4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
43 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/div64.h>
46 #include <asm/timex.h>
49 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
51 EXPORT_SYMBOL(jiffies_64
);
54 * per-CPU timer vector definitions:
56 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
57 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
58 #define TVN_SIZE (1 << TVN_BITS)
59 #define TVR_SIZE (1 << TVR_BITS)
60 #define TVN_MASK (TVN_SIZE - 1)
61 #define TVR_MASK (TVR_SIZE - 1)
64 struct list_head vec
[TVN_SIZE
];
68 struct list_head vec
[TVR_SIZE
];
73 struct timer_list
*running_timer
;
74 unsigned long timer_jiffies
;
75 unsigned long next_timer
;
81 } ____cacheline_aligned
;
83 struct tvec_base boot_tvec_bases
;
84 EXPORT_SYMBOL(boot_tvec_bases
);
85 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
88 * Note that all tvec_bases are 2 byte aligned and lower bit of
89 * base in timer_list is guaranteed to be zero. Use the LSB for
90 * the new flag to indicate whether the timer is deferrable
92 #define TBASE_DEFERRABLE_FLAG (0x1)
94 /* Functions below help us manage 'deferrable' flag */
95 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
97 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
100 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
102 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
105 static inline void timer_set_deferrable(struct timer_list
*timer
)
107 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
108 TBASE_DEFERRABLE_FLAG
));
112 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
114 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
115 tbase_get_deferrable(timer
->base
));
118 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
122 unsigned long original
= j
;
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
141 * But never round down if @force_up is set.
143 if (rem
< HZ
/4 && !force_up
) /* round down */
148 /* now that we have rounded, subtract the extra skew again */
151 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
174 * The return value is the rounded version of the @j parameter.
176 unsigned long __round_jiffies(unsigned long j
, int cpu
)
178 return round_jiffies_common(j
, cpu
, false);
180 EXPORT_SYMBOL_GPL(__round_jiffies
);
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
200 * The return value is the rounded version of the @j parameter.
202 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
204 unsigned long j0
= jiffies
;
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
209 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
215 * round_jiffies() rounds an absolute time in the future (in jiffies)
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
224 * The return value is the rounded version of the @j parameter.
226 unsigned long round_jiffies(unsigned long j
)
228 return round_jiffies_common(j
, raw_smp_processor_id(), false);
230 EXPORT_SYMBOL_GPL(round_jiffies
);
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
245 * The return value is the rounded version of the @j parameter.
247 unsigned long round_jiffies_relative(unsigned long j
)
249 return __round_jiffies_relative(j
, raw_smp_processor_id());
251 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
263 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
265 return round_jiffies_common(j
, cpu
, true);
267 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
279 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
281 unsigned long j0
= jiffies
;
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
286 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
297 unsigned long round_jiffies_up(unsigned long j
)
299 return round_jiffies_common(j
, raw_smp_processor_id(), true);
301 EXPORT_SYMBOL_GPL(round_jiffies_up
);
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
312 unsigned long round_jiffies_up_relative(unsigned long j
)
314 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
316 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
319 static inline void set_running_timer(struct tvec_base
*base
,
320 struct timer_list
*timer
)
323 base
->running_timer
= timer
;
327 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
329 unsigned long expires
= timer
->expires
;
330 unsigned long idx
= expires
- base
->timer_jiffies
;
331 struct list_head
*vec
;
333 if (idx
< TVR_SIZE
) {
334 int i
= expires
& TVR_MASK
;
335 vec
= base
->tv1
.vec
+ i
;
336 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
337 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
338 vec
= base
->tv2
.vec
+ i
;
339 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
340 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
341 vec
= base
->tv3
.vec
+ i
;
342 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
343 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
344 vec
= base
->tv4
.vec
+ i
;
345 } else if ((signed long) idx
< 0) {
347 * Can happen if you add a timer with expires == jiffies,
348 * or you set a timer to go off in the past
350 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
353 /* If the timeout is larger than 0xffffffff on 64-bit
354 * architectures then we use the maximum timeout:
356 if (idx
> 0xffffffffUL
) {
358 expires
= idx
+ base
->timer_jiffies
;
360 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
361 vec
= base
->tv5
.vec
+ i
;
366 list_add_tail(&timer
->entry
, vec
);
369 #ifdef CONFIG_TIMER_STATS
370 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
372 if (timer
->start_site
)
375 timer
->start_site
= addr
;
376 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
377 timer
->start_pid
= current
->pid
;
380 static void timer_stats_account_timer(struct timer_list
*timer
)
382 unsigned int flag
= 0;
384 if (likely(!timer
->start_site
))
386 if (unlikely(tbase_get_deferrable(timer
->base
)))
387 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
389 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
390 timer
->function
, timer
->start_comm
, flag
);
394 static void timer_stats_account_timer(struct timer_list
*timer
) {}
397 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
399 static struct debug_obj_descr timer_debug_descr
;
402 * fixup_init is called when:
403 * - an active object is initialized
405 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
407 struct timer_list
*timer
= addr
;
410 case ODEBUG_STATE_ACTIVE
:
411 del_timer_sync(timer
);
412 debug_object_init(timer
, &timer_debug_descr
);
420 * fixup_activate is called when:
421 * - an active object is activated
422 * - an unknown object is activated (might be a statically initialized object)
424 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
426 struct timer_list
*timer
= addr
;
430 case ODEBUG_STATE_NOTAVAILABLE
:
432 * This is not really a fixup. The timer was
433 * statically initialized. We just make sure that it
434 * is tracked in the object tracker.
