ACPI: basic initramfs DSDT override support
[linux-2.6/mini2440.git] / ipc / sem.c
blobd65e285b7e309de03d68cbef348929d0b23f961f
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
86 #include <asm/uaccess.h>
87 #include "util.h"
89 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
91 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
92 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
93 #define sem_buildid(id, seq) ipc_buildid(id, seq)
95 static struct ipc_ids init_sem_ids;
97 static int newary(struct ipc_namespace *, struct ipc_params *);
98 static void freeary(struct ipc_namespace *, struct sem_array *);
99 #ifdef CONFIG_PROC_FS
100 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
101 #endif
103 #define SEMMSL_FAST 256 /* 512 bytes on stack */
104 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
107 * linked list protection:
108 * sem_undo.id_next,
109 * sem_array.sem_pending{,last},
110 * sem_array.sem_undo: sem_lock() for read/write
111 * sem_undo.proc_next: only "current" is allowed to read/write that field.
115 #define sc_semmsl sem_ctls[0]
116 #define sc_semmns sem_ctls[1]
117 #define sc_semopm sem_ctls[2]
118 #define sc_semmni sem_ctls[3]
120 static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
122 ns->ids[IPC_SEM_IDS] = ids;
123 ns->sc_semmsl = SEMMSL;
124 ns->sc_semmns = SEMMNS;
125 ns->sc_semopm = SEMOPM;
126 ns->sc_semmni = SEMMNI;
127 ns->used_sems = 0;
128 ipc_init_ids(ids);
131 int sem_init_ns(struct ipc_namespace *ns)
133 struct ipc_ids *ids;
135 ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
136 if (ids == NULL)
137 return -ENOMEM;
139 __sem_init_ns(ns, ids);
140 return 0;
143 void sem_exit_ns(struct ipc_namespace *ns)
145 struct sem_array *sma;
146 struct kern_ipc_perm *perm;
147 int next_id;
148 int total, in_use;
150 down_write(&sem_ids(ns).rw_mutex);
152 in_use = sem_ids(ns).in_use;
154 for (total = 0, next_id = 0; total < in_use; next_id++) {
155 perm = idr_find(&sem_ids(ns).ipcs_idr, next_id);
156 if (perm == NULL)
157 continue;
158 ipc_lock_by_ptr(perm);
159 sma = container_of(perm, struct sem_array, sem_perm);
160 freeary(ns, sma);
161 total++;
163 up_write(&sem_ids(ns).rw_mutex);
165 kfree(ns->ids[IPC_SEM_IDS]);
166 ns->ids[IPC_SEM_IDS] = NULL;
169 void __init sem_init (void)
171 __sem_init_ns(&init_ipc_ns, &init_sem_ids);
172 ipc_init_proc_interface("sysvipc/sem",
173 " key semid perms nsems uid gid cuid cgid otime ctime\n",
174 IPC_SEM_IDS, sysvipc_sem_proc_show);
178 * This routine is called in the paths where the rw_mutex is held to protect
179 * access to the idr tree.
181 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
182 int id)
184 struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
186 if (IS_ERR(ipcp))
187 return (struct sem_array *)ipcp;
189 return container_of(ipcp, struct sem_array, sem_perm);
193 * sem_lock_(check_) routines are called in the paths where the rw_mutex
194 * is not held.
196 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
198 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
200 if (IS_ERR(ipcp))
201 return (struct sem_array *)ipcp;
203 return container_of(ipcp, struct sem_array, sem_perm);
206 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
207 int id)
209 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
211 if (IS_ERR(ipcp))
212 return (struct sem_array *)ipcp;
214 return container_of(ipcp, struct sem_array, sem_perm);
217 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
219 ipc_rmid(&sem_ids(ns), &s->sem_perm);
223 * Lockless wakeup algorithm:
224 * Without the check/retry algorithm a lockless wakeup is possible:
225 * - queue.status is initialized to -EINTR before blocking.
226 * - wakeup is performed by
227 * * unlinking the queue entry from sma->sem_pending
228 * * setting queue.status to IN_WAKEUP
229 * This is the notification for the blocked thread that a
230 * result value is imminent.
231 * * call wake_up_process
232 * * set queue.status to the final value.
233 * - the previously blocked thread checks queue.status:
234 * * if it's IN_WAKEUP, then it must wait until the value changes
235 * * if it's not -EINTR, then the operation was completed by
236 * update_queue. semtimedop can return queue.status without
237 * performing any operation on the sem array.
238 * * otherwise it must acquire the spinlock and check what's up.
