4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* This context's GFP mask */
63 /* Can mapped pages be reclaimed? */
66 /* Can pages be swapped as part of reclaim? */
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
77 int all_unreclaimable
;
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup
*mem_cgroup
;
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
92 unsigned long *scanned
, int order
, int mode
,
93 struct zone
*z
, struct mem_cgroup
*mem_cont
,
94 int active
, int file
);
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness
= 60;
131 long vm_total_pages
; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list
);
134 static DECLARE_RWSEM(shrinker_rwsem
);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
139 #define scanning_global_lru(sc) (1)
142 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
143 struct scan_control
*sc
)
145 if (!scanning_global_lru(sc
))
146 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
148 return &zone
->reclaim_stat
;
151 static unsigned long zone_nr_pages(struct zone
*zone
, struct scan_control
*sc
,
154 if (!scanning_global_lru(sc
))
155 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
157 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker
*shrinker
)
167 down_write(&shrinker_rwsem
);
168 list_add_tail(&shrinker
->list
, &shrinker_list
);
169 up_write(&shrinker_rwsem
);
171 EXPORT_SYMBOL(register_shrinker
);
176 void unregister_shrinker(struct shrinker
*shrinker
)
178 down_write(&shrinker_rwsem
);
179 list_del(&shrinker
->list
);
180 up_write(&shrinker_rwsem
);
182 EXPORT_SYMBOL(unregister_shrinker
);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
205 unsigned long lru_pages
)
207 struct shrinker
*shrinker
;
208 unsigned long ret
= 0;
211 scanned
= SWAP_CLUSTER_MAX
;
213 if (!down_read_trylock(&shrinker_rwsem
))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
217 unsigned long long delta
;
218 unsigned long total_scan
;
219 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
221 delta
= (4 * scanned
) / shrinker
->seeks
;
223 do_div(delta
, lru_pages
+ 1);
224 shrinker
->nr
+= delta
;
225 if (shrinker
->nr
< 0) {
226 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
228 shrinker
->shrink
, shrinker
->nr
);
229 shrinker
->nr
= max_pass
;
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
237 if (shrinker
->nr
> max_pass
* 2)
238 shrinker
->nr
= max_pass
* 2;
240 total_scan
= shrinker
->nr
;
243 while (total_scan
>= SHRINK_BATCH
) {
244 long this_scan
= SHRINK_BATCH
;
248 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
249 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
250 if (shrink_ret
== -1)
252 if (shrink_ret
< nr_before
)
253 ret
+= nr_before
- shrink_ret
;
254 count_vm_events(SLABS_SCANNED
, this_scan
);
255 total_scan
-= this_scan
;
260 shrinker
->nr
+= total_scan
;
262 up_read(&shrinker_rwsem
);
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page
*page
)
269 struct address_space
*mapping
;
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page
))
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page
))
279 mapping
= page_mapping(page
);
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping
);
287 static inline int is_page_cache_freeable(struct page
*page
)
289 return page_count(page
) - !!page_has_private(page
) == 2;
292 static int may_write_to_queue(struct backing_dev_info
*bdi
)
294 if (current
->flags
& PF_SWAPWRITE
)
296 if (!bdi_write_congested(bdi
))
298 if (bdi
== current
->backing_dev_info
)
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
312 * We're allowed to run sleeping lock_page() here because we know the caller has
315 static void handle_write_error(struct address_space
*mapping
,
316 struct page
*page
, int error
)
319 if (page_mapping(page
) == mapping
)
320 mapping_set_error(mapping
, error
);
324 /* Request for sync pageout. */
330 /* possible outcome of pageout() */
332 /* failed to write page out, page is locked */
334 /* move page to the active list, page is locked */
336 /* page has been sent to the disk successfully, page is unlocked */
338 /* page is clean and locked */
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
346 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
347 enum pageout_io sync_writeback
)
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
366 if (!is_page_cache_freeable(page
))
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
373 if (page_has_private(page
)) {
374 if (try_to_free_buffers(page
)) {
375 ClearPageDirty(page
);
376 printk("%s: orphaned page\n", __func__
);
382 if (mapping
->a_ops
->writepage
== NULL
)
383 return PAGE_ACTIVATE
;
384 if (!may_write_to_queue(mapping
->backing_dev_info
))
387 if (clear_page_dirty_for_io(page
)) {
389 struct writeback_control wbc
= {
390 .sync_mode
= WB_SYNC_NONE
,
391 .nr_to_write
= SWAP_CLUSTER_MAX
,
393 .range_end
= LLONG_MAX
,
398 SetPageReclaim(page
);
399 res
= mapping
->a_ops
->writepage(page
, &wbc
);
401 handle_write_error(mapping
, page
, res
);
402 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
403 ClearPageReclaim(page
);
404 return PAGE_ACTIVATE
;
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
412 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
413 wait_on_page_writeback(page
);
415 if (!PageWriteback(page
)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page
);
419 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
430 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
432 BUG_ON(!PageLocked(page
));
433 BUG_ON(mapping
!= page_mapping(page
));
435 spin_lock_irq(&mapping
->tree_lock
);
437 * The non racy check for a busy page.
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
444 * get_user_pages(&page);
445 * [user mapping goes away]
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
450 * !page_count(page) [good, discard it]
452 * [oops, our write_to data is lost]
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
461 if (!page_freeze_refs(page
, 2))
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page
))) {
465 page_unfreeze_refs(page
, 2);
469 if (PageSwapCache(page
)) {
470 swp_entry_t swap
= { .val
= page_private(page
) };
471 __delete_from_swap_cache(page
);
472 spin_unlock_irq(&mapping
->tree_lock
);
473 swapcache_free(swap
, page
);
475 __remove_from_page_cache(page
);
476 spin_unlock_irq(&mapping
->tree_lock
);
477 mem_cgroup_uncharge_cache_page(page
);
483 spin_unlock_irq(&mapping
->tree_lock
);
488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
489 * someone else has a ref on the page, abort and return 0. If it was
490 * successfully detached, return 1. Assumes the caller has a single ref on
493 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
495 if (__remove_mapping(mapping
, page
)) {
497 * Unfreezing the refcount with 1 rather than 2 effectively
498 * drops the pagecache ref for us without requiring another
501 page_unfreeze_refs(page
, 1);
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
514 * lru_lock must not be held, interrupts must be enabled.
516 void putback_lru_page(struct page
*page
)
519 int active
= !!TestClearPageActive(page
);
520 int was_unevictable
= PageUnevictable(page
);
522 VM_BUG_ON(PageLRU(page
));
525 ClearPageUnevictable(page
);
527 if (page_evictable(page
, NULL
)) {
529 * For evictable pages, we can use the cache.
530 * In event of a race, worst case is we end up with an
531 * unevictable page on [in]active list.
532 * We know how to handle that.
534 lru
= active
+ page_is_file_cache(page
);
535 lru_cache_add_lru(page
, lru
);
538 * Put unevictable pages directly on zone's unevictable
541 lru
= LRU_UNEVICTABLE
;
542 add_page_to_unevictable_list(page
);
546 * page's status can change while we move it among lru. If an evictable
547 * page is on unevictable list, it never be freed. To avoid that,
548 * check after we added it to the list, again.
550 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
551 if (!isolate_lru_page(page
)) {
555 /* This means someone else dropped this page from LRU
556 * So, it will be freed or putback to LRU again. There is
557 * nothing to do here.
