2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode
->i_sb
)->s_journal
,
56 &EXT4_I(inode
)->jinode
,
60 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
67 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
68 (inode
->i_sb
->s_blocksize
>> 9) : 0;
70 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
86 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 BUFFER_TRACE(bh
, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 bh
, is_metadata
, inode
->i_mode
,
97 test_opt(inode
->i_sb
, DATA_FLAGS
));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
104 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
105 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
107 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle
, bh
);
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
117 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
119 ext4_abort(inode
->i_sb
, __func__
,
120 "error %d when attempting revoke", err
);
121 BUFFER_TRACE(bh
, "exit");
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode
*inode
)
133 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
144 /* But we need to bound the transaction so we don't overflow the
146 if (needed
> EXT4_MAX_TRANS_DATA
)
147 needed
= EXT4_MAX_TRANS_DATA
;
149 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t
*start_transaction(struct inode
*inode
)
166 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
170 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
182 if (!ext4_handle_valid(handle
))
184 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
186 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
196 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
208 jbd_debug(2, "restarting handle %p\n", handle
);
209 up_write(&EXT4_I(inode
)->i_data_sem
);
210 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
211 down_write(&EXT4_I(inode
)->i_data_sem
);
212 ext4_discard_preallocations(inode
);
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode
*inode
)
225 if (ext4_should_order_data(inode
))
226 ext4_begin_ordered_truncate(inode
, 0);
227 truncate_inode_pages(&inode
->i_data
, 0);
229 if (is_bad_inode(inode
))
232 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
233 if (IS_ERR(handle
)) {
234 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
240 ext4_orphan_del(NULL
, inode
);
245 ext4_handle_sync(handle
);
247 err
= ext4_mark_inode_dirty(handle
, inode
);
249 ext4_warning(inode
->i_sb
, __func__
,
250 "couldn't mark inode dirty (err %d)", err
);
254 ext4_truncate(inode
);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle
, 3)) {
263 err
= ext4_journal_extend(handle
, 3);
265 err
= ext4_journal_restart(handle
, 3);
267 ext4_warning(inode
->i_sb
, __func__
,
268 "couldn't extend journal (err %d)", err
);
270 ext4_journal_stop(handle
);
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle
, inode
);
284 EXT4_I(inode
)->i_dtime
= get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
293 if (ext4_mark_inode_dirty(handle
, inode
))
294 /* If that failed, just do the required in-core inode clear. */
297 ext4_free_inode(handle
, inode
);
298 ext4_journal_stop(handle
);
301 clear_inode(inode
); /* We must guarantee clearing of inode... */
307 struct buffer_head
*bh
;
310 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
312 p
->key
= *(p
->p
= v
);
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
347 static int ext4_block_to_path(struct inode
*inode
,
349 ext4_lblk_t offsets
[4], int *boundary
)
351 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
352 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
353 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
354 indirect_blocks
= ptrs
,
355 double_blocks
= (1 << (ptrs_bits
* 2));
360 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block < 0");
361 } else if (i_block
< direct_blocks
) {
362 offsets
[n
++] = i_block
;
363 final
= direct_blocks
;
364 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
365 offsets
[n
++] = EXT4_IND_BLOCK
;
366 offsets
[n
++] = i_block
;
368 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
369 offsets
[n
++] = EXT4_DIND_BLOCK
;
370 offsets
[n
++] = i_block
>> ptrs_bits
;
371 offsets
[n
++] = i_block
& (ptrs
- 1);
373 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
374 offsets
[n
++] = EXT4_TIND_BLOCK
;
375 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
376 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
377 offsets
[n
++] = i_block
& (ptrs
- 1);
380 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
381 "block %lu > max in inode %lu",
382 i_block
+ direct_blocks
+
383 indirect_blocks
+ double_blocks
, inode
->i_ino
);
386 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
390 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
391 __le32
*p
, unsigned int max
)
396 while (bref
< p
+max
) {
397 blk
= le32_to_cpu(*bref
++);
399 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
401 ext4_error(inode
->i_sb
, function
,
402 "invalid block reference %u "
403 "in inode #%lu", blk
, inode
->i_ino
);
411 #define ext4_check_indirect_blockref(inode, bh) \
412 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
413 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
415 #define ext4_check_inode_blockref(inode) \
416 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
420 * ext4_get_branch - read the chain of indirect blocks leading to data
421 * @inode: inode in question
422 * @depth: depth of the chain (1 - direct pointer, etc.)
423 * @offsets: offsets of pointers in inode/indirect blocks
424 * @chain: place to store the result
425 * @err: here we store the error value
427 * Function fills the array of triples <key, p, bh> and returns %NULL
428 * if everything went OK or the pointer to the last filled triple
429 * (incomplete one) otherwise. Upon the return chain[i].key contains
430 * the number of (i+1)-th block in the chain (as it is stored in memory,
431 * i.e. little-endian 32-bit), chain[i].p contains the address of that
432 * number (it points into struct inode for i==0 and into the bh->b_data
433 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
434 * block for i>0 and NULL for i==0. In other words, it holds the block
435 * numbers of the chain, addresses they were taken from (and where we can
436 * verify that chain did not change) and buffer_heads hosting these
439 * Function stops when it stumbles upon zero pointer (absent block)
440 * (pointer to last triple returned, *@err == 0)
441 * or when it gets an IO error reading an indirect block
442 * (ditto, *@err == -EIO)
443 * or when it reads all @depth-1 indirect blocks successfully and finds
444 * the whole chain, all way to the data (returns %NULL, *err == 0).
446 * Need to be called with
447 * down_read(&EXT4_I(inode)->i_data_sem)
449 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
450 ext4_lblk_t
*offsets
,
451 Indirect chain
[4], int *err
)
453 struct super_block
*sb
= inode
->i_sb
;
455 struct buffer_head
*bh
;
458 /* i_data is not going away, no lock needed */
459 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
463 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
467 if (!bh_uptodate_or_lock(bh
)) {
468 if (bh_submit_read(bh
) < 0) {
472 /* validate block references */
473 if (ext4_check_indirect_blockref(inode
, bh
)) {
479 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
493 * ext4_find_near - find a place for allocation with sufficient locality
495 * @ind: descriptor of indirect block.
497 * This function returns the preferred place for block allocation.
498 * It is used when heuristic for sequential allocation fails.
500 * + if there is a block to the left of our position - allocate near it.
501 * + if pointer will live in indirect block - allocate near that block.
502 * + if pointer will live in inode - allocate in the same
505 * In the latter case we colour the starting block by the callers PID to
506 * prevent it from clashing with concurrent allocations for a different inode
507 * in the same block group. The PID is used here so that functionally related
508 * files will be close-by on-disk.
510 * Caller must make sure that @ind is valid and will stay that way.
512 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
514 struct ext4_inode_info
*ei
= EXT4_I(inode
);
515 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
517 ext4_fsblk_t bg_start
;
518 ext4_fsblk_t last_block
;
519 ext4_grpblk_t colour
;
520 ext4_group_t block_group
;
521 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
523 /* Try to find previous block */
524 for (p
= ind
->p
- 1; p
>= start
; p
--) {
526 return le32_to_cpu(*p
);
529 /* No such thing, so let's try location of indirect block */
531 return ind
->bh
->b_blocknr
;
534 * It is going to be referred to from the inode itself? OK, just put it
535 * into the same cylinder group then.
537 block_group
= ei
->i_block_group
;
538 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
539 block_group
&= ~(flex_size
-1);
540 if (S_ISREG(inode
->i_mode
))
543 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
544 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
547 * If we are doing delayed allocation, we don't need take
548 * colour into account.
550 if (test_opt(inode
->i_sb
, DELALLOC
))
553 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
554 colour
= (current
->pid
% 16) *
555 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
557 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
558 return bg_start
+ colour
;
562 * ext4_find_goal - find a preferred place for allocation.
564 * @block: block we want
565 * @partial: pointer to the last triple within a chain
567 * Normally this function find the preferred place for block allocation,
569 * Because this is only used for non-extent files, we limit the block nr
572 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
578 * XXX need to get goal block from mballoc's data structures
581 goal
= ext4_find_near(inode
, partial
);
582 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
587 * ext4_blks_to_allocate: Look up the block map and count the number
588 * of direct blocks need to be allocated for the given branch.
590 * @branch: chain of indirect blocks
591 * @k: number of blocks need for indirect blocks
592 * @blks: number of data blocks to be mapped.
593 * @blocks_to_boundary: the offset in the indirect block
595 * return the total number of blocks to be allocate, including the
596 * direct and indirect blocks.
598 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
599 int blocks_to_boundary
)
601 unsigned int count
= 0;
604 * Simple case, [t,d]Indirect block(s) has not allocated yet
605 * then it's clear blocks on that path have not allocated
608 /* right now we don't handle cross boundary allocation */
609 if (blks
< blocks_to_boundary
+ 1)
612 count
+= blocks_to_boundary
+ 1;
617 while (count
< blks
&& count
<= blocks_to_boundary
&&
618 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
625 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
626 * @indirect_blks: the number of blocks need to allocate for indirect
629 * @new_blocks: on return it will store the new block numbers for
630 * the indirect blocks(if needed) and the first direct block,
631 * @blks: on return it will store the total number of allocated
634 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
635 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
636 int indirect_blks
, int blks
,
637 ext4_fsblk_t new_blocks
[4], int *err
)
639 struct ext4_allocation_request ar
;
641 unsigned long count
= 0, blk_allocated
= 0;
643 ext4_fsblk_t current_block
= 0;
647 * Here we try to allocate the requested multiple blocks at once,
648 * on a best-effort basis.
649 * To build a branch, we should allocate blocks for
650 * the indirect blocks(if not allocated yet), and at least
651 * the first direct block of this branch. That's the
652 * minimum number of blocks need to allocate(required)
654 /* first we try to allocate the indirect blocks */
655 target
= indirect_blks
;
658 /* allocating blocks for indirect blocks and direct blocks */
659 current_block
= ext4_new_meta_blocks(handle
, inode
,
664 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
667 /* allocate blocks for indirect blocks */
668 while (index
< indirect_blks
&& count
) {
669 new_blocks
[index
++] = current_block
++;
674 * save the new block number
675 * for the first direct block
677 new_blocks
[index
] = current_block
;
678 printk(KERN_INFO
"%s returned more blocks than "
679 "requested\n", __func__
);
685 target
= blks
- count
;
686 blk_allocated
= count
;
689 /* Now allocate data blocks */
690 memset(&ar
, 0, sizeof(ar
));
695 if (S_ISREG(inode
->i_mode
))
696 /* enable in-core preallocation only for regular files */
697 ar
.flags
= EXT4_MB_HINT_DATA
;
699 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
700 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
702 if (*err
&& (target
== blks
)) {
704 * if the allocation failed and we didn't allocate
710 if (target
== blks
) {
712 * save the new block number
713 * for the first direct block
715 new_blocks
[index
] = current_block
;
717 blk_allocated
+= ar
.len
;
720 /* total number of blocks allocated for direct blocks */
725 for (i
= 0; i
< index
; i
++)
726 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
731 * ext4_alloc_branch - allocate and set up a chain of blocks.
733 * @indirect_blks: number of allocated indirect blocks
734 * @blks: number of allocated direct blocks
735 * @offsets: offsets (in the blocks) to store the pointers to next.
736 * @branch: place to store the chain in.
738 * This function allocates blocks, zeroes out all but the last one,
739 * links them into chain and (if we are synchronous) writes them to disk.
740 * In other words, it prepares a branch that can be spliced onto the
741 * inode. It stores the information about that chain in the branch[], in
742 * the same format as ext4_get_branch() would do. We are calling it after
743 * we had read the existing part of chain and partial points to the last
744 * triple of that (one with zero ->key). Upon the exit we have the same
745 * picture as after the successful ext4_get_block(), except that in one
746 * place chain is disconnected - *branch->p is still zero (we did not
747 * set the last link), but branch->key contains the number that should
748 * be placed into *branch->p to fill that gap.
750 * If allocation fails we free all blocks we've allocated (and forget
751 * their buffer_heads) and return the error value the from failed
752 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
753 * as described above and return 0.
755 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
756 ext4_lblk_t iblock
, int indirect_blks
,
757 int *blks
, ext4_fsblk_t goal
,
758 ext4_lblk_t
*offsets
, Indirect
*branch
)
760 int blocksize
= inode
->i_sb
->s_blocksize
;
763 struct buffer_head
*bh
;
765 ext4_fsblk_t new_blocks
[4];
766 ext4_fsblk_t current_block
;
768 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
769 *blks
, new_blocks
, &err
);
773 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
775 * metadata blocks and data blocks are allocated.
777 for (n
= 1; n
<= indirect_blks
; n
++) {
779 * Get buffer_head for parent block, zero it out
780 * and set the pointer to new one, then send
783 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
786 BUFFER_TRACE(bh
, "call get_create_access");
787 err
= ext4_journal_get_create_access(handle
, bh
);
794 memset(bh
->b_data
, 0, blocksize
);
795 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
796 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
797 *branch
[n
].p
= branch
[n
].key
;
798 if (n
== indirect_blks
) {
799 current_block
= new_blocks
[n
];
801 * End of chain, update the last new metablock of
802 * the chain to point to the new allocated
803 * data blocks numbers
805 for (i
= 1; i
< num
; i
++)
806 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
808 BUFFER_TRACE(bh
, "marking uptodate");
809 set_buffer_uptodate(bh
);
812 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
813 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
820 /* Allocation failed, free what we already allocated */
821 for (i
= 1; i
<= n
; i
++) {
822 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
823 ext4_journal_forget(handle
, branch
[i
].bh
);
825 for (i
= 0; i
< indirect_blks
; i
++)
826 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
828 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
834 * ext4_splice_branch - splice the allocated branch onto inode.
836 * @block: (logical) number of block we are adding
837 * @chain: chain of indirect blocks (with a missing link - see
839 * @where: location of missing link
840 * @num: number of indirect blocks we are adding
841 * @blks: number of direct blocks we are adding
843 * This function fills the missing link and does all housekeeping needed in
844 * inode (->i_blocks, etc.). In case of success we end up with the full
845 * chain to new block and return 0.
847 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
848 ext4_lblk_t block
, Indirect
*where
, int num
,
853 ext4_fsblk_t current_block
;
856 * If we're splicing into a [td]indirect block (as opposed to the
857 * inode) then we need to get write access to the [td]indirect block
861 BUFFER_TRACE(where
->bh
, "get_write_access");
862 err
= ext4_journal_get_write_access(handle
, where
->bh
);
868 *where
->p
= where
->key
;
871 * Update the host buffer_head or inode to point to more just allocated
872 * direct blocks blocks
874 if (num
== 0 && blks
> 1) {
875 current_block
= le32_to_cpu(where
->key
) + 1;
876 for (i
= 1; i
< blks
; i
++)
877 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
880 /* We are done with atomic stuff, now do the rest of housekeeping */
881 /* had we spliced it onto indirect block? */
884 * If we spliced it onto an indirect block, we haven't
885 * altered the inode. Note however that if it is being spliced
886 * onto an indirect block at the very end of the file (the
887 * file is growing) then we *will* alter the inode to reflect
888 * the new i_size. But that is not done here - it is done in
889 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
891 jbd_debug(5, "splicing indirect only\n");
892 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
893 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
898 * OK, we spliced it into the inode itself on a direct block.
900 ext4_mark_inode_dirty(handle
, inode
);
901 jbd_debug(5, "splicing direct\n");
906 for (i
= 1; i
<= num
; i
++) {
907 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
908 ext4_journal_forget(handle
, where
[i
].bh
);
909 ext4_free_blocks(handle
, inode
,
910 le32_to_cpu(where
[i
-1].key
), 1, 0);
912 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
918 * The ext4_ind_get_blocks() function handles non-extents inodes
919 * (i.e., using the traditional indirect/double-indirect i_blocks
920 * scheme) for ext4_get_blocks().
922 * Allocation strategy is simple: if we have to allocate something, we will
923 * have to go the whole way to leaf. So let's do it before attaching anything
924 * to tree, set linkage between the newborn blocks, write them if sync is
925 * required, recheck the path, free and repeat if check fails, otherwise
926 * set the last missing link (that will protect us from any truncate-generated
927 * removals - all blocks on the path are immune now) and possibly force the
928 * write on the parent block.
929 * That has a nice additional property: no special recovery from the failed
930 * allocations is needed - we simply release blocks and do not touch anything
931 * reachable from inode.
933 * `handle' can be NULL if create == 0.
935 * return > 0, # of blocks mapped or allocated.
936 * return = 0, if plain lookup failed.
937 * return < 0, error case.