240 * The two-stage algorithm is necessary to protect against the following
241 * races:
242 * - if queue.status is set after wake_up_process, then the woken up idle
243 * thread could race forward and try (and fail) to acquire sma->lock
244 * before update_queue had a chance to set queue.status
245 * - if queue.status is written before wake_up_process and if the
246 * blocked process is woken up by a signal between writing
247 * queue.status and the wake_up_process, then the woken up
248 * process could return from semtimedop and die by calling
249 * sys_exit before wake_up_process is called. Then wake_up_process
250 * will oops, because the task structure is already invalid.
251 * (yes, this happened on s390 with sysv msg).
254 #define IN_WAKEUP 1
257 * newary - Create a new semaphore set
258 * @ns: namespace
259 * @params: ptr to the structure that contains key, semflg and nsems
261 * Called with sem_ids.rw_mutex held (as a writer)
264 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
266 int id;
267 int retval;
268 struct sem_array *sma;
269 int size;
270 key_t key = params->key;
271 int nsems = params->u.nsems;
272 int semflg = params->flg;
274 if (!nsems)
275 return -EINVAL;
276 if (ns->used_sems + nsems > ns->sc_semmns)
277 return -ENOSPC;
279 size = sizeof (*sma) + nsems * sizeof (struct sem);
280 sma = ipc_rcu_alloc(size);
281 if (!sma) {
282 return -ENOMEM;
284 memset (sma, 0, size);
286 sma->sem_perm.mode = (semflg & S_IRWXUGO);
287 sma->sem_perm.key = key;
289 sma->sem_perm.security = NULL;
290 retval = security_sem_alloc(sma);
291 if (retval) {
292 ipc_rcu_putref(sma);
293 return retval;
296 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
297 if (id < 0) {
298 security_sem_free(sma);
299 ipc_rcu_putref(sma);
300 return id;
302 ns->used_sems += nsems;
304 sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
305 sma->sem_base = (struct sem *) &sma[1];
306 /* sma->sem_pending = NULL; */
307 sma->sem_pending_last = &sma->sem_pending;
308 /* sma->undo = NULL; */
309 sma->sem_nsems = nsems;
310 sma->sem_ctime = get_seconds();
311 sem_unlock(sma);
313 return sma->sem_perm.id;
318 * Called with sem_ids.rw_mutex and ipcp locked.
320 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
322 struct sem_array *sma;
324 sma = container_of(ipcp, struct sem_array, sem_perm);
325 return security_sem_associate(sma, semflg);
329 * Called with sem_ids.rw_mutex and ipcp locked.
331 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
332 struct ipc_params *params)
334 struct sem_array *sma;
336 sma = container_of(ipcp, struct sem_array, sem_perm);
337 if (params->u.nsems > sma->sem_nsems)
338 return -EINVAL;
340 return 0;
343 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
345 struct ipc_namespace *ns;
346 struct ipc_ops sem_ops;
347 struct ipc_params sem_params;
349 ns = current->nsproxy->ipc_ns;
351 if (nsems < 0 || nsems > ns->sc_semmsl)
352 return -EINVAL;
354 sem_ops.getnew = newary;
355 sem_ops.associate = sem_security;
356 sem_ops.more_checks = sem_more_checks;
358 sem_params.key = key;
359 sem_params.flg = semflg;
360 sem_params.u.nsems = nsems;
362 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
365 /* Manage the doubly linked list sma->sem_pending as a FIFO:
366 * insert new queue elements at the tail sma->sem_pending_last.
368 static inline void append_to_queue (struct sem_array * sma,
369 struct sem_queue * q)
371 *(q->prev = sma->sem_pending_last) = q;
372 *(sma->sem_pending_last = &q->next) = NULL;
375 static inline void prepend_to_queue (struct sem_array * sma,
376 struct sem_queue * q)
378 q->next = sma->sem_pending;
379 *(q->prev = &sma->sem_pending) = q;
380 if (q->next)
381 q->next->prev = &q->next;
382 else /* sma->sem_pending_last == &sma->sem_pending */
383 sma->sem_pending_last = &q->next;
386 static inline void remove_from_queue (struct sem_array * sma,
387 struct sem_queue * q)
389 *(q->prev) = q->next;
390 if (q->next)
391 q->next->prev = q->prev;
392 else /* sma->sem_pending_last == &q->next */
393 sma->sem_pending_last = q->prev;
394 q->prev = NULL; /* mark as removed */
398 * Determine whether a sequence of semaphore operations would succeed
399 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
402 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
403 int nsops, struct sem_undo *un, int pid)
405 int result, sem_op;
406 struct sembuf *sop;
407 struct sem * curr;
409 for (sop = sops; sop < sops + nsops; sop++) {
410 curr = sma->sem_base + sop->sem_num;
411 sem_op = sop->sem_op;
412 result = curr->semval;
414 if (!sem_op && result)
415 goto would_block;
417 result += sem_op;
418 if (result < 0)
419 goto would_block;
420 if (result > SEMVMX)
421 goto out_of_range;
422 if (sop->sem_flg & SEM_UNDO) {
423 int undo = un->semadj[sop->sem_num] - sem_op;
425 * Exceeding the undo range is an error.
