[PATCH] Document online io scheduler switching
[linux-2.6/mini2440.git] / fs / splice.c
blob22fac87e90b3d8cc5e87851355c35187f191f2c4
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
32 * Passed to the actors
34 struct splice_desc {
35 unsigned int len, total_len; /* current and remaining length */
36 unsigned int flags; /* splice flags */
37 struct file *file; /* file to read/write */
38 loff_t pos; /* file position */
42 * Attempt to steal a page from a pipe buffer. This should perhaps go into
43 * a vm helper function, it's already simplified quite a bit by the
44 * addition of remove_mapping(). If success is returned, the caller may
45 * attempt to reuse this page for another destination.
47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
48 struct pipe_buffer *buf)
50 struct page *page = buf->page;
51 struct address_space *mapping = page_mapping(page);
53 lock_page(page);
55 WARN_ON(!PageUptodate(page));
58 * At least for ext2 with nobh option, we need to wait on writeback
59 * completing on this page, since we'll remove it from the pagecache.
60 * Otherwise truncate wont wait on the page, allowing the disk
61 * blocks to be reused by someone else before we actually wrote our
62 * data to them. fs corruption ensues.
64 wait_on_page_writeback(page);
66 if (PagePrivate(page))
67 try_to_release_page(page, mapping_gfp_mask(mapping));
69 if (!remove_mapping(mapping, page)) {
70 unlock_page(page);
71 return 1;
74 buf->flags |= PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU;
75 return 0;
78 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
79 struct pipe_buffer *buf)
81 page_cache_release(buf->page);
82 buf->page = NULL;
83 buf->flags &= ~(PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU);
86 static void *page_cache_pipe_buf_map(struct file *file,
87 struct pipe_inode_info *info,
88 struct pipe_buffer *buf)
90 struct page *page = buf->page;
91 int err;
93 if (!PageUptodate(page)) {
94 lock_page(page);
97 * Page got truncated/unhashed. This will cause a 0-byte
98 * splice, if this is the first page.
100 if (!page->mapping) {
101 err = -ENODATA;
102 goto error;
106 * Uh oh, read-error from disk.
108 if (!PageUptodate(page)) {
109 err = -EIO;
110 goto error;
114 * Page is ok afterall, fall through to mapping.
116 unlock_page(page);
119 return kmap(page);
120 error:
121 unlock_page(page);
122 return ERR_PTR(err);
125 static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
126 struct pipe_buffer *buf)
128 kunmap(buf->page);
131 static void page_cache_pipe_buf_get(struct pipe_inode_info *info,
132 struct pipe_buffer *buf)
134 page_cache_get(buf->page);
137 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .map = page_cache_pipe_buf_map,
140 .unmap = page_cache_pipe_buf_unmap,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = page_cache_pipe_buf_get,
147 * Pipe output worker. This sets up our pipe format with the page cache
148 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
150 static ssize_t move_to_pipe(struct pipe_inode_info *pipe, struct page **pages,
151 int nr_pages, unsigned long len,
152 unsigned int offset, unsigned int flags)
154 int ret, do_wakeup, i;
156 ret = 0;
157 do_wakeup = 0;
158 i = 0;
160 if (pipe->inode)
161 mutex_lock(&pipe->inode->i_mutex);
163 for (;;) {
164 if (!pipe->readers) {
165 send_sig(SIGPIPE, current, 0);
166 if (!ret)
167 ret = -EPIPE;
168 break;
171 if (pipe->nrbufs < PIPE_BUFFERS) {
172 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
173 struct pipe_buffer *buf = pipe->bufs + newbuf;
174 struct page *page = pages[i++];
175 unsigned long this_len;
177 this_len = PAGE_CACHE_SIZE - offset;
178 if (this_len > len)
179 this_len = len;
181 buf->page = page;
182 buf->offset = offset;
183 buf->len = this_len;
184 buf->ops = &page_cache_pipe_buf_ops;
185 pipe->nrbufs++;
186 if (pipe->inode)
187 do_wakeup = 1;
189 ret += this_len;
190 len -= this_len;
191 offset = 0;
192 if (!--nr_pages)
193 break;
194 if (!len)
195 break;
