e1000e: Use device_set_wakeup_enable
[linux-2.6/mini2440.git] / drivers / net / e1000e / netdev.c
blob2c8dffdc889f2a32f4212f6b2d603b667cd5f074
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
48 #include "e1000.h"
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_82574] = &e1000_82574_info,
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
62 [board_ich10lan] = &e1000_ich10_info,
65 #ifdef DEBUG
66 /**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
72 return hw->adapter->netdev->name;
74 #endif
76 /**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79 static int e1000_desc_unused(struct e1000_ring *ring)
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
87 /**
88 * e1000_receive_skb - helper function to handle Rx indications
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
97 u8 status, __le16 vlan)
99 skb->protocol = eth_type_trans(skb, netdev);
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
103 le16_to_cpu(vlan));
104 else
105 netif_receive_skb(skb);
107 netdev->last_rx = jiffies;
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
117 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
126 return;
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
131 return;
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 return;
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 } else {
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
146 * and then put the value in host order for further stack use.
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
150 skb->ip_summed = CHECKSUM_COMPLETE;
152 adapter->hw_csum_good++;
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 int cleaned_count)
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
167 struct sk_buff *skb;
168 unsigned int i;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
176 if (skb) {
177 skb_trim(skb, 0);
178 goto map_skb;
181 skb = netdev_alloc_skb(netdev, bufsz);
182 if (!skb) {
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
185 break;
189 * Make buffer alignment 2 beyond a 16 byte boundary
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
193 skb_reserve(skb, NET_IP_ALIGN);
195 buffer_info->skb = skb;
196 map_skb:
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
199 PCI_DMA_FROMDEVICE);
200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
203 break;
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
209 i++;
210 if (i == rx_ring->count)
211 i = 0;
212 buffer_info = &rx_ring->buffer_info[i];
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i-- == 0)
218 i = (rx_ring->count - 1);
221 * Force memory writes to complete before letting h/w
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
224 * such as IA-64).
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 int cleaned_count)
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
244 struct sk_buff *skb;
245 unsigned int i, j;
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258 continue;
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
262 if (!ps_page->page) {
263 adapter->alloc_rx_buff_failed++;
264 goto no_buffers;
266 ps_page->dma = pci_map_page(pdev,
267 ps_page->page,
268 0, PAGE_SIZE,
269 PCI_DMA_FROMDEVICE);
270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
274 goto no_buffers;
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
280 * erases this info.
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
289 if (!skb) {
290 adapter->alloc_rx_buff_failed++;
291 break;
295 * Make buffer alignment 2 beyond a 16 byte boundary
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
299 skb_reserve(skb, NET_IP_ALIGN);
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
304 PCI_DMA_FROMDEVICE);
305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
308 /* cleanup skb */
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
311 break;
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 buffer_info = &rx_ring->buffer_info[i];
322 no_buffers:
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
326 if (!(i--))
327 i = (rx_ring->count - 1);
330 * Force memory writes to complete before letting h/w
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
333 * such as IA-64).
335 wmb();
337 * Hardware increments by 16 bytes, but packet split
338 * descriptors are 32 bytes...so we increment tail
339 * twice as much.
