables are
855 * then reset. Requires rx skb pointers to point to a valid skb,
859 static void mc32_flush_tx_ring(struct net_device
*dev
)
861 struct mc32_local
*lp
= netdev_priv(dev
);
864 for (i
=0; i
< TX_RING_LEN
; i
++)
866 if (lp
->tx_ring
[i
].skb
)
868 dev_kfree_skb(lp
->tx_ring
[i
].skb
);
869 lp
->tx_ring
[i
].skb
= NULL
;
873 atomic_set(&lp
->tx_count
, 0);
874 atomic_set(&lp
->tx_ring_head
, 0);
880 * mc32_open - handle 'up' of card
881 * @dev: device to open
883 * The user is trying to bring the card into ready state. This requires
884 * a brief dialogue with the card. Firstly we enable interrupts and then
885 * 'indications'. Without these enabled the card doesn't bother telling
886 * us what it has done. This had me puzzled for a week.
888 * We configure the number of card descriptors, then load the network
889 * address and multicast filters. Turn on the workaround mode. This
890 * works around a bug in the 82586 - it asks the firmware to do
891 * so. It has a performance (latency) hit but is needed on busy
892 * [read most] lans. We load the ring with buffers then we kick it
896 static int mc32_open(struct net_device
*dev
)
898 int ioaddr
= dev
->base_addr
;
899 struct mc32_local
*lp
= netdev_priv(dev
);
902 u16 descnumbuffs
[2] = {TX_RING_LEN
, RX_RING_LEN
};
908 regs
=inb(ioaddr
+HOST_CTRL
);
909 regs
|=HOST_CTRL_INTE
;
910 outb(regs
, ioaddr
+HOST_CTRL
);
913 * Allow ourselves to issue commands
920 * Send the indications on command
923 mc32_command(dev
, 4, &one
, 2);
926 * Poke it to make sure it's really dead.
929 mc32_halt_transceiver(dev
);
930 mc32_flush_tx_ring(dev
);
933 * Ask card to set up on-card descriptors to our spec
936 if(mc32_command(dev
, 8, descnumbuffs
, 4)) {
937 printk("%s: %s rejected our buffer configuration!\n",
938 dev
->name
, cardname
);
943 /* Report new configuration */
944 mc32_command(dev
, 6, NULL
, 0);
946 lp
->tx_chain
= lp
->exec_box
->data
[8]; /* Transmit list start offset */
947 lp
->rx_chain
= lp
->exec_box
->data
[10]; /* Receive list start offset */
948 lp
->tx_len
= lp
->exec_box
->data
[9]; /* Transmit list count */
949 lp
->rx_len
= lp
->exec_box
->data
[11]; /* Receive list count */
951 /* Set Network Address */
952 mc32_command(dev
, 1, dev
->dev_addr
, 6);
954 /* Set the filters */
955 mc32_set_multicast_list(dev
);
957 if (WORKAROUND_82586
) {
959 mc32_command(dev
, 0x0D, &zero_word
, 2); /* 82586 bug workaround on */
962 mc32_load_tx_ring(dev
);
964 if(mc32_load_rx_ring(dev
))
970 lp
->xceiver_desired_state
= RUNNING
;
972 /* And finally, set the ball rolling... */
973 mc32_start_transceiver(dev
);
975 netif_start_queue(dev
);
982 * mc32_timeout - handle a timeout from the network layer
983 * @dev: 3c527 that timed out
985 * Handle a timeout on transmit from the 3c527. This normally means
986 * bad things as the hardware handles cable timeouts and mess for
991 static void mc32_timeout(struct net_device
*dev
)
993 printk(KERN_WARNING
"%s: transmit timed out?\n", dev
->name
);
994 /* Try to restart the adaptor. */
995 netif_wake_queue(dev
);
1000 * mc32_send_packet - queue a frame for transmit
1001 * @skb: buffer to transmit
1002 * @dev: 3c527 to send it out of
1004 * Transmit a buffer. This normally means throwing the buffer onto
1005 * the transmit queue as the queue is quite large. If the queue is
1006 * full then we set tx_busy and return. Once the interrupt handler
1007 * gets messages telling it to reclaim transmit queue entries, we will
1008 * clear tx_busy and the kernel will start calling this again.