427 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
428 goto out_of_range;
430 curr->semval = result;
433 sop--;
434 while (sop >= sops) {
435 sma->sem_base[sop->sem_num].sempid = pid;
436 if (sop->sem_flg & SEM_UNDO)
437 un->semadj[sop->sem_num] -= sop->sem_op;
438 sop--;
441 sma->sem_otime = get_seconds();
442 return 0;
444 out_of_range:
445 result = -ERANGE;
446 goto undo;
448 would_block:
449 if (sop->sem_flg & IPC_NOWAIT)
450 result = -EAGAIN;
451 else
452 result = 1;
454 undo:
455 sop--;
456 while (sop >= sops) {
457 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
458 sop--;
461 return result;
464 /* Go through the pending queue for the indicated semaphore
465 * looking for tasks that can be completed.
467 static void update_queue (struct sem_array * sma)
469 int error;
470 struct sem_queue * q;
472 q = sma->sem_pending;
473 while(q) {
474 error = try_atomic_semop(sma, q->sops, q->nsops,
475 q->undo, q->pid);
477 /* Does q->sleeper still need to sleep? */
478 if (error <= 0) {
479 struct sem_queue *n;
480 remove_from_queue(sma,q);
481 q->status = IN_WAKEUP;
483 * Continue scanning. The next operation
484 * that must be checked depends on the type of the
485 * completed operation:
486 * - if the operation modified the array, then
487 * restart from the head of the queue and
488 * check for threads that might be waiting
489 * for semaphore values to become 0.
490 * - if the operation didn't modify the array,
491 * then just continue.
493 if (q->alter)
494 n = sma->sem_pending;
495 else
496 n = q->next;
497 wake_up_process(q->sleeper);
498 /* hands-off: q will disappear immediately after
499 * writing q->status.
501 smp_wmb();
502 q->status = error;
503 q = n;
504 } else {
505 q = q->next;
510 /* The following counts are associated to each semaphore:
511 * semncnt number of tasks waiting on semval being nonzero
512 * semzcnt number of tasks waiting on semval being zero
513 * This model assumes that a task waits on exactly one semaphore.
514 * Since semaphore operations are to be performed atomically, tasks actually
515 * wait on a whole sequence of semaphores simultaneously.
516 * The counts we return here are a rough approximation, but still
517 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
519 static int count_semncnt (struct sem_array * sma, ushort semnum)
521 int semncnt;
522 struct sem_queue * q;
524 semncnt = 0;
525 for (q = sma->sem_pending; q; q = q->next) {
526 struct sembuf * sops = q->sops;
527 int nsops = q->nsops;
528 int i;
529 for (i = 0; i < nsops; i++)
530 if (sops[i].sem_num == semnum
531 && (sops[i].sem_op < 0)
532 && !(sops[i].sem_flg & IPC_NOWAIT))
533 semncnt++;
535 return semncnt;
537 static int count_semzcnt (struct sem_array * sma, ushort semnum)
539 int semzcnt;
540 struct sem_queue * q;
542 semzcnt = 0;
543 for (q = sma->sem_pending; q; q = q->next) {
544 struct sembuf * sops = q->sops;
545 int nsops = q->nsops;
546 int i;
547 for (i = 0; i < nsops; i++)
548 if (sops[i].sem_num == semnum
549 && (sops[i].sem_op == 0)
550 && !(sops[i].sem_flg & IPC_NOWAIT))
551 semzcnt++;
553 return semzcnt;
556 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
557 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
558 * remains locked on exit.
560 static void freeary(struct ipc_namespace *ns, struct sem_array *sma)
562 struct sem_undo *un;
563 struct sem_queue *q;
565 /* Invalidate the existing undo structures for this semaphore set.
566 * (They will be freed without any further action in exit_sem()
567 * or during the next semop.)