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
348 * @rx_ring: pointer to receive ring structure
349 * @cleaned_count: number of buffers to allocate this pass
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 int cleaned_count)
355 struct net_device *netdev = adapter->netdev;
356 struct pci_dev *pdev = adapter->pdev;
357 struct e1000_rx_desc *rx_desc;
358 struct e1000_ring *rx_ring = adapter->rx_ring;
359 struct e1000_buffer *buffer_info;
360 struct sk_buff *skb;
361 unsigned int i;
362 unsigned int bufsz = 256 -
363 16 /* for skb_reserve */ -
364 NET_IP_ALIGN;
366 i = rx_ring->next_to_use;
367 buffer_info = &rx_ring->buffer_info[i];
369 while (cleaned_count--) {
370 skb = buffer_info->skb;
371 if (skb) {
372 skb_trim(skb, 0);
373 goto check_page;
376 skb = netdev_alloc_skb(netdev, bufsz);
377 if (unlikely(!skb)) {
378 /* Better luck next round */
379 adapter->alloc_rx_buff_failed++;
380 break;
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
387 skb_reserve(skb, NET_IP_ALIGN);
389 buffer_info->skb = skb;
390 check_page:
391 /* allocate a new page if necessary */
392 if (!buffer_info->page) {
393 buffer_info->page = alloc_page(GFP_ATOMIC);
394 if (unlikely(!buffer_info->page)) {
395 adapter->alloc_rx_buff_failed++;
396 break;
400 if (!buffer_info->dma)
401 buffer_info->dma = pci_map_page(pdev,
402 buffer_info->page, 0,
403 PAGE_SIZE,
404 PCI_DMA_FROMDEVICE);
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
409 if (unlikely(++i == rx_ring->count))
410 i = 0;
411 buffer_info = &rx_ring->buffer_info[i];
414 if (likely(rx_ring->next_to_use != i)) {
415 rx_ring->next_to_use = i;
416 if (unlikely(i-- == 0))
417 i = (rx_ring->count - 1);
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
422 * such as IA-64). */
423 wmb();
424 writel(i, adapter->hw.hw_addr + rx_ring->tail);
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
435 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
436 int *work_done, int work_to_do)
438 struct net_device *netdev = adapter->netdev;
439 struct pci_dev *pdev = adapter->pdev;
440 struct e1000_ring *rx_ring = adapter->rx_ring;
441 struct e1000_rx_desc *rx_desc, *next_rxd;
442 struct e1000_buffer *buffer_info, *next_buffer;
443 u32 length;
444 unsigned int i;
445 int cleaned_count = 0;
446 bool cleaned = 0;
447 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
449 i = rx_ring->next_to_clean;
450 rx_desc = E1000_RX_DESC(*rx_ring, i);
451 buffer_info = &rx_ring->buffer_info[i];
453 while (rx_desc->status & E1000_RXD_STAT_DD) {
454 struct sk_buff *skb;
455 u8 status;
457 if (*work_done >= work_to_do)
458 break;
459 (*work_done)++;
461 status = rx_desc->status;
462 skb = buffer_info->skb;
463 buffer_info->skb = NULL;
465 prefetch(skb->data - NET_IP_ALIGN);
467 i++;
468 if (i == rx_ring->count)
469 i = 0;
470 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 prefetch(next_rxd);
473 next_buffer = &rx_ring->buffer_info[i];
475 cleaned = 1;
476 cleaned_count++;
477 pci_unmap_single(pdev,
478 buffer_info->dma,
479 adapter->rx_buffer_len,
480 PCI_DMA_FROMDEVICE);
481 buffer_info->dma = 0;
483 length = le16_to_cpu(rx_desc->length);
485 /* !EOP means multiple descriptors were used to store a single
486 * packet, also make sure the frame isn't just CRC only */
487 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
488 /* All receives must fit into a single buffer */
489 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 netdev->name);
491 /* recycle */
492 buffer_info->skb = skb;
493 goto next_desc;
496 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
497 /* recycle */
498 buffer_info->skb = skb;
499 goto next_desc;
502 total_rx_bytes += length;
503 total_rx_packets++;
506 * code added for copybreak, this should improve
507 * performance for small packets with large amounts
508 * of reassembly being done in the stack
510 if (length < copybreak) {
511 struct sk_buff *new_skb =
512 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
513 if (new_skb) {
514 skb_reserve(new_skb, NET_IP_ALIGN);
515 skb_copy_to_linear_data_offset(new_skb,
516 -NET_IP_ALIGN,
517 (skb->data -
518 NET_IP_ALIGN),
519 (length +
520 NET_IP_ALIGN));
521 /* save the skb in buffer_info as good */