939 * The ext4_ind_get_blocks() function should be called with
940 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
941 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
942 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
945 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
946 ext4_lblk_t iblock
, unsigned int maxblocks
,
947 struct buffer_head
*bh_result
,
951 ext4_lblk_t offsets
[4];
956 int blocks_to_boundary
= 0;
959 ext4_fsblk_t first_block
= 0;
961 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
962 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
963 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
964 &blocks_to_boundary
);
969 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
971 /* Simplest case - block found, no allocation needed */
973 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
974 clear_buffer_new(bh_result
);
977 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
980 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
982 if (blk
== first_block
+ count
)
990 /* Next simple case - plain lookup or failed read of indirect block */
991 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
995 * Okay, we need to do block allocation.
997 goal
= ext4_find_goal(inode
, iblock
, partial
);
999 /* the number of blocks need to allocate for [d,t]indirect blocks */
1000 indirect_blks
= (chain
+ depth
) - partial
- 1;
1003 * Next look up the indirect map to count the totoal number of
1004 * direct blocks to allocate for this branch.
1006 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1007 maxblocks
, blocks_to_boundary
);
1009 * Block out ext4_truncate while we alter the tree
1011 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1013 offsets
+ (partial
- chain
), partial
);
1016 * The ext4_splice_branch call will free and forget any buffers
1017 * on the new chain if there is a failure, but that risks using
1018 * up transaction credits, especially for bitmaps where the
1019 * credits cannot be returned. Can we handle this somehow? We
1020 * may need to return -EAGAIN upwards in the worst case. --sct
1023 err
= ext4_splice_branch(handle
, inode
, iblock
,
1024 partial
, indirect_blks
, count
);
1028 set_buffer_new(bh_result
);
1030 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1032 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1033 if (count
> blocks_to_boundary
)
1034 set_buffer_boundary(bh_result
);
1036 /* Clean up and exit */
1037 partial
= chain
+ depth
- 1; /* the whole chain */
1039 while (partial
> chain
) {
1040 BUFFER_TRACE(partial
->bh
, "call brelse");
1041 brelse(partial
->bh
);
1044 BUFFER_TRACE(bh_result
, "returned");
1050 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1052 return &EXT4_I(inode
)->i_reserved_quota
;
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate @blocks for non extent file based file
1059 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1061 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1062 int ind_blks
, dind_blks
, tind_blks
;
1064 /* number of new indirect blocks needed */
1065 ind_blks
= (blocks
+ icap
- 1) / icap
;
1067 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1071 return ind_blks
+ dind_blks
+ tind_blks
;
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate given number of blocks
1078 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1083 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1084 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1086 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1089 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1091 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1092 int total
, mdb
, mdb_free
;
1094 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1095 /* recalculate the number of metablocks still need to be reserved */
1096 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1097 mdb
= ext4_calc_metadata_amount(inode
, total
);
1099 /* figure out how many metablocks to release */
1100 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1101 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1104 /* Account for allocated meta_blocks */
1105 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1107 /* update fs dirty blocks counter */
1108 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1109 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1110 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1113 /* update per-inode reservations */
1114 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1115 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1116 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1119 * free those over-booking quota for metadata blocks
1122 vfs_dq_release_reservation_block(inode
, mdb_free
);
1125 * If we have done all the pending block allocations and if
1126 * there aren't any writers on the inode, we can discard the
1127 * inode's preallocations.
1129 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1130 ext4_discard_preallocations(inode
);
1133 static int check_block_validity(struct inode
*inode
, const char *msg
,
1134 sector_t logical
, sector_t phys
, int len
)
1136 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1137 ext4_error(inode
->i_sb
, msg
,
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode
->i_ino
,
1140 (unsigned long long) logical
,
1141 (unsigned long long) phys
, len
);
1148 * Return the number of contiguous dirty pages in a given inode
1149 * starting at page frame idx.
1151 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1152 unsigned int max_pages
)
1154 struct address_space
*mapping
= inode
->i_mapping
;
1156 struct pagevec pvec
;
1158 int i
, nr_pages
, done
= 0;
1162 pagevec_init(&pvec
, 0);
1165 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1166 PAGECACHE_TAG_DIRTY
,
1167 (pgoff_t
)PAGEVEC_SIZE
);
1170 for (i
= 0; i
< nr_pages
; i
++) {
1171 struct page
*page
= pvec
.pages
[i
];
1172 struct buffer_head
*bh
, *head
;
1175 if (unlikely(page
->mapping
!= mapping
) ||
1177 PageWriteback(page
) ||
1178 page
->index
!= idx
) {
1183 if (page_has_buffers(page
)) {
1184 bh
= head
= page_buffers(page
);
1186 if (!buffer_delay(bh
) &&
1187 !buffer_unwritten(bh
))
1189 bh
= bh
->b_this_page
;
1190 } while (!done
&& (bh
!= head
));
1197 if (num
>= max_pages
)
1200 pagevec_release(&pvec
);
1206 * The ext4_get_blocks() function tries to look up the requested blocks,
1207 * and returns if the blocks are already mapped.
1209 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1210 * and store the allocated blocks in the result buffer head and mark it
1213 * If file type is extents based, it will call ext4_ext_get_blocks(),
1214 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1217 * On success, it returns the number of blocks being mapped or allocate.
1218 * if create==0 and the blocks are pre-allocated and uninitialized block,
1219 * the result buffer head is unmapped. If the create ==1, it will make sure
1220 * the buffer head is mapped.
1222 * It returns 0 if plain look up failed (blocks have not been allocated), in
1223 * that casem, buffer head is unmapped
1225 * It returns the error in case of allocation failure.
1227 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1228 unsigned int max_blocks
, struct buffer_head
*bh
,
1233 clear_buffer_mapped(bh
);
1234 clear_buffer_unwritten(bh
);
1236 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1237 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1238 (unsigned long)block
);
1240 * Try to see if we can get the block without requesting a new
1241 * file system block.
1243 down_read((&EXT4_I(inode
)->i_data_sem
));
1244 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1245 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1248 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1251 up_read((&EXT4_I(inode
)->i_data_sem
));
1253 if (retval
> 0 && buffer_mapped(bh
)) {
1254 int ret
= check_block_validity(inode
, "file system corruption",
1255 block
, bh
->b_blocknr
, retval
);
1260 /* If it is only a block(s) look up */
1261 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1265 * Returns if the blocks have already allocated
1267 * Note that if blocks have been preallocated
1268 * ext4_ext_get_block() returns th create = 0
1269 * with buffer head unmapped.
1271 if (retval
> 0 && buffer_mapped(bh
))
1275 * When we call get_blocks without the create flag, the
1276 * BH_Unwritten flag could have gotten set if the blocks
1277 * requested were part of a uninitialized extent. We need to
1278 * clear this flag now that we are committed to convert all or
1279 * part of the uninitialized extent to be an initialized
1280 * extent. This is because we need to avoid the combination
1281 * of BH_Unwritten and BH_Mapped flags being simultaneously
1282 * set on the buffer_head.
1284 clear_buffer_unwritten(bh
);
1287 * New blocks allocate and/or writing to uninitialized extent
1288 * will possibly result in updating i_data, so we take
1289 * the write lock of i_data_sem, and call get_blocks()
1290 * with create == 1 flag.
1292 down_write((&EXT4_I(inode
)->i_data_sem
));
1295 * if the caller is from delayed allocation writeout path
1296 * we have already reserved fs blocks for allocation
1297 * let the underlying get_block() function know to
1298 * avoid double accounting
1300 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1301 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1303 * We need to check for EXT4 here because migrate
1304 * could have changed the inode type in between
1306 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1307 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1310 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1311 max_blocks
, bh
, flags
);
1313 if (retval
> 0 && buffer_new(bh
)) {
1315 * We allocated new blocks which will result in
1316 * i_data's format changing. Force the migrate
1317 * to fail by clearing migrate flags
1319 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_EXT_MIGRATE
;
1323 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1324 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1327 * Update reserved blocks/metadata blocks after successful
1328 * block allocation which had been deferred till now.
1330 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1331 ext4_da_update_reserve_space(inode
, retval
);
1333 up_write((&EXT4_I(inode
)->i_data_sem
));
1334 if (retval
> 0 && buffer_mapped(bh
)) {
1335 int ret
= check_block_validity(inode
, "file system "
1336 "corruption after allocation",
1337 block
, bh
->b_blocknr
, retval
);
1344 /* Maximum number of blocks we map for direct IO at once. */
1345 #define DIO_MAX_BLOCKS 4096
1347 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1348 struct buffer_head
*bh_result
, int create
)
1350 handle_t
*handle
= ext4_journal_current_handle();
1351 int ret
= 0, started
= 0;
1352 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1355 if (create
&& !handle
) {
1356 /* Direct IO write... */
1357 if (max_blocks
> DIO_MAX_BLOCKS
)
1358 max_blocks
= DIO_MAX_BLOCKS
;
1359 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1360 handle
= ext4_journal_start(inode
, dio_credits
);
1361 if (IS_ERR(handle
)) {
1362 ret
= PTR_ERR(handle
);
1368 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1369 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1371 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1375 ext4_journal_stop(handle
);
1381 * `handle' can be NULL if create is zero
1383 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1384 ext4_lblk_t block
, int create
, int *errp
)
1386 struct buffer_head dummy
;
1390 J_ASSERT(handle
!= NULL
|| create
== 0);
1393 dummy
.b_blocknr
= -1000;
1394 buffer_trace_init(&dummy
.b_history
);
1396 flags
|= EXT4_GET_BLOCKS_CREATE
;
1397 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1399 * ext4_get_blocks() returns number of blocks mapped. 0 in
1408 if (!err
&& buffer_mapped(&dummy
)) {
1409 struct buffer_head
*bh
;
1410 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1415 if (buffer_new(&dummy
)) {
1416 J_ASSERT(create
!= 0);
1417 J_ASSERT(handle
!= NULL
);
1420 * Now that we do not always journal data, we should
1421 * keep in mind whether this should always journal the
1422 * new buffer as metadata. For now, regular file
1423 * writes use ext4_get_block instead, so it's not a
1427 BUFFER_TRACE(bh
, "call get_create_access");
1428 fatal
= ext4_journal_get_create_access(handle
, bh
);
1429 if (!fatal
&& !buffer_uptodate(bh
)) {
1430 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1431 set_buffer_uptodate(bh
);
1434 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1435 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1439 BUFFER_TRACE(bh
, "not a new buffer");
1452 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1453 ext4_lblk_t block
, int create
, int *err
)
1455 struct buffer_head
*bh
;
1457 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1460 if (buffer_uptodate(bh
))
1462 ll_rw_block(READ_META
, 1, &bh
);
1464 if (buffer_uptodate(bh
))
1471 static int walk_page_buffers(handle_t
*handle
,
1472 struct buffer_head
*head
,
1476 int (*fn
)(handle_t
*handle
,
1477 struct buffer_head
*bh
))
1479 struct buffer_head
*bh
;
1480 unsigned block_start
, block_end
;
1481 unsigned blocksize
= head
->b_size
;
1483 struct buffer_head
*next
;
1485 for (bh
= head
, block_start
= 0;
1486 ret
== 0 && (bh
!= head
|| !block_start
);
1487 block_start
= block_end
, bh
= next
) {
1488 next
= bh
->b_this_page
;
1489 block_end
= block_start
+ blocksize
;
1490 if (block_end
<= from
|| block_start
>= to
) {
1491 if (partial
&& !buffer_uptodate(bh
))
1495 err
= (*fn
)(handle
, bh
);
1503 * To preserve ordering, it is essential that the hole instantiation and
1504 * the data write be encapsulated in a single transaction. We cannot
1505 * close off a transaction and start a new one between the ext4_get_block()
1506 * and the commit_write(). So doing the jbd2_journal_start at the start of
1507 * prepare_write() is the right place.
1509 * Also, this function can nest inside ext4_writepage() ->
1510 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511 * has generated enough buffer credits to do the whole page. So we won't
1512 * block on the journal in that case, which is good, because the caller may
1515 * By accident, ext4 can be reentered when a transaction is open via
1516 * quota file writes. If we were to commit the transaction while thus
1517 * reentered, there can be a deadlock - we would be holding a quota
1518 * lock, and the commit would never complete if another thread had a
1519 * transaction open and was blocking on the quota lock - a ranking
1522 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523 * will _not_ run commit under these circumstances because handle->h_ref
1524 * is elevated. We'll still have enough credits for the tiny quotafile
1527 static int do_journal_get_write_access(handle_t
*handle
,
1528 struct buffer_head
*bh
)
1530 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1532 return ext4_journal_get_write_access(handle
, bh
);
1536 * Truncate blocks that were not used by write. We have to truncate the
1537 * pagecache as well so that corresponding buffers get properly unmapped.
1539 static void ext4_truncate_failed_write(struct inode
*inode
)
1541 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1542 ext4_truncate(inode
);
1545 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1546 loff_t pos
, unsigned len
, unsigned flags
,
1547 struct page
**pagep
, void **fsdata
)
1549 struct inode
*inode
= mapping
->host
;
1550 int ret
, needed_blocks
;
1557 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1559 * Reserve one block more for addition to orphan list in case
1560 * we allocate blocks but write fails for some reason
1562 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1563 index
= pos
>> PAGE_CACHE_SHIFT
;
1564 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1568 handle
= ext4_journal_start(inode
, needed_blocks
);
1569 if (IS_ERR(handle
)) {
1570 ret
= PTR_ERR(handle
);
1574 /* We cannot recurse into the filesystem as the transaction is already
1576 flags
|= AOP_FLAG_NOFS
;
1578 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1580 ext4_journal_stop(handle
);
1586 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1589 if (!ret
&& ext4_should_journal_data(inode
)) {
1590 ret
= walk_page_buffers(handle
, page_buffers(page
),
1591 from
, to
, NULL
, do_journal_get_write_access
);
1596 page_cache_release(page
);
1598 * block_write_begin may have instantiated a few blocks
1599 * outside i_size. Trim these off again. Don't need
1600 * i_size_read because we hold i_mutex.
1602 * Add inode to orphan list in case we crash before
1605 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1606 ext4_orphan_add(handle
, inode
);
1608 ext4_journal_stop(handle
);
1609 if (pos
+ len
> inode
->i_size
) {
1610 ext4_truncate_failed_write(inode
);
1612 * If truncate failed early the inode might
1613 * still be on the orphan list; we need to
1614 * make sure the inode is removed from the
1615 * orphan list in that case.
1618 ext4_orphan_del(NULL
, inode
);
1622 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1628 /* For write_end() in data=journal mode */
1629 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1631 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1633 set_buffer_uptodate(bh
);
1634 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1637 static int ext4_generic_write_end(struct file
*file
,
1638 struct address_space
*mapping
,
1639 loff_t pos
, unsigned len
, unsigned copied
,
1640 struct page
*page
, void *fsdata
)
1642 int i_size_changed
= 0;
1643 struct inode
*inode
= mapping
->host
;
1644 handle_t
*handle
= ext4_journal_current_handle();
1646 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1649 * No need to use i_size_read() here, the i_size
1650 * cannot change under us because we hold i_mutex.
1652 * But it's important to update i_size while still holding page lock:
1653 * page writeout could otherwise come in and zero beyond i_size.
1655 if (pos
+ copied
> inode
->i_size
) {
1656 i_size_write(inode
, pos
+ copied
);
1660 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1661 /* We need to mark inode dirty even if
1662 * new_i_size is less that inode->i_size
1663 * bu greater than i_disksize.(hint delalloc)
1665 ext4_update_i_disksize(inode
, (pos
+ copied
));
1669 page_cache_release(page
);
1672 * Don't mark the inode dirty under page lock. First, it unnecessarily
1673 * makes the holding time of page lock longer. Second, it forces lock
1674 * ordering of page lock and transaction start for journaling
1678 ext4_mark_inode_dirty(handle
, inode
);
1684 * We need to pick up the new inode size which generic_commit_write gave us
1685 * `file' can be NULL - eg, when called from page_symlink().
1687 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1688 * buffers are managed internally.
1690 static int ext4_ordered_write_end(struct file
*file
,
1691 struct address_space
*mapping
,
1692 loff_t pos
, unsigned len
, unsigned copied
,
1693 struct page
*page
, void *fsdata
)
1695 handle_t
*handle
= ext4_journal_current_handle();
1696 struct inode
*inode
= mapping
->host
;
1699 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1700 ret
= ext4_jbd2_file_inode(handle
, inode
);
1703 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1706 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1707 /* if we have allocated more blocks and copied
1708 * less. We will have blocks allocated outside
1709 * inode->i_size. So truncate them
1711 ext4_orphan_add(handle
, inode
);
1715 ret2
= ext4_journal_stop(handle
);
1719 if (pos
+ len
> inode
->i_size
) {
1720 ext4_truncate_failed_write(inode
);
1722 * If truncate failed early the inode might still be
1723 * on the orphan list; we need to make sure the inode
1724 * is removed from the orphan list in that case.