436 if (timer
->entry
.next
== NULL
&&
437 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
438 debug_object_init(timer
, &timer_debug_descr
);
439 debug_object_activate(timer
, &timer_debug_descr
);
446 case ODEBUG_STATE_ACTIVE
:
455 * fixup_free is called when:
456 * - an active object is freed
458 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
460 struct timer_list
*timer
= addr
;
463 case ODEBUG_STATE_ACTIVE
:
464 del_timer_sync(timer
);
465 debug_object_free(timer
, &timer_debug_descr
);
472 static struct debug_obj_descr timer_debug_descr
= {
473 .name
= "timer_list",
474 .fixup_init
= timer_fixup_init
,
475 .fixup_activate
= timer_fixup_activate
,
476 .fixup_free
= timer_fixup_free
,
479 static inline void debug_timer_init(struct timer_list
*timer
)
481 debug_object_init(timer
, &timer_debug_descr
);
484 static inline void debug_timer_activate(struct timer_list
*timer
)
486 debug_object_activate(timer
, &timer_debug_descr
);
489 static inline void debug_timer_deactivate(struct timer_list
*timer
)
491 debug_object_deactivate(timer
, &timer_debug_descr
);
494 static inline void debug_timer_free(struct timer_list
*timer
)
496 debug_object_free(timer
, &timer_debug_descr
);
499 static void __init_timer(struct timer_list
*timer
,
501 struct lock_class_key
*key
);
503 void init_timer_on_stack_key(struct timer_list
*timer
,
505 struct lock_class_key
*key
)
507 debug_object_init_on_stack(timer
, &timer_debug_descr
);
508 __init_timer(timer
, name
, key
);
510 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
512 void destroy_timer_on_stack(struct timer_list
*timer
)
514 debug_object_free(timer
, &timer_debug_descr
);
516 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
519 static inline void debug_timer_init(struct timer_list
*timer
) { }
520 static inline void debug_timer_activate(struct timer_list
*timer
) { }
521 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
524 static void __init_timer(struct timer_list
*timer
,
526 struct lock_class_key
*key
)
528 timer
->entry
.next
= NULL
;
529 timer
->base
= __raw_get_cpu_var(tvec_bases
);
530 #ifdef CONFIG_TIMER_STATS
531 timer
->start_site
= NULL
;
532 timer
->start_pid
= -1;
533 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
535 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
539 * init_timer_key - initialize a timer
540 * @timer: the timer to be initialized
541 * @name: name of the timer
542 * @key: lockdep class key of the fake lock used for tracking timer
543 * sync lock dependencies
545 * init_timer_key() must be done to a timer prior calling *any* of the
546 * other timer functions.
548 void init_timer_key(struct timer_list
*timer
,
550 struct lock_class_key
*key
)
552 debug_timer_init(timer
);
553 __init_timer(timer
, name
, key
);
555 EXPORT_SYMBOL(init_timer_key
);
557 void init_timer_deferrable_key(struct timer_list
*timer
,
559 struct lock_class_key
*key
)
561 init_timer_key(timer
, name
, key
);
562 timer_set_deferrable(timer
);
564 EXPORT_SYMBOL(init_timer_deferrable_key
);
566 static inline void detach_timer(struct timer_list
*timer
,
569 struct list_head
*entry
= &timer
->entry
;
571 debug_timer_deactivate(timer
);
573 __list_del(entry
->prev
, entry
->next
);
576 entry
->prev
= LIST_POISON2
;
580 * We are using hashed locking: holding per_cpu(tvec_bases).lock
581 * means that all timers which are tied to this base via timer->base are
582 * locked, and the base itself is locked too.