1010 * We do not disable interrupts or acquire any locks; this can
1011 * run concurrently with mc32_tx_ring(), and the function itself
1012 * is serialised at a higher layer. However, similarly for the
1013 * card itself, we must ensure that we update tx_ring_head only
1014 * after we've established a valid packet on the tx ring (and
1015 * before we let the card "see" it, to prevent it racing with the
1020 static int mc32_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1022 struct mc32_local
*lp
= netdev_priv(dev
);
1023 u32 head
= atomic_read(&lp
->tx_ring_head
);
1025 volatile struct skb_header
*p
, *np
;
1027 netif_stop_queue(dev
);
1029 if(atomic_read(&lp
->tx_count
)==0) {
1033 if (skb_padto(skb
, ETH_ZLEN
)) {
1034 netif_wake_queue(dev
);
1038 atomic_dec(&lp
->tx_count
);
1040 /* P is the last sending/sent buffer as a pointer */
1041 p
=lp
->tx_ring
[head
].p
;
1043 head
= next_tx(head
);
1045 /* NP is the buffer we will be loading */
1046 np
=lp
->tx_ring
[head
].p
;
1048 /* We will need this to flush the buffer out */
1049 lp
->tx_ring
[head
].skb
=skb
;
1051 np
->length
= unlikely(skb
->len
< ETH_ZLEN
) ? ETH_ZLEN
: skb
->len
;
1052 np
->data
= isa_virt_to_bus(skb
->data
);
1054 np
->control
= CONTROL_EOP
| CONTROL_EOL
;
1058 * The new frame has been setup; we can now
1059 * let the interrupt handler and card "see" it
1062 atomic_set(&lp
->tx_ring_head
, head
);
1063 p
->control
&= ~CONTROL_EOL
;
1065 netif_wake_queue(dev
);
1071 * mc32_update_stats - pull off the on board statistics
1072 * @dev: 3c527 to service
1075 * Query and reset the on-card stats. There's the small possibility
1076 * of a race here, which would result in an underestimation of
1077 * actual errors. As such, we'd prefer to keep all our stats
1078 * collection in software. As a rule, we do. However it can't be
1079 * used for rx errors and collisions as, by default, the card discards
1082 * Setting the SAV BP in the rx filter command supposedly
1083 * stops this behaviour. However, testing shows that it only seems to
1084 * enable the collation of on-card rx statistics --- the driver
1085 * never sees an RX descriptor with an error status set.
1089 static void mc32_update_stats(struct net_device
*dev
)
1091 struct mc32_local
*lp
= netdev_priv(dev
);
1092 volatile struct mc32_stats
*st
= lp
->stats
;
1096 rx_errors
+=lp
->net_stats
.rx_crc_errors
+=st
->rx_crc_errors
;
1097 st
->rx_crc_errors
=0;
1098 rx_errors
+=lp
->net_stats
.rx_fifo_errors
+=st
->rx_overrun_errors
;
1099 st
->rx_overrun_errors
=0;
1100 rx_errors
+=lp
->net_stats
.rx_frame_errors
+=st
->rx_alignment_errors
;
1101 st
->rx_alignment_errors
=0;
1102 rx_errors
+=lp
->net_stats
.rx_length_errors
+=st
->rx_tooshort_errors
;
1103 st
->rx_tooshort_errors
=0;
1104 rx_errors
+=lp
->net_stats
.rx_missed_errors
+=st
->rx_outofresource_errors
;
1105 st
->rx_outofresource_errors
=0;
1106 lp
->net_stats
.rx_errors
=rx_errors
;
1108 /* Number of packets which saw one collision */
1109 lp
->net_stats
.collisions
+=st
->dataC
[10];
1112 /* Number of packets which saw 2--15 collisions */
1113 lp
->net_stats
.collisions
+=st
->dataC
[11];
1119 * mc32_rx_ring - process the receive ring
1120 * @dev: 3c527 that needs its receive ring processing
1123 * We have received one or more indications from the card that a
1124 * receive has completed. The buffer ring thus contains dirty
1125 * entries. We walk the ring by iterating over the circular rx_ring
1126 * array, starting at the next dirty buffer (which happens to be the
1127 * one we finished up at last time around).
1129 * For each completed packet, we will either copy it and pass it up
1130 * the stack or, if the packet is near MTU sized, we allocate
1131 * another buffer and flip the old one up the stack.
1133 * We must succeed in keeping a buffer on the ring. If necessary we
1134 * will toss a received packet rather than lose a ring entry. Once
1135 * the first uncompleted descriptor is found, we move the
1136 * End-Of-List bit to include the buffers just processed.