1727 ext4_orphan_del(NULL
, inode
);
1731 return ret
? ret
: copied
;
1734 static int ext4_writeback_write_end(struct file
*file
,
1735 struct address_space
*mapping
,
1736 loff_t pos
, unsigned len
, unsigned copied
,
1737 struct page
*page
, void *fsdata
)
1739 handle_t
*handle
= ext4_journal_current_handle();
1740 struct inode
*inode
= mapping
->host
;
1743 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1744 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1747 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1748 /* if we have allocated more blocks and copied
1749 * less. We will have blocks allocated outside
1750 * inode->i_size. So truncate them
1752 ext4_orphan_add(handle
, inode
);
1757 ret2
= ext4_journal_stop(handle
);
1761 if (pos
+ len
> inode
->i_size
) {
1762 ext4_truncate_failed_write(inode
);
1764 * If truncate failed early the inode might still be
1765 * on the orphan list; we need to make sure the inode
1766 * is removed from the orphan list in that case.
1769 ext4_orphan_del(NULL
, inode
);
1772 return ret
? ret
: copied
;
1775 static int ext4_journalled_write_end(struct file
*file
,
1776 struct address_space
*mapping
,
1777 loff_t pos
, unsigned len
, unsigned copied
,
1778 struct page
*page
, void *fsdata
)
1780 handle_t
*handle
= ext4_journal_current_handle();
1781 struct inode
*inode
= mapping
->host
;
1787 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1788 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1792 if (!PageUptodate(page
))
1794 page_zero_new_buffers(page
, from
+copied
, to
);
1797 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1798 to
, &partial
, write_end_fn
);
1800 SetPageUptodate(page
);
1801 new_i_size
= pos
+ copied
;
1802 if (new_i_size
> inode
->i_size
)
1803 i_size_write(inode
, pos
+copied
);
1804 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1805 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1806 ext4_update_i_disksize(inode
, new_i_size
);
1807 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1813 page_cache_release(page
);
1814 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1815 /* if we have allocated more blocks and copied
1816 * less. We will have blocks allocated outside
1817 * inode->i_size. So truncate them
1819 ext4_orphan_add(handle
, inode
);
1821 ret2
= ext4_journal_stop(handle
);
1824 if (pos
+ len
> inode
->i_size
) {
1825 ext4_truncate_failed_write(inode
);
1827 * If truncate failed early the inode might still be
1828 * on the orphan list; we need to make sure the inode
1829 * is removed from the orphan list in that case.
1832 ext4_orphan_del(NULL
, inode
);
1835 return ret
? ret
: copied
;
1838 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1841 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1842 unsigned long md_needed
, mdblocks
, total
= 0;
1845 * recalculate the amount of metadata blocks to reserve
1846 * in order to allocate nrblocks
1847 * worse case is one extent per block
1850 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1851 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1852 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1853 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1855 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1856 total
= md_needed
+ nrblocks
;
1857 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1860 * Make quota reservation here to prevent quota overflow
1861 * later. Real quota accounting is done at pages writeout
1864 if (vfs_dq_reserve_block(inode
, total
))
1867 if (ext4_claim_free_blocks(sbi
, total
)) {
1868 vfs_dq_release_reservation_block(inode
, total
);
1869 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1875 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1876 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1877 EXT4_I(inode
)->i_reserved_meta_blocks
+= md_needed
;
1878 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1880 return 0; /* success */
1883 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1885 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1886 int total
, mdb
, mdb_free
, release
;
1889 return; /* Nothing to release, exit */
1891 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1893 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1895 * if there is no reserved blocks, but we try to free some
1896 * then the counter is messed up somewhere.
1897 * but since this function is called from invalidate
1898 * page, it's harmless to return without any action
1900 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1901 "blocks for inode %lu, but there is no reserved "
1902 "data blocks\n", to_free
, inode
->i_ino
);
1903 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1907 /* recalculate the number of metablocks still need to be reserved */
1908 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1909 mdb
= ext4_calc_metadata_amount(inode
, total
);
1911 /* figure out how many metablocks to release */
1912 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1913 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1915 release
= to_free
+ mdb_free
;
1917 /* update fs dirty blocks counter for truncate case */
1918 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1920 /* update per-inode reservations */
1921 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1922 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1924 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1925 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1926 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1928 vfs_dq_release_reservation_block(inode
, release
);
1931 static void ext4_da_page_release_reservation(struct page
*page
,
1932 unsigned long offset
)
1935 struct buffer_head
*head
, *bh
;
1936 unsigned int curr_off
= 0;
1938 head
= page_buffers(page
);
1941 unsigned int next_off
= curr_off
+ bh
->b_size
;
1943 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1945 clear_buffer_delay(bh
);
1947 curr_off
= next_off
;
1948 } while ((bh
= bh
->b_this_page
) != head
);
1949 ext4_da_release_space(page
->mapping
->host
, to_release
);
1953 * mpage_da_submit_io - walks through extent of pages and try to write
1954 * them with writepage() call back
1956 * @mpd->inode: inode
1957 * @mpd->first_page: first page of the extent
1958 * @mpd->next_page: page after the last page of the extent
1960 * By the time mpage_da_submit_io() is called we expect all blocks
1961 * to be allocated. this may be wrong if allocation failed.
1963 * As pages are already locked by write_cache_pages(), we can't use it
1965 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1968 struct pagevec pvec
;
1969 unsigned long index
, end
;
1970 int ret
= 0, err
, nr_pages
, i
;
1971 struct inode
*inode
= mpd
->inode
;
1972 struct address_space
*mapping
= inode
->i_mapping
;
1974 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1976 * We need to start from the first_page to the next_page - 1
1977 * to make sure we also write the mapped dirty buffer_heads.
1978 * If we look at mpd->b_blocknr we would only be looking
1979 * at the currently mapped buffer_heads.
1981 index
= mpd
->first_page
;
1982 end
= mpd
->next_page
- 1;
1984 pagevec_init(&pvec
, 0);
1985 while (index
<= end
) {
1986 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1989 for (i
= 0; i
< nr_pages
; i
++) {
1990 struct page
*page
= pvec
.pages
[i
];
1992 index
= page
->index
;
1997 BUG_ON(!PageLocked(page
));
1998 BUG_ON(PageWriteback(page
));
2000 pages_skipped
= mpd
->wbc
->pages_skipped
;
2001 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2002 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2004 * have successfully written the page
2005 * without skipping the same
2007 mpd
->pages_written
++;
2009 * In error case, we have to continue because
2010 * remaining pages are still locked
2011 * XXX: unlock and re-dirty them?
2016 pagevec_release(&pvec
);
2022 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2024 * @mpd->inode - inode to walk through
2025 * @exbh->b_blocknr - first block on a disk
2026 * @exbh->b_size - amount of space in bytes
2027 * @logical - first logical block to start assignment with
2029 * the function goes through all passed space and put actual disk
2030 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2032 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2033 struct buffer_head
*exbh
)
2035 struct inode
*inode
= mpd
->inode
;
2036 struct address_space
*mapping
= inode
->i_mapping
;
2037 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2038 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2039 struct buffer_head
*head
, *bh
;
2041 struct pagevec pvec
;
2044 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2045 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2046 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2048 pagevec_init(&pvec
, 0);
2050 while (index
<= end
) {
2051 /* XXX: optimize tail */
2052 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2055 for (i
= 0; i
< nr_pages
; i
++) {
2056 struct page
*page
= pvec
.pages
[i
];
2058 index
= page
->index
;
2063 BUG_ON(!PageLocked(page
));
2064 BUG_ON(PageWriteback(page
));
2065 BUG_ON(!page_has_buffers(page
));
2067 bh
= page_buffers(page
);
2070 /* skip blocks out of the range */
2072 if (cur_logical
>= logical
)
2075 } while ((bh
= bh
->b_this_page
) != head
);
2078 if (cur_logical
>= logical
+ blocks
)
2081 if (buffer_delay(bh
) ||
2082 buffer_unwritten(bh
)) {
2084 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2086 if (buffer_delay(bh
)) {
2087 clear_buffer_delay(bh
);
2088 bh
->b_blocknr
= pblock
;
2091 * unwritten already should have
2092 * blocknr assigned. Verify that
2094 clear_buffer_unwritten(bh
);
2095 BUG_ON(bh
->b_blocknr
!= pblock
);
2098 } else if (buffer_mapped(bh
))
2099 BUG_ON(bh
->b_blocknr
!= pblock
);
2103 } while ((bh
= bh
->b_this_page
) != head
);
2105 pagevec_release(&pvec
);
2111 * __unmap_underlying_blocks - just a helper function to unmap
2112 * set of blocks described by @bh
2114 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2115 struct buffer_head
*bh
)
2117 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2120 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2121 for (i
= 0; i
< blocks
; i
++)
2122 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2125 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2126 sector_t logical
, long blk_cnt
)
2130 struct pagevec pvec
;
2131 struct inode
*inode
= mpd
->inode
;
2132 struct address_space
*mapping
= inode
->i_mapping
;
2134 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2135 end
= (logical
+ blk_cnt
- 1) >>
2136 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2137 while (index
<= end
) {
2138 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2141 for (i
= 0; i
< nr_pages
; i
++) {
2142 struct page
*page
= pvec
.pages
[i
];
2143 index
= page
->index
;
2148 BUG_ON(!PageLocked(page
));
2149 BUG_ON(PageWriteback(page
));
2150 block_invalidatepage(page
, 0);
2151 ClearPageUptodate(page
);
2158 static void ext4_print_free_blocks(struct inode
*inode
)
2160 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2161 printk(KERN_EMERG
"Total free blocks count %lld\n",
2162 ext4_count_free_blocks(inode
->i_sb
));
2163 printk(KERN_EMERG
"Free/Dirty block details\n");
2164 printk(KERN_EMERG
"free_blocks=%lld\n",
2165 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2166 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2167 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2168 printk(KERN_EMERG
"Block reservation details\n");
2169 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2170 EXT4_I(inode
)->i_reserved_data_blocks
);
2171 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2172 EXT4_I(inode
)->i_reserved_meta_blocks
);
2177 * mpage_da_map_blocks - go through given space
2179 * @mpd - bh describing space
2181 * The function skips space we know is already mapped to disk blocks.
2184 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2186 int err
, blks
, get_blocks_flags
;
2187 struct buffer_head
new;
2188 sector_t next
= mpd
->b_blocknr
;
2189 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2190 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2191 handle_t
*handle
= NULL
;
2194 * We consider only non-mapped and non-allocated blocks
2196 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2197 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2198 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2202 * If we didn't accumulate anything to write simply return
2207 handle
= ext4_journal_current_handle();
2211 * Call ext4_get_blocks() to allocate any delayed allocation
2212 * blocks, or to convert an uninitialized extent to be
2213 * initialized (in the case where we have written into
2214 * one or more preallocated blocks).
2216 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2217 * indicate that we are on the delayed allocation path. This
2218 * affects functions in many different parts of the allocation
2219 * call path. This flag exists primarily because we don't
2220 * want to change *many* call functions, so ext4_get_blocks()
2221 * will set the magic i_delalloc_reserved_flag once the
2222 * inode's allocation semaphore is taken.
2224 * If the blocks in questions were delalloc blocks, set
2225 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2226 * variables are updated after the blocks have been allocated.
2229 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2230 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2231 if (mpd
->b_state
& (1 << BH_Delay
))
2232 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2233 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2234 &new, get_blocks_flags
);
2238 * If get block returns with error we simply
2239 * return. Later writepage will redirty the page and
2240 * writepages will find the dirty page again
2245 if (err
== -ENOSPC
&&
2246 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2252 * get block failure will cause us to loop in
2253 * writepages, because a_ops->writepage won't be able
2254 * to make progress. The page will be redirtied by
2255 * writepage and writepages will again try to write
2258 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2259 "at logical offset %llu with max blocks "
2260 "%zd with error %d\n",
2261 __func__
, mpd
->inode
->i_ino
,
2262 (unsigned long long)next
,
2263 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2264 printk(KERN_EMERG
"This should not happen.!! "
2265 "Data will be lost\n");
2266 if (err
== -ENOSPC
) {
2267 ext4_print_free_blocks(mpd
->inode
);
2269 /* invalidate all the pages */
2270 ext4_da_block_invalidatepages(mpd
, next
,
2271 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2276 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2278 if (buffer_new(&new))
2279 __unmap_underlying_blocks(mpd
->inode
, &new);
2282 * If blocks are delayed marked, we need to
2283 * put actual blocknr and drop delayed bit
2285 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2286 (mpd
->b_state
& (1 << BH_Unwritten
)))
2287 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2289 if (ext4_should_order_data(mpd
->inode
)) {
2290 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2296 * Update on-disk size along with block allocation.
2298 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2299 if (disksize
> i_size_read(mpd
->inode
))
2300 disksize
= i_size_read(mpd
->inode
);
2301 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2302 ext4_update_i_disksize(mpd
->inode
, disksize
);
2303 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2309 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2310 (1 << BH_Delay) | (1 << BH_Unwritten))
2313 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2315 * @mpd->lbh - extent of blocks
2316 * @logical - logical number of the block in the file
2317 * @bh - bh of the block (used to access block's state)
2319 * the function is used to collect contig. blocks in same state
2321 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2322 sector_t logical
, size_t b_size
,
2323 unsigned long b_state
)
2326 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2328 /* check if thereserved journal credits might overflow */
2329 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2330 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2332 * With non-extent format we are limited by the journal
2333 * credit available. Total credit needed to insert
2334 * nrblocks contiguous blocks is dependent on the
2335 * nrblocks. So limit nrblocks.
2338 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2339 EXT4_MAX_TRANS_DATA
) {
2341 * Adding the new buffer_head would make it cross the
2342 * allowed limit for which we have journal credit
2343 * reserved. So limit the new bh->b_size
2345 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2346 mpd
->inode
->i_blkbits
;
2347 /* we will do mpage_da_submit_io in the next loop */
2351 * First block in the extent
2353 if (mpd
->b_size
== 0) {
2354 mpd
->b_blocknr
= logical
;
2355 mpd
->b_size
= b_size
;
2356 mpd
->b_state
= b_state
& BH_FLAGS
;
2360 next
= mpd
->b_blocknr
+ nrblocks
;
2362 * Can we merge the block to our big extent?
2364 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2365 mpd
->b_size
+= b_size
;
2371 * We couldn't merge the block to our extent, so we
2372 * need to flush current extent and start new one
2374 if (mpage_da_map_blocks(mpd
) == 0)
2375 mpage_da_submit_io(mpd
);
2380 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2382 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2386 * __mpage_da_writepage - finds extent of pages and blocks
2388 * @page: page to consider
2389 * @wbc: not used, we just follow rules
2392 * The function finds extents of pages and scan them for all blocks.
2394 static int __mpage_da_writepage(struct page
*page
,
2395 struct writeback_control
*wbc
, void *data
)
2397 struct mpage_da_data
*mpd
= data
;
2398 struct inode
*inode
= mpd
->inode
;
2399 struct buffer_head
*bh
, *head
;
2404 * Rest of the page in the page_vec
2405 * redirty then and skip then. We will
2406 * try to to write them again after
2407 * starting a new transaction
2409 redirty_page_for_writepage(wbc
, page
);
2411 return MPAGE_DA_EXTENT_TAIL
;
2414 * Can we merge this page to current extent?
2416 if (mpd
->next_page
!= page
->index
) {
2418 * Nope, we can't. So, we map non-allocated blocks
2419 * and start IO on them using writepage()
2421 if (mpd
->next_page
!= mpd
->first_page
) {
2422 if (mpage_da_map_blocks(mpd
) == 0)
2423 mpage_da_submit_io(mpd
);
2425 * skip rest of the page in the page_vec
2428 redirty_page_for_writepage(wbc
, page
);
2430 return MPAGE_DA_EXTENT_TAIL
;
2434 * Start next extent of pages ...
2436 mpd
->first_page
= page
->index
;
2446 mpd
->next_page
= page
->index
+ 1;
2447 logical
= (sector_t
) page
->index
<<
2448 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2450 if (!page_has_buffers(page
)) {
2451 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2452 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2454 return MPAGE_DA_EXTENT_TAIL
;
2457 * Page with regular buffer heads, just add all dirty ones
2459 head
= page_buffers(page
);
2462 BUG_ON(buffer_locked(bh
));
2464 * We need to try to allocate
2465 * unmapped blocks in the same page.
