2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
41 struct page
*dst_page
, int dst_offset
,
42 struct page
*src_page
, int src_offset
, int size
,
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
46 struct page
*dst_page
, int dst_offset
,
47 struct page
*src_page
, int src_offset
, int size
,
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
61 for (x
= 0; x
< src_size
; x
++)
62 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
67 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
77 for (x
= 0; x
< dst_size
; x
++) {
79 tmp
[1] = src
[x
* 2 + 1];
80 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst
,
95 struct ecryptfs_crypt_stat
*crypt_stat
,
98 struct scatterlist sg
;
99 struct hash_desc desc
= {
100 .tfm
= crypt_stat
->hash_tfm
,
101 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
105 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
106 sg_init_one(&sg
, (u8
*)src
, len
);
108 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
110 if (IS_ERR(desc
.tfm
)) {
111 rc
= PTR_ERR(desc
.tfm
);
112 ecryptfs_printk(KERN_ERR
, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
117 crypt_stat
->hash_tfm
= desc
.tfm
;
119 rc
= crypto_hash_init(&desc
);
122 "%s: Error initializing crypto hash; rc = [%d]\n",
126 rc
= crypto_hash_update(&desc
, &sg
, len
);
129 "%s: Error updating crypto hash; rc = [%d]\n",
133 rc
= crypto_hash_final(&desc
, dst
);
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
141 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
147 char *chaining_modifier
)
149 int cipher_name_len
= strlen(cipher_name
);
150 int chaining_modifier_len
= strlen(chaining_modifier
);
151 int algified_name_len
;
154 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
155 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
156 if (!(*algified_name
)) {
160 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
161 chaining_modifier
, cipher_name
);
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
182 char dst
[MD5_DIGEST_SIZE
];
183 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
185 if (unlikely(ecryptfs_verbosity
> 0)) {
186 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
194 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
195 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
196 if (unlikely(ecryptfs_verbosity
> 0)) {
197 ecryptfs_printk(KERN_DEBUG
, "source:\n");
198 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
200 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
201 (crypt_stat
->iv_bytes
+ 16));
203 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
207 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
208 if (unlikely(ecryptfs_verbosity
> 0)) {
209 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
210 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
225 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
226 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
227 mutex_init(&crypt_stat
->keysig_list_mutex
);
228 mutex_init(&crypt_stat
->cs_mutex
);
229 mutex_init(&crypt_stat
->cs_tfm_mutex
);
230 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
231 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
242 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
245 crypto_free_blkcipher(crypt_stat
->tfm
);
246 if (crypt_stat
->hash_tfm
)
247 crypto_free_hash(crypt_stat
->hash_tfm
);
248 mutex_lock(&crypt_stat
->keysig_list_mutex
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
255 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
258 void ecryptfs_destroy_mount_crypt_stat(
259 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
261 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
263 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
265 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
266 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
267 &mount_crypt_stat
->global_auth_tok_list
,
268 mount_crypt_stat_list
) {
269 list_del(&auth_tok
->mount_crypt_stat_list
);
270 mount_crypt_stat
->num_global_auth_toks
--;
271 if (auth_tok
->global_auth_tok_key
272 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
273 key_put(auth_tok
->global_auth_tok_key
);
274 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
276 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
277 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
281 * virt_to_scatterlist
282 * @addr: Virtual address
283 * @size: Size of data; should be an even multiple of the block size
284 * @sg: Pointer to scatterlist array; set to NULL to obtain only
285 * the number of scatterlist structs required in array
286 * @sg_size: Max array size
288 * Fills in a scatterlist array with page references for a passed
291 * Returns the number of scatterlist structs in array used
293 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
299 int remainder_of_page
;
301 sg_init_table(sg
, sg_size
);
303 while (size
> 0 && i
< sg_size
) {
304 pg
= virt_to_page(addr
);
305 offset
= offset_in_page(addr
);
307 sg_set_page(&sg
[i
], pg
, 0, offset
);
308 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
309 if (size
>= remainder_of_page
) {
311 sg
[i
].length
= remainder_of_page
;
312 addr
+= remainder_of_page
;
313 size
-= remainder_of_page
;
328 * encrypt_scatterlist
329 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330 * @dest_sg: Destination of encrypted data
331 * @src_sg: Data to be encrypted
332 * @size: Length of data to be encrypted
333 * @iv: iv to use during encryption
335 * Returns the number of bytes encrypted; negative value on error
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
338 struct scatterlist
*dest_sg
,
339 struct scatterlist
*src_sg
, int size
,
342 struct blkcipher_desc desc
= {
343 .tfm
= crypt_stat
->tfm
,
345 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
349 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
350 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
351 if (unlikely(ecryptfs_verbosity
> 0)) {
352 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
353 crypt_stat
->key_size
);
354 ecryptfs_dump_hex(crypt_stat
->key
,
355 crypt_stat
->key_size
);
357 /* Consider doing this once, when the file is opened */
358 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
359 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
360 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
361 crypt_stat
->key_size
);
362 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
365 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
367 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
371 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
372 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
373 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
379 * ecryptfs_lower_offset_for_extent
381 * Convert an eCryptfs page index into a lower byte offset
383 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
384 struct ecryptfs_crypt_stat
*crypt_stat
)
386 (*offset
) = (crypt_stat
->num_header_bytes_at_front
387 + (crypt_stat
->extent_size
* extent_num
));
391 * ecryptfs_encrypt_extent
392 * @enc_extent_page: Allocated page into which to encrypt the data in
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @page: Page containing plaintext data extent to encrypt
397 * @extent_offset: Page extent offset for use in generating IV
399 * Encrypts one extent of data.