1140 static void mc32_rx_ring(struct net_device
*dev
)
1142 struct mc32_local
*lp
= netdev_priv(dev
);
1143 volatile struct skb_header
*p
;
1148 rx_old_tail
= rx_ring_tail
= lp
->rx_ring_tail
;
1152 p
=lp
->rx_ring
[rx_ring_tail
].p
;
1154 if(!(p
->status
& (1<<7))) { /* Not COMPLETED */
1157 if(p
->status
& (1<<6)) /* COMPLETED_OK */
1160 u16 length
=p
->length
;
1161 struct sk_buff
*skb
;
1162 struct sk_buff
*newskb
;
1164 /* Try to save time by avoiding a copy on big frames */
1166 if ((length
> RX_COPYBREAK
)
1167 && ((newskb
=dev_alloc_skb(1532)) != NULL
))
1169 skb
=lp
->rx_ring
[rx_ring_tail
].skb
;
1170 skb_put(skb
, length
);
1172 skb_reserve(newskb
,18);
1173 lp
->rx_ring
[rx_ring_tail
].skb
=newskb
;
1174 p
->data
=isa_virt_to_bus(newskb
->data
);
1178 skb
=dev_alloc_skb(length
+2);
1181 lp
->net_stats
.rx_dropped
++;
1186 memcpy(skb_put(skb
, length
),
1187 lp
->rx_ring
[rx_ring_tail
].skb
->data
, length
);
1190 skb
->protocol
=eth_type_trans(skb
,dev
);
1191 dev
->last_rx
= jiffies
;
1192 lp
->net_stats
.rx_packets
++;
1193 lp
->net_stats
.rx_bytes
+= length
;
1201 rx_ring_tail
=next_rx(rx_ring_tail
);
1205 /* If there was actually a frame to be processed, place the EOL bit */
1206 /* at the descriptor prior to the one to be filled next */
1208 if (rx_ring_tail
!= rx_old_tail
)
1210 lp
->rx_ring
[prev_rx(rx_ring_tail
)].p
->control
|= CONTROL_EOL
;
1211 lp
->rx_ring
[prev_rx(rx_old_tail
)].p
->control
&= ~CONTROL_EOL
;
1213 lp
->rx_ring_tail
=rx_ring_tail
;
1219 * mc32_tx_ring - process completed transmits
1220 * @dev: 3c527 that needs its transmit ring processing
1223 * This operates in a similar fashion to mc32_rx_ring. We iterate
1224 * over the transmit ring. For each descriptor which has been
1225 * processed by the card, we free its associated buffer and note
1226 * any errors. This continues until the transmit ring is emptied
1227 * or we reach a descriptor that hasn't yet been processed by the
1232 static void mc32_tx_ring(struct net_device
*dev
)
1234 struct mc32_local
*lp
= netdev_priv(dev
);
1235 volatile struct skb_header
*np
;
1238 * We rely on head==tail to mean 'queue empty'.
1239 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1240 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1241 * condition with 'queue full'
1244 while (lp
->tx_ring_tail
!= atomic_read(&lp
->tx_ring_head
))
1248 t
=next_tx(lp
->tx_ring_tail
);
1249 np
=lp
->tx_ring
[t
].p
;
1251 if(!(np
->status
& (1<<7)))
1256 lp
->net_stats
.tx_packets
++;
1257 if(!(np
->status
& (1<<6))) /* Not COMPLETED_OK */
1259 lp
->net_stats
.tx_errors
++;
1261 switch(np
->status
&0x0F)
1264 lp
->net_stats
.tx_aborted_errors
++;
1265 break; /* Max collisions */
1267 lp
->net_stats
.tx_fifo_errors
++;
1270 lp
->net_stats
.tx_carrier_errors
++;
1273 lp
->net_stats
.tx_window_errors
++;
1274 break; /* CTS Lost */
1276 lp
->net_stats
.tx_aborted_errors
++;
1277 break; /* Transmit timeout */
1280 /* Packets are sent in order - this is
1281 basically a FIFO queue of buffers matching
1283 lp
->net_stats
.tx_bytes
+=lp
->tx_ring
[t
].skb
->len
;
1284 dev_kfree_skb_irq(lp
->tx_ring
[t
].skb
);
1285 lp
->tx_ring
[t
].skb
=NULL
;
1286 atomic_inc(&lp
->tx_count
);
1287 netif_wake_queue(dev
);
1296 * mc32_interrupt - handle an interrupt from a 3c527
1297 * @irq: Interrupt number
1298 * @dev_id: 3c527 that requires servicing
1299 * @regs: Registers (unused)
1302 * An interrupt is raised whenever the 3c527 writes to the command
1303 * register. This register contains the message it wishes to send us
1304 * packed into a single byte field. We keep reading status entries
1305 * until we have processed all the control items, but simply count
1306 * transmit and receive reports. When all reports are in we empty the
1307 * transceiver rings as appropriate. This saves the overhead of
1308 * multiple command requests.