2466 * Otherwise we won't make progress
2467 * with the page in ext4_writepage
2469 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2470 mpage_add_bh_to_extent(mpd
, logical
,
2474 return MPAGE_DA_EXTENT_TAIL
;
2475 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2477 * mapped dirty buffer. We need to update
2478 * the b_state because we look at
2479 * b_state in mpage_da_map_blocks. We don't
2480 * update b_size because if we find an
2481 * unmapped buffer_head later we need to
2482 * use the b_state flag of that buffer_head.
2484 if (mpd
->b_size
== 0)
2485 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2488 } while ((bh
= bh
->b_this_page
) != head
);
2495 * This is a special get_blocks_t callback which is used by
2496 * ext4_da_write_begin(). It will either return mapped block or
2497 * reserve space for a single block.
2499 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2500 * We also have b_blocknr = -1 and b_bdev initialized properly
2502 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2503 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2504 * initialized properly.
2506 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2507 struct buffer_head
*bh_result
, int create
)
2510 sector_t invalid_block
= ~((sector_t
) 0xffff);
2512 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2515 BUG_ON(create
== 0);
2516 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2519 * first, we need to know whether the block is allocated already
2520 * preallocated blocks are unmapped but should treated
2521 * the same as allocated blocks.
2523 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2524 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2525 /* the block isn't (pre)allocated yet, let's reserve space */
2527 * XXX: __block_prepare_write() unmaps passed block,
2530 ret
= ext4_da_reserve_space(inode
, 1);
2532 /* not enough space to reserve */
2535 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2536 set_buffer_new(bh_result
);
2537 set_buffer_delay(bh_result
);
2538 } else if (ret
> 0) {
2539 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2540 if (buffer_unwritten(bh_result
)) {
2541 /* A delayed write to unwritten bh should
2542 * be marked new and mapped. Mapped ensures
2543 * that we don't do get_block multiple times
2544 * when we write to the same offset and new
2545 * ensures that we do proper zero out for
2548 set_buffer_new(bh_result
);
2549 set_buffer_mapped(bh_result
);
2558 * This function is used as a standard get_block_t calback function
2559 * when there is no desire to allocate any blocks. It is used as a
2560 * callback function for block_prepare_write(), nobh_writepage(), and
2561 * block_write_full_page(). These functions should only try to map a
2562 * single block at a time.
2564 * Since this function doesn't do block allocations even if the caller
2565 * requests it by passing in create=1, it is critically important that
2566 * any caller checks to make sure that any buffer heads are returned
2567 * by this function are either all already mapped or marked for
2568 * delayed allocation before calling nobh_writepage() or
2569 * block_write_full_page(). Otherwise, b_blocknr could be left
2570 * unitialized, and the page write functions will be taken by
2573 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2574 struct buffer_head
*bh_result
, int create
)
2577 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2579 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2582 * we don't want to do block allocation in writepage
2583 * so call get_block_wrap with create = 0
2585 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2587 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2593 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2599 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2605 static int __ext4_journalled_writepage(struct page
*page
,
2606 struct writeback_control
*wbc
,
2609 struct address_space
*mapping
= page
->mapping
;
2610 struct inode
*inode
= mapping
->host
;
2611 struct buffer_head
*page_bufs
;
2612 handle_t
*handle
= NULL
;
2616 page_bufs
= page_buffers(page
);
2618 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2619 /* As soon as we unlock the page, it can go away, but we have
2620 * references to buffers so we are safe */
2623 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2624 if (IS_ERR(handle
)) {
2625 ret
= PTR_ERR(handle
);
2629 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2630 do_journal_get_write_access
);
2632 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2636 err
= ext4_journal_stop(handle
);
2640 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2641 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2647 * Note that we don't need to start a transaction unless we're journaling data
2648 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2649 * need to file the inode to the transaction's list in ordered mode because if
2650 * we are writing back data added by write(), the inode is already there and if
2651 * we are writing back data modified via mmap(), noone guarantees in which
2652 * transaction the data will hit the disk. In case we are journaling data, we
2653 * cannot start transaction directly because transaction start ranks above page
2654 * lock so we have to do some magic.
2656 * This function can get called via...
2657 * - ext4_da_writepages after taking page lock (have journal handle)
2658 * - journal_submit_inode_data_buffers (no journal handle)
2659 * - shrink_page_list via pdflush (no journal handle)
2660 * - grab_page_cache when doing write_begin (have journal handle)
2662 * We don't do any block allocation in this function. If we have page with
2663 * multiple blocks we need to write those buffer_heads that are mapped. This
2664 * is important for mmaped based write. So if we do with blocksize 1K
2665 * truncate(f, 1024);
2666 * a = mmap(f, 0, 4096);
2668 * truncate(f, 4096);
2669 * we have in the page first buffer_head mapped via page_mkwrite call back
2670 * but other bufer_heads would be unmapped but dirty(dirty done via the
2671 * do_wp_page). So writepage should write the first block. If we modify
2672 * the mmap area beyond 1024 we will again get a page_fault and the
2673 * page_mkwrite callback will do the block allocation and mark the
2674 * buffer_heads mapped.
2676 * We redirty the page if we have any buffer_heads that is either delay or
2677 * unwritten in the page.
2679 * We can get recursively called as show below.
2681 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2684 * But since we don't do any block allocation we should not deadlock.
2685 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2687 static int ext4_writepage(struct page
*page
,
2688 struct writeback_control
*wbc
)
2693 struct buffer_head
*page_bufs
;
2694 struct inode
*inode
= page
->mapping
->host
;
2696 trace_ext4_writepage(inode
, page
);
2697 size
= i_size_read(inode
);
2698 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2699 len
= size
& ~PAGE_CACHE_MASK
;
2701 len
= PAGE_CACHE_SIZE
;
2703 if (page_has_buffers(page
)) {
2704 page_bufs
= page_buffers(page
);
2705 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2706 ext4_bh_delay_or_unwritten
)) {
2708 * We don't want to do block allocation
2709 * So redirty the page and return
2710 * We may reach here when we do a journal commit
2711 * via journal_submit_inode_data_buffers.
2712 * If we don't have mapping block we just ignore
2713 * them. We can also reach here via shrink_page_list
2715 redirty_page_for_writepage(wbc
, page
);
2721 * The test for page_has_buffers() is subtle:
2722 * We know the page is dirty but it lost buffers. That means
2723 * that at some moment in time after write_begin()/write_end()
2724 * has been called all buffers have been clean and thus they
2725 * must have been written at least once. So they are all
2726 * mapped and we can happily proceed with mapping them
2727 * and writing the page.
2729 * Try to initialize the buffer_heads and check whether
2730 * all are mapped and non delay. We don't want to
2731 * do block allocation here.
2733 ret
= block_prepare_write(page
, 0, len
,
2734 noalloc_get_block_write
);
2736 page_bufs
= page_buffers(page
);
2737 /* check whether all are mapped and non delay */
2738 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2739 ext4_bh_delay_or_unwritten
)) {
2740 redirty_page_for_writepage(wbc
, page
);
2746 * We can't do block allocation here
2747 * so just redity the page and unlock
2750 redirty_page_for_writepage(wbc
, page
);
2754 /* now mark the buffer_heads as dirty and uptodate */
2755 block_commit_write(page
, 0, len
);
2758 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2760 * It's mmapped pagecache. Add buffers and journal it. There
2761 * doesn't seem much point in redirtying the page here.
2763 ClearPageChecked(page
);
2764 return __ext4_journalled_writepage(page
, wbc
, len
);
2767 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2768 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2770 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2777 * This is called via ext4_da_writepages() to
2778 * calulate the total number of credits to reserve to fit
2779 * a single extent allocation into a single transaction,
2780 * ext4_da_writpeages() will loop calling this before
2781 * the block allocation.
2784 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2786 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2789 * With non-extent format the journal credit needed to
2790 * insert nrblocks contiguous block is dependent on
2791 * number of contiguous block. So we will limit
2792 * number of contiguous block to a sane value
2794 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
2795 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2796 max_blocks
= EXT4_MAX_TRANS_DATA
;
2798 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2801 static int ext4_da_writepages(struct address_space
*mapping
,
2802 struct writeback_control
*wbc
)
2805 int range_whole
= 0;
2806 handle_t
*handle
= NULL
;
2807 struct mpage_da_data mpd
;
2808 struct inode
*inode
= mapping
->host
;
2809 int no_nrwrite_index_update
;
2810 int pages_written
= 0;
2812 unsigned int max_pages
;
2813 int range_cyclic
, cycled
= 1, io_done
= 0;
2814 int needed_blocks
, ret
= 0;
2815 long desired_nr_to_write
, nr_to_writebump
= 0;
2816 loff_t range_start
= wbc
->range_start
;
2817 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2819 trace_ext4_da_writepages(inode
, wbc
);
2822 * No pages to write? This is mainly a kludge to avoid starting
2823 * a transaction for special inodes like journal inode on last iput()
2824 * because that could violate lock ordering on umount
2826 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2830 * If the filesystem has aborted, it is read-only, so return
2831 * right away instead of dumping stack traces later on that
2832 * will obscure the real source of the problem. We test
2833 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2834 * the latter could be true if the filesystem is mounted
2835 * read-only, and in that case, ext4_da_writepages should
2836 * *never* be called, so if that ever happens, we would want
2839 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2842 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2845 range_cyclic
= wbc
->range_cyclic
;
2846 if (wbc
->range_cyclic
) {
2847 index
= mapping
->writeback_index
;
2850 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2851 wbc
->range_end
= LLONG_MAX
;
2852 wbc
->range_cyclic
= 0;
2854 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2857 * This works around two forms of stupidity. The first is in
2858 * the writeback code, which caps the maximum number of pages
2859 * written to be 1024 pages. This is wrong on multiple
2860 * levels; different architectues have a different page size,
2861 * which changes the maximum amount of data which gets
2862 * written. Secondly, 4 megabytes is way too small. XFS
2863 * forces this value to be 16 megabytes by multiplying
2864 * nr_to_write parameter by four, and then relies on its
2865 * allocator to allocate larger extents to make them
2866 * contiguous. Unfortunately this brings us to the second
2867 * stupidity, which is that ext4's mballoc code only allocates
2868 * at most 2048 blocks. So we force contiguous writes up to
2869 * the number of dirty blocks in the inode, or
2870 * sbi->max_writeback_mb_bump whichever is smaller.
2872 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2873 if (!range_cyclic
&& range_whole
)
2874 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2876 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2878 if (desired_nr_to_write
> max_pages
)
2879 desired_nr_to_write
= max_pages
;
2881 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2882 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2883 wbc
->nr_to_write
= desired_nr_to_write
;
2887 mpd
.inode
= mapping
->host
;
2890 * we don't want write_cache_pages to update
2891 * nr_to_write and writeback_index
2893 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2894 wbc
->no_nrwrite_index_update
= 1;
2895 pages_skipped
= wbc
->pages_skipped
;
2898 while (!ret
&& wbc
->nr_to_write
> 0) {
2901 * we insert one extent at a time. So we need
2902 * credit needed for single extent allocation.
2903 * journalled mode is currently not supported
2906 BUG_ON(ext4_should_journal_data(inode
));
2907 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2909 /* start a new transaction*/
2910 handle
= ext4_journal_start(inode
, needed_blocks
);
2911 if (IS_ERR(handle
)) {
2912 ret
= PTR_ERR(handle
);
2913 printk(KERN_CRIT
"%s: jbd2_start: "
2914 "%ld pages, ino %lu; err %d\n", __func__
,
2915 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2917 goto out_writepages
;
2921 * Now call __mpage_da_writepage to find the next
2922 * contiguous region of logical blocks that need
2923 * blocks to be allocated by ext4. We don't actually
2924 * submit the blocks for I/O here, even though
2925 * write_cache_pages thinks it will, and will set the
2926 * pages as clean for write before calling
2927 * __mpage_da_writepage().
2935 mpd
.pages_written
= 0;
2937 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2940 * If we have a contigous extent of pages and we
2941 * haven't done the I/O yet, map the blocks and submit
2944 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2945 if (mpage_da_map_blocks(&mpd
) == 0)
2946 mpage_da_submit_io(&mpd
);
2948 ret
= MPAGE_DA_EXTENT_TAIL
;
2950 wbc
->nr_to_write
-= mpd
.pages_written
;
2952 ext4_journal_stop(handle
);
2954 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2955 /* commit the transaction which would
2956 * free blocks released in the transaction
2959 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2960 wbc
->pages_skipped
= pages_skipped
;
2962 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2964 * got one extent now try with
2967 pages_written
+= mpd
.pages_written
;
2968 wbc
->pages_skipped
= pages_skipped
;
2971 } else if (wbc
->nr_to_write
)
2973 * There is no more writeout needed
2974 * or we requested for a noblocking writeout
2975 * and we found the device congested
2979 if (!io_done
&& !cycled
) {
2982 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2983 wbc
->range_end
= mapping
->writeback_index
- 1;
2986 if (pages_skipped
!= wbc
->pages_skipped
)
2987 printk(KERN_EMERG
"This should not happen leaving %s "
2988 "with nr_to_write = %ld ret = %d\n",
2989 __func__
, wbc
->nr_to_write
, ret
);
2992 index
+= pages_written
;
2993 wbc
->range_cyclic
= range_cyclic
;
2994 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2996 * set the writeback_index so that range_cyclic
2997 * mode will write it back later
2999 mapping
->writeback_index
= index
;
3002 if (!no_nrwrite_index_update
)
3003 wbc
->no_nrwrite_index_update
= 0;
3004 if (wbc
->nr_to_write
> nr_to_writebump
)
3005 wbc
->nr_to_write
-= nr_to_writebump
;
3006 wbc
->range_start
= range_start
;
3007 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3011 #define FALL_BACK_TO_NONDELALLOC 1
3012 static int ext4_nonda_switch(struct super_block
*sb
)
3014 s64 free_blocks
, dirty_blocks
;
3015 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3018 * switch to non delalloc mode if we are running low
3019 * on free block. The free block accounting via percpu
3020 * counters can get slightly wrong with percpu_counter_batch getting
3021 * accumulated on each CPU without updating global counters
3022 * Delalloc need an accurate free block accounting. So switch
3023 * to non delalloc when we are near to error range.
3025 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3026 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3027 if (2 * free_blocks
< 3 * dirty_blocks
||
3028 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3030 * free block count is less that 150% of dirty blocks
3031 * or free blocks is less that watermark
3038 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3039 loff_t pos
, unsigned len
, unsigned flags
,
3040 struct page
**pagep
, void **fsdata
)
3042 int ret
, retries
= 0;
3046 struct inode
*inode
= mapping
->host
;
3049 index
= pos
>> PAGE_CACHE_SHIFT
;
3050 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3053 if (ext4_nonda_switch(inode
->i_sb
)) {
3054 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3055 return ext4_write_begin(file
, mapping
, pos
,
3056 len
, flags
, pagep
, fsdata
);
3058 *fsdata
= (void *)0;
3059 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3062 * With delayed allocation, we don't log the i_disksize update
3063 * if there is delayed block allocation. But we still need
3064 * to journalling the i_disksize update if writes to the end
3065 * of file which has an already mapped buffer.
3067 handle
= ext4_journal_start(inode
, 1);
3068 if (IS_ERR(handle
)) {
3069 ret
= PTR_ERR(handle
);
3072 /* We cannot recurse into the filesystem as the transaction is already
3074 flags
|= AOP_FLAG_NOFS
;
3076 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3078 ext4_journal_stop(handle
);
3084 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3085 ext4_da_get_block_prep
);
3088 ext4_journal_stop(handle
);
3089 page_cache_release(page
);
3091 * block_write_begin may have instantiated a few blocks
3092 * outside i_size. Trim these off again. Don't need
3093 * i_size_read because we hold i_mutex.