196 if (pipe->nrbufs < PIPE_BUFFERS)
197 continue;
199 break;
202 if (flags & SPLICE_F_NONBLOCK) {
203 if (!ret)
204 ret = -EAGAIN;
205 break;
208 if (signal_pending(current)) {
209 if (!ret)
210 ret = -ERESTARTSYS;
211 break;
214 if (do_wakeup) {
215 smp_mb();
216 if (waitqueue_active(&pipe->wait))
217 wake_up_interruptible_sync(&pipe->wait);
218 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
219 do_wakeup = 0;
222 pipe->waiting_writers++;
223 pipe_wait(pipe);
224 pipe->waiting_writers--;
227 if (pipe->inode)
228 mutex_unlock(&pipe->inode->i_mutex);
230 if (do_wakeup) {
231 smp_mb();
232 if (waitqueue_active(&pipe->wait))
233 wake_up_interruptible(&pipe->wait);
234 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 while (i < nr_pages)
238 page_cache_release(pages[i++]);
240 return ret;
243 static int
244 __generic_file_splice_read(struct file *in, loff_t *ppos,
245 struct pipe_inode_info *pipe, size_t len,
246 unsigned int flags)
248 struct address_space *mapping = in->f_mapping;
249 unsigned int loff, offset, nr_pages;
250 struct page *pages[PIPE_BUFFERS];
251 struct page *page;
252 pgoff_t index, end_index;
253 loff_t isize;
254 size_t bytes;
255 int i, error;
257 index = *ppos >> PAGE_CACHE_SHIFT;
258 loff = offset = *ppos & ~PAGE_CACHE_MASK;
259 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
261 if (nr_pages > PIPE_BUFFERS)
262 nr_pages = PIPE_BUFFERS;
265 * Initiate read-ahead on this page range. however, don't call into
266 * read-ahead if this is a non-zero offset (we are likely doing small
267 * chunk splice and the page is already there) for a single page.
269 if (!offset || nr_pages > 1)
270 do_page_cache_readahead(mapping, in, index, nr_pages);
273 * Now fill in the holes:
275 error = 0;
276 bytes = 0;
277 for (i = 0; i < nr_pages; i++, index++) {
278 find_page:
280 * lookup the page for this index
282 page = find_get_page(mapping, index);
283 if (!page) {
285 * page didn't exist, allocate one
287 page = page_cache_alloc_cold(mapping);
288 if (!page)
289 break;
291 error = add_to_page_cache_lru(page, mapping, index,
292 mapping_gfp_mask(mapping));
293 if (unlikely(error)) {
294 page_cache_release(page);
295 break;
298 goto readpage;
302 * If the page isn't uptodate, we may need to start io on it
304 if (!PageUptodate(page)) {
306 * If in nonblock mode then dont block on waiting
307 * for an in-flight io page
309 if (flags & SPLICE_F_NONBLOCK)
310 break;
312 lock_page(page);
315 * page was truncated, stop here. if this isn't the
316 * first page, we'll just complete what we already
317 * added
319 if (!page->mapping) {
320 unlock_page(page);
321 page_cache_release(page);
322 break;
325 * page was already under io and is now done, great
327 if (PageUptodate(page)) {
328 unlock_page(page);
329 goto fill_it;
332 readpage:
334 * need to read in the page
336 error = mapping->a_ops->readpage(in, page);
338 if (unlikely(error)) {
339 page_cache_release(page);
340 if (error == AOP_TRUNCATED_PAGE)
341 goto find_page;
342 break;
346 * i_size must be checked after ->readpage().
348 isize = i_size_read(mapping->host);
349 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
350 if (unlikely(!isize || index > end_index)) {
351 page_cache_release(page);
352 break;
356 * if this is the last page, see if we need to shrink
357 * the length and stop
359 if (end_index == index) {
360 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
361 if (bytes + loff > isize) {
362 page_cache_release(page);
363 break;
366 * force quit after adding this page
368 nr_pages = i;
371 fill_it:
372 pages[i] = page;
373 bytes += PAGE_CACHE_SIZE - loff;
374 loff = 0;
377 if (i)
378 return move_to_pipe(pipe, pages, i, bytes, offset, flags);
380 return error;
384 * generic_file_splice_read - splice data from file to a pipe
385 * @in: file to splice from
386 * @pipe: pipe to splice to
387 * @len: number of bytes to splice
388 * @flags: splice modifier flags
390 * Will read pages from given file and fill them into a pipe.
