3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap
, int bits
)
43 int k
, lim
= bits
/BITS_PER_LONG
;
44 for (k
= 0; k
< lim
; ++k
)
48 if (bits
% BITS_PER_LONG
)
49 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
54 EXPORT_SYMBOL(__bitmap_empty
);
56 int __bitmap_full(const unsigned long *bitmap
, int bits
)
58 int k
, lim
= bits
/BITS_PER_LONG
;
59 for (k
= 0; k
< lim
; ++k
)
63 if (bits
% BITS_PER_LONG
)
64 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
69 EXPORT_SYMBOL(__bitmap_full
);
71 int __bitmap_equal(const unsigned long *bitmap1
,
72 const unsigned long *bitmap2
, int bits
)
74 int k
, lim
= bits
/BITS_PER_LONG
;
75 for (k
= 0; k
< lim
; ++k
)
76 if (bitmap1
[k
] != bitmap2
[k
])
79 if (bits
% BITS_PER_LONG
)
80 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
85 EXPORT_SYMBOL(__bitmap_equal
);
87 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, int bits
)
89 int k
, lim
= bits
/BITS_PER_LONG
;
90 for (k
= 0; k
< lim
; ++k
)
93 if (bits
% BITS_PER_LONG
)
94 dst
[k
] = ~src
[k
] & BITMAP_LAST_WORD_MASK(bits
);
96 EXPORT_SYMBOL(__bitmap_complement
);
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst - destination bitmap
101 * @src - source bitmap
102 * @nbits - shift by this many bits
103 * @bits - bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst
,
110 const unsigned long *src
, int shift
, int bits
)
112 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
113 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
114 unsigned long mask
= (1UL << left
) - 1;
115 for (k
= 0; off
+ k
< lim
; ++k
) {
116 unsigned long upper
, lower
;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem
|| off
+ k
+ 1 >= lim
)
125 upper
= src
[off
+ k
+ 1];
126 if (off
+ k
+ 1 == lim
- 1 && left
)
129 lower
= src
[off
+ k
];
130 if (left
&& off
+ k
== lim
- 1)
132 dst
[k
] = upper
<< (BITS_PER_LONG
- rem
) | lower
>> rem
;
133 if (left
&& k
== lim
- 1)
137 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right
);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst - destination bitmap
145 * @src - source bitmap
146 * @nbits - shift by this many bits
147 * @bits - bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst
,
155 const unsigned long *src
, int shift
, int bits
)
157 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
158 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
159 for (k
= lim
- off
- 1; k
>= 0; --k
) {
160 unsigned long upper
, lower
;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
171 if (left
&& k
== lim
- 1)
172 upper
&= (1UL << left
) - 1;
173 dst
[k
+ off
] = lower
>> (BITS_PER_LONG
- rem
) | upper
<< rem
;
174 if (left
&& k
+ off
== lim
- 1)
175 dst
[k
+ off
] &= (1UL << left
) - 1;
178 memset(dst
, 0, off
*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left
);
182 void __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
183 const unsigned long *bitmap2
, int bits
)
186 int nr
= BITS_TO_LONGS(bits
);
188 for (k
= 0; k
< nr
; k
++)
189 dst
[k
] = bitmap1
[k
] & bitmap2
[k
];
191 EXPORT_SYMBOL(__bitmap_and
);
193 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
194 const unsigned long *bitmap2
, int bits
)
197 int nr
= BITS_TO_LONGS(bits
);
199 for (k
= 0; k
< nr
; k
++)
200 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
202 EXPORT_SYMBOL(__bitmap_or
);
204 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
205 const unsigned long *bitmap2
, int bits
)
208 int nr
= BITS_TO_LONGS(bits
);
210 for (k
= 0; k
< nr
; k
++)
211 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
213 EXPORT_SYMBOL(__bitmap_xor
