2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
34 #include <asm/scatterlist.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
53 * Enumeration for sync targets
55 enum dma_sync_target
{
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
67 static char *io_tlb_start
, *io_tlb_end
;
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 static unsigned long io_tlb_nslabs
;
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 static unsigned long io_tlb_overflow
= 32*1024;
80 void *io_tlb_overflow_buffer
;
83 * This is a free list describing the number of free entries available from
86 static unsigned int *io_tlb_list
;
87 static unsigned int io_tlb_index
;
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
93 static phys_addr_t
*io_tlb_orig_addr
;
96 * Protect the above data structures in the map and unmap calls
98 static DEFINE_SPINLOCK(io_tlb_lock
);
101 setup_io_tlb_npages(char *str
)
104 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
110 if (!strcmp(str
, "force"))
114 __setup("swiotlb=", setup_io_tlb_npages
);
115 /* make io_tlb_overflow tunable too? */
117 void * __weak __init
swiotlb_alloc_boot(size_t size
, unsigned long nslabs
)
119 return alloc_bootmem_low_pages(size
);
122 void * __weak
swiotlb_alloc(unsigned order
, unsigned long nslabs
)
124 return (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
, order
);
127 dma_addr_t __weak
swiotlb_phys_to_bus(struct device
*hwdev
, phys_addr_t paddr
)
132 phys_addr_t __weak
swiotlb_bus_to_phys(struct device
*hwdev
, dma_addr_t baddr
)
137 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
138 volatile void *address
)
140 return swiotlb_phys_to_bus(hwdev
, virt_to_phys(address
));
143 void * __weak
swiotlb_bus_to_virt(struct device
*hwdev
, dma_addr_t address
)
145 return phys_to_virt(swiotlb_bus_to_phys(hwdev
, address
));
148 int __weak
swiotlb_arch_address_needs_mapping(struct device
*hwdev
,
149 dma_addr_t addr
, size_t size
)
151 return !is_buffer_dma_capable(dma_get_mask(hwdev
), addr
, size
);
154 int __weak
swiotlb_arch_range_needs_mapping(phys_addr_t paddr
, size_t size
)
159 static void swiotlb_print_info(unsigned long bytes
)
161 phys_addr_t pstart
, pend
;
163 pstart
= virt_to_phys(io_tlb_start
);
164 pend
= virt_to_phys(io_tlb_end
);
166 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
167 bytes
>> 20, io_tlb_start
, io_tlb_end
);
168 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
169 (unsigned long long)pstart
,
170 (unsigned long long)pend
);
174 * Statically reserve bounce buffer space and initialize bounce buffer data
175 * structures for the software IO TLB used to implement the DMA API.
178 swiotlb_init_with_default_size(size_t default_size
)
180 unsigned long i
, bytes
;
182 if (!io_tlb_nslabs
) {
183 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
184 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
187 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
190 * Get IO TLB memory from the low pages
192 io_tlb_start
= swiotlb_alloc_boot(bytes
, io_tlb_nslabs
);
194 panic("Cannot allocate SWIOTLB buffer");
195 io_tlb_end
= io_tlb_start
+ bytes
;
198 * Allocate and initialize the free list array. This array is used
199 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
200 * between io_tlb_start and io_tlb_end.
202 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
203 for (i
= 0; i
< io_tlb_nslabs
; i
++)
204 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
206 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(phys_addr_t
));
209 * Get the overflow emergency buffer
211 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
212 if (!io_tlb_overflow_buffer
)
213 panic("Cannot allocate SWIOTLB overflow buffer!\n");
215 swiotlb_print_info(bytes
);
221 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
225 * Systems with larger DMA zones (those that don't support ISA) can
226 * initialize the swiotlb later using the slab allocator if needed.
227 * This should be just like above, but with some error catching.
230 swiotlb_late_init_with_default_size(size_t default_size
)
232 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
235 if (!io_tlb_nslabs
) {
236 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
237 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
241 * Get IO TLB memory from the low pages
243 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
244 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
245 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
247 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
248 io_tlb_start
= swiotlb_alloc(order
, io_tlb_nslabs
);
257 if (order
!= get_order(bytes
)) {
258 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
259 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
260 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
261 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
263 io_tlb_end
= io_tlb_start
+ bytes
;
264 memset(io_tlb_start
, 0, bytes
);
267 * Allocate and initialize the free list array. This array is used
268 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
269 * between io_tlb_start and io_tlb_end.