392 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
393 struct pipe_inode_info *pipe, size_t len,
394 unsigned int flags)
396 ssize_t spliced;
397 int ret;
399 ret = 0;
400 spliced = 0;
402 while (len) {
403 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
405 if (ret < 0)
406 break;
407 else if (!ret) {
408 if (spliced)
409 break;
410 if (flags & SPLICE_F_NONBLOCK) {
411 ret = -EAGAIN;
412 break;
416 *ppos += ret;
417 len -= ret;
418 spliced += ret;
421 if (spliced)
422 return spliced;
424 return ret;
427 EXPORT_SYMBOL(generic_file_splice_read);
430 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
431 * using sendpage().
433 static int pipe_to_sendpage(struct pipe_inode_info *info,
434 struct pipe_buffer *buf, struct splice_desc *sd)
436 struct file *file = sd->file;
437 loff_t pos = sd->pos;
438 unsigned int offset;
439 ssize_t ret;
440 void *ptr;
441 int more;
444 * Sub-optimal, but we are limited by the pipe ->map. We don't
445 * need a kmap'ed buffer here, we just want to make sure we
446 * have the page pinned if the pipe page originates from the
447 * page cache.
449 ptr = buf->ops->map(file, info, buf);
450 if (IS_ERR(ptr))
451 return PTR_ERR(ptr);
453 offset = pos & ~PAGE_CACHE_MASK;
454 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
456 ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,more);
458 buf->ops->unmap(info, buf);
459 if (ret == sd->len)
460 return 0;
462 return -EIO;
466 * This is a little more tricky than the file -> pipe splicing. There are
467 * basically three cases:
469 * - Destination page already exists in the address space and there
470 * are users of it. For that case we have no other option that
471 * copying the data. Tough luck.
472 * - Destination page already exists in the address space, but there
473 * are no users of it. Make sure it's uptodate, then drop it. Fall
474 * through to last case.
475 * - Destination page does not exist, we can add the pipe page to
476 * the page cache and avoid the copy.
478 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
479 * sd->flags), we attempt to migrate pages from the pipe to the output
480 * file address space page cache. This is possible if no one else has
481 * the pipe page referenced outside of the pipe and page cache. If
482 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
483 * a new page in the output file page cache and fill/dirty that.
485 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
486 struct splice_desc *sd)
488 struct file *file = sd->file;
489 struct address_space *mapping = file->f_mapping;
490 gfp_t gfp_mask = mapping_gfp_mask(mapping);
491 unsigned int offset;
492 struct page *page;
493 pgoff_t index;
494 char *src;
495 int ret;
498 * make sure the data in this buffer is uptodate
500 src = buf->ops->map(file, info, buf);
501 if (IS_ERR(src))
502 return PTR_ERR(src);
504 index = sd->pos >> PAGE_CACHE_SHIFT;
505 offset = sd->pos & ~PAGE_CACHE_MASK;
508 * Reuse buf page, if SPLICE_F_MOVE is set.
510 if (sd->flags & SPLICE_F_MOVE) {
512 * If steal succeeds, buf->page is now pruned from the vm
513 * side (LRU and page cache) and we can reuse it. The page
514 * will also be looked on successful return.
516 if (buf->ops->steal(info, buf))
517 goto find_page;
519 page = buf->page;
520 if (add_to_page_cache(page, mapping, index, gfp_mask))
521 goto find_page;
523 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
524 lru_cache_add(page);
525 } else {
526 find_page:
527 page = find_lock_page(mapping, index);
528 if (!page) {
529 ret = -ENOMEM;
530 page = page_cache_alloc_cold(mapping);
531 if (unlikely(!page))
532 goto out_nomem;
535 * This will also lock the page
537 ret = add_to_page_cache_lru(page, mapping, index,
538 gfp_mask);
539 if (unlikely(ret))
540 goto out;
544 * We get here with the page locked. If the page is also
545 * uptodate, we don't need to do more. If it isn't, we
546 * may need to bring it in if we are not going to overwrite
547 * the full page.