);
215 void __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
216 const unsigned long *bitmap2
, int bits
)
219 int nr
= BITS_TO_LONGS(bits
);
221 for (k
= 0; k
< nr
; k
++)
222 dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
];
224 EXPORT_SYMBOL(__bitmap_andnot
);
226 int __bitmap_intersects(const unsigned long *bitmap1
,
227 const unsigned long *bitmap2
, int bits
)
229 int k
, lim
= bits
/BITS_PER_LONG
;
230 for (k
= 0; k
< lim
; ++k
)
231 if (bitmap1
[k
] & bitmap2
[k
])
234 if (bits
% BITS_PER_LONG
)
235 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
239 EXPORT_SYMBOL(__bitmap_intersects
);
241 int __bitmap_subset(const unsigned long *bitmap1
,
242 const unsigned long *bitmap2
, int bits
)
244 int k
, lim
= bits
/BITS_PER_LONG
;
245 for (k
= 0; k
< lim
; ++k
)
246 if (bitmap1
[k
] & ~bitmap2
[k
])
249 if (bits
% BITS_PER_LONG
)
250 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
254 EXPORT_SYMBOL(__bitmap_subset
);
256 #if BITS_PER_LONG == 32
257 int __bitmap_weight(const unsigned long *bitmap
, int bits
)
259 int k
, w
= 0, lim
= bits
/BITS_PER_LONG
;
261 for (k
= 0; k
< lim
; k
++)
262 w
+= hweight32(bitmap
[k
]);
264 if (bits
% BITS_PER_LONG
)
265 w
+= hweight32(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
270 int __bitmap_weight(const unsigned long *bitmap
, int bits
)
272 int k
, w
= 0, lim
= bits
/BITS_PER_LONG
;
274 for (k
= 0; k
< lim
; k
++)
275 w
+= hweight64(bitmap
[k
]);
277 if (bits
% BITS_PER_LONG
)
278 w
+= hweight64(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
283 EXPORT_SYMBOL(__bitmap_weight
);
286 * Bitmap printing & parsing functions: first version by Bill Irwin,
287 * second version by Paul Jackson, third by Joe Korty.
291 #define nbits_to_hold_value(val) fls(val)
292 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
293 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
296 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
297 * @buf: byte buffer into which string is placed
298 * @buflen: reserved size of @buf, in bytes
299 * @maskp: pointer to bitmap to convert
300 * @nmaskbits: size of bitmap, in bits
302 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
303 * comma-separated sets of eight digits per set.
305 int bitmap_scnprintf(char *buf
, unsigned int buflen
,
306 const unsigned long *maskp
, int nmaskbits
)
308 int i
, word
, bit
, len
= 0;
310 const char *sep
= "";
314 chunksz
= nmaskbits
& (CHUNKSZ
- 1);
318 i
= ALIGN(nmaskbits
, CHUNKSZ
) - CHUNKSZ
;
319 for (; i
>= 0; i
-= CHUNKSZ
) {
320 chunkmask
= ((1ULL << chunksz
) - 1);
321 word
= i
/ BITS_PER_LONG
;
322 bit
= i
% BITS_PER_LONG
;
323 val
= (maskp
[word
] >> bit
) & chunkmask
;
324 len
+= scnprintf(buf
+len
, buflen
-len
, "%s%0*lx", sep
,
331 EXPORT_SYMBOL(bitmap_scnprintf
);
334 * bitmap_parse - convert an ASCII hex string into a bitmap.
335 * @buf: pointer to buffer in user space containing string.
336 * @buflen: buffer size in bytes. If string is smaller than this
337 * then it must be terminated with a \0.
338 * @maskp: pointer to bitmap array that will contain result.
339 * @nmaskbits: size of bitmap, in bits.
341 * Commas group hex digits into chunks. Each chunk defines exactly 32
342 * bits of the resultant bitmask. No chunk may specify a value larger
343 * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value
344 * then leading 0-bits are prepended. -EINVAL is returned for illegal
345 * characters and for grouping errors such as "1,,5", ",44", "," and "".
346 * Leading and trailing whitespace accepted, but not embedded whitespace.