584 * So __run_timers/migrate_timers can safely modify all timers which could
585 * be found on ->tvX lists.
587 * When the timer's base is locked, and the timer removed from list, it is
588 * possible to set timer->base = NULL and drop the lock: the timer remains
591 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
592 unsigned long *flags
)
593 __acquires(timer
->base
->lock
)
595 struct tvec_base
*base
;
598 struct tvec_base
*prelock_base
= timer
->base
;
599 base
= tbase_get_base(prelock_base
);
600 if (likely(base
!= NULL
)) {
601 spin_lock_irqsave(&base
->lock
, *flags
);
602 if (likely(prelock_base
== timer
->base
))
604 /* The timer has migrated to another CPU */
605 spin_unlock_irqrestore(&base
->lock
, *flags
);
612 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
613 bool pending_only
, int pinned
)
615 struct tvec_base
*base
, *new_base
;
619 timer_stats_timer_set_start_info(timer
);
620 BUG_ON(!timer
->function
);
622 base
= lock_timer_base(timer
, &flags
);
624 if (timer_pending(timer
)) {
625 detach_timer(timer
, 0);
626 if (timer
->expires
== base
->next_timer
&&
627 !tbase_get_deferrable(timer
->base
))
628 base
->next_timer
= base
->timer_jiffies
;
635 debug_timer_activate(timer
);
637 new_base
= __get_cpu_var(tvec_bases
);
639 cpu
= smp_processor_id();
641 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
642 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
)) {
643 int preferred_cpu
= get_nohz_load_balancer();
645 if (preferred_cpu
>= 0)
649 new_base
= per_cpu(tvec_bases
, cpu
);
651 if (base
!= new_base
) {
653 * We are trying to schedule the timer on the local CPU.
654 * However we can't change timer's base while it is running,
655 * otherwise del_timer_sync() can't detect that the timer's
656 * handler yet has not finished. This also guarantees that
657 * the timer is serialized wrt itself.
659 if (likely(base
->running_timer
!= timer
)) {
660 /* See the comment in lock_timer_base() */
661 timer_set_base(timer
, NULL
);
662 spin_unlock(&base
->lock
);
664 spin_lock(&base
->lock
);
665 timer_set_base(timer
, base
);
669 timer
->expires
= expires
;
670 if (time_before(timer
->expires
, base
->next_timer
) &&
671 !tbase_get_deferrable(timer
->base
))
672 base
->next_timer
= timer
->expires
;
673 internal_add_timer(base
, timer
);
676 spin_unlock_irqrestore(&base
->lock
, flags
);
682 * mod_timer_pending - modify a pending timer's timeout
683 * @timer: the pending timer to be modified
684 * @expires: new timeout in jiffies
686 * mod_timer_pending() is the same for pending timers as mod_timer(),
687 * but will not re-activate and modify already deleted timers.
689 * It is useful for unserialized use of timers.
691 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
693 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
695 EXPORT_SYMBOL(mod_timer_pending
);
698 * mod_timer - modify a timer's timeout
699 * @timer: the timer to be modified
700 * @expires: new timeout in jiffies
702 * mod_timer() is a more efficient way to update the expire field of an
703 * active timer (if the timer is inactive it will be activated)
705 * mod_timer(timer, expires) is equivalent to:
707 * del_timer(timer); timer->expires = expires; add_timer(timer);
709 * Note that if there are multiple unserialized concurrent users of the
710 * same timer, then mod_timer() is the only safe way to modify the timeout,
711 * since add_timer() cannot modify an already running timer.
713 * The function returns whether it has modified a pending timer or not.
714 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
715 * active timer returns 1.)
717 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
720 * This is a common optimization triggered by the
721 * networking code - if the timer is re-modified
722 * to be the same thing then just return:
724 if (timer_pending(timer
) && timer
->expires
== expires
)
727 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
729 EXPORT_SYMBOL(mod_timer
);
732 * mod_timer_pinned - modify a timer's timeout
733 * @timer: the timer to be modified
734 * @expires: new timeout in jiffies
736 * mod_timer_pinned() is a way to update the expire field of an
737 * active timer (if the timer is inactive it will be activated)
738 * and not allow the timer to be migrated to a different CPU.