271 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
272 get_order(io_tlb_nslabs
* sizeof(int)));
276 for (i
= 0; i
< io_tlb_nslabs
; i
++)
277 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
280 io_tlb_orig_addr
= (phys_addr_t
*)
281 __get_free_pages(GFP_KERNEL
,
282 get_order(io_tlb_nslabs
*
283 sizeof(phys_addr_t
)));
284 if (!io_tlb_orig_addr
)
287 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
290 * Get the overflow emergency buffer
292 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
293 get_order(io_tlb_overflow
));
294 if (!io_tlb_overflow_buffer
)
297 swiotlb_print_info(bytes
);
302 free_pages((unsigned long)io_tlb_orig_addr
,
303 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
304 io_tlb_orig_addr
= NULL
;
306 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
311 free_pages((unsigned long)io_tlb_start
, order
);
314 io_tlb_nslabs
= req_nslabs
;
319 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
, size_t size
)
321 return swiotlb_arch_address_needs_mapping(hwdev
, addr
, size
);
324 static inline int range_needs_mapping(phys_addr_t paddr
, size_t size
)
326 return swiotlb_force
|| swiotlb_arch_range_needs_mapping(paddr
, size
);
329 static int is_swiotlb_buffer(char *addr
)
331 return addr
>= io_tlb_start
&& addr
< io_tlb_end
;
335 * Bounce: copy the swiotlb buffer back to the original dma location
337 static void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
338 enum dma_data_direction dir
)
340 unsigned long pfn
= PFN_DOWN(phys
);
342 if (PageHighMem(pfn_to_page(pfn
))) {
343 /* The buffer does not have a mapping. Map it in and copy */
344 unsigned int offset
= phys
& ~PAGE_MASK
;
350 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
352 local_irq_save(flags
);
353 buffer
= kmap_atomic(pfn_to_page(pfn
),
355 if (dir
== DMA_TO_DEVICE
)
356 memcpy(dma_addr
, buffer
+ offset
, sz
);
358 memcpy(buffer
+ offset
, dma_addr
, sz
);
359 kunmap_atomic(buffer
, KM_BOUNCE_READ
);
360 local_irq_restore(flags
);
368 if (dir
== DMA_TO_DEVICE
)
369 memcpy(dma_addr
, phys_to_virt(phys
), size
);
371 memcpy(phys_to_virt(phys
), dma_addr
, size
);
376 * Allocates bounce buffer and returns its kernel virtual address.
379 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
, int dir
)
383 unsigned int nslots
, stride
, index
, wrap
;
385 unsigned long start_dma_addr
;
387 unsigned long offset_slots
;
388 unsigned long max_slots
;
390 mask
= dma_get_seg_boundary(hwdev
);
391 start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
) & mask
;
393 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
396 * Carefully handle integer overflow which can occur when mask == ~0UL.
399 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
400 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
403 * For mappings greater than a page, we limit the stride (and
404 * hence alignment) to a page size.
406 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
407 if (size
> PAGE_SIZE
)
408 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
415 * Find suitable number of IO TLB entries size that will fit this
416 * request and allocate a buffer from that IO TLB pool.
418 spin_lock_irqsave(&io_tlb_lock
, flags
);
419 index
= ALIGN(io_tlb_index
, stride
);
420 if (index
>= io_tlb_nslabs
)
425 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
428 if (index
>= io_tlb_nslabs
)
435 * If we find a slot that indicates we have 'nslots' number of
436 * contiguous buffers, we allocate the buffers from that slot
437 * and mark the entries as '0' indicating unavailable.
439 if (io_tlb_list
[index
] >= nslots
) {
442 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
444 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
445 io_tlb_list
[i
] = ++count
;
446 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
449 * Update the indices to avoid searching in the next
452 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
453 ? (index
+ nslots
) : 0);
458 if (index
>= io_tlb_nslabs
)
460 } while (index
!= wrap
);
463 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
466 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
469 * Save away the mapping from the original address to the DMA address.
470 * This is needed when we sync the memory. Then we sync the buffer if
473 for (i
= 0; i
< nslots
; i
++)
474 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
475 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
476 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
482 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
485 do_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
488 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
489 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
490 phys_addr_t phys
= io_tlb_orig_addr
[index
];
493 * First, sync the memory before unmapping the entry
495 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
496 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
499 * Return the buffer to the free list by setting the corresponding
500 * entries to indicate the number of contigous entries available.
501 * While returning the entries to the free list, we merge the entries
502 * with slots below and above the pool being returned.