348 int bitmap_parse(const char __user
*ubuf
, unsigned int ubuflen
,
349 unsigned long *maskp
, int nmaskbits
)
351 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
354 bitmap_zero(maskp
, nmaskbits
);
356 nchunks
= nbits
= totaldigits
= c
= 0;
360 /* Get the next chunk of the bitmap */
363 if (get_user(c
, ubuf
++))
370 * If the last character was a space and the current
371 * character isn't '\0', we've got embedded whitespace.
372 * This is a no-no, so throw an error.
374 if (totaldigits
&& c
&& isspace(old_c
))
377 /* A '\0' or a ',' signal the end of the chunk */
378 if (c
== '\0' || c
== ',')
385 * Make sure there are at least 4 free bits in 'chunk'.
386 * If not, this hexdigit will overflow 'chunk', so
389 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
392 chunk
= (chunk
<< 4) | unhex(c
);
393 ndigits
++; totaldigits
++;
397 if (nchunks
== 0 && chunk
== 0)
400 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
403 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
404 if (nbits
> nmaskbits
)
406 } while (ubuflen
&& c
== ',');
410 EXPORT_SYMBOL(bitmap_parse
);
413 * bscnl_emit(buf, buflen, rbot, rtop, bp)
415 * Helper routine for bitmap_scnlistprintf(). Write decimal number
416 * or range to buf, suppressing output past buf+buflen, with optional
417 * comma-prefix. Return len of what would be written to buf, if it
420 static inline int bscnl_emit(char *buf
, int buflen
, int rbot
, int rtop
, int len
)
423 len
+= scnprintf(buf
+ len
, buflen
- len
, ",");
425 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d", rbot
);
427 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d-%d", rbot
, rtop
);
432 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
433 * @buf: byte buffer into which string is placed
434 * @buflen: reserved size of @buf, in bytes
435 * @maskp: pointer to bitmap to convert
436 * @nmaskbits: size of bitmap, in bits
438 * Output format is a comma-separated list of decimal numbers and
439 * ranges. Consecutively set bits are shown as two hyphen-separated
440 * decimal numbers, the smallest and largest bit numbers set in
441 * the range. Output format is compatible with the format
442 * accepted as input by bitmap_parselist().
444 * The return value is the number of characters which would be
445 * generated for the given input, excluding the trailing '\0', as
448 int bitmap_scnlistprintf(char *buf
, unsigned int buflen
,
449 const unsigned long *maskp
, int nmaskbits
)
452 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
455 rbot
= cur
= find_first_bit(maskp
, nmaskbits
);
456 while (cur
< nmaskbits
) {
458 cur
= find_next_bit(maskp
, nmaskbits
, cur
+1);
459 if (cur
>= nmaskbits
|| cur
> rtop
+ 1) {
460 len
= bscnl_emit(buf
, buflen
, rbot
, rtop
, len
);
466 EXPORT_SYMBOL(bitmap_scnlistprintf
);
469 * bitmap_parselist - convert list format ASCII string to bitmap
470 * @buf: read nul-terminated user string from this buffer
471 * @mask: write resulting mask here
472 * @nmaskbits: number of bits in mask to be written
474 * Input format is a comma-separated list of decimal numbers and
475 * ranges. Consecutively set bits are shown as two hyphen-separated
476 * decimal numbers, the smallest and largest bit numbers set in
479 * Returns 0 on success, -errno on invalid input strings:
480 * -EINVAL: second number in range smaller than first
481 * -EINVAL: invalid character in string
482 * -ERANGE: bit number specified too large for mask
484 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
488 bitmap_zero(maskp
, nmaskbits
);
492 b
= a
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
497 b
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
509 } while (*bp
!= '\0' && *bp
!= '\n');
512 EXPORT_SYMBOL(bitmap_parselist
);
515 * bitmap_pos_to_ord(buf, pos, bits)
516 * @buf: pointer to a bitmap
517 * @pos: a bit position in @buf (0 <= @pos < @bits)
518 * @bits: number of valid bit positions in @buf
520 * Map the bit at position @pos in @buf (of length @bits) to the
521 * ordinal of which set bit it is. If it is not set or if @pos
522 * is not a valid bit position, map to zero (0).