522 buffer_info->skb = skb;
523 skb = new_skb;
525 /* else just continue with the old one */
527 /* end copybreak code */
528 skb_put(skb, length);
530 /* Receive Checksum Offload */
531 e1000_rx_checksum(adapter,
532 (u32)(status) |
533 ((u32)(rx_desc->errors) << 24),
534 le16_to_cpu(rx_desc->csum), skb);
536 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
538 next_desc:
539 rx_desc->status = 0;
541 /* return some buffers to hardware, one at a time is too slow */
542 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
543 adapter->alloc_rx_buf(adapter, cleaned_count);
544 cleaned_count = 0;
547 /* use prefetched values */
548 rx_desc = next_rxd;
549 buffer_info = next_buffer;
551 rx_ring->next_to_clean = i;
553 cleaned_count = e1000_desc_unused(rx_ring);
554 if (cleaned_count)
555 adapter->alloc_rx_buf(adapter, cleaned_count);
557 adapter->total_rx_bytes += total_rx_bytes;
558 adapter->total_rx_packets += total_rx_packets;
559 adapter->net_stats.rx_bytes += total_rx_bytes;
560 adapter->net_stats.rx_packets += total_rx_packets;
561 return cleaned;
564 static void e1000_put_txbuf(struct e1000_adapter *adapter,
565 struct e1000_buffer *buffer_info)
567 if (buffer_info->dma) {
568 pci_unmap_page(adapter->pdev, buffer_info->dma,
569 buffer_info->length, PCI_DMA_TODEVICE);
570 buffer_info->dma = 0;
572 if (buffer_info->skb) {
573 dev_kfree_skb_any(buffer_info->skb);
574 buffer_info->skb = NULL;
578 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
580 struct e1000_ring *tx_ring = adapter->tx_ring;
581 unsigned int i = tx_ring->next_to_clean;
582 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
583 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
585 /* detected Tx unit hang */
586 e_err("Detected Tx Unit Hang:\n"
587 " TDH <%x>\n"
588 " TDT <%x>\n"
589 " next_to_use <%x>\n"
590 " next_to_clean <%x>\n"
591 "buffer_info[next_to_clean]:\n"
592 " time_stamp <%lx>\n"
593 " next_to_watch <%x>\n"
594 " jiffies <%lx>\n"
595 " next_to_watch.status <%x>\n",
596 readl(adapter->hw.hw_addr + tx_ring->head),
597 readl(adapter->hw.hw_addr + tx_ring->tail),
598 tx_ring->next_to_use,
599 tx_ring->next_to_clean,
600 tx_ring->buffer_info[eop].time_stamp,
601 eop,
602 jiffies,
603 eop_desc->upper.fields.status);
607 * e1000_clean_tx_irq - Reclaim resources after transmit completes
608 * @adapter: board private structure
610 * the return value indicates whether actual cleaning was done, there
611 * is no guarantee that everything was cleaned
613 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
615 struct net_device *netdev = adapter->netdev;
616 struct e1000_hw *hw = &adapter->hw;
617 struct e1000_ring *tx_ring = adapter->tx_ring;
618 struct e1000_tx_desc *tx_desc, *eop_desc;
619 struct e1000_buffer *buffer_info;
620 unsigned int i, eop;
621 unsigned int count = 0;
622 bool cleaned = 0;
623 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
625 i = tx_ring->next_to_clean;
626 eop = tx_ring->buffer_info[i].next_to_watch;
627 eop_desc = E1000_TX_DESC(*tx_ring, eop);
629 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
630 for (cleaned = 0; !cleaned; ) {
631 tx_desc = E1000_TX_DESC(*tx_ring, i);
632 buffer_info = &tx_ring->buffer_info[i];
633 cleaned = (i == eop);
635 if (cleaned) {
636 struct sk_buff *skb = buffer_info->skb;
637 unsigned int segs, bytecount;
638 segs = skb_shinfo(skb)->gso_segs ?: 1;
639 /* multiply data chunks by size of headers */
640 bytecount = ((segs - 1) * skb_headlen(skb)) +
641 skb->len;
642 total_tx_packets += segs;
643 total_tx_bytes += bytecount;
646 e1000_put_txbuf(adapter, buffer_info);
647 tx_desc->upper.data = 0;
649 i++;
650 if (i == tx_ring->count)
651 i = 0;
654 eop = tx_ring->buffer_info[i].next_to_watch;
655 eop_desc = E1000_TX_DESC(*tx_ring, eop);
656 #define E1000_TX_WEIGHT 64
657 /* weight of a sort for tx, to avoid endless transmit cleanup */
658 if (count++ == E1000_TX_WEIGHT)
659 break;
662 tx_ring->next_to_clean = i;
664 #define TX_WAKE_THRESHOLD 32
665 if (cleaned && netif_carrier_ok(netdev) &&
666 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
667 /* Make sure that anybody stopping the queue after this
668 * sees the new next_to_clean.