3095 if (pos
+ len
> inode
->i_size
)
3096 ext4_truncate_failed_write(inode
);
3099 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3109 static int ext4_da_should_update_i_disksize(struct page
*page
,
3110 unsigned long offset
)
3112 struct buffer_head
*bh
;
3113 struct inode
*inode
= page
->mapping
->host
;
3117 bh
= page_buffers(page
);
3118 idx
= offset
>> inode
->i_blkbits
;
3120 for (i
= 0; i
< idx
; i
++)
3121 bh
= bh
->b_this_page
;
3123 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3128 static int ext4_da_write_end(struct file
*file
,
3129 struct address_space
*mapping
,
3130 loff_t pos
, unsigned len
, unsigned copied
,
3131 struct page
*page
, void *fsdata
)
3133 struct inode
*inode
= mapping
->host
;
3135 handle_t
*handle
= ext4_journal_current_handle();
3137 unsigned long start
, end
;
3138 int write_mode
= (int)(unsigned long)fsdata
;
3140 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3141 if (ext4_should_order_data(inode
)) {
3142 return ext4_ordered_write_end(file
, mapping
, pos
,
3143 len
, copied
, page
, fsdata
);
3144 } else if (ext4_should_writeback_data(inode
)) {
3145 return ext4_writeback_write_end(file
, mapping
, pos
,
3146 len
, copied
, page
, fsdata
);
3152 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3153 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3154 end
= start
+ copied
- 1;
3157 * generic_write_end() will run mark_inode_dirty() if i_size
3158 * changes. So let's piggyback the i_disksize mark_inode_dirty
3162 new_i_size
= pos
+ copied
;
3163 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3164 if (ext4_da_should_update_i_disksize(page
, end
)) {
3165 down_write(&EXT4_I(inode
)->i_data_sem
);
3166 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3168 * Updating i_disksize when extending file
3169 * without needing block allocation
3171 if (ext4_should_order_data(inode
))
3172 ret
= ext4_jbd2_file_inode(handle
,
3175 EXT4_I(inode
)->i_disksize
= new_i_size
;
3177 up_write(&EXT4_I(inode
)->i_data_sem
);
3178 /* We need to mark inode dirty even if
3179 * new_i_size is less that inode->i_size
3180 * bu greater than i_disksize.(hint delalloc)
3182 ext4_mark_inode_dirty(handle
, inode
);
3185 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3190 ret2
= ext4_journal_stop(handle
);
3194 return ret
? ret
: copied
;
3197 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3200 * Drop reserved blocks
3202 BUG_ON(!PageLocked(page
));
3203 if (!page_has_buffers(page
))
3206 ext4_da_page_release_reservation(page
, offset
);
3209 ext4_invalidatepage(page
, offset
);
3215 * Force all delayed allocation blocks to be allocated for a given inode.
3217 int ext4_alloc_da_blocks(struct inode
*inode
)
3219 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3220 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3224 * We do something simple for now. The filemap_flush() will
3225 * also start triggering a write of the data blocks, which is
3226 * not strictly speaking necessary (and for users of
3227 * laptop_mode, not even desirable). However, to do otherwise
3228 * would require replicating code paths in:
3230 * ext4_da_writepages() ->
3231 * write_cache_pages() ---> (via passed in callback function)
3232 * __mpage_da_writepage() -->
3233 * mpage_add_bh_to_extent()
3234 * mpage_da_map_blocks()
3236 * The problem is that write_cache_pages(), located in
3237 * mm/page-writeback.c, marks pages clean in preparation for
3238 * doing I/O, which is not desirable if we're not planning on
3241 * We could call write_cache_pages(), and then redirty all of
3242 * the pages by calling redirty_page_for_writeback() but that
3243 * would be ugly in the extreme. So instead we would need to
3244 * replicate parts of the code in the above functions,
3245 * simplifying them becuase we wouldn't actually intend to
3246 * write out the pages, but rather only collect contiguous
3247 * logical block extents, call the multi-block allocator, and
3248 * then update the buffer heads with the block allocations.
3250 * For now, though, we'll cheat by calling filemap_flush(),
3251 * which will map the blocks, and start the I/O, but not
3252 * actually wait for the I/O to complete.
3254 return filemap_flush(inode
->i_mapping
);
3258 * bmap() is special. It gets used by applications such as lilo and by
3259 * the swapper to find the on-disk block of a specific piece of data.
3261 * Naturally, this is dangerous if the block concerned is still in the
3262 * journal. If somebody makes a swapfile on an ext4 data-journaling
3263 * filesystem and enables swap, then they may get a nasty shock when the
3264 * data getting swapped to that swapfile suddenly gets overwritten by
3265 * the original zero's written out previously to the journal and
3266 * awaiting writeback in the kernel's buffer cache.
3268 * So, if we see any bmap calls here on a modified, data-journaled file,
3269 * take extra steps to flush any blocks which might be in the cache.
3271 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3273 struct inode
*inode
= mapping
->host
;
3277 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3278 test_opt(inode
->i_sb
, DELALLOC
)) {
3280 * With delalloc we want to sync the file
3281 * so that we can make sure we allocate
3284 filemap_write_and_wait(mapping
);
3287 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3299 * NB. EXT4_STATE_JDATA is not set on files other than
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3306 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3307 journal
= EXT4_JOURNAL(inode
);
3308 jbd2_journal_lock_updates(journal
);
3309 err
= jbd2_journal_flush(journal
);
3310 jbd2_journal_unlock_updates(journal
);
3316 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3319 static int ext4_readpage(struct file
*file
, struct page
*page
)
3321 return mpage_readpage(page
, ext4_get_block
);
3325 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3326 struct list_head
*pages
, unsigned nr_pages
)
3328 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3331 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3333 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3336 * If it's a full truncate we just forget about the pending dirtying
3339 ClearPageChecked(page
);
3342 jbd2_journal_invalidatepage(journal
, page
, offset
);
3344 block_invalidatepage(page
, offset
);
3347 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3349 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3351 WARN_ON(PageChecked(page
));
3352 if (!page_has_buffers(page
))
3355 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3357 return try_to_free_buffers(page
);
3361 * O_DIRECT for ext3 (or indirect map) based files
3363 * If the O_DIRECT write will extend the file then add this inode to the
3364 * orphan list. So recovery will truncate it back to the original size
3365 * if the machine crashes during the write.
3367 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3368 * crashes then stale disk data _may_ be exposed inside the file. But current
3369 * VFS code falls back into buffered path in that case so we are safe.
3371 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3372 const struct iovec
*iov
, loff_t offset
,
3373 unsigned long nr_segs
)
3375 struct file
*file
= iocb
->ki_filp
;
3376 struct inode
*inode
= file
->f_mapping
->host
;
3377 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3381 size_t count
= iov_length(iov
, nr_segs
);
3385 loff_t final_size
= offset
+ count
;
3387 if (final_size
> inode
->i_size
) {
3388 /* Credits for sb + inode write */
3389 handle
= ext4_journal_start(inode
, 2);
3390 if (IS_ERR(handle
)) {
3391 ret
= PTR_ERR(handle
);
3394 ret
= ext4_orphan_add(handle
, inode
);
3396 ext4_journal_stop(handle
);
3400 ei
->i_disksize
= inode
->i_size
;
3401 ext4_journal_stop(handle
);
3406 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3408 ext4_get_block
, NULL
);
3409 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3415 /* Credits for sb + inode write */
3416 handle
= ext4_journal_start(inode
, 2);
3417 if (IS_ERR(handle
)) {
3418 /* This is really bad luck. We've written the data
3419 * but cannot extend i_size. Bail out and pretend
3420 * the write failed... */
3421 ret
= PTR_ERR(handle
);
3425 ext4_orphan_del(handle
, inode
);
3427 loff_t end
= offset
+ ret
;
3428 if (end
> inode
->i_size
) {
3429 ei
->i_disksize
= end
;
3430 i_size_write(inode
, end
);
3432 * We're going to return a positive `ret'
3433 * here due to non-zero-length I/O, so there's
3434 * no way of reporting error returns from
3435 * ext4_mark_inode_dirty() to userspace. So
3438 ext4_mark_inode_dirty(handle
, inode
);
3441 err
= ext4_journal_stop(handle
);
3449 static int ext4_get_block_dio_write(struct inode
*inode
, sector_t iblock
,
3450 struct buffer_head
*bh_result
, int create
)
3452 handle_t
*handle
= NULL
;
3454 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3457 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3458 inode
->i_ino
, create
);
3460 * DIO VFS code passes create = 0 flag for write to
3461 * the middle of file. It does this to avoid block
3462 * allocation for holes, to prevent expose stale data
3463 * out when there is parallel buffered read (which does
3464 * not hold the i_mutex lock) while direct IO write has
3465 * not completed. DIO request on holes finally falls back
3466 * to buffered IO for this reason.
3468 * For ext4 extent based file, since we support fallocate,
3469 * new allocated extent as uninitialized, for holes, we
3470 * could fallocate blocks for holes, thus parallel
3471 * buffered IO read will zero out the page when read on
3472 * a hole while parallel DIO write to the hole has not completed.
3474 * when we come here, we know it's a direct IO write to
3475 * to the middle of file (<i_size)
3476 * so it's safe to override the create flag from VFS.
3478 create
= EXT4_GET_BLOCKS_DIO_CREATE_EXT
;
3480 if (max_blocks
> DIO_MAX_BLOCKS
)
3481 max_blocks
= DIO_MAX_BLOCKS
;
3482 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3483 handle
= ext4_journal_start(inode
, dio_credits
);
3484 if (IS_ERR(handle
)) {
3485 ret
= PTR_ERR(handle
);
3488 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3491 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3494 ext4_journal_stop(handle
);
3499 static void ext4_free_io_end(ext4_io_end_t
*io
)
3505 static void dump_aio_dio_list(struct inode
* inode
)
3508 struct list_head
*cur
, *before
, *after
;
3509 ext4_io_end_t
*io
, *io0
, *io1
;
3511 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3512 ext4_debug("inode %lu aio dio list is empty\n", inode
->i_ino
);
3516 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode
->i_ino
);
3517 list_for_each_entry(io
, &EXT4_I(inode
)->i_aio_dio_complete_list
, list
){
3520 io0
= container_of(before
, ext4_io_end_t
, list
);
3522 io1
= container_of(after
, ext4_io_end_t
, list
);
3524 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3525 io
, inode
->i_ino
, io0
, io1
);
3531 * check a range of space and convert unwritten extents to written.
3533 static int ext4_end_aio_dio_nolock(ext4_io_end_t
*io
)
3535 struct inode
*inode
= io
->inode
;
3536 loff_t offset
= io
->offset
;
3537 size_t size
= io
->size
;
3540 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3541 "list->prev 0x%p\n",
3542 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3544 if (list_empty(&io
->list
))
3547 if (io
->flag
!= DIO_AIO_UNWRITTEN
)
3550 if (offset
+ size
<= i_size_read(inode
))
3551 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3554 printk(KERN_EMERG
"%s: failed to convert unwritten"
3555 "extents to written extents, error is %d"
3556 " io is still on inode %lu aio dio list\n",
3557 __func__
, ret
, inode
->i_ino
);
3561 /* clear the DIO AIO unwritten flag */
3566 * work on completed aio dio IO, to convert unwritten extents to extents
3568 static void ext4_end_aio_dio_work(struct work_struct
*work
)
3570 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3571 struct inode
*inode
= io
->inode
;
3574 mutex_lock(&inode
->i_mutex
);
3575 ret
= ext4_end_aio_dio_nolock(io
);
3577 if (!list_empty(&io
->list
))
3578 list_del_init(&io
->list
);
3579 ext4_free_io_end(io
);
3581 mutex_unlock(&inode
->i_mutex
);
3584 * This function is called from ext4_sync_file().
3586 * When AIO DIO IO is completed, the work to convert unwritten
3587 * extents to written is queued on workqueue but may not get immediately
3588 * scheduled. When fsync is called, we need to ensure the
3589 * conversion is complete before fsync returns.
3590 * The inode keeps track of a list of completed AIO from DIO path
3591 * that might needs to do the conversion. This function walks through
3592 * the list and convert the related unwritten extents to written.
3594 int flush_aio_dio_completed_IO(struct inode
*inode
)
3600 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
))
3603 dump_aio_dio_list(inode
);
3604 while (!list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3605 io
= list_entry(EXT4_I(inode
)->i_aio_dio_complete_list
.next
,
3606 ext4_io_end_t
, list
);
3608 * Calling ext4_end_aio_dio_nolock() to convert completed
3611 * When ext4_sync_file() is called, run_queue() may already
3612 * about to flush the work corresponding to this io structure.
3613 * It will be upset if it founds the io structure related
3614 * to the work-to-be schedule is freed.
3616 * Thus we need to keep the io structure still valid here after
3617 * convertion finished. The io structure has a flag to
3618 * avoid double converting from both fsync and background work
3621 ret
= ext4_end_aio_dio_nolock(io
);
3625 list_del_init(&io
->list
);
3627 return (ret2
< 0) ? ret2
: 0;
3630 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
)
3632 ext4_io_end_t
*io
= NULL
;
3634 io
= kmalloc(sizeof(*io
), GFP_NOFS
);
3643 INIT_WORK(&io
->work
, ext4_end_aio_dio_work
);
3644 INIT_LIST_HEAD(&io
->list
);
3650 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3651 ssize_t size
, void *private)
3653 ext4_io_end_t
*io_end
= iocb
->private;
3654 struct workqueue_struct
*wq
;
3656 /* if not async direct IO or dio with 0 bytes write, just return */
3657 if (!io_end
|| !size
)
3660 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3661 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3662 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3665 /* if not aio dio with unwritten extents, just free io and return */
3666 if (io_end
->flag
!= DIO_AIO_UNWRITTEN
){
3667 ext4_free_io_end(io_end
);
3668 iocb
->private = NULL
;
3672 io_end
->offset
= offset
;
3673 io_end
->size
= size
;
3674 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3676 /* queue the work to convert unwritten extents to written */
3677 queue_work(wq
, &io_end
->work
);
3679 /* Add the io_end to per-inode completed aio dio list*/
3680 list_add_tail(&io_end
->list
,
3681 &EXT4_I(io_end
->inode
)->i_aio_dio_complete_list
);
3682 iocb
->private = NULL
;
3685 * For ext4 extent files, ext4 will do direct-io write to holes,
3686 * preallocated extents, and those write extend the file, no need to
3687 * fall back to buffered IO.
3689 * For holes, we fallocate those blocks, mark them as unintialized
3690 * If those blocks were preallocated, we mark sure they are splited, but
3691 * still keep the range to write as unintialized.
3693 * The unwrritten extents will be converted to written when DIO is completed.
3694 * For async direct IO, since the IO may still pending when return, we
3695 * set up an end_io call back function, which will do the convertion
3696 * when async direct IO completed.
3698 * If the O_DIRECT write will extend the file then add this inode to the
3699 * orphan list. So recovery will truncate it back to the original size
3700 * if the machine crashes during the write.
3703 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3704 const struct iovec
*iov
, loff_t offset
,
3705 unsigned long nr_segs
)
3707 struct file
*file
= iocb
->ki_filp
;
3708 struct inode
*inode
= file
->f_mapping
->host
;
3710 size_t count
= iov_length(iov
, nr_segs
);
3712 loff_t final_size
= offset
+ count
;
3713 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3715 * We could direct write to holes and fallocate.
3717 * Allocated blocks to fill the hole are marked as uninitialized
3718 * to prevent paralel buffered read to expose the stale data
3719 * before DIO complete the data IO.
3721 * As to previously fallocated extents, ext4 get_block
3722 * will just simply mark the buffer mapped but still
3723 * keep the extents uninitialized.
3725 * for non AIO case, we will convert those unwritten extents
3726 * to written after return back from blockdev_direct_IO.
3728 * for async DIO, the conversion needs to be defered when
3729 * the IO is completed. The ext4 end_io callback function
3730 * will be called to take care of the conversion work.
3731 * Here for async case, we allocate an io_end structure to
3734 iocb
->private = NULL
;
3735 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3736 if (!is_sync_kiocb(iocb
)) {
3737 iocb
->private = ext4_init_io_end(inode
);
3741 * we save the io structure for current async
3742 * direct IO, so that later ext4_get_blocks()
3743 * could flag the io structure whether there
3744 * is a unwritten extents needs to be converted
3745 * when IO is completed.
3747 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3750 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3751 inode
->i_sb
->s_bdev
, iov
,
3753 ext4_get_block_dio_write
,
3756 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3758 * The io_end structure takes a reference to the inode,
3759 * that structure needs to be destroyed and the
3760 * reference to the inode need to be dropped, when IO is
3761 * complete, even with 0 byte write, or failed.
3763 * In the successful AIO DIO case, the io_end structure will be
3764 * desctroyed and the reference to the inode will be dropped
3765 * after the end_io call back function is called.
3767 * In the case there is 0 byte write, or error case, since
3768 * VFS direct IO won't invoke the end_io call back function,
3769 * we need to free the end_io structure here.
3771 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3772 ext4_free_io_end(iocb
->private);
3773 iocb
->private = NULL
;
3774 } else if (ret
> 0 && (EXT4_I(inode
)->i_state
&
3775 EXT4_STATE_DIO_UNWRITTEN
)) {
3778 * for non AIO case, since the IO is already
3779 * completed, we could do the convertion right here
3781 err
= ext4_convert_unwritten_extents(inode
,
3785 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_DIO_UNWRITTEN
;
3790 /* for write the the end of file case, we fall back to old way */
3791 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3794 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3795 const struct iovec
*iov
, loff_t offset
,
3796 unsigned long nr_segs
)
3798 struct file
*file
= iocb
->ki_filp
;
3799 struct inode
*inode
= file
->f_mapping
->host
;
3801 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3802 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3804 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3808 * Pages can be marked dirty completely asynchronously from ext4's journalling
3809 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3810 * much here because ->set_page_dirty is called under VFS locks. The page is
3811 * not necessarily locked.