401 * Return zero on success; non-zero otherwise
403 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
404 struct ecryptfs_crypt_stat
*crypt_stat
,
406 unsigned long extent_offset
)
409 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
412 extent_base
= (((loff_t
)page
->index
)
413 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
414 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
415 (extent_base
+ extent_offset
));
417 ecryptfs_printk(KERN_ERR
, "Error attempting to "
418 "derive IV for extent [0x%.16x]; "
419 "rc = [%d]\n", (extent_base
+ extent_offset
),
423 if (unlikely(ecryptfs_verbosity
> 0)) {
424 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
426 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
427 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
429 ecryptfs_dump_hex((char *)
431 + (extent_offset
* crypt_stat
->extent_size
)),
434 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
436 * crypt_stat
->extent_size
),
437 crypt_stat
->extent_size
, extent_iv
);
439 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
440 "page->index = [%ld], extent_offset = [%ld]; "
441 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
446 if (unlikely(ecryptfs_verbosity
> 0)) {
447 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
448 "rc = [%d]\n", (extent_base
+ extent_offset
),
450 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
459 * ecryptfs_encrypt_page
460 * @page: Page mapped from the eCryptfs inode for the file; contains
461 * decrypted content that needs to be encrypted (to a temporary
462 * page; not in place) and written out to the lower file
464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465 * that eCryptfs pages may straddle the lower pages -- for instance,
466 * if the file was created on a machine with an 8K page size
467 * (resulting in an 8K header), and then the file is copied onto a
468 * host with a 32K page size, then when reading page 0 of the eCryptfs
469 * file, 24K of page 0 of the lower file will be read and decrypted,
470 * and then 8K of page 1 of the lower file will be read and decrypted.
472 * Returns zero on success; negative on error
474 int ecryptfs_encrypt_page(struct page
*page
)
476 struct inode
*ecryptfs_inode
;
477 struct ecryptfs_crypt_stat
*crypt_stat
;
478 char *enc_extent_virt
;
479 struct page
*enc_extent_page
= NULL
;
480 loff_t extent_offset
;
483 ecryptfs_inode
= page
->mapping
->host
;
485 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
486 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
487 enc_extent_page
= alloc_page(GFP_USER
);
488 if (!enc_extent_page
) {
490 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
491 "encrypted extent\n");
494 enc_extent_virt
= kmap(enc_extent_page
);
495 for (extent_offset
= 0;
496 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
500 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
503 printk(KERN_ERR
"%s: Error encrypting extent; "
504 "rc = [%d]\n", __func__
, rc
);
507 ecryptfs_lower_offset_for_extent(
508 &offset
, ((((loff_t
)page
->index
)
510 / crypt_stat
->extent_size
))
511 + extent_offset
), crypt_stat
);
512 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
513 offset
, crypt_stat
->extent_size
);
515 ecryptfs_printk(KERN_ERR
, "Error attempting "
516 "to write lower page; rc = [%d]"
522 if (enc_extent_page
) {
523 kunmap(enc_extent_page
);
524 __free_page(enc_extent_page
);
529 static int ecryptfs_decrypt_extent(struct page
*page
,
530 struct ecryptfs_crypt_stat
*crypt_stat
,
531 struct page
*enc_extent_page
,
532 unsigned long extent_offset
)
535 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
538 extent_base
= (((loff_t
)page
->index
)
539 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
540 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
541 (extent_base
+ extent_offset
));
543 ecryptfs_printk(KERN_ERR
, "Error attempting to "
544 "derive IV for extent [0x%.16x]; "
545 "rc = [%d]\n", (extent_base
+ extent_offset
),
549 if (unlikely(ecryptfs_verbosity
> 0)) {
550 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
552 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
553 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
555 ecryptfs_dump_hex((char *)
556 (page_address(enc_extent_page
)
557 + (extent_offset
* crypt_stat
->extent_size
)),
560 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
562 * crypt_stat
->extent_size
),
564 crypt_stat
->extent_size
, extent_iv
);
566 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
568 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
573 if (unlikely(ecryptfs_verbosity
> 0)) {
574 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16x]; "
575 "rc = [%d]\n", (extent_base
+ extent_offset
),
577 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
579 ecryptfs_dump_hex((char *)(page_address(page
)
581 * crypt_stat
->extent_size
)), 8);
588 * ecryptfs_decrypt_page
589 * @page: Page mapped from the eCryptfs inode for the file; data read
590 * and decrypted from the lower file will be written into this
593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594 * that eCryptfs pages may straddle the lower pages -- for instance,
595 * if the file was created on a machine with an 8K page size
596 * (resulting in an 8K header), and then the file is copied onto a
597 * host with a 32K page size, then when reading page 0 of the eCryptfs
598 * file, 24K of page 0 of the lower file will be read and decrypted,
599 * and then 8K of page 1 of the lower file will be read and decrypted.