561 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
562 count_vm_event(UNEVICTABLE_PGRESCUED
);
563 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
564 count_vm_event(UNEVICTABLE_PGCULLED
);
566 put_page(page
); /* drop ref from isolate */
570 * shrink_page_list() returns the number of reclaimed pages
572 static unsigned long shrink_page_list(struct list_head
*page_list
,
573 struct scan_control
*sc
,
574 enum pageout_io sync_writeback
)
576 LIST_HEAD(ret_pages
);
577 struct pagevec freed_pvec
;
579 unsigned long nr_reclaimed
= 0;
580 unsigned long vm_flags
;
584 pagevec_init(&freed_pvec
, 1);
585 while (!list_empty(page_list
)) {
586 struct address_space
*mapping
;
593 page
= lru_to_page(page_list
);
594 list_del(&page
->lru
);
596 if (!trylock_page(page
))
599 VM_BUG_ON(PageActive(page
));
603 if (unlikely(!page_evictable(page
, NULL
)))
606 if (!sc
->may_unmap
&& page_mapped(page
))
609 /* Double the slab pressure for mapped and swapcache pages */
610 if (page_mapped(page
) || PageSwapCache(page
))
613 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
614 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
616 if (PageWriteback(page
)) {
618 * Synchronous reclaim is performed in two passes,
619 * first an asynchronous pass over the list to
620 * start parallel writeback, and a second synchronous
621 * pass to wait for the IO to complete. Wait here
622 * for any page for which writeback has already
625 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
626 wait_on_page_writeback(page
);
631 referenced
= page_referenced(page
, 1,
632 sc
->mem_cgroup
, &vm_flags
);
634 * In active use or really unfreeable? Activate it.
635 * If page which have PG_mlocked lost isoltation race,
636 * try_to_unmap moves it to unevictable list
638 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
639 referenced
&& page_mapping_inuse(page
)
640 && !(vm_flags
& VM_LOCKED
))
641 goto activate_locked
;
644 * Anonymous process memory has backing store?
645 * Try to allocate it some swap space here.
647 if (PageAnon(page
) && !PageSwapCache(page
)) {
648 if (!(sc
->gfp_mask
& __GFP_IO
))
650 if (!add_to_swap(page
))
651 goto activate_locked
;
655 mapping
= page_mapping(page
);
658 * The page is mapped into the page tables of one or more
659 * processes. Try to unmap it here.
661 if (page_mapped(page
) && mapping
) {
662 switch (try_to_unmap(page
, 0)) {
664 goto activate_locked
;
670 ; /* try to free the page below */
674 if (PageDirty(page
)) {
675 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
679 if (!sc
->may_writepage
)
682 /* Page is dirty, try to write it out here */
683 switch (pageout(page
, mapping
, sync_writeback
)) {
687 goto activate_locked
;
689 if (PageWriteback(page
) || PageDirty(page
))
692 * A synchronous write - probably a ramdisk. Go
693 * ahead and try to reclaim the page.
695 if (!trylock_page(page
))
697 if (PageDirty(page
) || PageWriteback(page
))
699 mapping
= page_mapping(page
);
701 ; /* try to free the page below */
706 * If the page has buffers, try to free the buffer mappings
707 * associated with this page. If we succeed we try to free
710 * We do this even if the page is PageDirty().
711 * try_to_release_page() does not perform I/O, but it is
712 * possible for a page to have PageDirty set, but it is actually
713 * clean (all its buffers are clean). This happens if the
714 * buffers were written out directly, with submit_bh(). ext3
715 * will do this, as well as the blockdev mapping.
716 * try_to_release_page() will discover that cleanness and will
717 * drop the buffers and mark the page clean - it can be freed.
719 * Rarely, pages can have buffers and no ->mapping. These are
720 * the pages which were not successfully invalidated in
721 * truncate_complete_page(). We try to drop those buffers here
722 * and if that worked, and the page is no longer mapped into
723 * process address space (page_count == 1) it can be freed.
724 * Otherwise, leave the page on the LRU so it is swappable.
726 if (page_has_private(page
)) {
727 if (!try_to_release_page(page
, sc
->gfp_mask
))
728 goto activate_locked
;
729 if (!mapping
&& page_count(page
) == 1) {
731 if (put_page_testzero(page
))
735 * rare race with speculative reference.
736 * the speculative reference will free
737 * this page shortly, so we may
738 * increment nr_reclaimed here (and
739 * leave it off the LRU).
747 if (!mapping
|| !__remove_mapping(mapping
, page
))
751 * At this point, we have no other references and there is
752 * no way to pick any more up (removed from LRU, removed
753 * from pagecache). Can use non-atomic bitops now (and
754 * we obviously don't have to worry about waking up a process
755 * waiting on the page lock, because there are no references.
757 __clear_page_locked(page
);
760 if (!pagevec_add(&freed_pvec
, page
)) {
761 __pagevec_free(&freed_pvec
);
762 pagevec_reinit(&freed_pvec
);
767 if (PageSwapCache(page
))
768 try_to_free_swap(page
);
770 putback_lru_page(page
);
774 /* Not a candidate for swapping, so reclaim swap space. */
775 if (PageSwapCache(page
) && vm_swap_full())
776 try_to_free_swap(page
);
777 VM_BUG_ON(PageActive(page
));
783 list_add(&page
->lru
, &ret_pages
);
784 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
786 list_splice(&ret_pages
, page_list
);
787 if (pagevec_count(&freed_pvec
))
788 __pagevec_free(&freed_pvec
);
789 count_vm_events(PGACTIVATE
, pgactivate
);
793 /* LRU Isolation modes. */
794 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
795 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
796 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
799 * Attempt to remove the specified page from its LRU. Only take this page
800 * if it is of the appropriate PageActive status. Pages which are being
801 * freed elsewhere are also ignored.
803 * page: page to consider
804 * mode: one of the LRU isolation modes defined above
806 * returns 0 on success, -ve errno on failure.
808 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
812 /* Only take pages on the LRU. */
817 * When checking the active state, we need to be sure we are
818 * dealing with comparible boolean values. Take the logical not
821 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
824 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
828 * When this function is being called for lumpy reclaim, we
829 * initially look into all LRU pages, active, inactive and
830 * unevictable; only give shrink_page_list evictable pages.
832 if (PageUnevictable(page
))
837 if (likely(get_page_unless_zero(page
))) {
839 * Be careful not to clear PageLRU until after we're
840 * sure the page is not being freed elsewhere -- the
841 * page release code relies on it.
851 * zone->lru_lock is heavily contended. Some of the functions that
852 * shrink the lists perform better by taking out a batch of pages
853 * and working on them outside the LRU lock.
855 * For pagecache intensive workloads, this function is the hottest
856 * spot in the kernel (apart from copy_*_user functions).
858 * Appropriate locks must be held before calling this function.
860 * @nr_to_scan: The number of pages to look through on the list.
861 * @src: The LRU list to pull pages off.
862 * @dst: The temp list to put pages on to.
863 * @scanned: The number of pages that were scanned.
864 * @order: The caller's attempted allocation order
865 * @mode: One of the LRU isolation modes
866 * @file: True [1] if isolating file [!anon] pages
868 * returns how many pages were moved onto *@dst.
870 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
871 struct list_head
*src
, struct list_head
*dst
,
872 unsigned long *scanned
, int order
, int mode
, int file
)
874 unsigned long nr_taken
= 0;
877 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
880 unsigned long end_pfn
;
881 unsigned long page_pfn
;
884 page
= lru_to_page(src
);
885 prefetchw_prev_lru_page(page
, src
, flags
);
887 VM_BUG_ON(!PageLRU(page
));
889 switch (__isolate_lru_page(page
, mode
, file
)) {
891 list_move(&page
->lru
, dst
);
892 mem_cgroup_del_lru(page
);
897 /* else it is being freed elsewhere */
898 list_move(&page
->lru
, src
);
899 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
910 * Attempt to take all pages in the order aligned region
911 * surrounding the tag page. Only take those pages of
912 * the same active state as that tag page. We may safely
913 * round the target page pfn down to the requested order
914 * as the mem_map is guarenteed valid out to MAX_ORDER,
915 * where that page is in a different zone we will detect
916 * it from its zone id and abort this block scan.