569 for (un = sma->undo; un; un = un->id_next)
570 un->semid = -1;
572 /* Wake up all pending processes and let them fail with EIDRM. */
573 q = sma->sem_pending;
574 while(q) {
575 struct sem_queue *n;
576 /* lazy remove_from_queue: we are killing the whole queue */
577 q->prev = NULL;
578 n = q->next;
579 q->status = IN_WAKEUP;
580 wake_up_process(q->sleeper); /* doesn't sleep */
581 smp_wmb();
582 q->status = -EIDRM; /* hands-off q */
583 q = n;
586 /* Remove the semaphore set from the IDR */
587 sem_rmid(ns, sma);
588 sem_unlock(sma);
590 ns->used_sems -= sma->sem_nsems;
591 security_sem_free(sma);
592 ipc_rcu_putref(sma);
595 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
597 switch(version) {
598 case IPC_64:
599 return copy_to_user(buf, in, sizeof(*in));
600 case IPC_OLD:
602 struct semid_ds out;
604 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
606 out.sem_otime = in->sem_otime;
607 out.sem_ctime = in->sem_ctime;
608 out.sem_nsems = in->sem_nsems;
610 return copy_to_user(buf, &out, sizeof(out));
612 default:
613 return -EINVAL;
617 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
618 int cmd, int version, union semun arg)
620 int err = -EINVAL;
621 struct sem_array *sma;
623 switch(cmd) {
624 case IPC_INFO:
625 case SEM_INFO:
627 struct seminfo seminfo;
628 int max_id;
630 err = security_sem_semctl(NULL, cmd);
631 if (err)
632 return err;
634 memset(&seminfo,0,sizeof(seminfo));
635 seminfo.semmni = ns->sc_semmni;
636 seminfo.semmns = ns->sc_semmns;
637 seminfo.semmsl = ns->sc_semmsl;
638 seminfo.semopm = ns->sc_semopm;
639 seminfo.semvmx = SEMVMX;
640 seminfo.semmnu = SEMMNU;
641 seminfo.semmap = SEMMAP;
642 seminfo.semume = SEMUME;
643 down_read(&sem_ids(ns).rw_mutex);
644 if (cmd == SEM_INFO) {
645 seminfo.semusz = sem_ids(ns).in_use;
646 seminfo.semaem = ns->used_sems;
647 } else {
648 seminfo.semusz = SEMUSZ;
649 seminfo.semaem = SEMAEM;
651 max_id = ipc_get_maxid(&sem_ids(ns));
652 up_read(&sem_ids(ns).rw_mutex);
653 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
654 return -EFAULT;
655 return (max_id < 0) ? 0: max_id;
657 case SEM_STAT:
659 struct semid64_ds tbuf;
660 int id;
662 sma = sem_lock(ns, semid);
663 if (IS_ERR(sma))
664 return PTR_ERR(sma);
666 err = -EACCES;
667 if (ipcperms (&sma->sem_perm, S_IRUGO))
668 goto out_unlock;
670 err = security_sem_semctl(sma, cmd);
671 if (err)
672 goto out_unlock;
674 id = sma->sem_perm.id;
676 memset(&tbuf, 0, sizeof(tbuf));
678 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
679 tbuf.sem_otime = sma->sem_otime;
680 tbuf.sem_ctime = sma->sem_ctime;
681 tbuf.sem_nsems = sma->sem_nsems;
682 sem_unlock(sma);
683 if (copy_semid_to_user (arg.buf, &tbuf, version))
684 return -EFAULT;
685 return id;
687 default:
688 return -EINVAL;
690 return err;
691 out_unlock:
692 sem_unlock(sma);
693 return err;
696 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
697 int cmd, int version, union semun arg)
699 struct sem_array *sma;
700 struct sem* curr;
701 int err;
702 ushort fast_sem_io[SEMMSL_FAST];
703 ushort* sem_io = fast_sem_io;
704 int nsems;
706 sma = sem_lock_check(ns, semid);
707 if (IS_ERR(sma))
708 return PTR_ERR(sma);
710 nsems = sma->sem_nsems;
712 err = -EACCES;
713 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
714 goto out_unlock;
716 err = security_sem_semctl(sma, cmd);
717 if (err)
718 goto out_unlock;
720 err = -EACCES;
721 switch (cmd) {
722 case GETALL:
724 ushort __user *array = arg.array;
725 int i;
727 if(nsems > SEMMSL_FAST) {
728 ipc_rcu_getref(sma);
729 sem_unlock(sma);
731 sem_io = ipc_alloc(sizeof(ushort)*nsems);
732 if(sem_io == NULL) {
733 ipc_lock_by_ptr(&sma->sem_perm);
734 ipc_rcu_putref(sma);
735 sem_unlock(sma);
736 return -ENOMEM;
739 ipc_lock_by_ptr(&sma->sem_perm);
740 ipc_rcu_putref(sma);
741 if (sma->sem_perm.deleted) {
742 sem_unlock(sma);
743 err = -EIDRM;
744 goto out_free;
748 for (i = 0; i < sma->sem_nsems; i++)
749 sem_io[i] = sma->sem_base[i].semval;
750 sem_unlock(sma);
751 err = 0;
752 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
