2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/spinlock.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
29 #include <asm/uaccess.h>
31 #include <asm/system.h>
32 #include <asm/semaphore.h>
33 #include <asm/sections.h>
35 /* Per cpu memory for storing cpu states in case of system crash. */
36 note_buf_t
* crash_notes
;
38 /* vmcoreinfo stuff */
39 unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
40 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
41 size_t vmcoreinfo_size
;
42 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
44 /* Location of the reserved area for the crash kernel */
45 struct resource crashk_res
= {
46 .name
= "Crash kernel",
49 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
52 int kexec_should_crash(struct task_struct
*p
)
54 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
60 * When kexec transitions to the new kernel there is a one-to-one
61 * mapping between physical and virtual addresses. On processors
62 * where you can disable the MMU this is trivial, and easy. For
63 * others it is still a simple predictable page table to setup.
65 * In that environment kexec copies the new kernel to its final
66 * resting place. This means I can only support memory whose
67 * physical address can fit in an unsigned long. In particular
68 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
69 * If the assembly stub has more restrictive requirements
70 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
71 * defined more restrictively in <asm/kexec.h>.
73 * The code for the transition from the current kernel to the
74 * the new kernel is placed in the control_code_buffer, whose size
75 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
76 * page of memory is necessary, but some architectures require more.
77 * Because this memory must be identity mapped in the transition from
78 * virtual to physical addresses it must live in the range
79 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
82 * The assembly stub in the control code buffer is passed a linked list
83 * of descriptor pages detailing the source pages of the new kernel,
84 * and the destination addresses of those source pages. As this data
85 * structure is not used in the context of the current OS, it must
88 * The code has been made to work with highmem pages and will use a
89 * destination page in its final resting place (if it happens
90 * to allocate it). The end product of this is that most of the
91 * physical address space, and most of RAM can be used.
93 * Future directions include:
94 * - allocating a page table with the control code buffer identity
95 * mapped, to simplify machine_kexec and make kexec_on_panic more
100 * KIMAGE_NO_DEST is an impossible destination address..., for
101 * allocating pages whose destination address we do not care about.
103 #define KIMAGE_NO_DEST (-1UL)
105 static int kimage_is_destination_range(struct kimage
*image
,
106 unsigned long start
, unsigned long end
);
107 static struct page
*kimage_alloc_page(struct kimage
*image
,
111 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
112 unsigned long nr_segments
,
113 struct kexec_segment __user
*segments
)
115 size_t segment_bytes
;
116 struct kimage
*image
;
120 /* Allocate a controlling structure */
122 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
127 image
->entry
= &image
->head
;
128 image
->last_entry
= &image
->head
;
129 image
->control_page
= ~0; /* By default this does not apply */
130 image
->start
= entry
;
131 image
->type
= KEXEC_TYPE_DEFAULT
;
133 /* Initialize the list of control pages */
134 INIT_LIST_HEAD(&image
->control_pages
);
136 /* Initialize the list of destination pages */
137 INIT_LIST_HEAD(&image
->dest_pages
);
139 /* Initialize the list of unuseable pages */
140 INIT_LIST_HEAD(&image
->unuseable_pages
);
142 /* Read in the segments */
143 image
->nr_segments
= nr_segments
;
144 segment_bytes
= nr_segments
* sizeof(*segments
);
145 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
150 * Verify we have good destination addresses. The caller is
151 * responsible for making certain we don't attempt to load
152 * the new image into invalid or reserved areas of RAM. This
153 * just verifies it is an address we can use.
155 * Since the kernel does everything in page size chunks ensure
156 * the destination addreses are page aligned. Too many
157 * special cases crop of when we don't do this. The most
158 * insidious is getting overlapping destination addresses
159 * simply because addresses are changed to page size
162 result
= -EADDRNOTAVAIL
;
163 for (i
= 0; i
< nr_segments
; i
++) {
164 unsigned long mstart
, mend
;
166 mstart
= image
->segment
[i
].mem
;
167 mend
= mstart
+ image
->segment
[i
].memsz
;
168 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
170 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
174 /* Verify our destination addresses do not overlap.
175 * If we alloed overlapping destination addresses
176 * through very weird things can happen with no
177 * easy explanation as one segment stops on another.