549 if (!PageUptodate(page)) {
550 if (sd->len < PAGE_CACHE_SIZE) {
551 ret = mapping->a_ops->readpage(file, page);
552 if (unlikely(ret))
553 goto out;
555 lock_page(page);
557 if (!PageUptodate(page)) {
559 * Page got invalidated, repeat.
561 if (!page->mapping) {
562 unlock_page(page);
563 page_cache_release(page);
564 goto find_page;
566 ret = -EIO;
567 goto out;
569 } else
570 SetPageUptodate(page);
574 ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
575 if (ret == AOP_TRUNCATED_PAGE) {
576 page_cache_release(page);
577 goto find_page;
578 } else if (ret)
579 goto out;
581 if (!(buf->flags & PIPE_BUF_FLAG_STOLEN)) {
582 char *dst = kmap_atomic(page, KM_USER0);
584 memcpy(dst + offset, src + buf->offset, sd->len);
585 flush_dcache_page(page);
586 kunmap_atomic(dst, KM_USER0);
589 ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
590 if (ret == AOP_TRUNCATED_PAGE) {
591 page_cache_release(page);
592 goto find_page;
593 } else if (ret)
594 goto out;
596 mark_page_accessed(page);
597 balance_dirty_pages_ratelimited(mapping);
598 out:
599 if (!(buf->flags & PIPE_BUF_FLAG_STOLEN))
600 page_cache_release(page);
602 unlock_page(page);
603 out_nomem:
604 buf->ops->unmap(info, buf);
605 return ret;
608 typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
609 struct splice_desc *);
612 * Pipe input worker. Most of this logic works like a regular pipe, the
613 * key here is the 'actor' worker passed in that actually moves the data
614 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
616 static ssize_t move_from_pipe(struct pipe_inode_info *pipe, struct file *out,
617 loff_t *ppos, size_t len, unsigned int flags,
618 splice_actor *actor)
620 int ret, do_wakeup, err;
621 struct splice_desc sd;
623 ret = 0;
624 do_wakeup = 0;
626 sd.total_len = len;
627 sd.flags = flags;
628 sd.file = out;
629 sd.pos = *ppos;
631 if (pipe->inode)
632 mutex_lock(&pipe->inode->i_mutex);
634 for (;;) {
635 if (pipe->nrbufs) {
636 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
637 struct pipe_buf_operations *ops = buf->ops;
639 sd.len = buf->len;
640 if (sd.len > sd.total_len)
641 sd.len = sd.total_len;
643 err = actor(pipe, buf, &sd);
644 if (err) {
645 if (!ret && err != -ENODATA)
646 ret = err;
648 break;
651 ret += sd.len;
652 buf->offset += sd.len;
653 buf->len -= sd.len;
655 if (!buf->len) {
656 buf->ops = NULL;
657 ops->release(pipe, buf);
658 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
659 pipe->nrbufs--;
660 if (pipe->inode)
661 do_wakeup = 1;
664 sd.pos += sd.len;
665 sd.total_len -= sd.len;
666 if (!sd.total_len)
667 break;
670 if (pipe->nrbufs)
671 continue;
672 if (!pipe->writers)
673 break;
674 if (!pipe->waiting_writers) {
675 if (ret)
676 break;
679 if (flags & SPLICE_F_NONBLOCK) {
680 if (!ret)
681 ret = -EAGAIN;
682 break;
685 if (signal_pending(current)) {
686 if (!ret)
687 ret = -ERESTARTSYS;
688 break;
691 if (do_wakeup) {
692 smp_mb();
693 if (waitqueue_active(&pipe->wait))
694 wake_up_interruptible_sync(&pipe->wait);
695 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
696 do_wakeup = 0;
699 pipe_wait(pipe);
702 if (pipe->inode)
703 mutex_unlock(&pipe->inode->i_mutex);
705 if (do_wakeup) {
706 smp_mb();
707 if (waitqueue_active(&pipe->wait))
708 wake_up_interruptible(&pipe->wait);
709 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
712 return ret;
716 * generic_file_splice_write - splice data from a pipe to a file
717 * @pipe: pipe info
718 * @out: file to write to
719 * @len: number of bytes to splice
720 * @flags: splice modifier flags
722 * Will either move or copy pages (determined by @flags options) from
723 * the given pipe inode to the given file.