753 err = -EFAULT;
754 goto out_free;
756 case SETALL:
758 int i;
759 struct sem_undo *un;
761 ipc_rcu_getref(sma);
762 sem_unlock(sma);
764 if(nsems > SEMMSL_FAST) {
765 sem_io = ipc_alloc(sizeof(ushort)*nsems);
766 if(sem_io == NULL) {
767 ipc_lock_by_ptr(&sma->sem_perm);
768 ipc_rcu_putref(sma);
769 sem_unlock(sma);
770 return -ENOMEM;
774 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
775 ipc_lock_by_ptr(&sma->sem_perm);
776 ipc_rcu_putref(sma);
777 sem_unlock(sma);
778 err = -EFAULT;
779 goto out_free;
782 for (i = 0; i < nsems; i++) {
783 if (sem_io[i] > SEMVMX) {
784 ipc_lock_by_ptr(&sma->sem_perm);
785 ipc_rcu_putref(sma);
786 sem_unlock(sma);
787 err = -ERANGE;
788 goto out_free;
791 ipc_lock_by_ptr(&sma->sem_perm);
792 ipc_rcu_putref(sma);
793 if (sma->sem_perm.deleted) {
794 sem_unlock(sma);
795 err = -EIDRM;
796 goto out_free;
799 for (i = 0; i < nsems; i++)
800 sma->sem_base[i].semval = sem_io[i];
801 for (un = sma->undo; un; un = un->id_next)
802 for (i = 0; i < nsems; i++)
803 un->semadj[i] = 0;
804 sma->sem_ctime = get_seconds();
805 /* maybe some queued-up processes were waiting for this */
806 update_queue(sma);
807 err = 0;
808 goto out_unlock;
810 case IPC_STAT:
812 struct semid64_ds tbuf;
813 memset(&tbuf,0,sizeof(tbuf));
814 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
815 tbuf.sem_otime = sma->sem_otime;
816 tbuf.sem_ctime = sma->sem_ctime;
817 tbuf.sem_nsems = sma->sem_nsems;
818 sem_unlock(sma);
819 if (copy_semid_to_user (arg.buf, &tbuf, version))
820 return -EFAULT;
821 return 0;
823 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
825 err = -EINVAL;
826 if(semnum < 0 || semnum >= nsems)
827 goto out_unlock;
829 curr = &sma->sem_base[semnum];
831 switch (cmd) {
832 case GETVAL:
833 err = curr->semval;
834 goto out_unlock;
835 case GETPID:
836 err = curr->sempid;
837 goto out_unlock;
838 case GETNCNT:
839 err = count_semncnt(sma,semnum);
840 goto out_unlock;
841 case GETZCNT:
842 err = count_semzcnt(sma,semnum);
843 goto out_unlock;
844 case SETVAL:
846 int val = arg.val;
847 struct sem_undo *un;
848 err = -ERANGE;
849 if (val > SEMVMX || val < 0)
850 goto out_unlock;
852 for (un = sma->undo; un; un = un->id_next)
853 un->semadj[semnum] = 0;
854 curr->semval = val;
855 curr->sempid = task_tgid_vnr(current);
856 sma->sem_ctime = get_seconds();
857 /* maybe some queued-up processes were waiting for this */
858 update_queue(sma);
859 err = 0;
860 goto out_unlock;
863 out_unlock:
864 sem_unlock(sma);
865 out_free:
866 if(sem_io != fast_sem_io)
867 ipc_free(sem_io, sizeof(ushort)*nsems);
868 return err;
871 struct sem_setbuf {
872 uid_t uid;
873 gid_t gid;
874 mode_t mode;
877 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
879 switch(version) {
880 case IPC_64:
882 struct semid64_ds tbuf;
884 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
885 return -EFAULT;
887 out->uid = tbuf.sem_perm.uid;
888 out->gid = tbuf.sem_perm.gid;
889 out->mode = tbuf.sem_perm.mode;
891 return 0;
893 case IPC_OLD:
895 struct semid_ds tbuf_old;
897 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
898 return -EFAULT;
900 out->uid = tbuf_old.sem_perm.uid;
901 out->gid = tbuf_old.sem_perm.gid;
902 out->mode = tbuf_old.sem_perm.mode;
904 return 0;
906 default:
907 return -EINVAL;
911 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
912 int cmd, int version, union semun arg)
914 struct sem_array *sma;
915 int err;
916 struct sem_setbuf uninitialized_var(setbuf);
917 struct kern_ipc_perm *ipcp;
919 if(cmd == IPC_SET) {
920 if(copy_semid_from_user (&setbuf, arg.buf, version))
921 return -EFAULT;
923 sma = sem_lock_check_down(ns, semid);
924 if (IS_ERR(sma))
925 return PTR_ERR(sma);
927 ipcp = &sma->sem_perm;
929 err = audit_ipc_obj(ipcp);
930 if (err)
931 goto out_unlock;
933 if (cmd == IPC_SET) {
934 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
935 if (err)
936 goto out_unlock;
938 if (current->euid != ipcp->cuid &&
939 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
940 err=-EPERM;
941 goto out_unlock;
944 err = security_sem_semctl(sma, cmd);