1310 * Because MCA is level-triggered, we shouldn't miss indications.
1311 * Therefore, we needn't ask the card to suspend interrupts within
1312 * this handler. The card receives an implicit acknowledgment of the
1313 * current interrupt when we read the command register.
1317 static irqreturn_t
mc32_interrupt(int irq
, void *dev_id
)
1319 struct net_device
*dev
= dev_id
;
1320 struct mc32_local
*lp
;
1321 int ioaddr
, status
, boguscount
= 0;
1325 ioaddr
= dev
->base_addr
;
1326 lp
= netdev_priv(dev
);
1328 /* See whats cooking */
1330 while((inb(ioaddr
+HOST_STATUS
)&HOST_STATUS_CWR
) && boguscount
++<2000)
1332 status
=inb(ioaddr
+HOST_CMD
);
1335 printk("Status TX%d RX%d EX%d OV%d BC%d\n",
1336 (status
&7), (status
>>3)&7, (status
>>6)&1,
1337 (status
>>7)&1, boguscount
);
1344 case 6: /* TX fail */
1350 complete(&lp
->xceiver_cmd
);
1353 printk("%s: strange tx ack %d\n", dev
->name
, status
&7);
1365 complete(&lp
->xceiver_cmd
);
1368 /* Out of RX buffers stat */
1369 /* Must restart rx */
1370 lp
->net_stats
.rx_dropped
++;
1372 mc32_start_transceiver(dev
);
1375 printk("%s: strange rx ack %d\n",
1376 dev
->name
, status
&7);
1382 * No thread is waiting: we need to tidy
1386 if (lp
->cmd_nonblocking
) {
1388 if (lp
->mc_reload_wait
)
1389 mc32_reset_multicast_list(dev
);
1391 else complete(&lp
->execution_cmd
);
1396 * We get interrupted once per
1397 * counter that is about to overflow.
1400 mc32_update_stats(dev
);
1406 * Process the transmit and receive rings
1420 * mc32_close - user configuring the 3c527 down
1421 * @dev: 3c527 card to shut down
1423 * The 3c527 is a bus mastering device. We must be careful how we
1424 * shut it down. It may also be running shared interrupt so we have
1425 * to be sure to silence it properly
1427 * We indicate that the card is closing to the rest of the
1428 * driver. Otherwise, it is possible that the card may run out
1429 * of receive buffers and restart the transceiver while we're
1430 * trying to close it.
1432 * We abort any receive and transmits going on and then wait until
1433 * any pending exec commands have completed in other code threads.
1434 * In theory we can't get here while that is true, in practice I am
1437 * We turn off the interrupt enable for the board to be sure it can't
1438 * intefere with other devices.
1441 static int mc32_close(struct net_device
*dev
)
1443 struct mc32_local
*lp
= netdev_priv(dev
);
1444 int ioaddr
= dev
->base_addr
;
1449 lp
->xceiver_desired_state
= HALTED
;
1450 netif_stop_queue(dev
);
1453 * Send the indications on command (handy debug check)
1456 mc32_command(dev
, 4, &one
, 2);
1458 /* Shut down the transceiver */
1460 mc32_halt_transceiver(dev
);
1462 /* Ensure we issue no more commands beyond this point */
1464 down(&lp
->cmd_mutex
);
1466 /* Ok the card is now stopping */
1468 regs
=inb(ioaddr
+HOST_CTRL
);
1469 regs
&=~HOST_CTRL_INTE
;
1470 outb(regs
, ioaddr
+HOST_CTRL
);
1472 mc32_flush_rx_ring(dev
);
1473 mc32_flush_tx_ring(dev
);
1475 mc32_update_stats(dev
);
1482 * mc32_get_stats - hand back stats to network layer
1483 * @dev: The 3c527 card to handle
1485 * We've collected all the stats we can in software already. Now
1486 * it's time to update those kept on-card and return the lot.
1490 static struct net_device_stats
*mc32_get_stats(struct net_device
*dev
)
1492 struct mc32_local
*lp
= netdev_priv(dev
);
1494 mc32_update_stats(dev
);
1495 return &lp
->net_stats
;
1500 * do_mc32_set_multicast_list - attempt to update multicasts
1501 * @dev: 3c527 device to load the list on
1502 * @retry: indicates this is not the first call.