3813 * We cannot just dirty the page and leave attached buffers clean, because the
3814 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3815 * or jbddirty because all the journalling code will explode.
3817 * So what we do is to mark the page "pending dirty" and next time writepage
3818 * is called, propagate that into the buffers appropriately.
3820 static int ext4_journalled_set_page_dirty(struct page
*page
)
3822 SetPageChecked(page
);
3823 return __set_page_dirty_nobuffers(page
);
3826 static const struct address_space_operations ext4_ordered_aops
= {
3827 .readpage
= ext4_readpage
,
3828 .readpages
= ext4_readpages
,
3829 .writepage
= ext4_writepage
,
3830 .sync_page
= block_sync_page
,
3831 .write_begin
= ext4_write_begin
,
3832 .write_end
= ext4_ordered_write_end
,
3834 .invalidatepage
= ext4_invalidatepage
,
3835 .releasepage
= ext4_releasepage
,
3836 .direct_IO
= ext4_direct_IO
,
3837 .migratepage
= buffer_migrate_page
,
3838 .is_partially_uptodate
= block_is_partially_uptodate
,
3841 static const struct address_space_operations ext4_writeback_aops
= {
3842 .readpage
= ext4_readpage
,
3843 .readpages
= ext4_readpages
,
3844 .writepage
= ext4_writepage
,
3845 .sync_page
= block_sync_page
,
3846 .write_begin
= ext4_write_begin
,
3847 .write_end
= ext4_writeback_write_end
,
3849 .invalidatepage
= ext4_invalidatepage
,
3850 .releasepage
= ext4_releasepage
,
3851 .direct_IO
= ext4_direct_IO
,
3852 .migratepage
= buffer_migrate_page
,
3853 .is_partially_uptodate
= block_is_partially_uptodate
,
3856 static const struct address_space_operations ext4_journalled_aops
= {
3857 .readpage
= ext4_readpage
,
3858 .readpages
= ext4_readpages
,
3859 .writepage
= ext4_writepage
,
3860 .sync_page
= block_sync_page
,
3861 .write_begin
= ext4_write_begin
,
3862 .write_end
= ext4_journalled_write_end
,
3863 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3865 .invalidatepage
= ext4_invalidatepage
,
3866 .releasepage
= ext4_releasepage
,
3867 .is_partially_uptodate
= block_is_partially_uptodate
,
3870 static const struct address_space_operations ext4_da_aops
= {
3871 .readpage
= ext4_readpage
,
3872 .readpages
= ext4_readpages
,
3873 .writepage
= ext4_writepage
,
3874 .writepages
= ext4_da_writepages
,
3875 .sync_page
= block_sync_page
,
3876 .write_begin
= ext4_da_write_begin
,
3877 .write_end
= ext4_da_write_end
,
3879 .invalidatepage
= ext4_da_invalidatepage
,
3880 .releasepage
= ext4_releasepage
,
3881 .direct_IO
= ext4_direct_IO
,
3882 .migratepage
= buffer_migrate_page
,
3883 .is_partially_uptodate
= block_is_partially_uptodate
,
3886 void ext4_set_aops(struct inode
*inode
)
3888 if (ext4_should_order_data(inode
) &&
3889 test_opt(inode
->i_sb
, DELALLOC
))
3890 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3891 else if (ext4_should_order_data(inode
))
3892 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3893 else if (ext4_should_writeback_data(inode
) &&
3894 test_opt(inode
->i_sb
, DELALLOC
))
3895 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3896 else if (ext4_should_writeback_data(inode
))
3897 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3899 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3903 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3904 * up to the end of the block which corresponds to `from'.
3905 * This required during truncate. We need to physically zero the tail end
3906 * of that block so it doesn't yield old data if the file is later grown.
3908 int ext4_block_truncate_page(handle_t
*handle
,
3909 struct address_space
*mapping
, loff_t from
)
3911 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3912 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3913 unsigned blocksize
, length
, pos
;
3915 struct inode
*inode
= mapping
->host
;
3916 struct buffer_head
*bh
;
3920 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3921 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3925 blocksize
= inode
->i_sb
->s_blocksize
;
3926 length
= blocksize
- (offset
& (blocksize
- 1));
3927 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3930 * For "nobh" option, we can only work if we don't need to
3931 * read-in the page - otherwise we create buffers to do the IO.
3933 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3934 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3935 zero_user(page
, offset
, length
);
3936 set_page_dirty(page
);
3940 if (!page_has_buffers(page
))
3941 create_empty_buffers(page
, blocksize
, 0);
3943 /* Find the buffer that contains "offset" */
3944 bh
= page_buffers(page
);
3946 while (offset
>= pos
) {
3947 bh
= bh
->b_this_page
;
3953 if (buffer_freed(bh
)) {
3954 BUFFER_TRACE(bh
, "freed: skip");
3958 if (!buffer_mapped(bh
)) {
3959 BUFFER_TRACE(bh
, "unmapped");
3960 ext4_get_block(inode
, iblock
, bh
, 0);
3961 /* unmapped? It's a hole - nothing to do */
3962 if (!buffer_mapped(bh
)) {
3963 BUFFER_TRACE(bh
, "still unmapped");
3968 /* Ok, it's mapped. Make sure it's up-to-date */
3969 if (PageUptodate(page
))
3970 set_buffer_uptodate(bh
);
3972 if (!buffer_uptodate(bh
)) {
3974 ll_rw_block(READ
, 1, &bh
);
3976 /* Uhhuh. Read error. Complain and punt. */
3977 if (!buffer_uptodate(bh
))
3981 if (ext4_should_journal_data(inode
)) {
3982 BUFFER_TRACE(bh
, "get write access");
3983 err
= ext4_journal_get_write_access(handle
, bh
);
3988 zero_user(page
, offset
, length
);
3990 BUFFER_TRACE(bh
, "zeroed end of block");
3993 if (ext4_should_journal_data(inode
)) {
3994 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3996 if (ext4_should_order_data(inode
))
3997 err
= ext4_jbd2_file_inode(handle
, inode
);
3998 mark_buffer_dirty(bh
);
4003 page_cache_release(page
);
4008 * Probably it should be a library function... search for first non-zero word
4009 * or memcmp with zero_page, whatever is better for particular architecture.
4012 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4021 * ext4_find_shared - find the indirect blocks for partial truncation.
4022 * @inode: inode in question
4023 * @depth: depth of the affected branch
4024 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4025 * @chain: place to store the pointers to partial indirect blocks
4026 * @top: place to the (detached) top of branch
4028 * This is a helper function used by ext4_truncate().
4030 * When we do truncate() we may have to clean the ends of several
4031 * indirect blocks but leave the blocks themselves alive. Block is
4032 * partially truncated if some data below the new i_size is refered
4033 * from it (and it is on the path to the first completely truncated
4034 * data block, indeed). We have to free the top of that path along
4035 * with everything to the right of the path. Since no allocation
4036 * past the truncation point is possible until ext4_truncate()
4037 * finishes, we may safely do the latter, but top of branch may
4038 * require special attention - pageout below the truncation point
4039 * might try to populate it.
4041 * We atomically detach the top of branch from the tree, store the
4042 * block number of its root in *@top, pointers to buffer_heads of
4043 * partially truncated blocks - in @chain[].bh and pointers to
4044 * their last elements that should not be removed - in
4045 * @chain[].p. Return value is the pointer to last filled element
4048 * The work left to caller to do the actual freeing of subtrees:
4049 * a) free the subtree starting from *@top
4050 * b) free the subtrees whose roots are stored in
4051 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4052 * c) free the subtrees growing from the inode past the @chain[0].
4053 * (no partially truncated stuff there). */
4055 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4056 ext4_lblk_t offsets
[4], Indirect chain
[4],
4059 Indirect
*partial
, *p
;
4063 /* Make k index the deepest non-null offest + 1 */
4064 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4066 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4067 /* Writer: pointers */
4069 partial
= chain
+ k
-1;
4071 * If the branch acquired continuation since we've looked at it -
4072 * fine, it should all survive and (new) top doesn't belong to us.
4074 if (!partial
->key
&& *partial
->p
)
4077 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4080 * OK, we've found the last block that must survive. The rest of our
4081 * branch should be detached before unlocking. However, if that rest
4082 * of branch is all ours and does not grow immediately from the inode
4083 * it's easier to cheat and just decrement partial->p.
4085 if (p
== chain
+ k
- 1 && p
> chain
) {
4089 /* Nope, don't do this in ext4. Must leave the tree intact */
4096 while (partial
> p
) {
4097 brelse(partial
->bh
);
4105 * Zero a number of block pointers in either an inode or an indirect block.
4106 * If we restart the transaction we must again get write access to the
4107 * indirect block for further modification.
4109 * We release `count' blocks on disk, but (last - first) may be greater
4110 * than `count' because there can be holes in there.
4112 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4113 struct buffer_head
*bh
,
4114 ext4_fsblk_t block_to_free
,
4115 unsigned long count
, __le32
*first
,
4119 int is_metadata
= S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
);
4121 if (try_to_extend_transaction(handle
, inode
)) {
4123 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4124 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4126 ext4_mark_inode_dirty(handle
, inode
);
4127 ext4_truncate_restart_trans(handle
, inode
,
4128 blocks_for_truncate(inode
));
4130 BUFFER_TRACE(bh
, "retaking write access");
4131 ext4_journal_get_write_access(handle
, bh
);
4136 * Any buffers which are on the journal will be in memory. We
4137 * find them on the hash table so jbd2_journal_revoke() will
4138 * run jbd2_journal_forget() on them. We've already detached
4139 * each block from the file, so bforget() in
4140 * jbd2_journal_forget() should be safe.
4142 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4144 for (p
= first
; p
< last
; p
++) {
4145 u32 nr
= le32_to_cpu(*p
);
4147 struct buffer_head
*tbh
;
4150 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
4151 ext4_forget(handle
, is_metadata
, inode
, tbh
, nr
);
4155 ext4_free_blocks(handle
, inode
, block_to_free
, count
, is_metadata
);
4159 * ext4_free_data - free a list of data blocks
4160 * @handle: handle for this transaction
4161 * @inode: inode we are dealing with
4162 * @this_bh: indirect buffer_head which contains *@first and *@last
4163 * @first: array of block numbers
4164 * @last: points immediately past the end of array
4166 * We are freeing all blocks refered from that array (numbers are stored as
4167 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4169 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4170 * blocks are contiguous then releasing them at one time will only affect one
4171 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4172 * actually use a lot of journal space.
4174 * @this_bh will be %NULL if @first and @last point into the inode's direct
4177 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4178 struct buffer_head
*this_bh
,
4179 __le32
*first
, __le32
*last
)
4181 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4182 unsigned long count
= 0; /* Number of blocks in the run */
4183 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4186 ext4_fsblk_t nr
; /* Current block # */
4187 __le32
*p
; /* Pointer into inode/ind
4188 for current block */
4191 if (this_bh
) { /* For indirect block */
4192 BUFFER_TRACE(this_bh
, "get_write_access");
4193 err
= ext4_journal_get_write_access(handle
, this_bh
);
4194 /* Important: if we can't update the indirect pointers
4195 * to the blocks, we can't free them. */
4200 for (p
= first
; p
< last
; p
++) {
4201 nr
= le32_to_cpu(*p
);
4203 /* accumulate blocks to free if they're contiguous */
4206 block_to_free_p
= p
;
4208 } else if (nr
== block_to_free
+ count
) {
4211 ext4_clear_blocks(handle
, inode
, this_bh
,
4213 count
, block_to_free_p
, p
);
4215 block_to_free_p
= p
;
4222 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4223 count
, block_to_free_p
, p
);
4226 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4229 * The buffer head should have an attached journal head at this
4230 * point. However, if the data is corrupted and an indirect
4231 * block pointed to itself, it would have been detached when
4232 * the block was cleared. Check for this instead of OOPSing.
4234 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4235 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4237 ext4_error(inode
->i_sb
, __func__
,
4238 "circular indirect block detected, "
4239 "inode=%lu, block=%llu",
4241 (unsigned long long) this_bh
->b_blocknr
);
4246 * ext4_free_branches - free an array of branches
4247 * @handle: JBD handle for this transaction
4248 * @inode: inode we are dealing with
4249 * @parent_bh: the buffer_head which contains *@first and *@last
4250 * @first: array of block numbers
4251 * @last: pointer immediately past the end of array
4252 * @depth: depth of the branches to free
4254 * We are freeing all blocks refered from these branches (numbers are
4255 * stored as little-endian 32-bit) and updating @inode->i_blocks
4258 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4259 struct buffer_head
*parent_bh
,
4260 __le32
*first
, __le32
*last
, int depth
)
4265 if (ext4_handle_is_aborted(handle
))
4269 struct buffer_head
*bh
;
4270 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4272 while (--p
>= first
) {
4273 nr
= le32_to_cpu(*p
);
4275 continue; /* A hole */
4277 /* Go read the buffer for the next level down */
4278 bh
= sb_bread(inode
->i_sb
, nr
);
4281 * A read failure? Report error and clear slot
4285 ext4_error(inode
->i_sb
, "ext4_free_branches",
4286 "Read failure, inode=%lu, block=%llu",
4291 /* This zaps the entire block. Bottom up. */
4292 BUFFER_TRACE(bh
, "free child branches");
4293 ext4_free_branches(handle
, inode
, bh
,
4294 (__le32
*) bh
->b_data
,
4295 (__le32
*) bh
->b_data
+ addr_per_block
,
4299 * We've probably journalled the indirect block several
4300 * times during the truncate. But it's no longer
4301 * needed and we now drop it from the transaction via
4302 * jbd2_journal_revoke().
4304 * That's easy if it's exclusively part of this
4305 * transaction. But if it's part of the committing
4306 * transaction then jbd2_journal_forget() will simply
4307 * brelse() it. That means that if the underlying
4308 * block is reallocated in ext4_get_block(),
4309 * unmap_underlying_metadata() will find this block
4310 * and will try to get rid of it. damn, damn.
4312 * If this block has already been committed to the
4313 * journal, a revoke record will be written. And
4314 * revoke records must be emitted *before* clearing
4315 * this block's bit in the bitmaps.
4317 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4320 * Everything below this this pointer has been
4321 * released. Now let this top-of-subtree go.
4323 * We want the freeing of this indirect block to be
4324 * atomic in the journal with the updating of the
4325 * bitmap block which owns it. So make some room in
4328 * We zero the parent pointer *after* freeing its
4329 * pointee in the bitmaps, so if extend_transaction()
4330 * for some reason fails to put the bitmap changes and
4331 * the release into the same transaction, recovery
4332 * will merely complain about releasing a free block,
4333 * rather than leaking blocks.
4335 if (ext4_handle_is_aborted(handle
))
4337 if (try_to_extend_transaction(handle
, inode
)) {
4338 ext4_mark_inode_dirty(handle
, inode
);
4339 ext4_truncate_restart_trans(handle
, inode
,
4340 blocks_for_truncate(inode
));
4343 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
4347 * The block which we have just freed is
4348 * pointed to by an indirect block: journal it
4350 BUFFER_TRACE(parent_bh
, "get_write_access");
4351 if (!ext4_journal_get_write_access(handle
,
4354 BUFFER_TRACE(parent_bh
,
4355 "call ext4_handle_dirty_metadata");
4356 ext4_handle_dirty_metadata(handle
,
4363 /* We have reached the bottom of the tree. */
4364 BUFFER_TRACE(parent_bh
, "free data blocks");
4365 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4369 int ext4_can_truncate(struct inode
*inode
)
4371 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4373 if (S_ISREG(inode
->i_mode
))
4375 if (S_ISDIR(inode
->i_mode
))
4377 if (S_ISLNK(inode
->i_mode
))
4378 return !ext4_inode_is_fast_symlink(inode
);
4385 * We block out ext4_get_block() block instantiations across the entire
4386 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4387 * simultaneously on behalf of the same inode.
4389 * As we work through the truncate and commmit bits of it to the journal there
4390 * is one core, guiding principle: the file's tree must always be consistent on
4391 * disk. We must be able to restart the truncate after a crash.
4393 * The file's tree may be transiently inconsistent in memory (although it
4394 * probably isn't), but whenever we close off and commit a journal transaction,
4395 * the contents of (the filesystem + the journal) must be consistent and
4396 * restartable. It's pretty simple, really: bottom up, right to left (although
4397 * left-to-right works OK too).
4399 * Note that at recovery time, journal replay occurs *before* the restart of
4400 * truncate against the orphan inode list.