726 ssize_t
727 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
728 loff_t *ppos, size_t len, unsigned int flags)
730 struct address_space *mapping = out->f_mapping;
731 ssize_t ret;
733 ret = move_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
734 if (ret > 0) {
735 struct inode *inode = mapping->host;
737 *ppos += ret;
740 * If file or inode is SYNC and we actually wrote some data,
741 * sync it.
743 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
744 int err;
746 mutex_lock(&inode->i_mutex);
747 err = generic_osync_inode(inode, mapping,
748 OSYNC_METADATA|OSYNC_DATA);
749 mutex_unlock(&inode->i_mutex);
751 if (err)
752 ret = err;
756 return ret;
759 EXPORT_SYMBOL(generic_file_splice_write);
762 * generic_splice_sendpage - splice data from a pipe to a socket
763 * @inode: pipe inode
764 * @out: socket to write to
765 * @len: number of bytes to splice
766 * @flags: splice modifier flags
768 * Will send @len bytes from the pipe to a network socket. No data copying
769 * is involved.
772 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
773 loff_t *ppos, size_t len, unsigned int flags)
775 return move_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
778 EXPORT_SYMBOL(generic_splice_sendpage);
781 * Attempt to initiate a splice from pipe to file.
783 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
784 loff_t *ppos, size_t len, unsigned int flags)
786 int ret;
788 if (unlikely(!out->f_op || !out->f_op->splice_write))
789 return -EINVAL;
791 if (unlikely(!(out->f_mode & FMODE_WRITE)))
792 return -EBADF;
794 ret = rw_verify_area(WRITE, out, ppos, len);
795 if (unlikely(ret < 0))
796 return ret;
798 return out->f_op->splice_write(pipe, out, ppos, len, flags);
802 * Attempt to initiate a splice from a file to a pipe.
804 static long do_splice_to(struct file *in, loff_t *ppos,
805 struct pipe_inode_info *pipe, size_t len,
806 unsigned int flags)
808 loff_t isize, left;
809 int ret;
811 if (unlikely(!in->f_op || !in->f_op->splice_read))
812 return -EINVAL;
814 if (unlikely(!(in->f_mode & FMODE_READ)))
815 return -EBADF;
817 ret = rw_verify_area(READ, in, ppos, len);
818 if (unlikely(ret < 0))
819 return ret;
821 isize = i_size_read(in->f_mapping->host);
822 if (unlikely(*ppos >= isize))
823 return 0;
825 left = isize - *ppos;
826 if (unlikely(left < len))
827 len = left;
829 return in->f_op->splice_read(in, ppos, pipe, len, flags);
832 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
833 size_t len, unsigned int flags)
835 struct pipe_inode_info *pipe;
836 long ret, bytes;
837 loff_t out_off;
838 umode_t i_mode;
839 int i;
842 * We require the input being a regular file, as we don't want to
843 * randomly drop data for eg socket -> socket splicing. Use the
844 * piped splicing for that!
846 i_mode = in->f_dentry->d_inode->i_mode;
847 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
848 return -EINVAL;
851 * neither in nor out is a pipe, setup an internal pipe attached to
852 * 'out' and transfer the wanted data from 'in' to 'out' through that
854 pipe = current->splice_pipe;
855 if (unlikely(!pipe)) {
856 pipe = alloc_pipe_info(NULL);
857 if (!pipe)
858 return -ENOMEM;
861 * We don't have an immediate reader, but we'll read the stuff
862 * out of the pipe right after the move_to_pipe(). So set
863 * PIPE_READERS appropriately.
865 pipe->readers = 1;
867 current->splice_pipe = pipe;
871 * Do the splice.