504 spin_lock_irqsave(&io_tlb_lock
, flags
);
506 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
507 io_tlb_list
[index
+ nslots
] : 0);
509 * Step 1: return the slots to the free list, merging the
510 * slots with superceeding slots
512 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
513 io_tlb_list
[i
] = ++count
;
515 * Step 2: merge the returned slots with the preceding slots,
516 * if available (non zero)
518 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
519 io_tlb_list
[i
] = ++count
;
521 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
525 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
528 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
529 phys_addr_t phys
= io_tlb_orig_addr
[index
];
531 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
535 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
536 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
538 BUG_ON(dir
!= DMA_TO_DEVICE
);
540 case SYNC_FOR_DEVICE
:
541 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
542 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
544 BUG_ON(dir
!= DMA_FROM_DEVICE
);
552 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
553 dma_addr_t
*dma_handle
, gfp_t flags
)
557 int order
= get_order(size
);
558 u64 dma_mask
= DMA_BIT_MASK(32);
560 if (hwdev
&& hwdev
->coherent_dma_mask
)
561 dma_mask
= hwdev
->coherent_dma_mask
;
563 ret
= (void *)__get_free_pages(flags
, order
);
565 !is_buffer_dma_capable(dma_mask
, swiotlb_virt_to_bus(hwdev
, ret
),
568 * The allocated memory isn't reachable by the device.
570 free_pages((unsigned long) ret
, order
);
575 * We are either out of memory or the device can't DMA
576 * to GFP_DMA memory; fall back on map_single(), which
577 * will grab memory from the lowest available address range.
579 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
584 memset(ret
, 0, size
);
585 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
587 /* Confirm address can be DMA'd by device */
588 if (!is_buffer_dma_capable(dma_mask
, dev_addr
, size
)) {
589 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
590 (unsigned long long)dma_mask
,
591 (unsigned long long)dev_addr
);
593 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
594 do_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
597 *dma_handle
= dev_addr
;
600 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
603 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
604 dma_addr_t dma_handle
)
606 WARN_ON(irqs_disabled());
607 if (!is_swiotlb_buffer(vaddr
))
608 free_pages((unsigned long) vaddr
, get_order(size
));
610 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
611 do_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
613 EXPORT_SYMBOL(swiotlb_free_coherent
);
616 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
619 * Ran out of IOMMU space for this operation. This is very bad.
620 * Unfortunately the drivers cannot handle this operation properly.
621 * unless they check for dma_mapping_error (most don't)
622 * When the mapping is small enough return a static buffer to limit
623 * the damage, or panic when the transfer is too big.
625 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
626 "device %s\n", size
, dev
? dev_name(dev
) : "?");
628 if (size
> io_tlb_overflow
&& do_panic
) {
629 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
630 panic("DMA: Memory would be corrupted\n");
631 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
632 panic("DMA: Random memory would be DMAed\n");
637 * Map a single buffer of the indicated size for DMA in streaming mode. The
638 * physical address to use is returned.
640 * Once the device is given the dma address, the device owns this memory until
641 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
643 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
644 unsigned long offset
, size_t size
,
645 enum dma_data_direction dir
,
646 struct dma_attrs
*attrs
)
648 phys_addr_t phys
= page_to_phys(page
) + offset
;
649 dma_addr_t dev_addr
= swiotlb_phys_to_bus(dev
, phys
);
652 BUG_ON(dir
== DMA_NONE
);
654 * If the address happens to be in the device's DMA window,
655 * we can safely return the device addr and not worry about bounce
658 if (!address_needs_mapping(dev
, dev_addr
, size
) &&
659 !range_needs_mapping(phys
, size
))
663 * Oh well, have to allocate and map a bounce buffer.
665 map
= map_single(dev
, phys
, size
, dir
);
667 swiotlb_full(dev
, size
, dir
, 1);
668 map
= io_tlb_overflow_buffer
;
671 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
674 * Ensure that the address returned is DMA'ble
676 if (address_needs_mapping(dev
, dev_addr
, size
))
677 panic("map_single: bounce buffer is not DMA'ble");
681 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
684 * Unmap a single streaming mode DMA translation. The dma_addr and size must
685 * match what was provided for in a previous swiotlb_map_page call. All
686 * other usages are undefined.
688 * After this call, reads by the cpu to the buffer are guaranteed to see
689 * whatever the device wrote there.