601 * Returns zero on success; negative on error
603 int ecryptfs_decrypt_page(struct page
*page
)
605 struct inode
*ecryptfs_inode
;
606 struct ecryptfs_crypt_stat
*crypt_stat
;
607 char *enc_extent_virt
;
608 struct page
*enc_extent_page
= NULL
;
609 unsigned long extent_offset
;
612 ecryptfs_inode
= page
->mapping
->host
;
614 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
615 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
616 enc_extent_page
= alloc_page(GFP_USER
);
617 if (!enc_extent_page
) {
619 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
620 "encrypted extent\n");
623 enc_extent_virt
= kmap(enc_extent_page
);
624 for (extent_offset
= 0;
625 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
629 ecryptfs_lower_offset_for_extent(
630 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
631 / crypt_stat
->extent_size
))
632 + extent_offset
), crypt_stat
);
633 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
634 crypt_stat
->extent_size
,
637 ecryptfs_printk(KERN_ERR
, "Error attempting "
638 "to read lower page; rc = [%d]"
642 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
645 printk(KERN_ERR
"%s: Error encrypting extent; "
646 "rc = [%d]\n", __func__
, rc
);
651 if (enc_extent_page
) {
652 kunmap(enc_extent_page
);
653 __free_page(enc_extent_page
);
659 * decrypt_scatterlist
660 * @crypt_stat: Cryptographic context
661 * @dest_sg: The destination scatterlist to decrypt into
662 * @src_sg: The source scatterlist to decrypt from
663 * @size: The number of bytes to decrypt
664 * @iv: The initialization vector to use for the decryption
666 * Returns the number of bytes decrypted; negative value on error
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
669 struct scatterlist
*dest_sg
,
670 struct scatterlist
*src_sg
, int size
,
673 struct blkcipher_desc desc
= {
674 .tfm
= crypt_stat
->tfm
,
676 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
680 /* Consider doing this once, when the file is opened */
681 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
682 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
683 crypt_stat
->key_size
);
685 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
687 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
691 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
692 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
693 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
695 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
705 * ecryptfs_encrypt_page_offset
706 * @crypt_stat: The cryptographic context
707 * @dst_page: The page to encrypt into
708 * @dst_offset: The offset in the page to encrypt into
709 * @src_page: The page to encrypt from
710 * @src_offset: The offset in the page to encrypt from
711 * @size: The number of bytes to encrypt
712 * @iv: The initialization vector to use for the encryption
714 * Returns the number of bytes encrypted
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
718 struct page
*dst_page
, int dst_offset
,
719 struct page
*src_page
, int src_offset
, int size
,
722 struct scatterlist src_sg
, dst_sg
;
724 sg_init_table(&src_sg
, 1);
725 sg_init_table(&dst_sg
, 1);
727 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
728 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
729 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
733 * ecryptfs_decrypt_page_offset
734 * @crypt_stat: The cryptographic context
735 * @dst_page: The page to decrypt into
736 * @dst_offset: The offset in the page to decrypt into
737 * @src_page: The page to decrypt from
738 * @src_offset: The offset in the page to decrypt from
739 * @size: The number of bytes to decrypt
740 * @iv: The initialization vector to use for the decryption
742 * Returns the number of bytes decrypted
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
746 struct page
*dst_page
, int dst_offset
,
747 struct page
*src_page
, int src_offset
, int size
,
750 struct scatterlist src_sg
, dst_sg
;
752 sg_init_table(&src_sg
, 1);
753 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
755 sg_init_table(&dst_sg
, 1);
756 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
758 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
764 * ecryptfs_init_crypt_ctx
765 * @crypt_stat: Uninitilized crypt stats structure
767 * Initialize the crypto context.
769 * TODO: Performance: Keep a cache of initialized cipher contexts;
770 * only init if needed
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
777 if (!crypt_stat
->cipher
) {
778 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
781 ecryptfs_printk(KERN_DEBUG
,
782 "Initializing cipher [%s]; strlen = [%d]; "
783 "key_size_bits = [%d]\n",
784 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
785 crypt_stat
->key_size
<< 3);
786 if (crypt_stat
->tfm
) {
790 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
791 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
792 crypt_stat
->cipher
, "cbc");
795 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
797 kfree(full_alg_name
);
798 if (IS_ERR(crypt_stat
->tfm
)) {
799 rc
= PTR_ERR(crypt_stat
->tfm
);
800 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
801 "Error initializing cipher [%s]\n",
805 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
808 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
817 crypt_stat
->extent_mask
= 0xFFFFFFFF;
818 crypt_stat
->extent_shift
= 0;
819 if (crypt_stat
->extent_size
== 0)
821 extent_size_tmp
= crypt_stat
->extent_size
;
822 while ((extent_size_tmp
& 0x01) == 0) {
823 extent_size_tmp
>>= 1;
824 crypt_stat
->extent_mask
<<= 1;
825 crypt_stat
->extent_shift
++;
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
831 /* Default values; may be overwritten as we are parsing the
833 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
834 set_extent_mask_and_shift(crypt_stat
);
835 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
836 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
837 crypt_stat
->num_header_bytes_at_front
= 0;
839 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
840 crypt_stat
->num_header_bytes_at_front
=
841 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
843 crypt_stat
->num_header_bytes_at_front
= PAGE_CACHE_SIZE
;
848 * ecryptfs_compute_root_iv
851 * On error, sets the root IV to all 0's.