945 if (err)
946 goto out_unlock;
948 switch(cmd){
949 case IPC_RMID:
950 freeary(ns, sma);
951 err = 0;
952 break;
953 case IPC_SET:
954 ipcp->uid = setbuf.uid;
955 ipcp->gid = setbuf.gid;
956 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
957 | (setbuf.mode & S_IRWXUGO);
958 sma->sem_ctime = get_seconds();
959 sem_unlock(sma);
960 err = 0;
961 break;
962 default:
963 sem_unlock(sma);
964 err = -EINVAL;
965 break;
967 return err;
969 out_unlock:
970 sem_unlock(sma);
971 return err;
974 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
976 int err = -EINVAL;
977 int version;
978 struct ipc_namespace *ns;
980 if (semid < 0)
981 return -EINVAL;
983 version = ipc_parse_version(&cmd);
984 ns = current->nsproxy->ipc_ns;
986 switch(cmd) {
987 case IPC_INFO:
988 case SEM_INFO:
989 case SEM_STAT:
990 err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
991 return err;
992 case GETALL:
993 case GETVAL:
994 case GETPID:
995 case GETNCNT:
996 case GETZCNT:
997 case IPC_STAT:
998 case SETVAL:
999 case SETALL:
1000 err = semctl_main(ns,semid,semnum,cmd,version,arg);
1001 return err;
1002 case IPC_RMID:
1003 case IPC_SET:
1004 down_write(&sem_ids(ns).rw_mutex);
1005 err = semctl_down(ns,semid,semnum,cmd,version,arg);
1006 up_write(&sem_ids(ns).rw_mutex);
1007 return err;
1008 default:
1009 return -EINVAL;
1013 /* If the task doesn't already have a undo_list, then allocate one
1014 * here. We guarantee there is only one thread using this undo list,
1015 * and current is THE ONE
1017 * If this allocation and assignment succeeds, but later
1018 * portions of this code fail, there is no need to free the sem_undo_list.
1019 * Just let it stay associated with the task, and it'll be freed later
1020 * at exit time.
1022 * This can block, so callers must hold no locks.
1024 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1026 struct sem_undo_list *undo_list;
1028 undo_list = current->sysvsem.undo_list;
1029 if (!undo_list) {
1030 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1031 if (undo_list == NULL)
1032 return -ENOMEM;
1033 spin_lock_init(&undo_list->lock);
1034 atomic_set(&undo_list->refcnt, 1);
1035 current->sysvsem.undo_list = undo_list;
1037 *undo_listp = undo_list;
1038 return 0;
1041 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1043 struct sem_undo **last, *un;
1045 last = &ulp->proc_list;
1046 un = *last;
1047 while(un != NULL) {
1048 if(un->semid==semid)
1049 break;
1050 if(un->semid==-1) {
1051 *last=un->proc_next;
1052 kfree(un);
1053 } else {
1054 last=&un->proc_next;
1056 un=*last;
1058 return un;
1061 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1063 struct sem_array *sma;
1064 struct sem_undo_list *ulp;
1065 struct sem_undo *un, *new;
1066 int nsems;
1067 int error;
1069 error = get_undo_list(&ulp);
1070 if (error)
1071 return ERR_PTR(error);
1073 spin_lock(&ulp->lock);
1074 un = lookup_undo(ulp, semid);
1075 spin_unlock(&ulp->lock);
1076 if (likely(un!=NULL))
1077 goto out;
1079 /* no undo structure around - allocate one. */
1080 sma = sem_lock_check(ns, semid);
1081 if (IS_ERR(sma))
1082 return ERR_PTR(PTR_ERR(sma));
1084 nsems = sma->sem_nsems;
1085 ipc_rcu_getref(sma);
1086 sem_unlock(sma);
1088 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1089 if (!new) {
1090 ipc_lock_by_ptr(&sma->sem_perm);
1091 ipc_rcu_putref(sma);
1092 sem_unlock(sma);
1093 return ERR_PTR(-ENOMEM);
1095 new->semadj = (short *) &new[1];
1096 new->semid = semid;
1098 spin_lock(&ulp->lock);
1099 un = lookup_undo(ulp, semid);
1100 if (un) {
1101 spin_unlock(&ulp->lock);
1102 kfree(new);
1103 ipc_lock_by_ptr(&sma->sem_perm);
1104 ipc_rcu_putref(sma);
1105 sem_unlock(sma);
1106 goto out;
1108 ipc_lock_by_ptr(&sma->sem_perm);
1109 ipc_rcu_putref(sma);
1110 if (sma->sem_perm.deleted) {
1111 sem_unlock(sma);
1112 spin_unlock(&ulp->lock);
1113 kfree(new);
1114 un = ERR_PTR(-EIDRM);
1115 goto out;
1117 new->proc_next = ulp->proc_list;
1118 ulp->proc_list = new;
1119 new->id_next = sma->undo;
1120 sma->undo = new;
1121 sem_unlock(sma);
1122 un = new;