918 zone_id
= page_zone_id(page
);
919 page_pfn
= page_to_pfn(page
);
920 pfn
= page_pfn
& ~((1 << order
) - 1);
921 end_pfn
= pfn
+ (1 << order
);
922 for (; pfn
< end_pfn
; pfn
++) {
923 struct page
*cursor_page
;
925 /* The target page is in the block, ignore it. */
926 if (unlikely(pfn
== page_pfn
))
929 /* Avoid holes within the zone. */
930 if (unlikely(!pfn_valid_within(pfn
)))
933 cursor_page
= pfn_to_page(pfn
);
935 /* Check that we have not crossed a zone boundary. */
936 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
938 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
939 list_move(&cursor_page
->lru
, dst
);
940 mem_cgroup_del_lru(cursor_page
);
951 static unsigned long isolate_pages_global(unsigned long nr
,
952 struct list_head
*dst
,
953 unsigned long *scanned
, int order
,
954 int mode
, struct zone
*z
,
955 struct mem_cgroup
*mem_cont
,
956 int active
, int file
)
963 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
968 * clear_active_flags() is a helper for shrink_active_list(), clearing
969 * any active bits from the pages in the list.
971 static unsigned long clear_active_flags(struct list_head
*page_list
,
978 list_for_each_entry(page
, page_list
, lru
) {
979 lru
= page_is_file_cache(page
);
980 if (PageActive(page
)) {
982 ClearPageActive(page
);
992 * isolate_lru_page - tries to isolate a page from its LRU list
993 * @page: page to isolate from its LRU list
995 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
996 * vmstat statistic corresponding to whatever LRU list the page was on.
998 * Returns 0 if the page was removed from an LRU list.
999 * Returns -EBUSY if the page was not on an LRU list.
1001 * The returned page will have PageLRU() cleared. If it was found on
1002 * the active list, it will have PageActive set. If it was found on
1003 * the unevictable list, it will have the PageUnevictable bit set. That flag
1004 * may need to be cleared by the caller before letting the page go.
1006 * The vmstat statistic corresponding to the list on which the page was
1007 * found will be decremented.
1010 * (1) Must be called with an elevated refcount on the page. This is a
1011 * fundamentnal difference from isolate_lru_pages (which is called
1012 * without a stable reference).
1013 * (2) the lru_lock must not be held.
1014 * (3) interrupts must be enabled.
1016 int isolate_lru_page(struct page
*page
)
1020 if (PageLRU(page
)) {
1021 struct zone
*zone
= page_zone(page
);
1023 spin_lock_irq(&zone
->lru_lock
);
1024 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1025 int lru
= page_lru(page
);
1029 del_page_from_lru_list(zone
, page
, lru
);
1031 spin_unlock_irq(&zone
->lru_lock
);
1037 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1038 * of reclaimed pages
1040 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1041 struct zone
*zone
, struct scan_control
*sc
,
1042 int priority
, int file
)
1044 LIST_HEAD(page_list
);
1045 struct pagevec pvec
;
1046 unsigned long nr_scanned
= 0;
1047 unsigned long nr_reclaimed
= 0;
1048 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1049 int lumpy_reclaim
= 0;
1052 * If we need a large contiguous chunk of memory, or have
1053 * trouble getting a small set of contiguous pages, we
1054 * will reclaim both active and inactive pages.
1056 * We use the same threshold as pageout congestion_wait below.
1058 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1060 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1063 pagevec_init(&pvec
, 1);
1066 spin_lock_irq(&zone
->lru_lock
);
1069 unsigned long nr_taken
;
1070 unsigned long nr_scan
;
1071 unsigned long nr_freed
;
1072 unsigned long nr_active
;
1073 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1074 int mode
= lumpy_reclaim
? ISOLATE_BOTH
: ISOLATE_INACTIVE
;
1076 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1077 &page_list
, &nr_scan
, sc
->order
, mode
,
1078 zone
, sc
->mem_cgroup
, 0, file
);
1079 nr_active
= clear_active_flags(&page_list
, count
);
1080 __count_vm_events(PGDEACTIVATE
, nr_active
);
1082 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1083 -count
[LRU_ACTIVE_FILE
]);
1084 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1085 -count
[LRU_INACTIVE_FILE
]);
1086 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1087 -count
[LRU_ACTIVE_ANON
]);
1088 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1089 -count
[LRU_INACTIVE_ANON
]);
1091 if (scanning_global_lru(sc
))
1092 zone
->pages_scanned
+= nr_scan
;
1094 reclaim_stat
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1095 reclaim_stat
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1096 reclaim_stat
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1097 reclaim_stat
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1099 spin_unlock_irq(&zone
->lru_lock
);
1101 nr_scanned
+= nr_scan
;
1102 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1105 * If we are direct reclaiming for contiguous pages and we do
1106 * not reclaim everything in the list, try again and wait
1107 * for IO to complete. This will stall high-order allocations
1108 * but that should be acceptable to the caller
1110 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1112 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1115 * The attempt at page out may have made some
1116 * of the pages active, mark them inactive again.
1118 nr_active
= clear_active_flags(&page_list
, count
);
1119 count_vm_events(PGDEACTIVATE
, nr_active
);
1121 nr_freed
+= shrink_page_list(&page_list
, sc
,
1125 nr_reclaimed
+= nr_freed
;
1126 local_irq_disable();
1127 if (current_is_kswapd()) {
1128 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1129 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1130 } else if (scanning_global_lru(sc
))
1131 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1133 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1138 spin_lock(&zone
->lru_lock
);
1140 * Put back any unfreeable pages.
1142 while (!list_empty(&page_list
)) {
1144 page
= lru_to_page(&page_list
);
1145 VM_BUG_ON(PageLRU(page
));
1146 list_del(&page
->lru
);
1147 if (unlikely(!page_evictable(page
, NULL
))) {
1148 spin_unlock_irq(&zone
->lru_lock
);
1149 putback_lru_page(page
);
1150 spin_lock_irq(&zone
->lru_lock
);
1154 lru
= page_lru(page
);
1155 add_page_to_lru_list(zone
, page
, lru
);
1156 if (PageActive(page
)) {
1157 int file
= !!page_is_file_cache(page
);
1158 reclaim_stat
->recent_rotated
[file
]++;
1160 if (!pagevec_add(&pvec
, page
)) {
1161 spin_unlock_irq(&zone
->lru_lock
);
1162 __pagevec_release(&pvec
);
1163 spin_lock_irq(&zone
->lru_lock
);
1166 } while (nr_scanned
< max_scan
);
1167 spin_unlock(&zone
->lru_lock
);
1170 pagevec_release(&pvec
);
1171 return nr_reclaimed
;
1175 * We are about to scan this zone at a certain priority level. If that priority
1176 * level is smaller (ie: more urgent) than the previous priority, then note
1177 * that priority level within the zone. This is done so that when the next
1178 * process comes in to scan this zone, it will immediately start out at this
1179 * priority level rather than having to build up its own scanning priority.
1180 * Here, this priority affects only the reclaim-mapped threshold.