853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
856 char dst
[MD5_DIGEST_SIZE
];
858 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
859 BUG_ON(crypt_stat
->iv_bytes
<= 0);
860 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
862 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
863 "cannot generate root IV\n");
866 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
867 crypt_stat
->key_size
);
869 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
870 "MD5 while generating root IV\n");
873 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
876 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
877 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
884 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
885 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
886 ecryptfs_compute_root_iv(crypt_stat
);
887 if (unlikely(ecryptfs_verbosity
> 0)) {
888 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
889 ecryptfs_dump_hex(crypt_stat
->key
,
890 crypt_stat
->key_size
);
895 * ecryptfs_copy_mount_wide_flags_to_inode_flags
896 * @crypt_stat: The inode's cryptographic context
897 * @mount_crypt_stat: The mount point's cryptographic context
899 * This function propagates the mount-wide flags to individual inode
902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
903 struct ecryptfs_crypt_stat
*crypt_stat
,
904 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
906 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
907 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
908 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
909 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
910 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
911 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
912 if (mount_crypt_stat
->flags
913 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
914 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
915 else if (mount_crypt_stat
->flags
916 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
917 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
922 struct ecryptfs_crypt_stat
*crypt_stat
,
923 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
925 struct ecryptfs_global_auth_tok
*global_auth_tok
;
928 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
929 list_for_each_entry(global_auth_tok
,
930 &mount_crypt_stat
->global_auth_tok_list
,
931 mount_crypt_stat_list
) {
932 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
934 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
936 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
938 &mount_crypt_stat
->global_auth_tok_list_mutex
);
942 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
948 * ecryptfs_set_default_crypt_stat_vals
949 * @crypt_stat: The inode's cryptographic context
950 * @mount_crypt_stat: The mount point's cryptographic context
952 * Default values in the event that policy does not override them.
954 static void ecryptfs_set_default_crypt_stat_vals(
955 struct ecryptfs_crypt_stat
*crypt_stat
,
956 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
960 ecryptfs_set_default_sizes(crypt_stat
);
961 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
962 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
963 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
964 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
965 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
969 * ecryptfs_new_file_context
970 * @ecryptfs_dentry: The eCryptfs dentry
972 * If the crypto context for the file has not yet been established,
973 * this is where we do that. Establishing a new crypto context
974 * involves the following decisions:
975 * - What cipher to use?
976 * - What set of authentication tokens to use?
977 * Here we just worry about getting enough information into the
978 * authentication tokens so that we know that they are available.
979 * We associate the available authentication tokens with the new file
980 * via the set of signatures in the crypt_stat struct. Later, when
981 * the headers are actually written out, we may again defer to
982 * userspace to perform the encryption of the session key; for the
983 * foreseeable future, this will be the case with public key packets.
985 * Returns zero on success; non-zero otherwise
987 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
989 struct ecryptfs_crypt_stat
*crypt_stat
=
990 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
991 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
992 &ecryptfs_superblock_to_private(
993 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
997 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
998 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1001 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1004 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1005 "to the inode key sigs; rc = [%d]\n", rc
);
1009 strlen(mount_crypt_stat
->global_default_cipher_name
);
1010 memcpy(crypt_stat
->cipher
,
1011 mount_crypt_stat
->global_default_cipher_name
,
1013 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1014 crypt_stat
->key_size
=
1015 mount_crypt_stat
->global_default_cipher_key_size
;
1016 ecryptfs_generate_new_key(crypt_stat
);
1017 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1019 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1020 "context for cipher [%s]: rc = [%d]\n",
1021 crypt_stat
->cipher
, rc
);
1027 * contains_ecryptfs_marker - check for the ecryptfs marker
1028 * @data: The data block in which to check
1030 * Returns one if marker found; zero if not found
1032 static int contains_ecryptfs_marker(char *data
)
1036 m_1
= get_unaligned_be32(data
);
1037 m_2
= get_unaligned_be32(data
+ 4);
1038 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1040 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1042 MAGIC_ECRYPTFS_MARKER
);
1043 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1048 struct ecryptfs_flag_map_elem
{
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1055 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1056 {0x00000002, ECRYPTFS_ENCRYPTED
},
1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1062 * ecryptfs_process_flags
1063 * @crypt_stat: The cryptographic context
1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read
1067 * Returns zero on success; non-zero if the flag set is invalid
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1070 char *page_virt
, int *bytes_read
)
1076 flags
= get_unaligned_be32(page_virt
);
1077 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1078 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1079 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1080 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1082 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1083 /* Version is in top 8 bits of the 32-bit flag vector */
1084 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1090 * write_ecryptfs_marker
1091 * @page_virt: The pointer to in a page to begin writing the marker
1092 * @written: Number of bytes written
1094 * Marker = 0x3c81b7f5
1096 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1100 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1101 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1102 put_unaligned_be32(m_1
, page_virt
);
1103 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1104 put_unaligned_be32(m_2
, page_virt
);
1105 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1109 write_ecryptfs_flags(char *page_virt
, struct ecryptfs_crypt_stat
*crypt_stat
,
1115 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1116 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1117 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1118 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1119 /* Version is in top 8 bits of the 32-bit flag vector */
1120 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1121 put_unaligned_be32(flags
, page_virt
);
1125 struct ecryptfs_cipher_code_str_map_elem
{
1126 char cipher_str
[16];