691 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
692 size_t size
, int dir
)
694 char *dma_addr
= swiotlb_bus_to_virt(hwdev
, dev_addr
);
696 BUG_ON(dir
== DMA_NONE
);
698 if (is_swiotlb_buffer(dma_addr
)) {
699 do_unmap_single(hwdev
, dma_addr
, size
, dir
);
703 if (dir
!= DMA_FROM_DEVICE
)
706 dma_mark_clean(dma_addr
, size
);
709 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
710 size_t size
, enum dma_data_direction dir
,
711 struct dma_attrs
*attrs
)
713 unmap_single(hwdev
, dev_addr
, size
, dir
);
715 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
718 * Make physical memory consistent for a single streaming mode DMA translation
721 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
722 * using the cpu, yet do not wish to teardown the dma mapping, you must
723 * call this function before doing so. At the next point you give the dma
724 * address back to the card, you must first perform a
725 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
728 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
729 size_t size
, int dir
, int target
)
731 char *dma_addr
= swiotlb_bus_to_virt(hwdev
, dev_addr
);
733 BUG_ON(dir
== DMA_NONE
);
735 if (is_swiotlb_buffer(dma_addr
)) {
736 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
740 if (dir
!= DMA_FROM_DEVICE
)
743 dma_mark_clean(dma_addr
, size
);
747 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
748 size_t size
, enum dma_data_direction dir
)
750 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
752 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
755 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
756 size_t size
, enum dma_data_direction dir
)
758 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
760 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
763 * Same as above, but for a sub-range of the mapping.
766 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
767 unsigned long offset
, size_t size
,
770 swiotlb_sync_single(hwdev
, dev_addr
+ offset
, size
, dir
, target
);
774 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
775 unsigned long offset
, size_t size
,
776 enum dma_data_direction dir
)
778 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
781 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
784 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
785 unsigned long offset
, size_t size
,
786 enum dma_data_direction dir
)
788 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
791 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
794 * Map a set of buffers described by scatterlist in streaming mode for DMA.
795 * This is the scatter-gather version of the above swiotlb_map_page
796 * interface. Here the scatter gather list elements are each tagged with the
797 * appropriate dma address and length. They are obtained via
798 * sg_dma_{address,length}(SG).
800 * NOTE: An implementation may be able to use a smaller number of
801 * DMA address/length pairs than there are SG table elements.
802 * (for example via virtual mapping capabilities)
803 * The routine returns the number of addr/length pairs actually
804 * used, at most nents.
806 * Device ownership issues as mentioned above for swiotlb_map_page are the
810 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
811 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
813 struct scatterlist
*sg
;
816 BUG_ON(dir
== DMA_NONE
);
818 for_each_sg(sgl
, sg
, nelems
, i
) {
819 phys_addr_t paddr
= sg_phys(sg
);
820 dma_addr_t dev_addr
= swiotlb_phys_to_bus(hwdev
, paddr
);
822 if (range_needs_mapping(paddr
, sg
->length
) ||
823 address_needs_mapping(hwdev
, dev_addr
, sg
->length
)) {
824 void *map
= map_single(hwdev
, sg_phys(sg
),
827 /* Don't panic here, we expect map_sg users
828 to do proper error handling. */
829 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
830 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
832 sgl
[0].dma_length
= 0;
835 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
837 sg
->dma_address
= dev_addr
;
838 sg
->dma_length
= sg
->length
;
842 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
845 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
848 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
850 EXPORT_SYMBOL(swiotlb_map_sg
);
853 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
854 * concerning calls here are the same as for swiotlb_unmap_page() above.
857 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
858 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
860 struct scatterlist
*sg
;
863 BUG_ON(dir
== DMA_NONE
);
865 for_each_sg(sgl
, sg
, nelems
, i
)
866 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
869 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
872 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
875 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
877 EXPORT_SYMBOL(swiotlb_unmap_sg
);
880 * Make physical memory consistent for a set of streaming mode DMA translations
883 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
887 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
888 int nelems
, int dir
, int target
)
890 struct scatterlist
*sg
;
893 for_each_sg(sgl
, sg
, nelems
, i
)
894 swiotlb_sync_single(hwdev
, sg
->dma_address
,
895 sg
->dma_length
, dir
, target
);
899 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
900 int nelems
, enum dma_data_direction dir
)
902 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
904 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
907 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
908 int nelems
, enum dma_data_direction dir
)
910 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
912 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
915 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
917 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
919 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
922 * Return whether the given device DMA address mask can be supported
923 * properly. For example, if your device can only drive the low 24-bits
924 * during bus mastering, then you would pass 0x00ffffff as the mask to
928 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
930 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
932 EXPORT_SYMBOL(swiotlb_dma_supported
);