1182 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1184 if (priority
< zone
->prev_priority
)
1185 zone
->prev_priority
= priority
;
1189 * This moves pages from the active list to the inactive list.
1191 * We move them the other way if the page is referenced by one or more
1192 * processes, from rmap.
1194 * If the pages are mostly unmapped, the processing is fast and it is
1195 * appropriate to hold zone->lru_lock across the whole operation. But if
1196 * the pages are mapped, the processing is slow (page_referenced()) so we
1197 * should drop zone->lru_lock around each page. It's impossible to balance
1198 * this, so instead we remove the pages from the LRU while processing them.
1199 * It is safe to rely on PG_active against the non-LRU pages in here because
1200 * nobody will play with that bit on a non-LRU page.
1202 * The downside is that we have to touch page->_count against each page.
1203 * But we had to alter page->flags anyway.
1206 static void move_active_pages_to_lru(struct zone
*zone
,
1207 struct list_head
*list
,
1210 unsigned long pgmoved
= 0;
1211 struct pagevec pvec
;
1214 pagevec_init(&pvec
, 1);
1216 while (!list_empty(list
)) {
1217 page
= lru_to_page(list
);
1218 prefetchw_prev_lru_page(page
, list
, flags
);
1220 VM_BUG_ON(PageLRU(page
));
1223 VM_BUG_ON(!PageActive(page
));
1224 if (!is_active_lru(lru
))
1225 ClearPageActive(page
); /* we are de-activating */
1227 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1228 mem_cgroup_add_lru_list(page
, lru
);
1231 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1232 spin_unlock_irq(&zone
->lru_lock
);
1233 if (buffer_heads_over_limit
)
1234 pagevec_strip(&pvec
);
1235 __pagevec_release(&pvec
);
1236 spin_lock_irq(&zone
->lru_lock
);
1239 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1240 if (!is_active_lru(lru
))
1241 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1244 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1245 struct scan_control
*sc
, int priority
, int file
)
1247 unsigned long pgmoved
;
1248 unsigned long pgscanned
;
1249 unsigned long vm_flags
;
1250 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1251 LIST_HEAD(l_active
);
1252 LIST_HEAD(l_inactive
);
1254 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1257 spin_lock_irq(&zone
->lru_lock
);
1258 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1259 ISOLATE_ACTIVE
, zone
,
1260 sc
->mem_cgroup
, 1, file
);
1262 * zone->pages_scanned is used for detect zone's oom
1263 * mem_cgroup remembers nr_scan by itself.
1265 if (scanning_global_lru(sc
)) {
1266 zone
->pages_scanned
+= pgscanned
;
1268 reclaim_stat
->recent_scanned
[!!file
] += pgmoved
;
1270 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1272 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1274 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1275 spin_unlock_irq(&zone
->lru_lock
);
1277 pgmoved
= 0; /* count referenced (mapping) mapped pages */
1278 while (!list_empty(&l_hold
)) {
1280 page
= lru_to_page(&l_hold
);
1281 list_del(&page
->lru
);
1283 if (unlikely(!page_evictable(page
, NULL
))) {
1284 putback_lru_page(page
);
1288 /* page_referenced clears PageReferenced */
1289 if (page_mapping_inuse(page
) &&
1290 page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1293 * Identify referenced, file-backed active pages and
1294 * give them one more trip around the active list. So
1295 * that executable code get better chances to stay in
1296 * memory under moderate memory pressure. Anon pages
1297 * are not likely to be evicted by use-once streaming
1298 * IO, plus JVM can create lots of anon VM_EXEC pages,
1299 * so we ignore them here.
1301 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1302 list_add(&page
->lru
, &l_active
);
1307 list_add(&page
->lru
, &l_inactive
);
1311 * Move pages back to the lru list.
1313 spin_lock_irq(&zone
->lru_lock
);
1315 * Count referenced pages from currently used mappings as rotated,
1316 * even though only some of them are actually re-activated. This
1317 * helps balance scan pressure between file and anonymous pages in
1320 reclaim_stat
->recent_rotated
[!!file
] += pgmoved
;
1322 move_active_pages_to_lru(zone
, &l_active
,
1323 LRU_ACTIVE
+ file
* LRU_FILE
);
1324 move_active_pages_to_lru(zone
, &l_inactive
,
1325 LRU_BASE
+ file
* LRU_FILE
);
1327 spin_unlock_irq(&zone
->lru_lock
);
1330 static int inactive_anon_is_low_global(struct zone
*zone
)
1332 unsigned long active
, inactive
;
1334 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1335 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1337 if (inactive
* zone
->inactive_ratio
< active
)
1344 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1345 * @zone: zone to check
1346 * @sc: scan control of this context
1348 * Returns true if the zone does not have enough inactive anon pages,
1349 * meaning some active anon pages need to be deactivated.
1351 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1355 if (scanning_global_lru(sc
))
1356 low
= inactive_anon_is_low_global(zone
);
1358 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1362 static int inactive_file_is_low_global(struct zone
*zone
)
1364 unsigned long active
, inactive
;
1366 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1367 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1369 return (active
> inactive
);
1373 * inactive_file_is_low - check if file pages need to be deactivated
1374 * @zone: zone to check
1375 * @sc: scan control of this context
1377 * When the system is doing streaming IO, memory pressure here
1378 * ensures that active file pages get deactivated, until more
1379 * than half of the file pages are on the inactive list.
1381 * Once we get to that situation, protect the system's working
1382 * set from being evicted by disabling active file page aging.
1384 * This uses a different ratio than the anonymous pages, because
1385 * the page cache uses a use-once replacement algorithm.
1387 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1391 if (scanning_global_lru(sc
))
1392 low
= inactive_file_is_low_global(zone
);
1394 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1398 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1399 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1401 int file
= is_file_lru(lru
);
1403 if (lru
== LRU_ACTIVE_FILE
&& inactive_file_is_low(zone
, sc
)) {
1404 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1408 if (lru
== LRU_ACTIVE_ANON
&& inactive_anon_is_low(zone
, sc
)) {
1409 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1412 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1416 * Determine how aggressively the anon and file LRU lists should be
1417 * scanned. The relative value of each set of LRU lists is determined
1418 * by looking at the fraction of the pages scanned we did rotate back
1419 * onto the active list instead of evict.
1421 * percent[0] specifies how much pressure to put on ram/swap backed
1422 * memory, while percent[1] determines pressure on the file LRUs.
1424 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1425 unsigned long *percent
)
1427 unsigned long anon
, file
, free
;
1428 unsigned long anon_prio
, file_prio
;
1429 unsigned long ap
, fp
;
1430 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1432 anon
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1433 zone_nr_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1434 file
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1435 zone_nr_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1437 if (scanning_global_lru(sc
)) {
1438 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1439 /* If we have very few page cache pages,
1440 force-scan anon pages. */
1441 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1449 * OK, so we have swap space and a fair amount of page cache
1450 * pages. We use the recently rotated / recently scanned
1451 * ratios to determine how valuable each cache is.
1453 * Because workloads change over time (and to avoid overflow)
1454 * we keep these statistics as a floating average, which ends
1455 * up weighing recent references more than old ones.
1457 * anon in [0], file in [1]
1459 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1460 spin_lock_irq(&zone
->lru_lock
);
1461 reclaim_stat
->recent_scanned
[0] /= 2;
1462 reclaim_stat
->recent_rotated
[0] /= 2;
1463 spin_unlock_irq(&zone
->lru_lock
);
1466 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1467 spin_lock_irq(&zone
->lru_lock
);
1468 reclaim_stat
->recent_scanned
[1] /= 2;
1469 reclaim_stat
->recent_rotated
[1] /= 2;
1470 spin_unlock_irq(&zone
->lru_lock
);
1474 * With swappiness at 100, anonymous and file have the same priority.