1130 /* Add support for additional ciphers by adding elements here. The
1131 * cipher_code is whatever OpenPGP applicatoins use to identify the
1132 * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map
[] = {
1135 {"aes",RFC2440_CIPHER_AES_128
},
1136 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1138 {"cast5", RFC2440_CIPHER_CAST_5
},
1139 {"twofish", RFC2440_CIPHER_TWOFISH
},
1140 {"cast6", RFC2440_CIPHER_CAST_6
},
1141 {"aes", RFC2440_CIPHER_AES_192
},
1142 {"aes", RFC2440_CIPHER_AES_256
}
1146 * ecryptfs_code_for_cipher_string
1147 * @cipher_name: The string alias for the cipher
1148 * @key_bytes: Length of key in bytes; used for AES code selection
1150 * Returns zero on no match, or the cipher code on match
1152 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1156 struct ecryptfs_cipher_code_str_map_elem
*map
=
1157 ecryptfs_cipher_code_str_map
;
1159 if (strcmp(cipher_name
, "aes") == 0) {
1160 switch (key_bytes
) {
1162 code
= RFC2440_CIPHER_AES_128
;
1165 code
= RFC2440_CIPHER_AES_192
;
1168 code
= RFC2440_CIPHER_AES_256
;
1171 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1172 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1173 code
= map
[i
].cipher_code
;
1181 * ecryptfs_cipher_code_to_string
1182 * @str: Destination to write out the cipher name
1183 * @cipher_code: The code to convert to cipher name string
1185 * Returns zero on success
1187 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1193 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1194 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1195 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1196 if (str
[0] == '\0') {
1197 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1198 "[%d]\n", cipher_code
);
1204 int ecryptfs_read_and_validate_header_region(char *data
,
1205 struct inode
*ecryptfs_inode
)
1207 struct ecryptfs_crypt_stat
*crypt_stat
=
1208 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1211 if (crypt_stat
->extent_size
== 0)
1212 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
1213 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1216 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1220 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1228 ecryptfs_write_header_metadata(char *virt
,
1229 struct ecryptfs_crypt_stat
*crypt_stat
,
1232 u32 header_extent_size
;
1233 u16 num_header_extents_at_front
;
1235 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1236 num_header_extents_at_front
=
1237 (u16
)(crypt_stat
->num_header_bytes_at_front
1238 / crypt_stat
->extent_size
);
1239 put_unaligned_be32(header_extent_size
, virt
);
1241 put_unaligned_be16(num_header_extents_at_front
, virt
);
1245 struct kmem_cache
*ecryptfs_header_cache_1
;
1246 struct kmem_cache
*ecryptfs_header_cache_2
;
1249 * ecryptfs_write_headers_virt
1250 * @page_virt: The virtual address to write the headers to
1251 * @max: The size of memory allocated at page_virt
1252 * @size: Set to the number of bytes written by this function
1253 * @crypt_stat: The cryptographic context
1254 * @ecryptfs_dentry: The eCryptfs dentry
1259 * Octets 0-7: Unencrypted file size (big-endian)
1260 * Octets 8-15: eCryptfs special marker
1261 * Octets 16-19: Flags
1262 * Octet 16: File format version number (between 0 and 255)
1263 * Octets 17-18: Reserved
1264 * Octet 19: Bit 1 (lsb): Reserved
1266 * Bits 3-8: Reserved
1267 * Octets 20-23: Header extent size (big-endian)
1268 * Octets 24-25: Number of header extents at front of file
1270 * Octet 26: Begin RFC 2440 authentication token packet set
1272 * Lower data (CBC encrypted)
1274 * Lower data (CBC encrypted)
1277 * Returns zero on success
1279 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1281 struct ecryptfs_crypt_stat
*crypt_stat
,
1282 struct dentry
*ecryptfs_dentry
)
1288 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1289 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1291 write_ecryptfs_flags((page_virt
+ offset
), crypt_stat
, &written
);
1293 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1296 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1297 ecryptfs_dentry
, &written
,
1300 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1301 "set; rc = [%d]\n", rc
);
1310 ecryptfs_write_metadata_to_contents(struct dentry
*ecryptfs_dentry
,
1311 char *virt
, size_t virt_len
)
1315 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1318 printk(KERN_ERR
"%s: Error attempting to write header "
1319 "information to lower file; rc = [%d]\n", __func__
,
1325 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1326 char *page_virt
, size_t size
)
1330 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1335 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1340 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1342 return (unsigned long) page_address(page
);
1347 * ecryptfs_write_metadata
1348 * @ecryptfs_dentry: The eCryptfs dentry
1350 * Write the file headers out. This will likely involve a userspace
1351 * callout, in which the session key is encrypted with one or more
1352 * public keys and/or the passphrase necessary to do the encryption is
1353 * retrieved via a prompt. Exactly what happens at this point should
1354 * be policy-dependent.
1356 * Returns zero on success; non-zero on error
1358 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1360 struct ecryptfs_crypt_stat
*crypt_stat
=
1361 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1368 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1369 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1370 printk(KERN_ERR
"Key is invalid; bailing out\n");
1375 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1380 virt_len
= crypt_stat
->num_header_bytes_at_front
;
1381 order
= get_order(virt_len
);
1382 /* Released in this function */
1383 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1385 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1389 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1392 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1396 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1397 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1400 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_dentry
, virt
,
1403 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1404 "rc = [%d]\n", __func__
, rc
);
1408 free_pages((unsigned long)virt
, order
);
1413 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1414 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1415 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1416 char *virt
, int *bytes_read
,
1417 int validate_header_size
)
1420 u32 header_extent_size
;
1421 u16 num_header_extents_at_front
;
1423 header_extent_size
= get_unaligned_be32(virt
);
1424 virt
+= sizeof(__be32
);
1425 num_header_extents_at_front
= get_unaligned_be16(virt
);
1426 crypt_stat
->num_header_bytes_at_front
=
1427 (((size_t)num_header_extents_at_front
1428 * (size_t)header_extent_size
));
1429 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1430 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1431 && (crypt_stat
->num_header_bytes_at_front
1432 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1434 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1435 crypt_stat
->num_header_bytes_at_front
);
1441 * set_default_header_data
1442 * @crypt_stat: The cryptographic context
1444 * For version 0 file format; this function is only for backwards
1445 * compatibility for files created with the prior versions of
1448 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1450 crypt_stat
->num_header_bytes_at_front
=
1451 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1455 * ecryptfs_read_headers_virt
1456 * @page_virt: The virtual address into which to read the headers
1457 * @crypt_stat: The cryptographic context
1458 * @ecryptfs_dentry: The eCryptfs dentry
1459 * @validate_header_size: Whether to validate the header size while reading
1461 * Read/parse the header data. The header format is detailed in the
1462 * comment block for the ecryptfs_write_headers_virt() function.