740 * mod_timer_pinned(timer, expires) is equivalent to:
742 * del_timer(timer); timer->expires = expires; add_timer(timer);
744 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
746 if (timer
->expires
== expires
&& timer_pending(timer
))
749 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
751 EXPORT_SYMBOL(mod_timer_pinned
);
754 * add_timer - start a timer
755 * @timer: the timer to be added
757 * The kernel will do a ->function(->data) callback from the
758 * timer interrupt at the ->expires point in the future. The
759 * current time is 'jiffies'.
761 * The timer's ->expires, ->function (and if the handler uses it, ->data)
762 * fields must be set prior calling this function.
764 * Timers with an ->expires field in the past will be executed in the next
767 void add_timer(struct timer_list
*timer
)
769 BUG_ON(timer_pending(timer
));
770 mod_timer(timer
, timer
->expires
);
772 EXPORT_SYMBOL(add_timer
);
775 * add_timer_on - start a timer on a particular CPU
776 * @timer: the timer to be added
777 * @cpu: the CPU to start it on
779 * This is not very scalable on SMP. Double adds are not possible.
781 void add_timer_on(struct timer_list
*timer
, int cpu
)
783 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
786 timer_stats_timer_set_start_info(timer
);
787 BUG_ON(timer_pending(timer
) || !timer
->function
);
788 spin_lock_irqsave(&base
->lock
, flags
);
789 timer_set_base(timer
, base
);
790 debug_timer_activate(timer
);
791 if (time_before(timer
->expires
, base
->next_timer
) &&
792 !tbase_get_deferrable(timer
->base
))
793 base
->next_timer
= timer
->expires
;
794 internal_add_timer(base
, timer
);
796 * Check whether the other CPU is idle and needs to be
797 * triggered to reevaluate the timer wheel when nohz is
798 * active. We are protected against the other CPU fiddling
799 * with the timer by holding the timer base lock. This also
800 * makes sure that a CPU on the way to idle can not evaluate
803 wake_up_idle_cpu(cpu
);
804 spin_unlock_irqrestore(&base
->lock
, flags
);
806 EXPORT_SYMBOL_GPL(add_timer_on
);
809 * del_timer - deactive a timer.
810 * @timer: the timer to be deactivated
812 * del_timer() deactivates a timer - this works on both active and inactive
815 * The function returns whether it has deactivated a pending timer or not.
816 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
817 * active timer returns 1.)
819 int del_timer(struct timer_list
*timer
)
821 struct tvec_base
*base
;
825 timer_stats_timer_clear_start_info(timer
);
826 if (timer_pending(timer
)) {
827 base
= lock_timer_base(timer
, &flags
);
828 if (timer_pending(timer
)) {
829 detach_timer(timer
, 1);
830 if (timer
->expires
== base
->next_timer
&&
831 !tbase_get_deferrable(timer
->base
))
832 base
->next_timer
= base
->timer_jiffies
;
835 spin_unlock_irqrestore(&base
->lock
, flags
);
840 EXPORT_SYMBOL(del_timer
);
844 * try_to_del_timer_sync - Try to deactivate a timer
845 * @timer: timer do del
847 * This function tries to deactivate a timer. Upon successful (ret >= 0)
848 * exit the timer is not queued and the handler is not running on any CPU.
850 * It must not be called from interrupt contexts.
852 int try_to_del_timer_sync(struct timer_list
*timer
)
854 struct tvec_base
*base
;
858 base
= lock_timer_base(timer
, &flags
);
860 if (base
->running_timer
== timer
)
864 if (timer_pending(timer
)) {
865 detach_timer(timer
, 1);
866 if (timer
->expires
== base
->next_timer
&&
867 !tbase_get_deferrable(timer
->base
))
868 base
->next_timer
= base
->timer_jiffies
;
872 spin_unlock_irqrestore(&base
->lock
, flags
);
876 EXPORT_SYMBOL(try_to_del_timer_sync
);
879 * del_timer_sync - deactivate a timer and wait for the handler to finish.
880 * @timer: the timer to be deactivated
882 * This function only differs from del_timer() on SMP: besides deactivating
883 * the timer it also makes sure the handler has finished executing on other
886 * Synchronization rules: Callers must prevent restarting of the timer,
887 * otherwise this function is meaningless. It must not be called from
888 * interrupt contexts. The caller must not hold locks which would prevent
889 * completion of the timer's handler. The timer's handler must not call
890 * add_timer_on(). Upon exit the timer is not queued and the handler is
891 * not running on any CPU.
893 * The function returns whether it has deactivated a pending timer or not.