670 smp_mb();
672 if (netif_queue_stopped(netdev) &&
673 !(test_bit(__E1000_DOWN, &adapter->state))) {
674 netif_wake_queue(netdev);
675 ++adapter->restart_queue;
679 if (adapter->detect_tx_hung) {
681 * Detect a transmit hang in hardware, this serializes the
682 * check with the clearing of time_stamp and movement of i
684 adapter->detect_tx_hung = 0;
685 if (tx_ring->buffer_info[eop].dma &&
686 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
687 + (adapter->tx_timeout_factor * HZ))
688 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
689 e1000_print_tx_hang(adapter);
690 netif_stop_queue(netdev);
693 adapter->total_tx_bytes += total_tx_bytes;
694 adapter->total_tx_packets += total_tx_packets;
695 adapter->net_stats.tx_bytes += total_tx_bytes;
696 adapter->net_stats.tx_packets += total_tx_packets;
697 return cleaned;
701 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
702 * @adapter: board private structure
704 * the return value indicates whether actual cleaning was done, there
705 * is no guarantee that everything was cleaned
707 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
708 int *work_done, int work_to_do)
710 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
711 struct net_device *netdev = adapter->netdev;
712 struct pci_dev *pdev = adapter->pdev;
713 struct e1000_ring *rx_ring = adapter->rx_ring;
714 struct e1000_buffer *buffer_info, *next_buffer;
715 struct e1000_ps_page *ps_page;
716 struct sk_buff *skb;
717 unsigned int i, j;
718 u32 length, staterr;
719 int cleaned_count = 0;
720 bool cleaned = 0;
721 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
723 i = rx_ring->next_to_clean;
724 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
725 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
726 buffer_info = &rx_ring->buffer_info[i];
728 while (staterr & E1000_RXD_STAT_DD) {
729 if (*work_done >= work_to_do)
730 break;
731 (*work_done)++;
732 skb = buffer_info->skb;
734 /* in the packet split case this is header only */
735 prefetch(skb->data - NET_IP_ALIGN);
737 i++;
738 if (i == rx_ring->count)
739 i = 0;
740 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
741 prefetch(next_rxd);
743 next_buffer = &rx_ring->buffer_info[i];
745 cleaned = 1;
746 cleaned_count++;
747 pci_unmap_single(pdev, buffer_info->dma,
748 adapter->rx_ps_bsize0,
749 PCI_DMA_FROMDEVICE);
750 buffer_info->dma = 0;
752 if (!(staterr & E1000_RXD_STAT_EOP)) {
753 e_dbg("%s: Packet Split buffers didn't pick up the "
754 "full packet\n", netdev->name);
755 dev_kfree_skb_irq(skb);
756 goto next_desc;
759 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
760 dev_kfree_skb_irq(skb);
761 goto next_desc;
764 length = le16_to_cpu(rx_desc->wb.middle.length0);
766 if (!length) {
767 e_dbg("%s: Last part of the packet spanning multiple "
768 "descriptors\n", netdev->name);
769 dev_kfree_skb_irq(skb);
770 goto next_desc;
773 /* Good Receive */
774 skb_put(skb, length);
778 * this looks ugly, but it seems compiler issues make it
779 * more efficient than reusing j
781 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
784 * page alloc/put takes too long and effects small packet
785 * throughput, so unsplit small packets and save the alloc/put
786 * only valid in softirq (napi) context to call kmap_*
788 if (l1 && (l1 <= copybreak) &&
789 ((length + l1) <= adapter->rx_ps_bsize0)) {
790 u8 *vaddr;
792 ps_page = &buffer_info->ps_pages[0];
795 * there is no documentation about how to call
796 * kmap_atomic, so we can't hold the mapping
797 * very long
799 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
801 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
802 memcpy(skb_tail_pointer(skb), vaddr, l1);
803 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
804 pci_dma_sync_single_for_device(pdev, ps_page->dma,
805 PAGE_SIZE, PCI_DMA_FROMDEVICE);
807 skb_put(skb, l1);
808 goto copydone;
809 } /* if */
812 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
813 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
814 if (!length)
815 break;
817 ps_page = &buffer_info->ps_pages[j];
818 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
819 PCI_DMA_FROMDEVICE);
820 ps_page->dma = 0;
821 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
822 ps_page->page = NULL;
823 skb->len += length;
824 skb->data_len += length;
825 skb->truesize += length;
828 copydone:
829 total_rx_bytes += skb->len;
830 total_rx_packets++;
832 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