873 ret = 0;
874 bytes = 0;
875 out_off = 0;
877 while (len) {
878 size_t read_len, max_read_len;
881 * Do at most PIPE_BUFFERS pages worth of transfer:
883 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
885 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
886 if (unlikely(ret < 0))
887 goto out_release;
889 read_len = ret;
892 * NOTE: nonblocking mode only applies to the input. We
893 * must not do the output in nonblocking mode as then we
894 * could get stuck data in the internal pipe:
896 ret = do_splice_from(pipe, out, &out_off, read_len,
897 flags & ~SPLICE_F_NONBLOCK);
898 if (unlikely(ret < 0))
899 goto out_release;
901 bytes += ret;
902 len -= ret;
905 * In nonblocking mode, if we got back a short read then
906 * that was due to either an IO error or due to the
907 * pagecache entry not being there. In the IO error case
908 * the _next_ splice attempt will produce a clean IO error
909 * return value (not a short read), so in both cases it's
910 * correct to break out of the loop here:
912 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
913 break;
916 pipe->nrbufs = pipe->curbuf = 0;
918 return bytes;
920 out_release:
922 * If we did an incomplete transfer we must release
923 * the pipe buffers in question:
925 for (i = 0; i < PIPE_BUFFERS; i++) {
926 struct pipe_buffer *buf = pipe->bufs + i;
928 if (buf->ops) {
929 buf->ops->release(pipe, buf);
930 buf->ops = NULL;
933 pipe->nrbufs = pipe->curbuf = 0;
936 * If we transferred some data, return the number of bytes:
938 if (bytes > 0)
939 return bytes;
941 return ret;
944 EXPORT_SYMBOL(do_splice_direct);
947 * Determine where to splice to/from.
949 static long do_splice(struct file *in, loff_t __user *off_in,
950 struct file *out, loff_t __user *off_out,
951 size_t len, unsigned int flags)
953 struct pipe_inode_info *pipe;
954 loff_t offset, *off;
955 long ret;
957 pipe = in->f_dentry->d_inode->i_pipe;
958 if (pipe) {
959 if (off_in)
960 return -ESPIPE;
961 if (off_out) {
962 if (out->f_op->llseek == no_llseek)
963 return -EINVAL;
964 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
965 return -EFAULT;
966 off = &offset;
967 } else
968 off = &out->f_pos;
970 ret = do_splice_from(pipe, out, off, len, flags);
972 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
973 ret = -EFAULT;
975 return ret;
978 pipe = out->f_dentry->d_inode->i_pipe;
979 if (pipe) {
980 if (off_out)
981 return -ESPIPE;
982 if (off_in) {
983 if (in->f_op->llseek == no_llseek)
984 return -EINVAL;
985 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
986 return -EFAULT;
987 off = &offset;
988 } else
989 off = &in->f_pos;
991 ret = do_splice_to(in, off, pipe, len, flags);
993 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
994 ret = -EFAULT;
996 return ret;
999 return -EINVAL;
1002 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1003 int fd_out, loff_t __user *off_out,
1004 size_t len, unsigned int flags)
1006 long error;
1007 struct file *in, *out;
1008 int fput_in, fput_out;
1010 if (unlikely(!len))
1011 return 0;
1013 error = -EBADF;
1014 in = fget_light(fd_in, &fput_in);
1015 if (in) {
1016 if (in->f_mode & FMODE_READ) {
1017 out = fget_light(fd_out, &fput_out);
1018 if (out) {
1019 if (out->f_mode & FMODE_WRITE)
1020 error = do_splice(in, off_in,
1021 out, off_out,
1022 len, flags);
1023 fput_light(out, fput_out);
1027 fput_light(in, fput_in);
1030 return error;
1034 * Link contents of ipipe to opipe.
1036 static int link_pipe(struct pipe_inode_info *ipipe,
1037 struct pipe_inode_info *opipe,
1038 size_t len, unsigned int flags)
1040 struct pipe_buffer *ibuf, *obuf;
1041 int ret, do_wakeup, i, ipipe_first;
1043 ret = do_wakeup = ipipe_first = 0;
1046 * Potential ABBA deadlock, work around it by ordering lock
1047 * grabbing by inode address. Otherwise two different processes
1048 * could deadlock (one doing tee from A -> B, the other from B -> A).