895 int del_timer_sync(struct timer_list
*timer
)
897 #ifdef CONFIG_LOCKDEP
900 local_irq_save(flags
);
901 lock_map_acquire(&timer
->lockdep_map
);
902 lock_map_release(&timer
->lockdep_map
);
903 local_irq_restore(flags
);
907 int ret
= try_to_del_timer_sync(timer
);
913 EXPORT_SYMBOL(del_timer_sync
);
916 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
918 /* cascade all the timers from tv up one level */
919 struct timer_list
*timer
, *tmp
;
920 struct list_head tv_list
;
922 list_replace_init(tv
->vec
+ index
, &tv_list
);
925 * We are removing _all_ timers from the list, so we
926 * don't have to detach them individually.
928 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
929 BUG_ON(tbase_get_base(timer
->base
) != base
);
930 internal_add_timer(base
, timer
);
936 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
939 * __run_timers - run all expired timers (if any) on this CPU.
940 * @base: the timer vector to be processed.
942 * This function cascades all vectors and executes all expired timer
945 static inline void __run_timers(struct tvec_base
*base
)
947 struct timer_list
*timer
;
949 spin_lock_irq(&base
->lock
);
950 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
951 struct list_head work_list
;
952 struct list_head
*head
= &work_list
;
953 int index
= base
->timer_jiffies
& TVR_MASK
;
959 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
960 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
961 !cascade(base
, &base
->tv4
, INDEX(2)))
962 cascade(base
, &base
->tv5
, INDEX(3));
963 ++base
->timer_jiffies
;
964 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
965 while (!list_empty(head
)) {
966 void (*fn
)(unsigned long);
969 timer
= list_first_entry(head
, struct timer_list
,entry
);
970 fn
= timer
->function
;
973 timer_stats_account_timer(timer
);
975 set_running_timer(base
, timer
);
976 detach_timer(timer
, 1);
978 spin_unlock_irq(&base
->lock
);
980 int preempt_count
= preempt_count();
982 #ifdef CONFIG_LOCKDEP
984 * It is permissible to free the timer from
985 * inside the function that is called from
986 * it, this we need to take into account for
987 * lockdep too. To avoid bogus "held lock
988 * freed" warnings as well as problems when
989 * looking into timer->lockdep_map, make a
990 * copy and use that here.
992 struct lockdep_map lockdep_map
=
996 * Couple the lock chain with the lock chain at
997 * del_timer_sync() by acquiring the lock_map
998 * around the fn() call here and in
1001 lock_map_acquire(&lockdep_map
);
1005 lock_map_release(&lockdep_map
);
1007 if (preempt_count
!= preempt_count()) {
1008 printk(KERN_ERR
"huh, entered %p "
1009 "with preempt_count %08x, exited"
1016 spin_lock_irq(&base
->lock
);
1019 set_running_timer(base
, NULL
);
1020 spin_unlock_irq(&base
->lock
);
1025 * Find out when the next timer event is due to happen. This
1026 * is used on S/390 to stop all activity when a CPU is idle.
1027 * This function needs to be called with interrupts disabled.
1029 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1031 unsigned long timer_jiffies
= base
->timer_jiffies
;
1032 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1033 int index
, slot
, array
, found
= 0;
1034 struct timer_list
*nte
;
1035 struct tvec
*varray
[4];
1037 /* Look for timer events in tv1. */
1038 index
= slot
= timer_jiffies
& TVR_MASK
;
1040 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1041 if (tbase_get_deferrable(nte
->base
))
1045 expires
= nte
->expires
;
1046 /* Look at the cascade bucket(s)? */
1047 if (!index
|| slot
< index
)
1051 slot
= (slot
+ 1) & TVR_MASK
;
1052 } while (slot
!= index
);
1055 /* Calculate the next cascade event */
1057 timer_jiffies
+= TVR_SIZE
- index
;
1058 timer_jiffies
>>= TVR_BITS
;
1060 /* Check tv2-tv5. */
1061 varray
[0] = &base
->tv2
;
1062 varray
[1] = &base
->tv3
;
1063 varray
[2] = &base
->tv4
;
1064 varray
[3] = &base
->tv5
;
1066 for (array
= 0; array
< 4; array
++) {
1067 struct tvec
*varp
= varray
[array
];
1069 index
= slot
= timer_jiffies
& TVN_MASK
;
1071 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1072 if (tbase_get_deferrable(nte
->base
))
1076 if (time_before(nte
->expires
, expires
))
1077 expires
= nte
->expires
;
1080 * Do we still search for the first timer or are
1081 * we looking up the cascade buckets ?