1464 * Returns zero on success
1466 static int ecryptfs_read_headers_virt(char *page_virt
,
1467 struct ecryptfs_crypt_stat
*crypt_stat
,
1468 struct dentry
*ecryptfs_dentry
,
1469 int validate_header_size
)
1475 ecryptfs_set_default_sizes(crypt_stat
);
1476 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1477 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1478 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1479 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1484 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1485 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1488 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1491 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1492 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1493 "file version [%d] is supported by this "
1494 "version of eCryptfs\n",
1495 crypt_stat
->file_version
,
1496 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1500 offset
+= bytes_read
;
1501 if (crypt_stat
->file_version
>= 1) {
1502 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1503 &bytes_read
, validate_header_size
);
1505 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1506 "metadata; rc = [%d]\n", rc
);
1508 offset
+= bytes_read
;
1510 set_default_header_data(crypt_stat
);
1511 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1518 * ecryptfs_read_xattr_region
1519 * @page_virt: The vitual address into which to read the xattr data
1520 * @ecryptfs_inode: The eCryptfs inode
1522 * Attempts to read the crypto metadata from the extended attribute
1523 * region of the lower file.
1525 * Returns zero on success; non-zero on error
1527 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1529 struct dentry
*lower_dentry
=
1530 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1534 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1535 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1537 if (unlikely(ecryptfs_verbosity
> 0))
1538 printk(KERN_INFO
"Error attempting to read the [%s] "
1539 "xattr from the lower file; return value = "
1540 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1548 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1549 struct dentry
*ecryptfs_dentry
)
1553 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1556 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1557 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1558 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1566 * ecryptfs_read_metadata
1568 * Common entry point for reading file metadata. From here, we could
1569 * retrieve the header information from the header region of the file,
1570 * the xattr region of the file, or some other repostory that is
1571 * stored separately from the file itself. The current implementation
1572 * supports retrieving the metadata information from the file contents
1573 * and from the xattr region.
1575 * Returns zero if valid headers found and parsed; non-zero otherwise
1577 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1580 char *page_virt
= NULL
;
1581 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1582 struct ecryptfs_crypt_stat
*crypt_stat
=
1583 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1584 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1585 &ecryptfs_superblock_to_private(
1586 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1588 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1590 /* Read the first page from the underlying file */
1591 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1594 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1598 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1601 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1603 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1605 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1607 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1608 "file header region or xattr region\n");
1612 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1614 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1616 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1617 "file xattr region either\n");
1620 if (crypt_stat
->mount_crypt_stat
->flags
1621 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1622 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1624 printk(KERN_WARNING
"Attempt to access file with "
1625 "crypto metadata only in the extended attribute "
1626 "region, but eCryptfs was mounted without "
1627 "xattr support enabled. eCryptfs will not treat "
1628 "this like an encrypted file.\n");
1634 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1635 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1641 * ecryptfs_encrypt_filename - encrypt filename
1643 * CBC-encrypts the filename. We do not want to encrypt the same
1644 * filename with the same key and IV, which may happen with hard
1645 * links, so we prepend random bits to each filename.
1647 * Returns zero on success; non-zero otherwise
1650 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1651 struct ecryptfs_crypt_stat
*crypt_stat
,
1652 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1656 filename
->encrypted_filename
= NULL
;
1657 filename
->encrypted_filename_size
= 0;
1658 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1659 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1660 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1662 size_t remaining_bytes
;
1664 rc
= ecryptfs_write_tag_70_packet(
1666 &filename
->encrypted_filename_size
,
1667 mount_crypt_stat
, NULL
,
1668 filename
->filename_size
);
1670 printk(KERN_ERR
"%s: Error attempting to get packet "
1671 "size for tag 72; rc = [%d]\n", __func__
,
1673 filename
->encrypted_filename_size
= 0;
1676 filename
->encrypted_filename
=
1677 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1678 if (!filename
->encrypted_filename
) {
1679 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1680 "to kmalloc [%zd] bytes\n", __func__
,
1681 filename
->encrypted_filename_size
);
1685 remaining_bytes
= filename
->encrypted_filename_size
;
1686 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1691 filename
->filename_size
);
1693 printk(KERN_ERR
"%s: Error attempting to generate "
1694 "tag 70 packet; rc = [%d]\n", __func__
,
1696 kfree(filename
->encrypted_filename
);
1697 filename
->encrypted_filename
= NULL
;
1698 filename
->encrypted_filename_size
= 0;
1701 filename
->encrypted_filename_size
= packet_size
;
1703 printk(KERN_ERR
"%s: No support for requested filename "
1704 "encryption method in this release\n", __func__
);
1712 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1713 const char *name
, size_t name_size
)
1717 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1718 if (!(*copied_name
)) {
1722 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1723 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1724 * in printing out the
1727 (*copied_name_size
) = name_size
;
1733 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1734 * @key_tfm: Crypto context for key material, set by this function
1735 * @cipher_name: Name of the cipher
1736 * @key_size: Size of the key in bytes
1738 * Returns zero on success. Any crypto_tfm structs allocated here
1739 * should be released by other functions, such as on a superblock put
1740 * event, regardless of whether this function succeeds for fails.