180 for (i
= 0; i
< nr_segments
; i
++) {
181 unsigned long mstart
, mend
;
184 mstart
= image
->segment
[i
].mem
;
185 mend
= mstart
+ image
->segment
[i
].memsz
;
186 for (j
= 0; j
< i
; j
++) {
187 unsigned long pstart
, pend
;
188 pstart
= image
->segment
[j
].mem
;
189 pend
= pstart
+ image
->segment
[j
].memsz
;
190 /* Do the segments overlap ? */
191 if ((mend
> pstart
) && (mstart
< pend
))
196 /* Ensure our buffer sizes are strictly less than
197 * our memory sizes. This should always be the case,
198 * and it is easier to check up front than to be surprised
202 for (i
= 0; i
< nr_segments
; i
++) {
203 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
218 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
219 unsigned long nr_segments
,
220 struct kexec_segment __user
*segments
)
223 struct kimage
*image
;
225 /* Allocate and initialize a controlling structure */
227 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
234 * Find a location for the control code buffer, and add it
235 * the vector of segments so that it's pages will also be
236 * counted as destination pages.
239 image
->control_code_page
= kimage_alloc_control_pages(image
,
240 get_order(KEXEC_CONTROL_CODE_SIZE
));
241 if (!image
->control_code_page
) {
242 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
256 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
257 unsigned long nr_segments
,
258 struct kexec_segment __user
*segments
)
261 struct kimage
*image
;
265 /* Verify we have a valid entry point */
266 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
267 result
= -EADDRNOTAVAIL
;
271 /* Allocate and initialize a controlling structure */
272 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
276 /* Enable the special crash kernel control page
279 image
->control_page
= crashk_res
.start
;
280 image
->type
= KEXEC_TYPE_CRASH
;
283 * Verify we have good destination addresses. Normally
284 * the caller is responsible for making certain we don't
285 * attempt to load the new image into invalid or reserved
286 * areas of RAM. But crash kernels are preloaded into a
287 * reserved area of ram. We must ensure the addresses
288 * are in the reserved area otherwise preloading the
289 * kernel could corrupt things.
291 result
= -EADDRNOTAVAIL
;
292 for (i
= 0; i
< nr_segments
; i
++) {
293 unsigned long mstart
, mend
;
295 mstart
= image
->segment
[i
].mem
;
296 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
297 /* Ensure we are within the crash kernel limits */
298 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
303 * Find a location for the control code buffer, and add
304 * the vector of segments so that it's pages will also be
305 * counted as destination pages.
308 image
->control_code_page
= kimage_alloc_control_pages(image
,
309 get_order(KEXEC_CONTROL_CODE_SIZE
));
310 if (!image
->control_code_page
) {
311 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
325 static int kimage_is_destination_range(struct kimage
*image
,
331 for (i
= 0; i
< image
->nr_segments
; i
++) {
332 unsigned long mstart
, mend
;
334 mstart
= image
->segment
[i
].mem
;
335 mend
= mstart
+ image
->segment
[i
].memsz
;
336 if ((end
> mstart
) && (start
< mend
))
343 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
347 pages
= alloc_pages(gfp_mask
, order
);
349 unsigned int count
, i
;
350 pages
->mapping
= NULL
;
351 set_page_private(pages
, order
);
353 for (i
= 0; i
< count
; i
++)
354 SetPageReserved(pages
+ i
);
360 static void kimage_free_pages(struct page
*page
)
362 unsigned int order
, count
, i
;
364 order
= page_private(page
);
366 for (i
= 0; i
< count
; i
++)
367 ClearPageReserved(page
+ i
);
368 __free_pages(page
, order
);
371 static void kimage_free_page_list(struct list_head
*list
)
373 struct list_head
*pos
, *next
;
375 list_for_each_safe(pos
, next
, list
) {
378 page
= list_entry(pos
, struct page
, lru
);
379 list_del(&page
->lru
);
380 kimage_free_pages(page
);
384 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
387 /* Control pages are special, they are the intermediaries
388 * that are needed while we copy the rest of the pages
389 * to their final resting place. As such they must
390 * not conflict with either the destination addresses
391 * or memory the kernel is already using.
393 * The only case where we really need more than one of
394 * these are for architectures where we cannot disable
395 * the MMU and must instead generate an identity mapped
396 * page table for all of the memory.
398 * At worst this runs in O(N) of the image size.