524 * If for example, just bits 4 through 7 are set in @buf, then @pos
525 * values 4 through 7 will get mapped to 0 through 3, respectively,
526 * and other @pos values will get mapped to 0. When @pos value 7
527 * gets mapped to (returns) @ord value 3 in this example, that means
528 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
530 * The bit positions 0 through @bits are valid positions in @buf.
532 static int bitmap_pos_to_ord(const unsigned long *buf
, int pos
, int bits
)
536 if (pos
>= 0 && pos
< bits
) {
539 for (i
= find_first_bit(buf
, bits
);
541 i
= find_next_bit(buf
, bits
, i
+ 1))
550 * bitmap_ord_to_pos(buf, ord, bits)
551 * @buf: pointer to bitmap
552 * @ord: ordinal bit position (n-th set bit, n >= 0)
553 * @bits: number of valid bit positions in @buf
555 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
556 * If @ord is not the ordinal offset of a set bit in @buf, map to zero (0).
558 * If for example, just bits 4 through 7 are set in @buf, then @ord
559 * values 0 through 3 will get mapped to 4 through 7, respectively,
560 * and all other @ord valuds will get mapped to 0. When @ord value 3
561 * gets mapped to (returns) @pos value 7 in this example, that means
562 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
564 * The bit positions 0 through @bits are valid positions in @buf.
566 static int bitmap_ord_to_pos(const unsigned long *buf
, int ord
, int bits
)
570 if (ord
>= 0 && ord
< bits
) {
573 for (i
= find_first_bit(buf
, bits
);
575 i
= find_next_bit(buf
, bits
, i
+ 1))
577 if (i
< bits
&& ord
== 0)
585 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
586 * @src: subset to be remapped
587 * @dst: remapped result
588 * @old: defines domain of map
589 * @new: defines range of map
590 * @bits: number of bits in each of these bitmaps
592 * Let @old and @new define a mapping of bit positions, such that
593 * whatever position is held by the n-th set bit in @old is mapped
594 * to the n-th set bit in @new. In the more general case, allowing
595 * for the possibility that the weight 'w' of @new is less than the
596 * weight of @old, map the position of the n-th set bit in @old to
597 * the position of the m-th set bit in @new, where m == n % w.
599 * If either of the @old and @new bitmaps are empty, or if@src and @dst
600 * point to the same location, then this routine does nothing.
602 * The positions of unset bits in @old are mapped to the position of
603 * the first set bit in @new.
605 * Apply the above specified mapping to @src, placing the result in
606 * @dst, clearing any bits previously set in @dst.
608 * The resulting value of @dst will have either the same weight as
609 * @src, or less weight in the general case that the mapping wasn't
610 * injective due to the weight of @new being less than that of @old.
611 * The resulting value of @dst will never have greater weight than
612 * that of @src, except perhaps in the case that one of the above
613 * conditions was not met and this routine just returned.
615 * For example, lets say that @old has bits 4 through 7 set, and
616 * @new has bits 12 through 15 set. This defines the mapping of bit
617 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
618 * bit positions to 12 (the first set bit in @new. So if say @src
619 * comes into this routine with bits 1, 5 and 7 set, then @dst should
620 * leave with bits 12, 13 and 15 set.
622 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
623 const unsigned long *old
, const unsigned long *new,
628 if (bitmap_weight(old
, bits
) == 0)
630 if (bitmap_weight(new, bits
) == 0)
632 if (dst
== src
) /* following doesn't handle inplace remaps */
635 bitmap_zero(dst
, bits
);
636 for (s
= find_first_bit(src
, bits
);
638 s
= find_next_bit(src
, bits
, s
+ 1)) {
639 int x
= bitmap_pos_to_ord(old
, s
, bits
);
640 int y
= bitmap_ord_to_pos(new, x
, bits
);
644 EXPORT_SYMBOL(bitmap_remap
);
647 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
648 * @oldbit - bit position to be mapped
649 * @old: defines domain of map
650 * @new: defines range of map
651 * @bits: number of bits in each of these bitmaps
653 * Let @old and @new define a mapping of bit positions, such that
654 * whatever position is held by the n-th set bit in @old is mapped
655 * to the n-th set bit in @new. In the more general case, allowing
656 * for the possibility that the weight 'w' of @new is less than the
657 * weight of @old, map the position of the n-th set bit in @old to
658 * the position of the m-th set bit in @new, where m == n % w.