1743 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1744 char *cipher_name
, size_t *key_size
)
1746 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1747 char *full_alg_name
;
1751 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1753 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1754 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1757 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1761 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1762 kfree(full_alg_name
);
1763 if (IS_ERR(*key_tfm
)) {
1764 rc
= PTR_ERR(*key_tfm
);
1765 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1766 "[%s]; rc = [%d]\n", cipher_name
, rc
);
1769 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1770 if (*key_size
== 0) {
1771 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1773 *key_size
= alg
->max_keysize
;
1775 get_random_bytes(dummy_key
, *key_size
);
1776 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1778 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1779 "cipher [%s]; rc = [%d]\n", *key_size
, cipher_name
, rc
);
1787 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1788 static struct list_head key_tfm_list
;
1789 struct mutex key_tfm_list_mutex
;
1791 int ecryptfs_init_crypto(void)
1793 mutex_init(&key_tfm_list_mutex
);
1794 INIT_LIST_HEAD(&key_tfm_list
);
1799 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1801 * Called only at module unload time
1803 int ecryptfs_destroy_crypto(void)
1805 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1807 mutex_lock(&key_tfm_list_mutex
);
1808 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1810 list_del(&key_tfm
->key_tfm_list
);
1811 if (key_tfm
->key_tfm
)
1812 crypto_free_blkcipher(key_tfm
->key_tfm
);
1813 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1815 mutex_unlock(&key_tfm_list_mutex
);
1820 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1823 struct ecryptfs_key_tfm
*tmp_tfm
;
1826 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1828 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1829 if (key_tfm
!= NULL
)
1830 (*key_tfm
) = tmp_tfm
;
1833 printk(KERN_ERR
"Error attempting to allocate from "
1834 "ecryptfs_key_tfm_cache\n");
1837 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1838 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1839 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1840 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1841 tmp_tfm
->key_size
= key_size
;
1842 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1843 tmp_tfm
->cipher_name
,
1844 &tmp_tfm
->key_size
);
1846 printk(KERN_ERR
"Error attempting to initialize key TFM "
1847 "cipher with name = [%s]; rc = [%d]\n",
1848 tmp_tfm
->cipher_name
, rc
);
1849 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1850 if (key_tfm
!= NULL
)
1854 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1860 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1861 * @cipher_name: the name of the cipher to search for
1862 * @key_tfm: set to corresponding tfm if found
1864 * Searches for cached key_tfm matching @cipher_name
1865 * Must be called with &key_tfm_list_mutex held
1866 * Returns 1 if found, with @key_tfm set
1867 * Returns 0 if not found, with @key_tfm set to NULL
1869 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1871 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1873 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1875 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1876 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1878 (*key_tfm
) = tmp_key_tfm
;
1888 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1890 * @tfm: set to cached tfm found, or new tfm created
1891 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1892 * @cipher_name: the name of the cipher to search for and/or add
1894 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1895 * Searches for cached item first, and creates new if not found.
1896 * Returns 0 on success, non-zero if adding new cipher failed
1898 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1899 struct mutex
**tfm_mutex
,
1902 struct ecryptfs_key_tfm
*key_tfm
;
1906 (*tfm_mutex
) = NULL
;
1908 mutex_lock(&key_tfm_list_mutex
);
1909 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1910 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1912 printk(KERN_ERR
"Error adding new key_tfm to list; "
1917 (*tfm
) = key_tfm
->key_tfm
;
1918 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1920 mutex_unlock(&key_tfm_list_mutex
);
1924 /* 64 characters forming a 6-bit target field */
1925 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1928 "klmnopqrstuvwxyz");
1930 /* We could either offset on every reverse map or just pad some 0x00's
1931 * at the front here */
1932 static const unsigned char filename_rev_map
[] = {
1933 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1939 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1940 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1941 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1942 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1943 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1944 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1945 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1946 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1947 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1952 * ecryptfs_encode_for_filename
1953 * @dst: Destination location for encoded filename
1954 * @dst_size: Size of the encoded filename in bytes
1955 * @src: Source location for the filename to encode
1956 * @src_size: Size of the source in bytes
1958 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1959 unsigned char *src
, size_t src_size
)
1962 size_t block_num
= 0;
1963 size_t dst_offset
= 0;
1964 unsigned char last_block
[3];
1966 if (src_size
== 0) {
1970 num_blocks
= (src_size
/ 3);
1971 if ((src_size
% 3) == 0) {
1972 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1975 last_block
[2] = 0x00;
1976 switch (src_size
% 3) {
1978 last_block
[0] = src
[src_size
- 1];
1979 last_block
[1] = 0x00;
1982 last_block
[0] = src
[src_size
- 2];
1983 last_block
[1] = src
[src_size
- 1];
1986 (*dst_size
) = (num_blocks
* 4);
1989 while (block_num
< num_blocks
) {
1990 unsigned char *src_block
;
1991 unsigned char dst_block
[4];
1993 if (block_num
== (num_blocks
- 1))
1994 src_block
= last_block
;
1996 src_block
= &src
[block_num
* 3];
1997 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1998 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1999 | ((src_block
[1] >> 4) & 0x0F));
2000 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2001 | ((src_block
[2] >> 6) & 0x03));
2002 dst_block
[3] = (src_block
[2] & 0x3F);
2003 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2004 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2005 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2006 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2014 * ecryptfs_decode_from_filename
2015 * @dst: If NULL, this function only sets @dst_size and returns. If
2016 * non-NULL, this function decodes the encoded octets in @src
2017 * into the memory that @dst points to.
2018 * @dst_size: Set to the size of the decoded string.
2019 * @src: The encoded set of octets to decode.
2020 * @src_size: The size of the encoded set of octets to decode.