1475 * This scanning priority is essentially the inverse of IO cost.
1477 anon_prio
= sc
->swappiness
;
1478 file_prio
= 200 - sc
->swappiness
;
1481 * The amount of pressure on anon vs file pages is inversely
1482 * proportional to the fraction of recently scanned pages on
1483 * each list that were recently referenced and in active use.
1485 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1486 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1488 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1489 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1491 /* Normalize to percentages */
1492 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1493 percent
[1] = 100 - percent
[0];
1497 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1498 * until we collected @swap_cluster_max pages to scan.
1500 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1501 unsigned long *nr_saved_scan
,
1502 unsigned long swap_cluster_max
)
1506 *nr_saved_scan
+= nr_to_scan
;
1507 nr
= *nr_saved_scan
;
1509 if (nr
>= swap_cluster_max
)
1518 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1520 static void shrink_zone(int priority
, struct zone
*zone
,
1521 struct scan_control
*sc
)
1523 unsigned long nr
[NR_LRU_LISTS
];
1524 unsigned long nr_to_scan
;
1525 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1527 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1528 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1531 /* If we have no swap space, do not bother scanning anon pages. */
1532 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1537 get_scan_ratio(zone
, sc
, percent
);
1539 for_each_evictable_lru(l
) {
1540 int file
= is_file_lru(l
);
1543 scan
= zone_nr_pages(zone
, sc
, l
);
1544 if (priority
|| noswap
) {
1546 scan
= (scan
* percent
[file
]) / 100;
1548 if (scanning_global_lru(sc
))
1549 nr
[l
] = nr_scan_try_batch(scan
,
1550 &zone
->lru
[l
].nr_saved_scan
,
1556 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1557 nr
[LRU_INACTIVE_FILE
]) {
1558 for_each_evictable_lru(l
) {
1560 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1561 nr
[l
] -= nr_to_scan
;
1563 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1564 zone
, sc
, priority
);
1568 * On large memory systems, scan >> priority can become
1569 * really large. This is fine for the starting priority;
1570 * we want to put equal scanning pressure on each zone.
1571 * However, if the VM has a harder time of freeing pages,
1572 * with multiple processes reclaiming pages, the total
1573 * freeing target can get unreasonably large.
1575 if (nr_reclaimed
> swap_cluster_max
&&
1576 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1580 sc
->nr_reclaimed
= nr_reclaimed
;
1583 * Even if we did not try to evict anon pages at all, we want to
1584 * rebalance the anon lru active/inactive ratio.
1586 if (inactive_anon_is_low(zone
, sc
) && nr_swap_pages
> 0)
1587 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1589 throttle_vm_writeout(sc
->gfp_mask
);
1593 * This is the direct reclaim path, for page-allocating processes. We only
1594 * try to reclaim pages from zones which will satisfy the caller's allocation
1597 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1599 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1601 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1602 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1603 * zone defense algorithm.
1605 * If a zone is deemed to be full of pinned pages then just give it a light
1606 * scan then give up on it.
1608 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1609 struct scan_control
*sc
)
1611 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1615 sc
->all_unreclaimable
= 1;
1616 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1618 if (!populated_zone(zone
))
1621 * Take care memory controller reclaiming has small influence
1624 if (scanning_global_lru(sc
)) {
1625 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1627 note_zone_scanning_priority(zone
, priority
);
1629 if (zone_is_all_unreclaimable(zone
) &&
1630 priority
!= DEF_PRIORITY
)
1631 continue; /* Let kswapd poll it */
1632 sc
->all_unreclaimable
= 0;
1635 * Ignore cpuset limitation here. We just want to reduce
1636 * # of used pages by us regardless of memory shortage.
1638 sc
->all_unreclaimable
= 0;
1639 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1643 shrink_zone(priority
, zone
, sc
);
1648 * This is the main entry point to direct page reclaim.
1650 * If a full scan of the inactive list fails to free enough memory then we
1651 * are "out of memory" and something needs to be killed.
1653 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1654 * high - the zone may be full of dirty or under-writeback pages, which this
1655 * caller can't do much about. We kick pdflush and take explicit naps in the
1656 * hope that some of these pages can be written. But if the allocating task
1657 * holds filesystem locks which prevent writeout this might not work, and the
1658 * allocation attempt will fail.
1660 * returns: 0, if no pages reclaimed
1661 * else, the number of pages reclaimed
1663 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1664 struct scan_control
*sc
)
1667 unsigned long ret
= 0;
1668 unsigned long total_scanned
= 0;
1669 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1670 unsigned long lru_pages
= 0;
1673 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1675 delayacct_freepages_start();
1677 if (scanning_global_lru(sc
))
1678 count_vm_event(ALLOCSTALL
);
1680 * mem_cgroup will not do shrink_slab.
1682 if (scanning_global_lru(sc
)) {
1683 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1685 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1688 lru_pages
+= zone_lru_pages(zone
);
1692 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1695 disable_swap_token();
1696 shrink_zones(priority
, zonelist
, sc
);
1698 * Don't shrink slabs when reclaiming memory from
1699 * over limit cgroups
1701 if (scanning_global_lru(sc
)) {
1702 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1703 if (reclaim_state
) {
1704 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1705 reclaim_state
->reclaimed_slab
= 0;
1708 total_scanned
+= sc
->nr_scanned
;
1709 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1710 ret
= sc
->nr_reclaimed
;
1715 * Try to write back as many pages as we just scanned. This
1716 * tends to cause slow streaming writers to write data to the
1717 * disk smoothly, at the dirtying rate, which is nice. But
1718 * that's undesirable in laptop mode, where we *want* lumpy
1719 * writeout. So in laptop mode, write out the whole world.
1721 if (total_scanned
> sc
->swap_cluster_max
+
1722 sc
->swap_cluster_max
/ 2) {
1723 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1724 sc
->may_writepage
= 1;
1727 /* Take a nap, wait for some writeback to complete */
1728 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1729 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1731 /* top priority shrink_zones still had more to do? don't OOM, then */
1732 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1733 ret
= sc
->nr_reclaimed
;
1736 * Now that we've scanned all the zones at this priority level, note
1737 * that level within the zone so that the next thread which performs
1738 * scanning of this zone will immediately start out at this priority
1739 * level. This affects only the decision whether or not to bring
1740 * mapped pages onto the inactive list.
1745 if (scanning_global_lru(sc
)) {
1746 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1748 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1751 zone
->prev_priority
= priority
;
1754 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1756 delayacct_freepages_end();
1761 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1762 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1764 struct scan_control sc
= {
1765 .gfp_mask
= gfp_mask
,
1766 .may_writepage
= !laptop_mode
,
1767 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1770 .swappiness
= vm_swappiness
,
1773 .isolate_pages
= isolate_pages_global
,
1774 .nodemask
= nodemask
,
1777 return do_try_to_free_pages(zonelist
, &sc
);
1780 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1782 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1785 unsigned int swappiness
)
1787 struct scan_control sc
= {
1788 .may_writepage
= !laptop_mode
,
1790 .may_swap
= !noswap
,
1791 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1792 .swappiness
= swappiness
,
1794 .mem_cgroup
= mem_cont
,
1795 .isolate_pages
= mem_cgroup_isolate_pages
,
1796 .nodemask
= NULL
, /* we don't care the placement */
1798 struct zonelist
*zonelist
;
1800 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1801 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1802 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1803 return do_try_to_free_pages(zonelist
, &sc
);
1808 * For kswapd, balance_pgdat() will work across all this node's zones until
1809 * they are all at high_wmark_pages(zone).