1084 /* Look at the cascade bucket(s)? */
1085 if (!index
|| slot
< index
)
1089 slot
= (slot
+ 1) & TVN_MASK
;
1090 } while (slot
!= index
);
1093 timer_jiffies
+= TVN_SIZE
- index
;
1094 timer_jiffies
>>= TVN_BITS
;
1100 * Check, if the next hrtimer event is before the next timer wheel
1103 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1104 unsigned long expires
)
1106 ktime_t hr_delta
= hrtimer_get_next_event();
1107 struct timespec tsdelta
;
1108 unsigned long delta
;
1110 if (hr_delta
.tv64
== KTIME_MAX
)
1114 * Expired timer available, let it expire in the next tick
1116 if (hr_delta
.tv64
<= 0)
1119 tsdelta
= ktime_to_timespec(hr_delta
);
1120 delta
= timespec_to_jiffies(&tsdelta
);
1123 * Limit the delta to the max value, which is checked in
1124 * tick_nohz_stop_sched_tick():
1126 if (delta
> NEXT_TIMER_MAX_DELTA
)
1127 delta
= NEXT_TIMER_MAX_DELTA
;
1130 * Take rounding errors in to account and make sure, that it
1131 * expires in the next tick. Otherwise we go into an endless
1132 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1138 if (time_before(now
, expires
))
1144 * get_next_timer_interrupt - return the jiffy of the next pending timer
1145 * @now: current time (in jiffies)
1147 unsigned long get_next_timer_interrupt(unsigned long now
)
1149 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1150 unsigned long expires
;
1152 spin_lock(&base
->lock
);
1153 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1154 base
->next_timer
= __next_timer_interrupt(base
);
1155 expires
= base
->next_timer
;
1156 spin_unlock(&base
->lock
);
1158 if (time_before_eq(expires
, now
))
1161 return cmp_next_hrtimer_event(now
, expires
);
1166 * Called from the timer interrupt handler to charge one tick to the current
1167 * process. user_tick is 1 if the tick is user time, 0 for system.
1169 void update_process_times(int user_tick
)
1171 struct task_struct
*p
= current
;
1172 int cpu
= smp_processor_id();
1174 /* Note: this timer irq context must be accounted for as well. */
1175 account_process_tick(p
, user_tick
);
1177 rcu_check_callbacks(cpu
, user_tick
);
1180 run_posix_cpu_timers(p
);
1184 * This function runs timers and the timer-tq in bottom half context.
1186 static void run_timer_softirq(struct softirq_action
*h
)
1188 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1190 perf_event_do_pending();
1192 hrtimer_run_pending();
1194 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1199 * Called by the local, per-CPU timer interrupt on SMP.
1201 void run_local_timers(void)
1203 hrtimer_run_queues();
1204 raise_softirq(TIMER_SOFTIRQ
);
1209 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1210 * without sampling the sequence number in xtime_lock.
1211 * jiffies is defined in the linker script...
1214 void do_timer(unsigned long ticks
)
1216 jiffies_64
+= ticks
;
1221 #ifdef __ARCH_WANT_SYS_ALARM
1224 * For backwards compatibility? This can be done in libc so Alpha
1225 * and all newer ports shouldn't need it.
1227 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1229 return alarm_setitimer(seconds
);
1237 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1238 * should be moved into arch/i386 instead?
1242 * sys_getpid - return the thread group id of the current process
1244 * Note, despite the name, this returns the tgid not the pid. The tgid and
1245 * the pid are identical unless CLONE_THREAD was specified on clone() in
1246 * which case the tgid is the same in all threads of the same group.
1248 * This is SMP safe as current->tgid does not change.
1250 SYSCALL_DEFINE0(getpid
)
1252 return task_tgid_vnr(current
);
1256 * Accessing ->real_parent is not SMP-safe, it could
1257 * change from under us. However, we can use a stale
1258 * value of ->real_parent under rcu_read_lock(), see
1259 * release_task()->call_rcu(delayed_put_task_struct).