2023 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2024 const unsigned char *src
, size_t src_size
)
2026 u8 current_bit_offset
= 0;
2027 size_t src_byte_offset
= 0;
2028 size_t dst_byte_offset
= 0;
2031 /* Not exact; conservatively long. Every block of 4
2032 * encoded characters decodes into a block of 3
2033 * decoded characters. This segment of code provides
2034 * the caller with the maximum amount of allocated
2035 * space that @dst will need to point to in a
2036 * subsequent call. */
2037 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2040 while (src_byte_offset
< src_size
) {
2041 unsigned char src_byte
=
2042 filename_rev_map
[(int)src
[src_byte_offset
]];
2044 switch (current_bit_offset
) {
2046 dst
[dst_byte_offset
] = (src_byte
<< 2);
2047 current_bit_offset
= 6;
2050 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2051 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2053 current_bit_offset
= 4;
2056 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2057 dst
[dst_byte_offset
] = (src_byte
<< 6);
2058 current_bit_offset
= 2;
2061 dst
[dst_byte_offset
++] |= (src_byte
);
2062 dst
[dst_byte_offset
] = 0;
2063 current_bit_offset
= 0;
2068 (*dst_size
) = dst_byte_offset
;
2074 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2075 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2076 * @name: The plaintext name
2077 * @length: The length of the plaintext
2078 * @encoded_name: The encypted name
2080 * Encrypts and encodes a filename into something that constitutes a
2081 * valid filename for a filesystem, with printable characters.
2083 * We assume that we have a properly initialized crypto context,
2084 * pointed to by crypt_stat->tfm.
2086 * Returns zero on success; non-zero on otherwise
2088 int ecryptfs_encrypt_and_encode_filename(
2089 char **encoded_name
,
2090 size_t *encoded_name_size
,
2091 struct ecryptfs_crypt_stat
*crypt_stat
,
2092 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2093 const char *name
, size_t name_size
)
2095 size_t encoded_name_no_prefix_size
;
2098 (*encoded_name
) = NULL
;
2099 (*encoded_name_size
) = 0;
2100 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2101 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2102 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2103 struct ecryptfs_filename
*filename
;
2105 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2107 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2108 "to kzalloc [%zd] bytes\n", __func__
,
2113 filename
->filename
= (char *)name
;
2114 filename
->filename_size
= name_size
;
2115 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2118 printk(KERN_ERR
"%s: Error attempting to encrypt "
2119 "filename; rc = [%d]\n", __func__
, rc
);
2123 ecryptfs_encode_for_filename(
2124 NULL
, &encoded_name_no_prefix_size
,
2125 filename
->encrypted_filename
,
2126 filename
->encrypted_filename_size
);
2127 if ((crypt_stat
&& (crypt_stat
->flags
2128 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2129 || (mount_crypt_stat
2130 && (mount_crypt_stat
->flags
2131 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2132 (*encoded_name_size
) =
2133 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2134 + encoded_name_no_prefix_size
);
2136 (*encoded_name_size
) =
2137 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2138 + encoded_name_no_prefix_size
);
2139 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2140 if (!(*encoded_name
)) {
2141 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2142 "to kzalloc [%zd] bytes\n", __func__
,
2143 (*encoded_name_size
));
2145 kfree(filename
->encrypted_filename
);
2149 if ((crypt_stat
&& (crypt_stat
->flags
2150 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2151 || (mount_crypt_stat
2152 && (mount_crypt_stat
->flags
2153 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2154 memcpy((*encoded_name
),
2155 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2156 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2157 ecryptfs_encode_for_filename(
2159 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2160 &encoded_name_no_prefix_size
,
2161 filename
->encrypted_filename
,
2162 filename
->encrypted_filename_size
);
2163 (*encoded_name_size
) =
2164 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2165 + encoded_name_no_prefix_size
);
2166 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2167 (*encoded_name_size
)++;
2172 printk(KERN_ERR
"%s: Error attempting to encode "
2173 "encrypted filename; rc = [%d]\n", __func__
,
2175 kfree((*encoded_name
));
2176 (*encoded_name
) = NULL
;
2177 (*encoded_name_size
) = 0;
2179 kfree(filename
->encrypted_filename
);
2182 rc
= ecryptfs_copy_filename(encoded_name
,
2191 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2192 * @plaintext_name: The plaintext name
2193 * @plaintext_name_size: The plaintext name size
2194 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2195 * @name: The filename in cipher text
2196 * @name_size: The cipher text name size
2198 * Decrypts and decodes the filename.
2200 * Returns zero on error; non-zero otherwise
2202 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2203 size_t *plaintext_name_size
,
2204 struct dentry
*ecryptfs_dir_dentry
,
2205 const char *name
, size_t name_size
)
2207 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2208 &ecryptfs_superblock_to_private(
2209 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2211 size_t decoded_name_size
;
2215 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2216 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2217 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2218 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2219 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2220 const char *orig_name
= name
;
2221 size_t orig_name_size
= name_size
;
2223 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2224 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2225 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2227 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2228 if (!decoded_name
) {
2229 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2230 "to kmalloc [%zd] bytes\n", __func__
,
2235 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2237 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2238 plaintext_name_size
,
2244 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2245 "from filename; copying through filename "
2246 "as-is\n", __func__
);
2247 rc
= ecryptfs_copy_filename(plaintext_name
,
2248 plaintext_name_size
,
2249 orig_name
, orig_name_size
);
2253 rc
= ecryptfs_copy_filename(plaintext_name
,
2254 plaintext_name_size
,
2259 kfree(decoded_name
);