400 struct list_head extra_pages
;
405 INIT_LIST_HEAD(&extra_pages
);
407 /* Loop while I can allocate a page and the page allocated
408 * is a destination page.
411 unsigned long pfn
, epfn
, addr
, eaddr
;
413 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
416 pfn
= page_to_pfn(pages
);
418 addr
= pfn
<< PAGE_SHIFT
;
419 eaddr
= epfn
<< PAGE_SHIFT
;
420 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
421 kimage_is_destination_range(image
, addr
, eaddr
)) {
422 list_add(&pages
->lru
, &extra_pages
);
428 /* Remember the allocated page... */
429 list_add(&pages
->lru
, &image
->control_pages
);
431 /* Because the page is already in it's destination
432 * location we will never allocate another page at
433 * that address. Therefore kimage_alloc_pages
434 * will not return it (again) and we don't need
435 * to give it an entry in image->segment[].
438 /* Deal with the destination pages I have inadvertently allocated.
440 * Ideally I would convert multi-page allocations into single
441 * page allocations, and add everyting to image->dest_pages.
443 * For now it is simpler to just free the pages.
445 kimage_free_page_list(&extra_pages
);
450 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
453 /* Control pages are special, they are the intermediaries
454 * that are needed while we copy the rest of the pages
455 * to their final resting place. As such they must
456 * not conflict with either the destination addresses
457 * or memory the kernel is already using.
459 * Control pages are also the only pags we must allocate
460 * when loading a crash kernel. All of the other pages
461 * are specified by the segments and we just memcpy
462 * into them directly.
464 * The only case where we really need more than one of
465 * these are for architectures where we cannot disable
466 * the MMU and must instead generate an identity mapped
467 * page table for all of the memory.
469 * Given the low demand this implements a very simple
470 * allocator that finds the first hole of the appropriate
471 * size in the reserved memory region, and allocates all
472 * of the memory up to and including the hole.
474 unsigned long hole_start
, hole_end
, size
;
478 size
= (1 << order
) << PAGE_SHIFT
;
479 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
480 hole_end
= hole_start
+ size
- 1;
481 while (hole_end
<= crashk_res
.end
) {
484 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
486 if (hole_end
> crashk_res
.end
)
488 /* See if I overlap any of the segments */
489 for (i
= 0; i
< image
->nr_segments
; i
++) {
490 unsigned long mstart
, mend
;
492 mstart
= image
->segment
[i
].mem
;
493 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
494 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
495 /* Advance the hole to the end of the segment */
496 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
497 hole_end
= hole_start
+ size
- 1;
501 /* If I don't overlap any segments I have found my hole! */
502 if (i
== image
->nr_segments
) {
503 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
508 image
->control_page
= hole_end
;
514 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
517 struct page
*pages
= NULL
;
519 switch (image
->type
) {
520 case KEXEC_TYPE_DEFAULT
:
521 pages
= kimage_alloc_normal_control_pages(image
, order
);
523 case KEXEC_TYPE_CRASH
:
524 pages
= kimage_alloc_crash_control_pages(image
, order
);
531 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
533 if (*image
->entry
!= 0)
536 if (image
->entry
== image
->last_entry
) {
537 kimage_entry_t
*ind_page
;
540 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
544 ind_page
= page_address(page
);
545 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
546 image
->entry
= ind_page
;
547 image
->last_entry
= ind_page
+
548 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
550 *image
->entry
= entry
;
557 static int kimage_set_destination(struct kimage
*image
,
558 unsigned long destination
)
562 destination
&= PAGE_MASK
;
563 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
565 image
->destination
= destination
;
571 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
576 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
578 image
->destination
+= PAGE_SIZE
;
584 static void kimage_free_extra_pages(struct kimage
*image
)
586 /* Walk through and free any extra destination pages I may have */
587 kimage_free_page_list(&image
->dest_pages
);
589 /* Walk through and free any unuseable pages I have cached */
590 kimage_free_page_list(&image
->unuseable_pages
);
593 static int kimage_terminate(struct kimage