660 * The positions of unset bits in @old are mapped to the position of
661 * the first set bit in @new.
663 * Apply the above specified mapping to bit position @oldbit, returning
664 * the new bit position.
666 * For example, lets say that @old has bits 4 through 7 set, and
667 * @new has bits 12 through 15 set. This defines the mapping of bit
668 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
669 * bit positions to 12 (the first set bit in @new. So if say @oldbit
670 * is 5, then this routine returns 13.
672 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
673 const unsigned long *new, int bits
)
675 int x
= bitmap_pos_to_ord(old
, oldbit
, bits
);
676 return bitmap_ord_to_pos(new, x
, bits
);
678 EXPORT_SYMBOL(bitmap_bitremap
);
681 * bitmap_find_free_region - find a contiguous aligned mem region
682 * @bitmap: an array of unsigned longs corresponding to the bitmap
683 * @bits: number of bits in the bitmap
684 * @order: region size to find (size is actually 1<<order)
686 * This is used to allocate a memory region from a bitmap. The idea is
687 * that the region has to be 1<<order sized and 1<<order aligned (this
688 * makes the search algorithm much faster).
690 * The region is marked as set bits in the bitmap if a free one is
693 * Returns either beginning of region or negative error
695 int bitmap_find_free_region(unsigned long *bitmap
, int bits
, int order
)
698 int pages
= 1 << order
;
701 if(pages
> BITS_PER_LONG
)
704 /* make a mask of the order */
705 mask
= (1ul << (pages
- 1));
708 /* run up the bitmap pages bits at a time */
709 for (i
= 0; i
< bits
; i
+= pages
) {
710 int index
= i
/BITS_PER_LONG
;
711 int offset
= i
- (index
* BITS_PER_LONG
);
712 if((bitmap
[index
] & (mask
<< offset
)) == 0) {
713 /* set region in bimap */
714 bitmap
[index
] |= (mask
<< offset
);
720 EXPORT_SYMBOL(bitmap_find_free_region
);
723 * bitmap_release_region - release allocated bitmap region
724 * @bitmap: a pointer to the bitmap
725 * @pos: the beginning of the region
726 * @order: the order of the bits to release (number is 1<<order)
728 * This is the complement to __bitmap_find_free_region and releases
729 * the found region (by clearing it in the bitmap).
731 void bitmap_release_region(unsigned long *bitmap
, int pos
, int order
)
733 int pages
= 1 << order
;
734 unsigned long mask
= (1ul << (pages
- 1));
735 int index
= pos
/BITS_PER_LONG
;
736 int offset
= pos
- (index
* BITS_PER_LONG
);
738 bitmap
[index
] &= ~(mask
<< offset
);
740 EXPORT_SYMBOL(bitmap_release_region
);
742 int bitmap_allocate_region(unsigned long *bitmap
, int pos
, int order
)
744 int pages
= 1 << order
;
745 unsigned long mask
= (1ul << (pages
- 1));
746 int index
= pos
/BITS_PER_LONG
;
747 int offset
= pos
- (index
* BITS_PER_LONG
);
749 /* We don't do regions of pages > BITS_PER_LONG. The
750 * algorithm would be a simple look for multiple zeros in the
751 * array, but there's no driver today that needs this. If you
752 * trip this BUG(), you get to code it... */
753 BUG_ON(pages
> BITS_PER_LONG
);
755 if (bitmap
[index
] & (mask
<< offset
))
757 bitmap
[index
] |= (mask
<< offset
);
760 EXPORT_SYMBOL(bitmap_allocate_region
);