1050 if (ipipe->inode < opipe->inode) {
1051 ipipe_first = 1;
1052 mutex_lock(&ipipe->inode->i_mutex);
1053 mutex_lock(&opipe->inode->i_mutex);
1054 } else {
1055 mutex_lock(&opipe->inode->i_mutex);
1056 mutex_lock(&ipipe->inode->i_mutex);
1059 for (i = 0;; i++) {
1060 if (!opipe->readers) {
1061 send_sig(SIGPIPE, current, 0);
1062 if (!ret)
1063 ret = -EPIPE;
1064 break;
1066 if (ipipe->nrbufs - i) {
1067 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1070 * If we have room, fill this buffer
1072 if (opipe->nrbufs < PIPE_BUFFERS) {
1073 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1076 * Get a reference to this pipe buffer,
1077 * so we can copy the contents over.
1079 ibuf->ops->get(ipipe, ibuf);
1081 obuf = opipe->bufs + nbuf;
1082 *obuf = *ibuf;
1084 if (obuf->len > len)
1085 obuf->len = len;
1087 opipe->nrbufs++;
1088 do_wakeup = 1;
1089 ret += obuf->len;
1090 len -= obuf->len;
1092 if (!len)
1093 break;
1094 if (opipe->nrbufs < PIPE_BUFFERS)
1095 continue;
1099 * We have input available, but no output room.
1100 * If we already copied data, return that. If we
1101 * need to drop the opipe lock, it must be ordered
1102 * last to avoid deadlocks.
1104 if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1105 if (!ret)
1106 ret = -EAGAIN;
1107 break;
1109 if (signal_pending(current)) {
1110 if (!ret)
1111 ret = -ERESTARTSYS;
1112 break;
1114 if (do_wakeup) {
1115 smp_mb();
1116 if (waitqueue_active(&opipe->wait))
1117 wake_up_interruptible(&opipe->wait);
1118 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1119 do_wakeup = 0;
1122 opipe->waiting_writers++;
1123 pipe_wait(opipe);
1124 opipe->waiting_writers--;
1125 continue;
1129 * No input buffers, do the usual checks for available
1130 * writers and blocking and wait if necessary
1132 if (!ipipe->writers)
1133 break;
1134 if (!ipipe->waiting_writers) {
1135 if (ret)
1136 break;
1139 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1140 * with another process, we can only safely do that if
1141 * the ipipe lock is ordered last.
1143 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1144 if (!ret)
1145 ret = -EAGAIN;
1146 break;
1148 if (signal_pending(current)) {
1149 if (!ret)
1150 ret = -ERESTARTSYS;
1151 break;
1154 if (waitqueue_active(&ipipe->wait))
1155 wake_up_interruptible_sync(&ipipe->wait);
1156 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1158 pipe_wait(ipipe);
1161 mutex_unlock(&ipipe->inode->i_mutex);
1162 mutex_unlock(&opipe->inode->i_mutex);
1164 if (do_wakeup) {
1165 smp_mb();
1166 if (waitqueue_active(&opipe->wait))
1167 wake_up_interruptible(&opipe->wait);
1168 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1171 return ret;
1175 * This is a tee(1) implementation that works on pipes. It doesn't copy
1176 * any data, it simply references the 'in' pages on the 'out' pipe.
1177 * The 'flags' used are the SPLICE_F_* variants, currently the only
1178 * applicable one is SPLICE_F_NONBLOCK.
1180 static long do_tee(struct file *in, struct file *out, size_t len,
1181 unsigned int flags)
1183 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1184 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1187 * Link ipipe to the two output pipes, consuming as we go along.
1189 if (ipipe && opipe)
1190 return link_pipe(ipipe, opipe, len, flags);
1192 return -EINVAL;
1195 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1197 struct file *in;
1198 int error, fput_in;
1200 if (unlikely(!len))
1201 return 0;
1203 error = -EBADF;
1204 in = fget_light(fdin, &fput_in);
1205 if (in) {
1206 if (in->f_mode & FMODE_READ) {
1207 int fput_out;
1208 struct file *out = fget_light(fdout, &fput_out);
1210 if (out) {
1211 if (out->f_mode & FMODE_WRITE)
1212 error = do_tee(in, out, len, flags);
1213 fput_light(out, fput_out);
1216 fput_light(in, fput_in);
1219 return error;