*image
)
595 if (*image
->entry
!= 0)
598 *image
->entry
= IND_DONE
;
603 #define for_each_kimage_entry(image, ptr, entry) \
604 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
605 ptr = (entry & IND_INDIRECTION)? \
606 phys_to_virt((entry & PAGE_MASK)): ptr +1)
608 static void kimage_free_entry(kimage_entry_t entry
)
612 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
613 kimage_free_pages(page
);
616 static void kimage_free(struct kimage
*image
)
618 kimage_entry_t
*ptr
, entry
;
619 kimage_entry_t ind
= 0;
624 kimage_free_extra_pages(image
);
625 for_each_kimage_entry(image
, ptr
, entry
) {
626 if (entry
& IND_INDIRECTION
) {
627 /* Free the previous indirection page */
628 if (ind
& IND_INDIRECTION
)
629 kimage_free_entry(ind
);
630 /* Save this indirection page until we are
635 else if (entry
& IND_SOURCE
)
636 kimage_free_entry(entry
);
638 /* Free the final indirection page */
639 if (ind
& IND_INDIRECTION
)
640 kimage_free_entry(ind
);
642 /* Handle any machine specific cleanup */
643 machine_kexec_cleanup(image
);
645 /* Free the kexec control pages... */
646 kimage_free_page_list(&image
->control_pages
);
650 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
653 kimage_entry_t
*ptr
, entry
;
654 unsigned long destination
= 0;
656 for_each_kimage_entry(image
, ptr
, entry
) {
657 if (entry
& IND_DESTINATION
)
658 destination
= entry
& PAGE_MASK
;
659 else if (entry
& IND_SOURCE
) {
660 if (page
== destination
)
662 destination
+= PAGE_SIZE
;
669 static struct page
*kimage_alloc_page(struct kimage
*image
,
671 unsigned long destination
)
674 * Here we implement safeguards to ensure that a source page
675 * is not copied to its destination page before the data on
676 * the destination page is no longer useful.
678 * To do this we maintain the invariant that a source page is
679 * either its own destination page, or it is not a
680 * destination page at all.
682 * That is slightly stronger than required, but the proof
683 * that no problems will not occur is trivial, and the
684 * implementation is simply to verify.
686 * When allocating all pages normally this algorithm will run
687 * in O(N) time, but in the worst case it will run in O(N^2)
688 * time. If the runtime is a problem the data structures can
695 * Walk through the list of destination pages, and see if I
698 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
699 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
700 if (addr
== destination
) {
701 list_del(&page
->lru
);
709 /* Allocate a page, if we run out of memory give up */
710 page
= kimage_alloc_pages(gfp_mask
, 0);
713 /* If the page cannot be used file it away */
714 if (page_to_pfn(page
) >
715 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
716 list_add(&page
->lru
, &image
->unuseable_pages
);
719 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
721 /* If it is the destination page we want use it */
722 if (addr
== destination
)
725 /* If the page is not a destination page use it */
726 if (!kimage_is_destination_range(image
, addr
,
731 * I know that the page is someones destination page.
732 * See if there is already a source page for this
733 * destination page. And if so swap the source pages.
735 old
= kimage_dst_used(image
, addr
);
738 unsigned long old_addr
;
739 struct page
*old_page
;
741 old_addr
= *old
& PAGE_MASK
;
742 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
743 copy_highpage(page
, old_page
);
744 *old
= addr
| (*old
& ~PAGE_MASK
);
746 /* The old page I have found cannot be a
747 * destination page, so return it.
754 /* Place the page on the destination list I
757 list_add(&page
->lru
, &image
->dest_pages
);
764 static int kimage_load_normal_segment(struct kimage
*image
,
765 struct kexec_segment
*segment
)
768 unsigned long ubytes
, mbytes
;
770 unsigned char __user
*buf
;
774 ubytes
= segment
->bufsz
;
775 mbytes
= segment
->memsz
;
776 maddr
= segment
->mem
;
778 result
= kimage_set_destination(image
, maddr
);
785 size_t uchunk
, mchunk
;
787 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
792 result
= kimage_add_page(image
, page_to_pfn(page
)
798 /* Start with a clear page */
799 memset(ptr
, 0, PAGE_SIZE
);
800 ptr
+= maddr
& ~PAGE_MASK
;
801 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
809 result
= copy_from_user(ptr
, buf
, uchunk
);
812 result
= (result
< 0) ? result
: -EIO
;
824 static int kimage_load_crash_segment(struct kimage
*image
,
825 struct kexec_segment
*segment
)
827 /* For crash dumps kernels we simply copy the data from
828 * user space to it's destination.