1123 spin_unlock(&ulp->lock);
1124 out:
1125 return un;
1128 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1129 unsigned nsops, const struct timespec __user *timeout)
1131 int error = -EINVAL;
1132 struct sem_array *sma;
1133 struct sembuf fast_sops[SEMOPM_FAST];
1134 struct sembuf* sops = fast_sops, *sop;
1135 struct sem_undo *un;
1136 int undos = 0, alter = 0, max;
1137 struct sem_queue queue;
1138 unsigned long jiffies_left = 0;
1139 struct ipc_namespace *ns;
1141 ns = current->nsproxy->ipc_ns;
1143 if (nsops < 1 || semid < 0)
1144 return -EINVAL;
1145 if (nsops > ns->sc_semopm)
1146 return -E2BIG;
1147 if(nsops > SEMOPM_FAST) {
1148 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1149 if(sops==NULL)
1150 return -ENOMEM;
1152 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1153 error=-EFAULT;
1154 goto out_free;
1156 if (timeout) {
1157 struct timespec _timeout;
1158 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1159 error = -EFAULT;
1160 goto out_free;
1162 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1163 _timeout.tv_nsec >= 1000000000L) {
1164 error = -EINVAL;
1165 goto out_free;
1167 jiffies_left = timespec_to_jiffies(&_timeout);
1169 max = 0;
1170 for (sop = sops; sop < sops + nsops; sop++) {
1171 if (sop->sem_num >= max)
1172 max = sop->sem_num;
1173 if (sop->sem_flg & SEM_UNDO)
1174 undos = 1;
1175 if (sop->sem_op != 0)
1176 alter = 1;
1179 retry_undos:
1180 if (undos) {
1181 un = find_undo(ns, semid);
1182 if (IS_ERR(un)) {
1183 error = PTR_ERR(un);
1184 goto out_free;
1186 } else
1187 un = NULL;
1189 sma = sem_lock_check(ns, semid);
1190 if (IS_ERR(sma)) {
1191 error = PTR_ERR(sma);
1192 goto out_free;
1196 * semid identifiers are not unique - find_undo may have
1197 * allocated an undo structure, it was invalidated by an RMID
1198 * and now a new array with received the same id. Check and retry.
1200 if (un && un->semid == -1) {
1201 sem_unlock(sma);
1202 goto retry_undos;
1204 error = -EFBIG;
1205 if (max >= sma->sem_nsems)
1206 goto out_unlock_free;
1208 error = -EACCES;
1209 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1210 goto out_unlock_free;
1212 error = security_sem_semop(sma, sops, nsops, alter);
1213 if (error)
1214 goto out_unlock_free;
1216 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1217 if (error <= 0) {
1218 if (alter && error == 0)
1219 update_queue (sma);
1220 goto out_unlock_free;
1223 /* We need to sleep on this operation, so we put the current
1224 * task into the pending queue and go to sleep.
1227 queue.sma = sma;
1228 queue.sops = sops;
1229 queue.nsops = nsops;
1230 queue.undo = un;
1231 queue.pid = task_tgid_vnr(current);
1232 queue.id = semid;
1233 queue.alter = alter;
1234 if (alter)
1235 append_to_queue(sma ,&queue);
1236 else
1237 prepend_to_queue(sma ,&queue);
1239 queue.status = -EINTR;
1240 queue.sleeper = current;
1241 current->state = TASK_INTERRUPTIBLE;
1242 sem_unlock(sma);
1244 if (timeout)
1245 jiffies_left = schedule_timeout(jiffies_left);
1246 else
1247 schedule();
1249 error = queue.status;
1250 while(unlikely(error == IN_WAKEUP)) {
1251 cpu_relax();
1252 error = queue.status;
1255 if (error != -EINTR) {
1256 /* fast path: update_queue already obtained all requested
1257 * resources */
1258 goto out_free;
1261 sma = sem_lock(ns, semid);
1262 if (IS_ERR(sma)) {
1263 BUG_ON(queue.prev != NULL);
1264 error = -EIDRM;
1265 goto out_free;
1269 * If queue.status != -EINTR we are woken up by another process
1271 error = queue.status;
1272 if (error != -EINTR) {
1273 goto out_unlock_free;
1277 * If an interrupt occurred we have to clean up the queue
1279 if (timeout && jiffies_left == 0)
1280 error = -EAGAIN;
1281 remove_from_queue(sma,&queue);
1282 goto out_unlock_free;
1284 out_unlock_free:
1285 sem_unlock(sma);
1286 out_free:
1287 if(sops != fast_sops)
1288 kfree(sops);
1289 return error;
1292 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1294 return sys_semtimedop(semid, tsops, nsops, NULL);
1297 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1298 * parent and child tasks.