1505 * Actually set or clear the multicast filter for this adaptor. The
1506 * locking issues are handled by this routine. We have to track
1507 * state as it may take multiple calls to get the command sequence
1508 * completed. We just keep trying to schedule the loads until we
1509 * manage to process them all.
1511 * num_addrs == -1 Promiscuous mode, receive all packets
1513 * num_addrs == 0 Normal mode, clear multicast list
1515 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1516 * and do best-effort filtering.
1518 * See mc32_update_stats() regards setting the SAV BP bit.
1522 static void do_mc32_set_multicast_list(struct net_device
*dev
, int retry
)
1524 struct mc32_local
*lp
= netdev_priv(dev
);
1525 u16 filt
= (1<<2); /* Save Bad Packets, for stats purposes */
1527 if (dev
->flags
&IFF_PROMISC
)
1528 /* Enable promiscuous mode */
1530 else if((dev
->flags
&IFF_ALLMULTI
) || dev
->mc_count
> 10)
1532 dev
->flags
|=IFF_PROMISC
;
1535 else if(dev
->mc_count
)
1537 unsigned char block
[62];
1539 struct dev_mc_list
*dmc
=dev
->mc_list
;
1544 lp
->mc_list_valid
= 0;
1545 if(!lp
->mc_list_valid
)
1548 block
[0]=dev
->mc_count
;
1551 for(i
=0;i
<dev
->mc_count
;i
++)
1553 memcpy(bp
, dmc
->dmi_addr
, 6);
1557 if(mc32_command_nowait(dev
, 2, block
, 2+6*dev
->mc_count
)==-1)
1559 lp
->mc_reload_wait
= 1;
1562 lp
->mc_list_valid
=1;
1566 if(mc32_command_nowait(dev
, 0, &filt
, 2)==-1)
1568 lp
->mc_reload_wait
= 1;
1571 lp
->mc_reload_wait
= 0;
1577 * mc32_set_multicast_list - queue multicast list update
1578 * @dev: The 3c527 to use
1580 * Commence loading the multicast list. This is called when the kernel
1581 * changes the lists. It will override any pending list we are trying to
1585 static void mc32_set_multicast_list(struct net_device
*dev
)
1587 do_mc32_set_multicast_list(dev
,0);
1592 * mc32_reset_multicast_list - reset multicast list
1593 * @dev: The 3c527 to use
1595 * Attempt the next step in loading the multicast lists. If this attempt
1596 * fails to complete then it will be scheduled and this function called
1597 * again later from elsewhere.
1600 static void mc32_reset_multicast_list(struct net_device
*dev
)
1602 do_mc32_set_multicast_list(dev
,1);
1605 static void netdev_get_drvinfo(struct net_device
*dev
,
1606 struct ethtool_drvinfo
*info
)
1608 strcpy(info
->driver
, DRV_NAME
);
1609 strcpy(info
->version
, DRV_VERSION
);
1610 sprintf(info
->bus_info
, "MCA 0x%lx", dev
->base_addr
);
1613 static u32
netdev_get_msglevel(struct net_device
*dev
)
1618 static void netdev_set_msglevel(struct net_device
*dev
, u32 level
)
1623 static const struct ethtool_ops netdev_ethtool_ops
= {
1624 .get_drvinfo
= netdev_get_drvinfo
,
1625 .get_msglevel
= netdev_get_msglevel
,
1626 .set_msglevel
= netdev_set_msglevel
,
1631 static struct net_device
*this_device
;
1634 * init_module - entry point
1636 * Probe and locate a 3c527 card. This really should probe and locate
1637 * all the 3c527 cards in the machine not just one of them. Yes you can
1638 * insmod multiple modules for now but it's a hack.
1641 int __init
init_module(void)
1643 this_device
= mc32_probe(-1);
1644 if (IS_ERR(this_device
))
1645 return PTR_ERR(this_device
);
1650 * cleanup_module - free resources for an unload
1652 * Unloading time. We release the MCA bus resources and the interrupt
1653 * at which point everything is ready to unload. The card must be stopped
1654 * at this point or we would not have been called. When we unload we
1655 * leave the card stopped but not totally shut down. When the card is
1656 * initialized it must be rebooted or the rings reloaded before any
1657 * transmit operations are allowed to start scribbling into memory.
1660 void __exit
cleanup_module(void)
1662 unregister_netdev(this_device
);
1663 cleanup_card(this_device
);
1664 free_netdev(this_device
);