4402 * The committed inode has the new, desired i_size (which is the same as
4403 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4404 * that this inode's truncate did not complete and it will again call
4405 * ext4_truncate() to have another go. So there will be instantiated blocks
4406 * to the right of the truncation point in a crashed ext4 filesystem. But
4407 * that's fine - as long as they are linked from the inode, the post-crash
4408 * ext4_truncate() run will find them and release them.
4410 void ext4_truncate(struct inode
*inode
)
4413 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4414 __le32
*i_data
= ei
->i_data
;
4415 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4416 struct address_space
*mapping
= inode
->i_mapping
;
4417 ext4_lblk_t offsets
[4];
4422 ext4_lblk_t last_block
;
4423 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4425 if (!ext4_can_truncate(inode
))
4428 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4429 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
4431 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4432 ext4_ext_truncate(inode
);
4436 handle
= start_transaction(inode
);
4438 return; /* AKPM: return what? */
4440 last_block
= (inode
->i_size
+ blocksize
-1)
4441 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4443 if (inode
->i_size
& (blocksize
- 1))
4444 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4447 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4449 goto out_stop
; /* error */
4452 * OK. This truncate is going to happen. We add the inode to the
4453 * orphan list, so that if this truncate spans multiple transactions,
4454 * and we crash, we will resume the truncate when the filesystem
4455 * recovers. It also marks the inode dirty, to catch the new size.
4457 * Implication: the file must always be in a sane, consistent
4458 * truncatable state while each transaction commits.
4460 if (ext4_orphan_add(handle
, inode
))
4464 * From here we block out all ext4_get_block() callers who want to
4465 * modify the block allocation tree.
4467 down_write(&ei
->i_data_sem
);
4469 ext4_discard_preallocations(inode
);
4472 * The orphan list entry will now protect us from any crash which
4473 * occurs before the truncate completes, so it is now safe to propagate
4474 * the new, shorter inode size (held for now in i_size) into the
4475 * on-disk inode. We do this via i_disksize, which is the value which
4476 * ext4 *really* writes onto the disk inode.
4478 ei
->i_disksize
= inode
->i_size
;
4480 if (n
== 1) { /* direct blocks */
4481 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4482 i_data
+ EXT4_NDIR_BLOCKS
);
4486 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4487 /* Kill the top of shared branch (not detached) */
4489 if (partial
== chain
) {
4490 /* Shared branch grows from the inode */
4491 ext4_free_branches(handle
, inode
, NULL
,
4492 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4495 * We mark the inode dirty prior to restart,
4496 * and prior to stop. No need for it here.
4499 /* Shared branch grows from an indirect block */
4500 BUFFER_TRACE(partial
->bh
, "get_write_access");
4501 ext4_free_branches(handle
, inode
, partial
->bh
,
4503 partial
->p
+1, (chain
+n
-1) - partial
);
4506 /* Clear the ends of indirect blocks on the shared branch */
4507 while (partial
> chain
) {
4508 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4509 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4510 (chain
+n
-1) - partial
);
4511 BUFFER_TRACE(partial
->bh
, "call brelse");
4512 brelse(partial
->bh
);
4516 /* Kill the remaining (whole) subtrees */
4517 switch (offsets
[0]) {
4519 nr
= i_data
[EXT4_IND_BLOCK
];
4521 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4522 i_data
[EXT4_IND_BLOCK
] = 0;
4524 case EXT4_IND_BLOCK
:
4525 nr
= i_data
[EXT4_DIND_BLOCK
];
4527 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4528 i_data
[EXT4_DIND_BLOCK
] = 0;
4530 case EXT4_DIND_BLOCK
:
4531 nr
= i_data
[EXT4_TIND_BLOCK
];
4533 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4534 i_data
[EXT4_TIND_BLOCK
] = 0;
4536 case EXT4_TIND_BLOCK
:
4540 up_write(&ei
->i_data_sem
);
4541 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4542 ext4_mark_inode_dirty(handle
, inode
);
4545 * In a multi-transaction truncate, we only make the final transaction
4549 ext4_handle_sync(handle
);
4552 * If this was a simple ftruncate(), and the file will remain alive
4553 * then we need to clear up the orphan record which we created above.
4554 * However, if this was a real unlink then we were called by
4555 * ext4_delete_inode(), and we allow that function to clean up the
4556 * orphan info for us.
4559 ext4_orphan_del(handle
, inode
);
4561 ext4_journal_stop(handle
);
4565 * ext4_get_inode_loc returns with an extra refcount against the inode's
4566 * underlying buffer_head on success. If 'in_mem' is true, we have all
4567 * data in memory that is needed to recreate the on-disk version of this
4570 static int __ext4_get_inode_loc(struct inode
*inode
,
4571 struct ext4_iloc
*iloc
, int in_mem
)
4573 struct ext4_group_desc
*gdp
;
4574 struct buffer_head
*bh
;
4575 struct super_block
*sb
= inode
->i_sb
;
4577 int inodes_per_block
, inode_offset
;
4580 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4583 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4584 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4589 * Figure out the offset within the block group inode table
4591 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4592 inode_offset
= ((inode
->i_ino
- 1) %
4593 EXT4_INODES_PER_GROUP(sb
));
4594 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4595 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4597 bh
= sb_getblk(sb
, block
);
4599 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4600 "inode block - inode=%lu, block=%llu",
4601 inode
->i_ino
, block
);
4604 if (!buffer_uptodate(bh
)) {
4608 * If the buffer has the write error flag, we have failed
4609 * to write out another inode in the same block. In this
4610 * case, we don't have to read the block because we may
4611 * read the old inode data successfully.
4613 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4614 set_buffer_uptodate(bh
);
4616 if (buffer_uptodate(bh
)) {
4617 /* someone brought it uptodate while we waited */
4623 * If we have all information of the inode in memory and this
4624 * is the only valid inode in the block, we need not read the
4628 struct buffer_head
*bitmap_bh
;
4631 start
= inode_offset
& ~(inodes_per_block
- 1);
4633 /* Is the inode bitmap in cache? */
4634 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4639 * If the inode bitmap isn't in cache then the
4640 * optimisation may end up performing two reads instead
4641 * of one, so skip it.
4643 if (!buffer_uptodate(bitmap_bh
)) {
4647 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4648 if (i
== inode_offset
)
4650 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4654 if (i
== start
+ inodes_per_block
) {
4655 /* all other inodes are free, so skip I/O */
4656 memset(bh
->b_data
, 0, bh
->b_size
);
4657 set_buffer_uptodate(bh
);
4665 * If we need to do any I/O, try to pre-readahead extra
4666 * blocks from the inode table.
4668 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4669 ext4_fsblk_t b
, end
, table
;
4672 table
= ext4_inode_table(sb
, gdp
);
4673 /* s_inode_readahead_blks is always a power of 2 */
4674 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4677 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4678 num
= EXT4_INODES_PER_GROUP(sb
);
4679 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4680 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4681 num
-= ext4_itable_unused_count(sb
, gdp
);
4682 table
+= num
/ inodes_per_block
;
4686 sb_breadahead(sb
, b
++);
4690 * There are other valid inodes in the buffer, this inode
4691 * has in-inode xattrs, or we don't have this inode in memory.
4692 * Read the block from disk.
4695 bh
->b_end_io
= end_buffer_read_sync
;
4696 submit_bh(READ_META
, bh
);
4698 if (!buffer_uptodate(bh
)) {
4699 ext4_error(sb
, __func__
,
4700 "unable to read inode block - inode=%lu, "
4701 "block=%llu", inode
->i_ino
, block
);
4711 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4713 /* We have all inode data except xattrs in memory here. */
4714 return __ext4_get_inode_loc(inode
, iloc
,
4715 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4718 void ext4_set_inode_flags(struct inode
*inode
)
4720 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4722 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4723 if (flags
& EXT4_SYNC_FL
)
4724 inode
->i_flags
|= S_SYNC
;
4725 if (flags
& EXT4_APPEND_FL
)
4726 inode
->i_flags
|= S_APPEND
;
4727 if (flags
& EXT4_IMMUTABLE_FL
)
4728 inode
->i_flags
|= S_IMMUTABLE
;
4729 if (flags
& EXT4_NOATIME_FL
)
4730 inode
->i_flags
|= S_NOATIME
;
4731 if (flags
& EXT4_DIRSYNC_FL
)
4732 inode
->i_flags
|= S_DIRSYNC
;
4735 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4736 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4738 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4740 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4741 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4743 ei
->i_flags
|= EXT4_SYNC_FL
;
4744 if (flags
& S_APPEND
)
4745 ei
->i_flags
|= EXT4_APPEND_FL
;
4746 if (flags
& S_IMMUTABLE
)
4747 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4748 if (flags
& S_NOATIME
)
4749 ei
->i_flags
|= EXT4_NOATIME_FL
;
4750 if (flags
& S_DIRSYNC
)
4751 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4754 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4755 struct ext4_inode_info
*ei
)
4758 struct inode
*inode
= &(ei
->vfs_inode
);
4759 struct super_block
*sb
= inode
->i_sb
;
4761 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4762 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4763 /* we are using combined 48 bit field */
4764 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4765 le32_to_cpu(raw_inode
->i_blocks_lo
);
4766 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4767 /* i_blocks represent file system block size */
4768 return i_blocks
<< (inode
->i_blkbits
- 9);
4773 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4777 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4779 struct ext4_iloc iloc
;
4780 struct ext4_inode
*raw_inode
;
4781 struct ext4_inode_info
*ei
;
4782 struct inode
*inode
;
4783 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4787 inode
= iget_locked(sb
, ino
);
4789 return ERR_PTR(-ENOMEM
);
4790 if (!(inode
->i_state
& I_NEW
))
4796 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4799 raw_inode
= ext4_raw_inode(&iloc
);
4800 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4801 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4802 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4803 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4804 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4805 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4807 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4810 ei
->i_dir_start_lookup
= 0;
4811 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4812 /* We now have enough fields to check if the inode was active or not.
4813 * This is needed because nfsd might try to access dead inodes
4814 * the test is that same one that e2fsck uses
4815 * NeilBrown 1999oct15
4817 if (inode
->i_nlink
== 0) {
4818 if (inode
->i_mode
== 0 ||
4819 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4820 /* this inode is deleted */
4824 /* The only unlinked inodes we let through here have
4825 * valid i_mode and are being read by the orphan
4826 * recovery code: that's fine, we're about to complete
4827 * the process of deleting those. */
4829 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4830 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4831 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4832 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4834 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4835 inode
->i_size
= ext4_isize(raw_inode
);
4836 ei
->i_disksize
= inode
->i_size
;
4838 ei
->i_reserved_quota
= 0;
4840 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4841 ei
->i_block_group
= iloc
.block_group
;
4842 ei
->i_last_alloc_group
= ~0;
4844 * NOTE! The in-memory inode i_data array is in little-endian order
4845 * even on big-endian machines: we do NOT byteswap the block numbers!
4847 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4848 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4849 INIT_LIST_HEAD(&ei
->i_orphan
);
4852 * Set transaction id's of transactions that have to be committed
4853 * to finish f[data]sync. We set them to currently running transaction
4854 * as we cannot be sure that the inode or some of its metadata isn't
4855 * part of the transaction - the inode could have been reclaimed and
4856 * now it is reread from disk.
4859 transaction_t
*transaction
;
4862 spin_lock(&journal
->j_state_lock
);
4863 if (journal
->j_running_transaction
)
4864 transaction
= journal
->j_running_transaction
;
4866 transaction
= journal
->j_committing_transaction
;
4868 tid
= transaction
->t_tid
;
4870 tid
= journal
->j_commit_sequence
;
4871 spin_unlock(&journal
->j_state_lock
);
4872 ei
->i_sync_tid
= tid
;
4873 ei
->i_datasync_tid
= tid
;
4876 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4877 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4878 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4879 EXT4_INODE_SIZE(inode
->i_sb
)) {
4883 if (ei
->i_extra_isize
== 0) {
4884 /* The extra space is currently unused. Use it. */
4885 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4886 EXT4_GOOD_OLD_INODE_SIZE
;
4888 __le32
*magic
= (void *)raw_inode
+
4889 EXT4_GOOD_OLD_INODE_SIZE
+
4891 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4892 ei
->i_state
|= EXT4_STATE_XATTR
;
4895 ei
->i_extra_isize
= 0;
4897 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4898 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4899 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4900 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4902 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4903 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4904 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4906 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4910 if (ei
->i_file_acl
&&
4911 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4912 ext4_error(sb
, __func__
,
4913 "bad extended attribute block %llu in inode #%lu",
4914 ei
->i_file_acl
, inode
->i_ino
);
4917 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4918 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4919 (S_ISLNK(inode
->i_mode
) &&
4920 !ext4_inode_is_fast_symlink(inode
)))
4921 /* Validate extent which is part of inode */
4922 ret
= ext4_ext_check_inode(inode
);
4923 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4924 (S_ISLNK(inode
->i_mode
) &&
4925 !ext4_inode_is_fast_symlink(inode
))) {
4926 /* Validate block references which are part of inode */
4927 ret
= ext4_check_inode_blockref(inode
);
4932 if (S_ISREG(inode
->i_mode
)) {
4933 inode
->i_op
= &ext4_file_inode_operations
;
4934 inode
->i_fop
= &ext4_file_operations
;
4935 ext4_set_aops(inode
);
4936 } else if (S_ISDIR(inode
->i_mode
)) {
4937 inode
->i_op
= &ext4_dir_inode_operations
;
4938 inode
->i_fop
= &ext4_dir_operations
;
4939 } else if (S_ISLNK(inode
->i_mode
)) {
4940 if (ext4_inode_is_fast_symlink(inode
)) {
4941 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4942 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4943 sizeof(ei
->i_data
) - 1);
4945 inode
->i_op
= &ext4_symlink_inode_operations
;
4946 ext4_set_aops(inode
);
4948 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4949 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4950 inode
->i_op
= &ext4_special_inode_operations
;
4951 if (raw_inode
->i_block
[0])
4952 init_special_inode(inode
, inode
->i_mode
,
4953 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4955 init_special_inode(inode
, inode
->i_mode
,
4956 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4959 ext4_error(inode
->i_sb
, __func__
,
4960 "bogus i_mode (%o) for inode=%lu",
4961 inode
->i_mode
, inode
->i_ino
);
4965 ext4_set_inode_flags(inode
);
4966 unlock_new_inode(inode
);
4972 return ERR_PTR(ret
);
4975 static int ext4_inode_blocks_set(handle_t
*handle
,
4976 struct ext4_inode
*raw_inode
,
4977 struct ext4_inode_info
*ei
)
4979 struct inode
*inode
= &(ei
->vfs_inode
);
4980 u64 i_blocks
= inode
->i_blocks
;
4981 struct super_block
*sb
= inode
->i_sb
;
4983 if (i_blocks
<= ~0U) {
4985 * i_blocks can be represnted in a 32 bit variable
4986 * as multiple of 512 bytes
4988 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4989 raw_inode
->i_blocks_high
= 0;
4990 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4993 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4996 if (i_blocks
<= 0xffffffffffffULL
) {
4998 * i_blocks can be represented in a 48 bit variable
4999 * as multiple of 512 bytes
5001 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5002 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5003 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5005 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
5006 /* i_block is stored in file system block size */
5007 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5008 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5009 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5015 * Post the struct inode info into an on-disk inode location in the
5016 * buffer-cache. This gobbles the caller's reference to the
5017 * buffer_head in the inode location struct.
5019 * The caller must have write access to iloc->bh.
5021 static int ext4_do_update_inode(handle_t
*handle
,
5022 struct inode
*inode
,
5023 struct ext4_iloc
*iloc
)
5025 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5026 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5027 struct buffer_head
*bh
= iloc
->bh
;
5028 int err
= 0, rc
, block
;
5030 /* For fields not not tracking in the in-memory inode,
5031 * initialise them to zero for new inodes. */
5032 if (ei
->i_state
& EXT4_STATE_NEW
)
5033 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5035 ext4_get_inode_flags(ei
);
5036 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5037 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5038 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5039 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5041 * Fix up interoperability with old kernels. Otherwise, old inodes get
5042 * re-used with the upper 16 bits of the uid/gid intact
5045 raw_inode
->i_uid_high
=
5046 cpu_to_le16(high_16_bits(inode
->i_uid
));
5047 raw_inode
->i_gid_high
=
5048 cpu_to_le16(high_16_bits(inode
->i_gid
));
5050 raw_inode
->i_uid_high
= 0;
5051 raw_inode
->i_gid_high
= 0;
5054 raw_inode
->i_uid_low
=
5055 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5056 raw_inode
->i_gid_low
=
5057 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5058 raw_inode
->i_uid_high
= 0;
5059 raw_inode
->i_gid_high
= 0;
5061 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5063 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5064 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5065 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5066 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5068 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5070 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5071 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5072 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5073 cpu_to_le32(EXT4_OS_HURD
))
5074 raw_inode
->i_file_acl_high
=
5075 cpu_to_le16(ei
->i_file_acl
>> 32);
5076 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5077 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5078 if (ei
->i_disksize
> 0x7fffffffULL
) {
5079 struct super_block
*sb
= inode
->i_sb
;
5080 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5081 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5082 EXT4_SB(sb
)->s_es
->s_rev_level
==
5083 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5084 /* If this is the first large file
5085 * created, add a flag to the superblock.