1811 * Returns the number of pages which were actually freed.
1813 * There is special handling here for zones which are full of pinned pages.
1814 * This can happen if the pages are all mlocked, or if they are all used by
1815 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1816 * What we do is to detect the case where all pages in the zone have been
1817 * scanned twice and there has been zero successful reclaim. Mark the zone as
1818 * dead and from now on, only perform a short scan. Basically we're polling
1819 * the zone for when the problem goes away.
1821 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1822 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1823 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1824 * lower zones regardless of the number of free pages in the lower zones. This
1825 * interoperates with the page allocator fallback scheme to ensure that aging
1826 * of pages is balanced across the zones.
1828 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1833 unsigned long total_scanned
;
1834 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1835 struct scan_control sc
= {
1836 .gfp_mask
= GFP_KERNEL
,
1839 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1840 .swappiness
= vm_swappiness
,
1843 .isolate_pages
= isolate_pages_global
,
1846 * temp_priority is used to remember the scanning priority at which
1847 * this zone was successfully refilled to
1848 * free_pages == high_wmark_pages(zone).
1850 int temp_priority
[MAX_NR_ZONES
];
1854 sc
.nr_reclaimed
= 0;
1855 sc
.may_writepage
= !laptop_mode
;
1856 count_vm_event(PAGEOUTRUN
);
1858 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1859 temp_priority
[i
] = DEF_PRIORITY
;
1861 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1862 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1863 unsigned long lru_pages
= 0;
1865 /* The swap token gets in the way of swapout... */
1867 disable_swap_token();
1872 * Scan in the highmem->dma direction for the highest
1873 * zone which needs scanning
1875 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1876 struct zone
*zone
= pgdat
->node_zones
+ i
;
1878 if (!populated_zone(zone
))
1881 if (zone_is_all_unreclaimable(zone
) &&
1882 priority
!= DEF_PRIORITY
)
1886 * Do some background aging of the anon list, to give
1887 * pages a chance to be referenced before reclaiming.
1889 if (inactive_anon_is_low(zone
, &sc
))
1890 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1893 if (!zone_watermark_ok(zone
, order
,
1894 high_wmark_pages(zone
), 0, 0)) {
1902 for (i
= 0; i
<= end_zone
; i
++) {
1903 struct zone
*zone
= pgdat
->node_zones
+ i
;
1905 lru_pages
+= zone_lru_pages(zone
);
1909 * Now scan the zone in the dma->highmem direction, stopping
1910 * at the last zone which needs scanning.
1912 * We do this because the page allocator works in the opposite
1913 * direction. This prevents the page allocator from allocating
1914 * pages behind kswapd's direction of progress, which would
1915 * cause too much scanning of the lower zones.
1917 for (i
= 0; i
<= end_zone
; i
++) {
1918 struct zone
*zone
= pgdat
->node_zones
+ i
;
1921 if (!populated_zone(zone
))
1924 if (zone_is_all_unreclaimable(zone
) &&
1925 priority
!= DEF_PRIORITY
)
1928 if (!zone_watermark_ok(zone
, order
,
1929 high_wmark_pages(zone
), end_zone
, 0))
1931 temp_priority
[i
] = priority
;
1933 note_zone_scanning_priority(zone
, priority
);
1935 * We put equal pressure on every zone, unless one
1936 * zone has way too many pages free already.
1938 if (!zone_watermark_ok(zone
, order
,
1939 8*high_wmark_pages(zone
), end_zone
, 0))
1940 shrink_zone(priority
, zone
, &sc
);
1941 reclaim_state
->reclaimed_slab
= 0;
1942 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1944 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1945 total_scanned
+= sc
.nr_scanned
;
1946 if (zone_is_all_unreclaimable(zone
))
1948 if (nr_slab
== 0 && zone
->pages_scanned
>=
1949 (zone_lru_pages(zone
) * 6))
1951 ZONE_ALL_UNRECLAIMABLE
);
1953 * If we've done a decent amount of scanning and
1954 * the reclaim ratio is low, start doing writepage
1955 * even in laptop mode
1957 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1958 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1959 sc
.may_writepage
= 1;
1962 break; /* kswapd: all done */
1964 * OK, kswapd is getting into trouble. Take a nap, then take
1965 * another pass across the zones.
1967 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1968 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1971 * We do this so kswapd doesn't build up large priorities for
1972 * example when it is freeing in parallel with allocators. It
1973 * matches the direct reclaim path behaviour in terms of impact
1974 * on zone->*_priority.
1976 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1981 * Note within each zone the priority level at which this zone was
1982 * brought into a happy state. So that the next thread which scans this
1983 * zone will start out at that priority level.
1985 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1986 struct zone
*zone
= pgdat
->node_zones
+ i
;
1988 zone
->prev_priority
= temp_priority
[i
];
1990 if (!all_zones_ok
) {
1996 * Fragmentation may mean that the system cannot be
1997 * rebalanced for high-order allocations in all zones.
1998 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1999 * it means the zones have been fully scanned and are still
2000 * not balanced. For high-order allocations, there is
2001 * little point trying all over again as kswapd may
2004 * Instead, recheck all watermarks at order-0 as they
2005 * are the most important. If watermarks are ok, kswapd will go
2006 * back to sleep. High-order users can still perform direct
2007 * reclaim if they wish.
2009 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2010 order
= sc
.order
= 0;
2015 return sc
.nr_reclaimed
;
2019 * The background pageout daemon, started as a kernel thread
2020 * from the init process.
2022 * This basically trickles out pages so that we have _some_
2023 * free memory available even if there is no other activity
2024 * that frees anything up. This is needed for things like routing
2025 * etc, where we otherwise might have all activity going on in
2026 * asynchronous contexts that cannot page things out.
2028 * If there are applications that are active memory-allocators
2029 * (most normal use), this basically shouldn't matter.
2031 static int kswapd(void *p
)
2033 unsigned long order
;
2034 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2035 struct task_struct
*tsk
= current
;
2037 struct reclaim_state reclaim_state
= {
2038 .reclaimed_slab
= 0,
2040 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2042 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2044 if (!cpumask_empty(cpumask
))
2045 set_cpus_allowed_ptr(tsk
, cpumask
);
2046 current
->reclaim_state
= &reclaim_state
;
2049 * Tell the memory management that we're a "memory allocator",
2050 * and that if we need more memory we should get access to it
2051 * regardless (see "__alloc_pages()"). "kswapd" should
2052 * never get caught in the normal page freeing logic.
2054 * (Kswapd normally doesn't need memory anyway, but sometimes
2055 * you need a small amount of memory in order to be able to
2056 * page out something else, and this flag essentially protects
2057 * us from recursively trying to free more memory as we're
2058 * trying to free the first piece of memory in the first place).
2060 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2065 unsigned long new_order
;
2067 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2068 new_order
= pgdat
->kswapd_max_order
;
2069 pgdat
->kswapd_max_order
= 0;
2070 if (order
< new_order
) {
2072 * Don't sleep if someone wants a larger 'order'
2077 if (!freezing(current
))
2080 order
= pgdat
->kswapd_max_order
;
2082 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2084 if (!try_to_freeze()) {
2085 /* We can speed up thawing tasks if we don't call
2086 * balance_pgdat after returning from the refrigerator
2088 balance_pgdat(pgdat
, order
);
2095 * A zone is low on free memory, so wake its kswapd task to service it.