1261 SYSCALL_DEFINE0(getppid
)
1266 pid
= task_tgid_vnr(current
->real_parent
);
1272 SYSCALL_DEFINE0(getuid
)
1274 /* Only we change this so SMP safe */
1275 return current_uid();
1278 SYSCALL_DEFINE0(geteuid
)
1280 /* Only we change this so SMP safe */
1281 return current_euid();
1284 SYSCALL_DEFINE0(getgid
)
1286 /* Only we change this so SMP safe */
1287 return current_gid();
1290 SYSCALL_DEFINE0(getegid
)
1292 /* Only we change this so SMP safe */
1293 return current_egid();
1298 static void process_timeout(unsigned long __data
)
1300 wake_up_process((struct task_struct
*)__data
);
1304 * schedule_timeout - sleep until timeout
1305 * @timeout: timeout value in jiffies
1307 * Make the current task sleep until @timeout jiffies have
1308 * elapsed. The routine will return immediately unless
1309 * the current task state has been set (see set_current_state()).
1311 * You can set the task state as follows -
1313 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1314 * pass before the routine returns. The routine will return 0
1316 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1317 * delivered to the current task. In this case the remaining time
1318 * in jiffies will be returned, or 0 if the timer expired in time
1320 * The current task state is guaranteed to be TASK_RUNNING when this
1323 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1324 * the CPU away without a bound on the timeout. In this case the return
1325 * value will be %MAX_SCHEDULE_TIMEOUT.
1327 * In all cases the return value is guaranteed to be non-negative.
1329 signed long __sched
schedule_timeout(signed long timeout
)
1331 struct timer_list timer
;
1332 unsigned long expire
;
1336 case MAX_SCHEDULE_TIMEOUT
:
1338 * These two special cases are useful to be comfortable
1339 * in the caller. Nothing more. We could take
1340 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1341 * but I' d like to return a valid offset (>=0) to allow
1342 * the caller to do everything it want with the retval.
1348 * Another bit of PARANOID. Note that the retval will be
1349 * 0 since no piece of kernel is supposed to do a check
1350 * for a negative retval of schedule_timeout() (since it
1351 * should never happens anyway). You just have the printk()
1352 * that will tell you if something is gone wrong and where.
1355 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1356 "value %lx\n", timeout
);
1358 current
->state
= TASK_RUNNING
;
1363 expire
= timeout
+ jiffies
;
1365 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1366 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1368 del_singleshot_timer_sync(&timer
);
1370 /* Remove the timer from the object tracker */
1371 destroy_timer_on_stack(&timer
);
1373 timeout
= expire
- jiffies
;
1376 return timeout
< 0 ? 0 : timeout
;
1378 EXPORT_SYMBOL(schedule_timeout
);
1381 * We can use __set_current_state() here because schedule_timeout() calls
1382 * schedule() unconditionally.
1384 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1386 __set_current_state(TASK_INTERRUPTIBLE
);
1387 return schedule_timeout(timeout
);
1389 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1391 signed long __sched
schedule_timeout_killable(signed long timeout
)
1393 __set_current_state(TASK_KILLABLE
);
1394 return schedule_timeout(timeout
);
1396 EXPORT_SYMBOL(schedule_timeout_killable
);
1398 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1400 __set_current_state(TASK_UNINTERRUPTIBLE
);
1401 return schedule_timeout(timeout
);
1403 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1405 /* Thread ID - the internal kernel "pid" */
1406 SYSCALL_DEFINE0(gettid
)
1408 return task_pid_vnr(current
);
1412 * do_sysinfo - fill in sysinfo struct
1413 * @info: pointer to buffer to fill
1415 int do_sysinfo(struct sysinfo
*info
)
1417 unsigned long mem_total
, sav_total
;
1418 unsigned int mem_unit
, bitcount
;
1421 memset(info
, 0, sizeof(struct sysinfo
));
1424 monotonic_to_bootbased(&tp
);
1425 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1427 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1429 info
->procs
= nr_threads
;
1435 * If the sum of all the available memory (i.e. ram + swap)
1436 * is less than can be stored in a 32 bit unsigned long then
1437 * we can be binary compatible with 2.2.x kernels. If not,
1438 * well, in that case 2.2.x was broken anyways...