1301 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1303 struct sem_undo_list *undo_list;
1304 int error;
1306 if (clone_flags & CLONE_SYSVSEM) {
1307 error = get_undo_list(&undo_list);
1308 if (error)
1309 return error;
1310 atomic_inc(&undo_list->refcnt);
1311 tsk->sysvsem.undo_list = undo_list;
1312 } else
1313 tsk->sysvsem.undo_list = NULL;
1315 return 0;
1319 * add semadj values to semaphores, free undo structures.
1320 * undo structures are not freed when semaphore arrays are destroyed
1321 * so some of them may be out of date.
1322 * IMPLEMENTATION NOTE: There is some confusion over whether the
1323 * set of adjustments that needs to be done should be done in an atomic
1324 * manner or not. That is, if we are attempting to decrement the semval
1325 * should we queue up and wait until we can do so legally?
1326 * The original implementation attempted to do this (queue and wait).
1327 * The current implementation does not do so. The POSIX standard
1328 * and SVID should be consulted to determine what behavior is mandated.
1330 void exit_sem(struct task_struct *tsk)
1332 struct sem_undo_list *undo_list;
1333 struct sem_undo *u, **up;
1334 struct ipc_namespace *ns;
1336 undo_list = tsk->sysvsem.undo_list;
1337 if (!undo_list)
1338 return;
1340 if (!atomic_dec_and_test(&undo_list->refcnt))
1341 return;
1343 ns = tsk->nsproxy->ipc_ns;
1344 /* There's no need to hold the semundo list lock, as current
1345 * is the last task exiting for this undo list.
1347 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1348 struct sem_array *sma;
1349 int nsems, i;
1350 struct sem_undo *un, **unp;
1351 int semid;
1353 semid = u->semid;
1355 if(semid == -1)
1356 continue;
1357 sma = sem_lock(ns, semid);
1358 if (IS_ERR(sma))
1359 continue;
1361 if (u->semid == -1)
1362 goto next_entry;
1364 BUG_ON(sem_checkid(sma, u->semid));
1366 /* remove u from the sma->undo list */
1367 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1368 if (u == un)
1369 goto found;
1371 printk ("exit_sem undo list error id=%d\n", u->semid);
1372 goto next_entry;
1373 found:
1374 *unp = un->id_next;
1375 /* perform adjustments registered in u */
1376 nsems = sma->sem_nsems;
1377 for (i = 0; i < nsems; i++) {
1378 struct sem * semaphore = &sma->sem_base[i];
1379 if (u->semadj[i]) {
1380 semaphore->semval += u->semadj[i];
1382 * Range checks of the new semaphore value,
1383 * not defined by sus:
1384 * - Some unices ignore the undo entirely
1385 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1386 * - some cap the value (e.g. FreeBSD caps
1387 * at 0, but doesn't enforce SEMVMX)
1389 * Linux caps the semaphore value, both at 0
1390 * and at SEMVMX.
1392 * Manfred <manfred@colorfullife.com>
1394 if (semaphore->semval < 0)
1395 semaphore->semval = 0;
1396 if (semaphore->semval > SEMVMX)
1397 semaphore->semval = SEMVMX;
1398 semaphore->sempid = task_tgid_vnr(current);
1401 sma->sem_otime = get_seconds();
1402 /* maybe some queued-up processes were waiting for this */
1403 update_queue(sma);
1404 next_entry:
1405 sem_unlock(sma);
1407 kfree(undo_list);
1410 #ifdef CONFIG_PROC_FS
1411 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1413 struct sem_array *sma = it;
1415 return seq_printf(s,
1416 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1417 sma->sem_perm.key,
1418 sma->sem_perm.id,
1419 sma->sem_perm.mode,
1420 sma->sem_nsems,
1421 sma->sem_perm.uid,
1422 sma->sem_perm.gid,
1423 sma->sem_perm.cuid,
1424 sma->sem_perm.cgid,
1425 sma->sem_otime,
1426 sma->sem_ctime);
1428 #endif