2097 void wakeup_kswapd(struct zone
*zone
, int order
)
2101 if (!populated_zone(zone
))
2104 pgdat
= zone
->zone_pgdat
;
2105 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2107 if (pgdat
->kswapd_max_order
< order
)
2108 pgdat
->kswapd_max_order
= order
;
2109 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2111 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2113 wake_up_interruptible(&pgdat
->kswapd_wait
);
2116 unsigned long global_lru_pages(void)
2118 return global_page_state(NR_ACTIVE_ANON
)
2119 + global_page_state(NR_ACTIVE_FILE
)
2120 + global_page_state(NR_INACTIVE_ANON
)
2121 + global_page_state(NR_INACTIVE_FILE
);
2124 #ifdef CONFIG_HIBERNATION
2126 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2127 * from LRU lists system-wide, for given pass and priority.
2129 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2131 static void shrink_all_zones(unsigned long nr_pages
, int prio
,
2132 int pass
, struct scan_control
*sc
)
2135 unsigned long nr_reclaimed
= 0;
2137 for_each_populated_zone(zone
) {
2140 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2143 for_each_evictable_lru(l
) {
2144 enum zone_stat_item ls
= NR_LRU_BASE
+ l
;
2145 unsigned long lru_pages
= zone_page_state(zone
, ls
);
2147 /* For pass = 0, we don't shrink the active list */
2148 if (pass
== 0 && (l
== LRU_ACTIVE_ANON
||
2149 l
== LRU_ACTIVE_FILE
))
2152 zone
->lru
[l
].nr_saved_scan
+= (lru_pages
>> prio
) + 1;
2153 if (zone
->lru
[l
].nr_saved_scan
>= nr_pages
|| pass
> 3) {
2154 unsigned long nr_to_scan
;
2156 zone
->lru
[l
].nr_saved_scan
= 0;
2157 nr_to_scan
= min(nr_pages
, lru_pages
);
2158 nr_reclaimed
+= shrink_list(l
, nr_to_scan
, zone
,
2160 if (nr_reclaimed
>= nr_pages
) {
2161 sc
->nr_reclaimed
+= nr_reclaimed
;
2167 sc
->nr_reclaimed
+= nr_reclaimed
;
2171 * Try to free `nr_pages' of memory, system-wide, and return the number of
2174 * Rather than trying to age LRUs the aim is to preserve the overall
2175 * LRU order by reclaiming preferentially
2176 * inactive > active > active referenced > active mapped
2178 unsigned long shrink_all_memory(unsigned long nr_pages
)
2180 unsigned long lru_pages
, nr_slab
;
2182 struct reclaim_state reclaim_state
;
2183 struct scan_control sc
= {
2184 .gfp_mask
= GFP_KERNEL
,
2187 .isolate_pages
= isolate_pages_global
,
2191 current
->reclaim_state
= &reclaim_state
;
2193 lru_pages
= global_lru_pages();
2194 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2195 /* If slab caches are huge, it's better to hit them first */
2196 while (nr_slab
>= lru_pages
) {
2197 reclaim_state
.reclaimed_slab
= 0;
2198 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2199 if (!reclaim_state
.reclaimed_slab
)
2202 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2203 if (sc
.nr_reclaimed
>= nr_pages
)
2206 nr_slab
-= reclaim_state
.reclaimed_slab
;
2210 * We try to shrink LRUs in 5 passes:
2211 * 0 = Reclaim from inactive_list only
2212 * 1 = Reclaim from active list but don't reclaim mapped
2213 * 2 = 2nd pass of type 1
2214 * 3 = Reclaim mapped (normal reclaim)
2215 * 4 = 2nd pass of type 3
2217 for (pass
= 0; pass
< 5; pass
++) {
2220 /* Force reclaiming mapped pages in the passes #3 and #4 */
2224 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2225 unsigned long nr_to_scan
= nr_pages
- sc
.nr_reclaimed
;
2228 sc
.swap_cluster_max
= nr_to_scan
;
2229 shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2230 if (sc
.nr_reclaimed
>= nr_pages
)
2233 reclaim_state
.reclaimed_slab
= 0;
2234 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2235 global_lru_pages());
2236 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2237 if (sc
.nr_reclaimed
>= nr_pages
)
2240 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2241 congestion_wait(BLK_RW_ASYNC
, HZ
/ 10);
2246 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2247 * something in slab caches
2249 if (!sc
.nr_reclaimed
) {
2251 reclaim_state
.reclaimed_slab
= 0;
2252 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2253 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2254 } while (sc
.nr_reclaimed
< nr_pages
&&
2255 reclaim_state
.reclaimed_slab
> 0);
2260 current
->reclaim_state
= NULL
;
2262 return sc
.nr_reclaimed
;
2264 #endif /* CONFIG_HIBERNATION */
2266 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2267 not required for correctness. So if the last cpu in a node goes
2268 away, we get changed to run anywhere: as the first one comes back,
2269 restore their cpu bindings. */
2270 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2271 unsigned long action
, void *hcpu
)
2275 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2276 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2277 pg_data_t
*pgdat
= NODE_DATA(nid
);
2278 const struct cpumask
*mask
;
2280 mask
= cpumask_of_node(pgdat
->node_id
);
2282 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2283 /* One of our CPUs online: restore mask */
2284 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2291 * This kswapd start function will be called by init and node-hot-add.
2292 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2294 int kswapd_run(int nid
)
2296 pg_data_t
*pgdat
= NODE_DATA(nid
);
2302 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2303 if (IS_ERR(pgdat
->kswapd
)) {
2304 /* failure at boot is fatal */
2305 BUG_ON(system_state
== SYSTEM_BOOTING
);
2306 printk("Failed to start kswapd on node %d\n",nid
);
2312 static int __init
kswapd_init(void)
2317 for_each_node_state(nid
, N_HIGH_MEMORY
)
2319 hotcpu_notifier(cpu_callback
, 0);
2323 module_init(kswapd_init
)
2329 * If non-zero call zone_reclaim when the number of free pages falls below
2332 int zone_reclaim_mode __read_mostly
;
2334 #define RECLAIM_OFF 0
2335 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2336 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2337 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2340 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2341 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2344 #define ZONE_RECLAIM_PRIORITY 4
2347 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2350 int sysctl_min_unmapped_ratio
= 1;
2353 * If the number of slab pages in a zone grows beyond this percentage then
2354 * slab reclaim needs to occur.
2356 int sysctl_min_slab_ratio
= 5;
2358 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2360 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2361 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2362 zone_page_state(zone
, NR_ACTIVE_FILE
);
2365 * It's possible for there to be more file mapped pages than
2366 * accounted for by the pages on the file LRU lists because
2367 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2369 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2372 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2373 static long zone_pagecache_reclaimable(struct zone
*zone
)
2375 long nr_pagecache_reclaimable
;
2379 * If RECLAIM_SWAP is set, then all file pages are considered
2380 * potentially reclaimable. Otherwise, we have to worry about
2381 * pages like swapcache and zone_unmapped_file_pages() provides
2384 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2385 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2387 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2389 /* If we can't clean pages, remove dirty pages from consideration */
2390 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2391 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2393 /* Watch for any possible underflows due to delta */
2394 if (unlikely(delta
> nr_pagecache_reclaimable
))
2395 delta
= nr_pagecache_reclaimable
;
2397 return nr_pagecache_reclaimable
- delta
;
2401 * Try to free up some pages from this zone through reclaim.