1440 * -Erik Andersen <andersee@debian.org>
1443 mem_total
= info
->totalram
+ info
->totalswap
;
1444 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1447 mem_unit
= info
->mem_unit
;
1448 while (mem_unit
> 1) {
1451 sav_total
= mem_total
;
1453 if (mem_total
< sav_total
)
1458 * If mem_total did not overflow, multiply all memory values by
1459 * info->mem_unit and set it to 1. This leaves things compatible
1460 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1465 info
->totalram
<<= bitcount
;
1466 info
->freeram
<<= bitcount
;
1467 info
->sharedram
<<= bitcount
;
1468 info
->bufferram
<<= bitcount
;
1469 info
->totalswap
<<= bitcount
;
1470 info
->freeswap
<<= bitcount
;
1471 info
->totalhigh
<<= bitcount
;
1472 info
->freehigh
<<= bitcount
;
1478 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1484 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1490 static int __cpuinit
init_timers_cpu(int cpu
)
1493 struct tvec_base
*base
;
1494 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1496 if (!tvec_base_done
[cpu
]) {
1497 static char boot_done
;
1501 * The APs use this path later in boot
1503 base
= kmalloc_node(sizeof(*base
),
1504 GFP_KERNEL
| __GFP_ZERO
,
1509 /* Make sure that tvec_base is 2 byte aligned */
1510 if (tbase_get_deferrable(base
)) {
1515 per_cpu(tvec_bases
, cpu
) = base
;
1518 * This is for the boot CPU - we use compile-time
1519 * static initialisation because per-cpu memory isn't
1520 * ready yet and because the memory allocators are not
1521 * initialised either.
1524 base
= &boot_tvec_bases
;
1526 tvec_base_done
[cpu
] = 1;
1528 base
= per_cpu(tvec_bases
, cpu
);
1531 spin_lock_init(&base
->lock
);
1533 for (j
= 0; j
< TVN_SIZE
; j
++) {
1534 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1535 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1536 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1537 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1539 for (j
= 0; j
< TVR_SIZE
; j
++)
1540 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1542 base
->timer_jiffies
= jiffies
;
1543 base
->next_timer
= base
->timer_jiffies
;
1547 #ifdef CONFIG_HOTPLUG_CPU
1548 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1550 struct timer_list
*timer
;
1552 while (!list_empty(head
)) {
1553 timer
= list_first_entry(head
, struct timer_list
, entry
);
1554 detach_timer(timer
, 0);
1555 timer_set_base(timer
, new_base
);
1556 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1557 !tbase_get_deferrable(timer
->base
))
1558 new_base
->next_timer
= timer
->expires
;
1559 internal_add_timer(new_base
, timer
);
1563 static void __cpuinit
migrate_timers(int cpu
)
1565 struct tvec_base
*old_base
;
1566 struct tvec_base
*new_base
;
1569 BUG_ON(cpu_online(cpu
));
1570 old_base
= per_cpu(tvec_bases
, cpu
);
1571 new_base
= get_cpu_var(tvec_bases
);
1573 * The caller is globally serialized and nobody else
1574 * takes two locks at once, deadlock is not possible.
1576 spin_lock_irq(&new_base
->lock
);
1577 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1579 BUG_ON(old_base
->running_timer
);
1581 for (i
= 0; i
< TVR_SIZE
; i
++)
1582 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1583 for (i
= 0; i
< TVN_SIZE
; i
++) {
1584 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1585 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1586 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1587 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1590 spin_unlock(&old_base
->lock
);
1591 spin_unlock_irq(&new_base
->lock
);
1592 put_cpu_var(tvec_bases
);
1594 #endif /* CONFIG_HOTPLUG_CPU */
1596 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1597 unsigned long action
, void *hcpu
)
1599 long cpu
= (long)hcpu
;
1601 case CPU_UP_PREPARE
:
1602 case CPU_UP_PREPARE_FROZEN
:
1603 if (init_timers_cpu(cpu
) < 0)
1606 #ifdef CONFIG_HOTPLUG_CPU
1608 case CPU_DEAD_FROZEN
:
1609 migrate_timers(cpu
);
1618 static struct notifier_block __cpuinitdata timers_nb
= {
1619 .notifier_call
= timer_cpu_notify
,
1623 void __init
init_timers(void)
1625 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1626 (void *)(long)smp_processor_id());
1630 BUG_ON(err
== NOTIFY_BAD
);
1631 register_cpu_notifier(&timers_nb
);
1632 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1636 * msleep - sleep safely even with waitqueue interruptions
1637 * @msecs: Time in milliseconds to sleep for
1639 void msleep(unsigned int msecs
)
1641 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1644 timeout
= schedule_timeout_uninterruptible(timeout
);
1647 EXPORT_SYMBOL(msleep
);
1650 * msleep_interruptible - sleep waiting for signals
1651 * @msecs: Time in milliseconds to sleep for
1653 unsigned long msleep_interruptible(unsigned int msecs
)
1655 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1657 while (timeout
&& !signal_pending(current
))
1658 timeout
= schedule_timeout_interruptible(timeout
);
1659 return jiffies_to_msecs(timeout
);
1662 EXPORT_SYMBOL(msleep_interruptible
);