829 * We do things a page at a time for the sake of kmap.
832 unsigned long ubytes
, mbytes
;
834 unsigned char __user
*buf
;
838 ubytes
= segment
->bufsz
;
839 mbytes
= segment
->memsz
;
840 maddr
= segment
->mem
;
844 size_t uchunk
, mchunk
;
846 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
852 ptr
+= maddr
& ~PAGE_MASK
;
853 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
858 if (uchunk
> ubytes
) {
860 /* Zero the trailing part of the page */
861 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
863 result
= copy_from_user(ptr
, buf
, uchunk
);
864 kexec_flush_icache_page(page
);
867 result
= (result
< 0) ? result
: -EIO
;
879 static int kimage_load_segment(struct kimage
*image
,
880 struct kexec_segment
*segment
)
882 int result
= -ENOMEM
;
884 switch (image
->type
) {
885 case KEXEC_TYPE_DEFAULT
:
886 result
= kimage_load_normal_segment(image
, segment
);
888 case KEXEC_TYPE_CRASH
:
889 result
= kimage_load_crash_segment(image
, segment
);
897 * Exec Kernel system call: for obvious reasons only root may call it.
899 * This call breaks up into three pieces.
900 * - A generic part which loads the new kernel from the current
901 * address space, and very carefully places the data in the
904 * - A generic part that interacts with the kernel and tells all of
905 * the devices to shut down. Preventing on-going dmas, and placing
906 * the devices in a consistent state so a later kernel can
909 * - A machine specific part that includes the syscall number
910 * and the copies the image to it's final destination. And
911 * jumps into the image at entry.
913 * kexec does not sync, or unmount filesystems so if you need
914 * that to happen you need to do that yourself.
916 struct kimage
*kexec_image
;
917 struct kimage
*kexec_crash_image
;
919 * A home grown binary mutex.
920 * Nothing can wait so this mutex is safe to use
921 * in interrupt context :)
923 static int kexec_lock
;
925 asmlinkage
long sys_kexec_load(unsigned long entry
, unsigned long nr_segments
,
926 struct kexec_segment __user
*segments
,
929 struct kimage
**dest_image
, *image
;
933 /* We only trust the superuser with rebooting the system. */
934 if (!capable(CAP_SYS_BOOT
))
938 * Verify we have a legal set of flags
939 * This leaves us room for future extensions.
941 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
944 /* Verify we are on the appropriate architecture */
945 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
946 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
949 /* Put an artificial cap on the number
950 * of segments passed to kexec_load.
952 if (nr_segments
> KEXEC_SEGMENT_MAX
)
958 /* Because we write directly to the reserved memory
959 * region when loading crash kernels we need a mutex here to
960 * prevent multiple crash kernels from attempting to load
961 * simultaneously, and to prevent a crash kernel from loading
962 * over the top of a in use crash kernel.
964 * KISS: always take the mutex.
966 locked
= xchg(&kexec_lock
, 1);
970 dest_image
= &kexec_image
;
971 if (flags
& KEXEC_ON_CRASH
)
972 dest_image
= &kexec_crash_image
;
973 if (nr_segments
> 0) {
976 /* Loading another kernel to reboot into */
977 if ((flags
& KEXEC_ON_CRASH
) == 0)
978 result
= kimage_normal_alloc(&image
, entry
,
979 nr_segments
, segments
);
980 /* Loading another kernel to switch to if this one crashes */
981 else if (flags
& KEXEC_ON_CRASH
) {
982 /* Free any current crash dump kernel before
985 kimage_free(xchg(&kexec_crash_image
, NULL
));
986 result
= kimage_crash_alloc(&image
, entry
,
987 nr_segments
, segments
);
992 result
= machine_kexec_prepare(image
);
996 for (i
= 0; i
< nr_segments
; i
++) {
997 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1001 result
= kimage_terminate(image
);
1005 /* Install the new kernel, and Uninstall the old */
1006 image
= xchg(dest_image
, image
);
1009 locked
= xchg(&kexec_lock
, 0); /* Release the mutex */
1016 #ifdef CONFIG_COMPAT
1017 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1018 unsigned long nr_segments
,
1019 struct compat_kexec_segment __user
*segments
,
1020 unsigned long flags
)
1022 struct compat_kexec_segment in
;
1023 struct kexec_segment out
, __user
*ksegments
;
1024 unsigned long i
, result
;
1026 /* Don't allow clients that don't understand the native
1027 * architecture to do anything.
