1 Kernel Memory Leak Detector
2 ===========================
7 Kmemleak provides a way of detecting possible kernel memory leaks in a
8 way similar to a tracing garbage collector
9 (http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
10 with the difference that the orphan objects are not freed but only
11 reported via /sys/kernel/debug/kmemleak. A similar method is used by the
12 Valgrind tool (memcheck --leak-check) to detect the memory leaks in
13 user-space applications.
18 CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
19 thread scans the memory every 10 minutes (by default) and prints the
20 number of new unreferenced objects found. To display the details of all
21 the possible memory leaks:
23 # mount -t debugfs nodev /sys/kernel/debug/
24 # cat /sys/kernel/debug/kmemleak
26 To trigger an intermediate memory scan:
28 # echo scan > /sys/kernel/debug/kmemleak
30 Note that the orphan objects are listed in the order they were allocated
31 and one object at the beginning of the list may cause other subsequent
32 objects to be reported as orphan.
34 Memory scanning parameters can be modified at run-time by writing to the
35 /sys/kernel/debug/kmemleak file. The following parameters are supported:
37 off - disable kmemleak (irreversible)
38 stack=on - enable the task stacks scanning (default)
39 stack=off - disable the tasks stacks scanning
40 scan=on - start the automatic memory scanning thread (default)
41 scan=off - stop the automatic memory scanning thread
42 scan=<secs> - set the automatic memory scanning period in seconds
43 (default 600, 0 to stop the automatic scanning)
44 scan - trigger a memory scan
46 Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on
47 the kernel command line.
49 Memory may be allocated or freed before kmemleak is initialised and
50 these actions are stored in an early log buffer. The size of this buffer
51 is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option.
56 The memory allocations via kmalloc, vmalloc, kmem_cache_alloc and
57 friends are traced and the pointers, together with additional
58 information like size and stack trace, are stored in a prio search tree.
59 The corresponding freeing function calls are tracked and the pointers
60 removed from the kmemleak data structures.
62 An allocated block of memory is considered orphan if no pointer to its
63 start address or to any location inside the block can be found by
64 scanning the memory (including saved registers). This means that there
65 might be no way for the kernel to pass the address of the allocated
66 block to a freeing function and therefore the block is considered a
69 The scanning algorithm steps:
71 1. mark all objects as white (remaining white objects will later be
73 2. scan the memory starting with the data section and stacks, checking
74 the values against the addresses stored in the prio search tree. If
75 a pointer to a white object is found, the object is added to the
77 3. scan the gray objects for matching addresses (some white objects
78 can become gray and added at the end of the gray list) until the
80 4. the remaining white objects are considered orphan and reported via
81 /sys/kernel/debug/kmemleak
83 Some allocated memory blocks have pointers stored in the kernel's
84 internal data structures and they cannot be detected as orphans. To
85 avoid this, kmemleak can also store the number of values pointing to an
86 address inside the block address range that need to be found so that the
87 block is not considered a leak. One example is __vmalloc().
92 See the include/linux/kmemleak.h header for the functions prototype.
94 kmemleak_init - initialize kmemleak
95 kmemleak_alloc - notify of a memory block allocation
96 kmemleak_free - notify of a memory block freeing
97 kmemleak_not_leak - mark an object as not a leak
98 kmemleak_ignore - do not scan or report an object as leak
99 kmemleak_scan_area - add scan areas inside a memory block
100 kmemleak_no_scan - do not scan a memory block
101 kmemleak_erase - erase an old value in a pointer variable
102 kmemleak_alloc_recursive - as kmemleak_alloc but checks the recursiveness
103 kmemleak_free_recursive - as kmemleak_free but checks the recursiveness
105 Dealing with false positives/negatives
106 --------------------------------------
108 The false negatives are real memory leaks (orphan objects) but not
109 reported by kmemleak because values found during the memory scanning
110 point to such objects. To reduce the number of false negatives, kmemleak
111 provides the kmemleak_ignore, kmemleak_scan_area, kmemleak_no_scan and
112 kmemleak_erase functions (see above). The task stacks also increase the
113 amount of false negatives and their scanning is not enabled by default.
115 The false positives are objects wrongly reported as being memory leaks
116 (orphan). For objects known not to be leaks, kmemleak provides the
117 kmemleak_not_leak function. The kmemleak_ignore could also be used if
118 the memory block is known not to contain other pointers and it will no
121 Some of the reported leaks are only transient, especially on SMP
122 systems, because of pointers temporarily stored in CPU registers or
123 stacks. Kmemleak defines MSECS_MIN_AGE (defaulting to 1000) representing
124 the minimum age of an object to be reported as a memory leak.
126 Limitations and Drawbacks
127 -------------------------
129 The main drawback is the reduced performance of memory allocation and
130 freeing. To avoid other penalties, the memory scanning is only performed
131 when the /sys/kernel/debug/kmemleak file is read. Anyway, this tool is
132 intended for debugging purposes where the performance might not be the
133 most important requirement.
135 To keep the algorithm simple, kmemleak scans for values pointing to any
136 address inside a block's address range. This may lead to an increased
137 number of false negatives. However, it is likely that a real memory leak
138 will eventually become visible.
140 Another source of false negatives is the data stored in non-pointer
141 values. In a future version, kmemleak could only scan the pointer
142 members in the allocated structures. This feature would solve many of
143 the false negative cases described above.
145 The tool can report false positives. These are cases where an allocated
146 block doesn't need to be freed (some cases in the init_call functions),
147 the pointer is calculated by other methods than the usual container_of
148 macro or the pointer is stored in a location not scanned by kmemleak.
150 Page allocations and ioremap are not tracked. Only the ARM and x86
151 architectures are currently supported.