5087 err
= ext4_journal_get_write_access(handle
,
5088 EXT4_SB(sb
)->s_sbh
);
5091 ext4_update_dynamic_rev(sb
);
5092 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5093 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5095 ext4_handle_sync(handle
);
5096 err
= ext4_handle_dirty_metadata(handle
, inode
,
5097 EXT4_SB(sb
)->s_sbh
);
5100 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5101 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5102 if (old_valid_dev(inode
->i_rdev
)) {
5103 raw_inode
->i_block
[0] =
5104 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5105 raw_inode
->i_block
[1] = 0;
5107 raw_inode
->i_block
[0] = 0;
5108 raw_inode
->i_block
[1] =
5109 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5110 raw_inode
->i_block
[2] = 0;
5113 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5114 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5116 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5117 if (ei
->i_extra_isize
) {
5118 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5119 raw_inode
->i_version_hi
=
5120 cpu_to_le32(inode
->i_version
>> 32);
5121 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5124 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5125 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
5128 ei
->i_state
&= ~EXT4_STATE_NEW
;
5130 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5133 ext4_std_error(inode
->i_sb
, err
);
5138 * ext4_write_inode()
5140 * We are called from a few places:
5142 * - Within generic_file_write() for O_SYNC files.
5143 * Here, there will be no transaction running. We wait for any running
5144 * trasnaction to commit.
5146 * - Within sys_sync(), kupdate and such.
5147 * We wait on commit, if tol to.
5149 * - Within prune_icache() (PF_MEMALLOC == true)
5150 * Here we simply return. We can't afford to block kswapd on the
5153 * In all cases it is actually safe for us to return without doing anything,
5154 * because the inode has been copied into a raw inode buffer in
5155 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5158 * Note that we are absolutely dependent upon all inode dirtiers doing the
5159 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5160 * which we are interested.
5162 * It would be a bug for them to not do this. The code:
5164 * mark_inode_dirty(inode)
5166 * inode->i_size = expr;
5168 * is in error because a kswapd-driven write_inode() could occur while
5169 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5170 * will no longer be on the superblock's dirty inode list.
5172 int ext4_write_inode(struct inode
*inode
, int wait
)
5176 if (current
->flags
& PF_MEMALLOC
)
5179 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5180 if (ext4_journal_current_handle()) {
5181 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5189 err
= ext4_force_commit(inode
->i_sb
);
5191 struct ext4_iloc iloc
;
5193 err
= ext4_get_inode_loc(inode
, &iloc
);
5197 sync_dirty_buffer(iloc
.bh
);
5198 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5199 ext4_error(inode
->i_sb
, __func__
,
5200 "IO error syncing inode, "
5201 "inode=%lu, block=%llu",
5203 (unsigned long long)iloc
.bh
->b_blocknr
);
5213 * Called from notify_change.
5215 * We want to trap VFS attempts to truncate the file as soon as
5216 * possible. In particular, we want to make sure that when the VFS
5217 * shrinks i_size, we put the inode on the orphan list and modify
5218 * i_disksize immediately, so that during the subsequent flushing of
5219 * dirty pages and freeing of disk blocks, we can guarantee that any
5220 * commit will leave the blocks being flushed in an unused state on
5221 * disk. (On recovery, the inode will get truncated and the blocks will
5222 * be freed, so we have a strong guarantee that no future commit will
5223 * leave these blocks visible to the user.)
5225 * Another thing we have to assure is that if we are in ordered mode
5226 * and inode is still attached to the committing transaction, we must
5227 * we start writeout of all the dirty pages which are being truncated.
5228 * This way we are sure that all the data written in the previous
5229 * transaction are already on disk (truncate waits for pages under
5232 * Called with inode->i_mutex down.
5234 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5236 struct inode
*inode
= dentry
->d_inode
;
5238 const unsigned int ia_valid
= attr
->ia_valid
;
5240 error
= inode_change_ok(inode
, attr
);
5244 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5245 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5248 /* (user+group)*(old+new) structure, inode write (sb,
5249 * inode block, ? - but truncate inode update has it) */
5250 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5251 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5252 if (IS_ERR(handle
)) {
5253 error
= PTR_ERR(handle
);
5256 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
5258 ext4_journal_stop(handle
);
5261 /* Update corresponding info in inode so that everything is in
5262 * one transaction */
5263 if (attr
->ia_valid
& ATTR_UID
)
5264 inode
->i_uid
= attr
->ia_uid
;
5265 if (attr
->ia_valid
& ATTR_GID
)
5266 inode
->i_gid
= attr
->ia_gid
;
5267 error
= ext4_mark_inode_dirty(handle
, inode
);
5268 ext4_journal_stop(handle
);
5271 if (attr
->ia_valid
& ATTR_SIZE
) {
5272 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5273 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5275 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5282 if (S_ISREG(inode
->i_mode
) &&
5283 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
5286 handle
= ext4_journal_start(inode
, 3);
5287 if (IS_ERR(handle
)) {
5288 error
= PTR_ERR(handle
);
5292 error
= ext4_orphan_add(handle
, inode
);
5293 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5294 rc
= ext4_mark_inode_dirty(handle
, inode
);
5297 ext4_journal_stop(handle
);
5299 if (ext4_should_order_data(inode
)) {
5300 error
= ext4_begin_ordered_truncate(inode
,
5303 /* Do as much error cleanup as possible */
5304 handle
= ext4_journal_start(inode
, 3);
5305 if (IS_ERR(handle
)) {
5306 ext4_orphan_del(NULL
, inode
);
5309 ext4_orphan_del(handle
, inode
);
5310 ext4_journal_stop(handle
);
5316 rc
= inode_setattr(inode
, attr
);
5318 /* If inode_setattr's call to ext4_truncate failed to get a
5319 * transaction handle at all, we need to clean up the in-core
5320 * orphan list manually. */
5322 ext4_orphan_del(NULL
, inode
);
5324 if (!rc
&& (ia_valid
& ATTR_MODE
))
5325 rc
= ext4_acl_chmod(inode
);
5328 ext4_std_error(inode
->i_sb
, error
);
5334 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5337 struct inode
*inode
;
5338 unsigned long delalloc_blocks
;
5340 inode
= dentry
->d_inode
;
5341 generic_fillattr(inode
, stat
);
5344 * We can't update i_blocks if the block allocation is delayed
5345 * otherwise in the case of system crash before the real block
5346 * allocation is done, we will have i_blocks inconsistent with
5347 * on-disk file blocks.
5348 * We always keep i_blocks updated together with real
5349 * allocation. But to not confuse with user, stat
5350 * will return the blocks that include the delayed allocation
5351 * blocks for this file.
5353 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5354 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5355 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5357 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5361 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5366 /* if nrblocks are contiguous */
5369 * With N contiguous data blocks, it need at most
5370 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5371 * 2 dindirect blocks
5374 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5375 return indirects
+ 3;
5378 * if nrblocks are not contiguous, worse case, each block touch
5379 * a indirect block, and each indirect block touch a double indirect
5380 * block, plus a triple indirect block
5382 indirects
= nrblocks
* 2 + 1;
5386 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5388 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5389 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5390 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5394 * Account for index blocks, block groups bitmaps and block group
5395 * descriptor blocks if modify datablocks and index blocks
5396 * worse case, the indexs blocks spread over different block groups
5398 * If datablocks are discontiguous, they are possible to spread over
5399 * different block groups too. If they are contiugous, with flexbg,
5400 * they could still across block group boundary.
5402 * Also account for superblock, inode, quota and xattr blocks
5404 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5406 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5412 * How many index blocks need to touch to modify nrblocks?
5413 * The "Chunk" flag indicating whether the nrblocks is
5414 * physically contiguous on disk
5416 * For Direct IO and fallocate, they calls get_block to allocate
5417 * one single extent at a time, so they could set the "Chunk" flag
5419 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5424 * Now let's see how many group bitmaps and group descriptors need
5434 if (groups
> ngroups
)
5436 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5437 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5439 /* bitmaps and block group descriptor blocks */
5440 ret
+= groups
+ gdpblocks
;
5442 /* Blocks for super block, inode, quota and xattr blocks */
5443 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5449 * Calulate the total number of credits to reserve to fit
5450 * the modification of a single pages into a single transaction,
5451 * which may include multiple chunks of block allocations.
5453 * This could be called via ext4_write_begin()
5455 * We need to consider the worse case, when
5456 * one new block per extent.
5458 int ext4_writepage_trans_blocks(struct inode
*inode
)
5460 int bpp
= ext4_journal_blocks_per_page(inode
);
5463 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5465 /* Account for data blocks for journalled mode */
5466 if (ext4_should_journal_data(inode
))
5472 * Calculate the journal credits for a chunk of data modification.
5474 * This is called from DIO, fallocate or whoever calling
5475 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5477 * journal buffers for data blocks are not included here, as DIO
5478 * and fallocate do no need to journal data buffers.
5480 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5482 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5486 * The caller must have previously called ext4_reserve_inode_write().
5487 * Give this, we know that the caller already has write access to iloc->bh.
5489 int ext4_mark_iloc_dirty(handle_t
*handle
,
5490 struct inode
*inode
, struct ext4_iloc
*iloc
)
5494 if (test_opt(inode
->i_sb
, I_VERSION
))
5495 inode_inc_iversion(inode
);
5497 /* the do_update_inode consumes one bh->b_count */
5500 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5501 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5507 * On success, We end up with an outstanding reference count against
5508 * iloc->bh. This _must_ be cleaned up later.
5512 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5513 struct ext4_iloc
*iloc
)
5517 err
= ext4_get_inode_loc(inode
, iloc
);
5519 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5520 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5526 ext4_std_error(inode
->i_sb
, err
);
5531 * Expand an inode by new_extra_isize bytes.
5532 * Returns 0 on success or negative error number on failure.
5534 static int ext4_expand_extra_isize(struct inode
*inode
,
5535 unsigned int new_extra_isize
,
5536 struct ext4_iloc iloc
,
5539 struct ext4_inode
*raw_inode
;
5540 struct ext4_xattr_ibody_header
*header
;
5541 struct ext4_xattr_entry
*entry
;
5543 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5546 raw_inode
= ext4_raw_inode(&iloc
);
5548 header
= IHDR(inode
, raw_inode
);
5549 entry
= IFIRST(header
);
5551 /* No extended attributes present */
5552 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5553 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5554 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5556 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5560 /* try to expand with EAs present */
5561 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5566 * What we do here is to mark the in-core inode as clean with respect to inode
5567 * dirtiness (it may still be data-dirty).
5568 * This means that the in-core inode may be reaped by prune_icache
5569 * without having to perform any I/O. This is a very good thing,
5570 * because *any* task may call prune_icache - even ones which
5571 * have a transaction open against a different journal.
5573 * Is this cheating? Not really. Sure, we haven't written the
5574 * inode out, but prune_icache isn't a user-visible syncing function.
5575 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5576 * we start and wait on commits.
5578 * Is this efficient/effective? Well, we're being nice to the system
5579 * by cleaning up our inodes proactively so they can be reaped
5580 * without I/O. But we are potentially leaving up to five seconds'
5581 * worth of inodes floating about which prune_icache wants us to
5582 * write out. One way to fix that would be to get prune_icache()
5583 * to do a write_super() to free up some memory. It has the desired
5586 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5588 struct ext4_iloc iloc
;
5589 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5590 static unsigned int mnt_count
;
5594 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5595 if (ext4_handle_valid(handle
) &&
5596 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5597 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5599 * We need extra buffer credits since we may write into EA block
5600 * with this same handle. If journal_extend fails, then it will
5601 * only result in a minor loss of functionality for that inode.
5602 * If this is felt to be critical, then e2fsck should be run to
5603 * force a large enough s_min_extra_isize.
5605 if ((jbd2_journal_extend(handle
,
5606 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5607 ret
= ext4_expand_extra_isize(inode
,
5608 sbi
->s_want_extra_isize
,
5611 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5613 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5614 ext4_warning(inode
->i_sb
, __func__
,
5615 "Unable to expand inode %lu. Delete"
5616 " some EAs or run e2fsck.",
5619 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5625 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5630 * ext4_dirty_inode() is called from __mark_inode_dirty()
5632 * We're really interested in the case where a file is being extended.
5633 * i_size has been changed by generic_commit_write() and we thus need
5634 * to include the updated inode in the current transaction.
5636 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5637 * are allocated to the file.
5639 * If the inode is marked synchronous, we don't honour that here - doing
5640 * so would cause a commit on atime updates, which we don't bother doing.
5641 * We handle synchronous inodes at the highest possible level.
5643 void ext4_dirty_inode(struct inode
*inode
)
5645 handle_t
*current_handle
= ext4_journal_current_handle();
5648 handle
= ext4_journal_start(inode
, 2);
5652 jbd_debug(5, "marking dirty. outer handle=%p\n", current_handle
);
5653 ext4_mark_inode_dirty(handle
, inode
);
5655 ext4_journal_stop(handle
);
5662 * Bind an inode's backing buffer_head into this transaction, to prevent
5663 * it from being flushed to disk early. Unlike
5664 * ext4_reserve_inode_write, this leaves behind no bh reference and
5665 * returns no iloc structure, so the caller needs to repeat the iloc
5666 * lookup to mark the inode dirty later.
5668 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5670 struct ext4_iloc iloc
;
5674 err
= ext4_get_inode_loc(inode
, &iloc
);
5676 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5677 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5679 err
= ext4_handle_dirty_metadata(handle
,
5685 ext4_std_error(inode
->i_sb
, err
);
5690 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5697 * We have to be very careful here: changing a data block's
5698 * journaling status dynamically is dangerous. If we write a
5699 * data block to the journal, change the status and then delete
5700 * that block, we risk forgetting to revoke the old log record
5701 * from the journal and so a subsequent replay can corrupt data.
5702 * So, first we make sure that the journal is empty and that
5703 * nobody is changing anything.
5706 journal
= EXT4_JOURNAL(inode
);
5709 if (is_journal_aborted(journal
))
5712 jbd2_journal_lock_updates(journal
);
5713 jbd2_journal_flush(journal
);
5716 * OK, there are no updates running now, and all cached data is
5717 * synced to disk. We are now in a completely consistent state
5718 * which doesn't have anything in the journal, and we know that
5719 * no filesystem updates are running, so it is safe to modify
5720 * the inode's in-core data-journaling state flag now.
5724 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5726 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5727 ext4_set_aops(inode
);
5729 jbd2_journal_unlock_updates(journal
);
5731 /* Finally we can mark the inode as dirty. */
5733 handle
= ext4_journal_start(inode
, 1);
5735 return PTR_ERR(handle
);
5737 err
= ext4_mark_inode_dirty(handle
, inode
);
5738 ext4_handle_sync(handle
);
5739 ext4_journal_stop(handle
);
5740 ext4_std_error(inode
->i_sb
, err
);
5745 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5747 return !buffer_mapped(bh
);
5750 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5752 struct page
*page
= vmf
->page
;
5757 struct file
*file
= vma
->vm_file
;
5758 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5759 struct address_space
*mapping
= inode
->i_mapping
;
5762 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5763 * get i_mutex because we are already holding mmap_sem.
5765 down_read(&inode
->i_alloc_sem
);
5766 size
= i_size_read(inode
);
5767 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5768 || !PageUptodate(page
)) {
5769 /* page got truncated from under us? */
5773 if (PageMappedToDisk(page
))
5776 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5777 len
= size
& ~PAGE_CACHE_MASK
;
5779 len
= PAGE_CACHE_SIZE
;
5783 * return if we have all the buffers mapped. This avoid
5784 * the need to call write_begin/write_end which does a
5785 * journal_start/journal_stop which can block and take
5788 if (page_has_buffers(page
)) {
5789 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5790 ext4_bh_unmapped
)) {
5797 * OK, we need to fill the hole... Do write_begin write_end
5798 * to do block allocation/reservation.We are not holding
5799 * inode.i__mutex here. That allow * parallel write_begin,
5800 * write_end call. lock_page prevent this from happening
5801 * on the same page though
5803 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5804 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5807 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5808 len
, len
, page
, fsdata
);
5814 ret
= VM_FAULT_SIGBUS
;
5815 up_read(&inode
->i_alloc_sem
);