1029 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1032 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1035 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1036 for (i
=0; i
< nr_segments
; i
++) {
1037 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1041 out
.buf
= compat_ptr(in
.buf
);
1042 out
.bufsz
= in
.bufsz
;
1044 out
.memsz
= in
.memsz
;
1046 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1051 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1055 void crash_kexec(struct pt_regs
*regs
)
1060 /* Take the kexec_lock here to prevent sys_kexec_load
1061 * running on one cpu from replacing the crash kernel
1062 * we are using after a panic on a different cpu.
1064 * If the crash kernel was not located in a fixed area
1065 * of memory the xchg(&kexec_crash_image) would be
1066 * sufficient. But since I reuse the memory...
1068 locked
= xchg(&kexec_lock
, 1);
1070 if (kexec_crash_image
) {
1071 struct pt_regs fixed_regs
;
1072 crash_setup_regs(&fixed_regs
, regs
);
1073 crash_save_vmcoreinfo();
1074 machine_crash_shutdown(&fixed_regs
);
1075 machine_kexec(kexec_crash_image
);
1077 locked
= xchg(&kexec_lock
, 0);
1082 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1085 struct elf_note note
;
1087 note
.n_namesz
= strlen(name
) + 1;
1088 note
.n_descsz
= data_len
;
1090 memcpy(buf
, ¬e
, sizeof(note
));
1091 buf
+= (sizeof(note
) + 3)/4;
1092 memcpy(buf
, name
, note
.n_namesz
);
1093 buf
+= (note
.n_namesz
+ 3)/4;
1094 memcpy(buf
, data
, note
.n_descsz
);
1095 buf
+= (note
.n_descsz
+ 3)/4;
1100 static void final_note(u32
*buf
)
1102 struct elf_note note
;
1107 memcpy(buf
, ¬e
, sizeof(note
));
1110 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1112 struct elf_prstatus prstatus
;
1115 if ((cpu
< 0) || (cpu
>= NR_CPUS
))
1118 /* Using ELF notes here is opportunistic.
1119 * I need a well defined structure format
1120 * for the data I pass, and I need tags
1121 * on the data to indicate what information I have
1122 * squirrelled away. ELF notes happen to provide
1123 * all of that, so there is no need to invent something new.
1125 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1128 memset(&prstatus
, 0, sizeof(prstatus
));
1129 prstatus
.pr_pid
= current
->pid
;
1130 elf_core_copy_regs(&prstatus
.pr_reg
, regs
);
1131 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1132 &prstatus
, sizeof(prstatus
));
1136 static int __init
crash_notes_memory_init(void)
1138 /* Allocate memory for saving cpu registers. */
1139 crash_notes
= alloc_percpu(note_buf_t
);
1141 printk("Kexec: Memory allocation for saving cpu register"
1142 " states failed\n");
1147 module_init(crash_notes_memory_init
)
1151 * parsing the "crashkernel" commandline
1153 * this code is intended to be called from architecture specific code
1158 * This function parses command lines in the format
1160 * crashkernel=ramsize-range:size[,...][@offset]
1162 * The function returns 0 on success and -EINVAL on failure.
1164 static int __init
parse_crashkernel_mem(char *cmdline
,
1165 unsigned long long system_ram
,
1166 unsigned long long *crash_size
,
1167 unsigned long long *crash_base
)
1169 char *cur
= cmdline
, *tmp
;
1171 /* for each entry of the comma-separated list */
1173 unsigned long long start
, end
= ULLONG_MAX
, size
;
1175 /* get the start of the range */
1176 start
= memparse(cur
, &tmp
);
1178 pr_warning("crashkernel: Memory value expected\n");
1183 pr_warning("crashkernel: '-' expected\n");
1188 /* if no ':' is here, than we read the end */
1190 end
= memparse(cur
, &tmp
);
1192 pr_warning("crashkernel: Memory "
1193 "value expected\n");
1198 pr_warning("crashkernel: end <= start\n");
1204 pr_warning("crashkernel: ':' expected\n");
1209 size
= memparse(cur
, &tmp
);
1211 pr_warning("Memory value expected\n");
1215 if (size
>= system_ram
) {
1216 pr_warning("crashkernel: invalid size\n");
1221 if (system_ram
>= start
&& system_ram
<= end
) {
1225 } while (*cur
++ == ',');
1227 if (*crash_size
> 0) {
1228 while (*cur
!= ' ' && *cur
!= '@')
1232 *crash_base
= memparse(cur
, &tmp
);
1234 pr_warning("Memory value expected "
1245 * That function parses "simple" (old) crashkernel command lines like
1247 * crashkernel=size[@offset]
1249 * It returns 0 on success and -EINVAL on failure.