2403 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2405 /* Minimum pages needed in order to stay on node */
2406 const unsigned long nr_pages
= 1 << order
;
2407 struct task_struct
*p
= current
;
2408 struct reclaim_state reclaim_state
;
2410 struct scan_control sc
= {
2411 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2412 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2414 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2416 .gfp_mask
= gfp_mask
,
2417 .swappiness
= vm_swappiness
,
2419 .isolate_pages
= isolate_pages_global
,
2421 unsigned long slab_reclaimable
;
2423 disable_swap_token();
2426 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2427 * and we also need to be able to write out pages for RECLAIM_WRITE
2430 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2431 reclaim_state
.reclaimed_slab
= 0;
2432 p
->reclaim_state
= &reclaim_state
;
2434 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2436 * Free memory by calling shrink zone with increasing
2437 * priorities until we have enough memory freed.
2439 priority
= ZONE_RECLAIM_PRIORITY
;
2441 note_zone_scanning_priority(zone
, priority
);
2442 shrink_zone(priority
, zone
, &sc
);
2444 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2447 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2448 if (slab_reclaimable
> zone
->min_slab_pages
) {
2450 * shrink_slab() does not currently allow us to determine how
2451 * many pages were freed in this zone. So we take the current
2452 * number of slab pages and shake the slab until it is reduced
2453 * by the same nr_pages that we used for reclaiming unmapped
2456 * Note that shrink_slab will free memory on all zones and may
2459 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2460 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2461 slab_reclaimable
- nr_pages
)
2465 * Update nr_reclaimed by the number of slab pages we
2466 * reclaimed from this zone.
2468 sc
.nr_reclaimed
+= slab_reclaimable
-
2469 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2472 p
->reclaim_state
= NULL
;
2473 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2474 return sc
.nr_reclaimed
>= nr_pages
;
2477 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2483 * Zone reclaim reclaims unmapped file backed pages and
2484 * slab pages if we are over the defined limits.
2486 * A small portion of unmapped file backed pages is needed for
2487 * file I/O otherwise pages read by file I/O will be immediately
2488 * thrown out if the zone is overallocated. So we do not reclaim
2489 * if less than a specified percentage of the zone is used by
2490 * unmapped file backed pages.
2492 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2493 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2494 return ZONE_RECLAIM_FULL
;
2496 if (zone_is_all_unreclaimable(zone
))
2497 return ZONE_RECLAIM_FULL
;
2500 * Do not scan if the allocation should not be delayed.
2502 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2503 return ZONE_RECLAIM_NOSCAN
;
2506 * Only run zone reclaim on the local zone or on zones that do not
2507 * have associated processors. This will favor the local processor
2508 * over remote processors and spread off node memory allocations
2509 * as wide as possible.
2511 node_id
= zone_to_nid(zone
);
2512 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2513 return ZONE_RECLAIM_NOSCAN
;
2515 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2516 return ZONE_RECLAIM_NOSCAN
;
2518 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2519 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2522 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2529 * page_evictable - test whether a page is evictable
2530 * @page: the page to test
2531 * @vma: the VMA in which the page is or will be mapped, may be NULL
2533 * Test whether page is evictable--i.e., should be placed on active/inactive
2534 * lists vs unevictable list. The vma argument is !NULL when called from the
2535 * fault path to determine how to instantate a new page.
2537 * Reasons page might not be evictable:
2538 * (1) page's mapping marked unevictable
2539 * (2) page is part of an mlocked VMA
2542 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2545 if (mapping_unevictable(page_mapping(page
)))
2548 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2555 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2556 * @page: page to check evictability and move to appropriate lru list
2557 * @zone: zone page is in
2559 * Checks a page for evictability and moves the page to the appropriate
2562 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2563 * have PageUnevictable set.
2565 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2567 VM_BUG_ON(PageActive(page
));
2570 ClearPageUnevictable(page
);
2571 if (page_evictable(page
, NULL
)) {
2572 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2574 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2575 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2576 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2577 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2578 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2581 * rotate unevictable list
2583 SetPageUnevictable(page
);
2584 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2585 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2586 if (page_evictable(page
, NULL
))
2592 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2593 * @mapping: struct address_space to scan for evictable pages
2595 * Scan all pages in mapping. Check unevictable pages for
2596 * evictability and move them to the appropriate zone lru list.
2598 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2601 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2604 struct pagevec pvec
;
2606 if (mapping
->nrpages
== 0)
2609 pagevec_init(&pvec
, 0);
2610 while (next
< end
&&
2611 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2617 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2618 struct page
*page
= pvec
.pages
[i
];
2619 pgoff_t page_index
= page
->index
;
2620 struct zone
*pagezone
= page_zone(page
);
2623 if (page_index
> next
)
2627 if (pagezone
!= zone
) {
2629 spin_unlock_irq(&zone
->lru_lock
);
2631 spin_lock_irq(&zone
->lru_lock
);
2634 if (PageLRU(page
) && PageUnevictable(page
))
2635 check_move_unevictable_page(page
, zone
);
2638 spin_unlock_irq(&zone
->lru_lock
);
2639 pagevec_release(&pvec
);
2641 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2647 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2648 * @zone - zone of which to scan the unevictable list
2650 * Scan @zone's unevictable LRU lists to check for pages that have become
2651 * evictable. Move those that have to @zone's inactive list where they
2652 * become candidates for reclaim, unless shrink_inactive_zone() decides
2653 * to reactivate them. Pages that are still unevictable are rotated
2654 * back onto @zone's unevictable list.
2656 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2657 static void scan_zone_unevictable_pages(struct zone
*zone
)
2659 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2661 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2663 while (nr_to_scan
> 0) {
2664 unsigned long batch_size
= min(nr_to_scan
,
2665 SCAN_UNEVICTABLE_BATCH_SIZE
);
2667 spin_lock_irq(&zone
->lru_lock
);
2668 for (scan
= 0; scan
< batch_size
; scan
++) {
2669 struct page
*page
= lru_to_page(l_unevictable
);
2671 if (!trylock_page(page
))
2674 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2676 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2677 check_move_unevictable_page(page
, zone
);
2681 spin_unlock_irq(&zone
->lru_lock
);
2683 nr_to_scan
-= batch_size
;
2689 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2691 * A really big hammer: scan all zones' unevictable LRU lists to check for
2692 * pages that have become evictable. Move those back to the zones'
2693 * inactive list where they become candidates for reclaim.
2694 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2695 * and we add swap to the system. As such, it runs in the context of a task
2696 * that has possibly/probably made some previously unevictable pages
2699 static void scan_all_zones_unevictable_pages(void)
2703 for_each_zone(zone
) {
2704 scan_zone_unevictable_pages(zone
);
2709 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2710 * all nodes' unevictable lists for evictable pages
2712 unsigned long scan_unevictable_pages
;
2714 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2715 struct file
*file
, void __user
*buffer
,
2716 size_t *length
, loff_t
*ppos
)
2718 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2720 if (write
&& *(unsigned long *)table
->data
)
2721 scan_all_zones_unevictable_pages();
2723 scan_unevictable_pages
= 0;
2728 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2729 * a specified node's per zone unevictable lists for evictable pages.
2732 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2733 struct sysdev_attribute
*attr
,
2736 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2739 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2740 struct sysdev_attribute
*attr
,
2741 const char *buf
, size_t count
)
2743 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2746 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2749 return 1; /* zero is no-op */
2751 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2752 if (!populated_zone(zone
))
2754 scan_zone_unevictable_pages(zone
);
2760 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2761 read_scan_unevictable_node
,
2762 write_scan_unevictable_node
);
2764 int scan_unevictable_register_node(struct node
*node
)
2766 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2769 void scan_unevictable_unregister_node(struct node
*node
)
2771 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);