1251 static int __init
parse_crashkernel_simple(char *cmdline
,
1252 unsigned long long *crash_size
,
1253 unsigned long long *crash_base
)
1255 char *cur
= cmdline
;
1257 *crash_size
= memparse(cmdline
, &cur
);
1258 if (cmdline
== cur
) {
1259 pr_warning("crashkernel: memory value expected\n");
1264 *crash_base
= memparse(cur
+1, &cur
);
1270 * That function is the entry point for command line parsing and should be
1271 * called from the arch-specific code.
1273 int __init
parse_crashkernel(char *cmdline
,
1274 unsigned long long system_ram
,
1275 unsigned long long *crash_size
,
1276 unsigned long long *crash_base
)
1278 char *p
= cmdline
, *ck_cmdline
= NULL
;
1279 char *first_colon
, *first_space
;
1281 BUG_ON(!crash_size
|| !crash_base
);
1285 /* find crashkernel and use the last one if there are more */
1286 p
= strstr(p
, "crashkernel=");
1289 p
= strstr(p
+1, "crashkernel=");
1295 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1298 * if the commandline contains a ':', then that's the extended
1299 * syntax -- if not, it must be the classic syntax
1301 first_colon
= strchr(ck_cmdline
, ':');
1302 first_space
= strchr(ck_cmdline
, ' ');
1303 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1304 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1305 crash_size
, crash_base
);
1307 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1315 void crash_save_vmcoreinfo(void)
1319 if (!vmcoreinfo_size
)
1322 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1324 buf
= (u32
*)vmcoreinfo_note
;
1326 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1332 void vmcoreinfo_append_str(const char *fmt
, ...)
1338 va_start(args
, fmt
);
1339 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1342 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1343 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1345 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1347 vmcoreinfo_size
+= r
;
1351 * provide an empty default implementation here -- architecture
1352 * code may override this
1354 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1357 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1359 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1362 static int __init
crash_save_vmcoreinfo_init(void)
1364 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1365 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1367 VMCOREINFO_SYMBOL(init_uts_ns
);
1368 VMCOREINFO_SYMBOL(node_online_map
);
1369 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1370 VMCOREINFO_SYMBOL(_stext
);
1372 #ifndef CONFIG_NEED_MULTIPLE_NODES
1373 VMCOREINFO_SYMBOL(mem_map
);
1374 VMCOREINFO_SYMBOL(contig_page_data
);
1376 #ifdef CONFIG_SPARSEMEM
1377 VMCOREINFO_SYMBOL(mem_section
);
1378 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1379 VMCOREINFO_STRUCT_SIZE(mem_section
);
1380 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1382 VMCOREINFO_STRUCT_SIZE(page
);
1383 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1384 VMCOREINFO_STRUCT_SIZE(zone
);
1385 VMCOREINFO_STRUCT_SIZE(free_area
);
1386 VMCOREINFO_STRUCT_SIZE(list_head
);
1387 VMCOREINFO_SIZE(nodemask_t
);
1388 VMCOREINFO_OFFSET(page
, flags
);
1389 VMCOREINFO_OFFSET(page
, _count
);
1390 VMCOREINFO_OFFSET(page
, mapping
);
1391 VMCOREINFO_OFFSET(page
, lru
);
1392 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1393 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1394 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1395 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1397 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1398 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1399 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1400 VMCOREINFO_OFFSET(zone
, free_area
);
1401 VMCOREINFO_OFFSET(zone
, vm_stat
);
1402 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1403 VMCOREINFO_OFFSET(free_area
, free_list
);
1404 VMCOREINFO_OFFSET(list_head
, next
);
1405 VMCOREINFO_OFFSET(list_head
, prev
);
1406 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1407 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1408 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1410 arch_crash_save_vmcoreinfo();
1415 module_init(crash_save_vmcoreinfo_init
)