833 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
835 if (rx_desc->wb.upper.header_status &
836 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
837 adapter->rx_hdr_split++;
839 e1000_receive_skb(adapter, netdev, skb,
840 staterr, rx_desc->wb.middle.vlan);
842 next_desc:
843 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
844 buffer_info->skb = NULL;
846 /* return some buffers to hardware, one at a time is too slow */
847 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
848 adapter->alloc_rx_buf(adapter, cleaned_count);
849 cleaned_count = 0;
852 /* use prefetched values */
853 rx_desc = next_rxd;
854 buffer_info = next_buffer;
856 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
858 rx_ring->next_to_clean = i;
860 cleaned_count = e1000_desc_unused(rx_ring);
861 if (cleaned_count)
862 adapter->alloc_rx_buf(adapter, cleaned_count);
864 adapter->total_rx_bytes += total_rx_bytes;
865 adapter->total_rx_packets += total_rx_packets;
866 adapter->net_stats.rx_bytes += total_rx_bytes;
867 adapter->net_stats.rx_packets += total_rx_packets;
868 return cleaned;
872 * e1000_consume_page - helper function
874 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
875 u16 length)
877 bi->page = NULL;
878 skb->len += length;
879 skb->data_len += length;
880 skb->truesize += length;
884 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
885 * @adapter: board private structure
887 * the return value indicates whether actual cleaning was done, there
888 * is no guarantee that everything was cleaned
891 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
892 int *work_done, int work_to_do)
894 struct net_device *netdev = adapter->netdev;
895 struct pci_dev *pdev = adapter->pdev;
896 struct e1000_ring *rx_ring = adapter->rx_ring;
897 struct e1000_rx_desc *rx_desc, *next_rxd;
898 struct e1000_buffer *buffer_info, *next_buffer;
899 u32 length;
900 unsigned int i;
901 int cleaned_count = 0;
902 bool cleaned = false;
903 unsigned int total_rx_bytes=0, total_rx_packets=0;
905 i = rx_ring->next_to_clean;
906 rx_desc = E1000_RX_DESC(*rx_ring, i);
907 buffer_info = &rx_ring->buffer_info[i];
909 while (rx_desc->status & E1000_RXD_STAT_DD) {
910 struct sk_buff *skb;
911 u8 status;
913 if (*work_done >= work_to_do)
914 break;
915 (*work_done)++;
917 status = rx_desc->status;
918 skb = buffer_info->skb;
919 buffer_info->skb = NULL;
921 ++i;
922 if (i == rx_ring->count)
923 i = 0;
924 next_rxd = E1000_RX_DESC(*rx_ring, i);
925 prefetch(next_rxd);
927 next_buffer = &rx_ring->buffer_info[i];
929 cleaned = true;
930 cleaned_count++;
931 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
932 PCI_DMA_FROMDEVICE);
933 buffer_info->dma = 0;
935 length = le16_to_cpu(rx_desc->length);
937 /* errors is only valid for DD + EOP descriptors */
938 if (unlikely((status & E1000_RXD_STAT_EOP) &&
939 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
940 /* recycle both page and skb */
941 buffer_info->skb = skb;
942 /* an error means any chain goes out the window
943 * too */
944 if (rx_ring->rx_skb_top)
945 dev_kfree_skb(rx_ring->rx_skb_top);
946 rx_ring->rx_skb_top = NULL;
947 goto next_desc;
950 #define rxtop rx_ring->rx_skb_top
951 if (!(status & E1000_RXD_STAT_EOP)) {
952 /* this descriptor is only the beginning (or middle) */
953 if (!rxtop) {
954 /* this is the beginning of a chain */
955 rxtop = skb;
956 skb_fill_page_desc(rxtop, 0, buffer_info->page,
957 0, length);
958 } else {
959 /* this is the middle of a chain */
960 skb_fill_page_desc(rxtop,
961 skb_shinfo(rxtop)->nr_frags,
962 buffer_info->page, 0, length);
963 /* re-use the skb, only consumed the page */
964 buffer_info->skb = skb;
966 e1000_consume_page(buffer_info, rxtop, length);
967 goto next_desc;
968 } else {
969 if (rxtop) {
970 /* end of the chain */
971 skb_fill_page_desc(rxtop,
972 skb_shinfo(rxtop)->nr_frags,
973 buffer_info->page, 0, length);
974 /* re-use the current skb, we only consumed the
975 * page */
976 buffer_info->skb = skb;
977 skb = rxtop;
978 rxtop = NULL;
979 e1000_consume_page(buffer_info, skb, length);
980 } else {
981 /* no chain, got EOP, this buf is the packet
982 * copybreak to save the put_page/alloc_page */
983 if (length <= copybreak &&
984 skb_tailroom(skb) >= length) {
985 u8 *vaddr;
986 vaddr = kmap_atomic(buffer_info->page,
987 KM_SKB_DATA_SOFTIRQ);
988 memcpy(skb_tail_pointer(skb), vaddr,
989 length);
990 kunmap_atomic(vaddr,
991 KM_SKB_DATA_SOFTIRQ);
992 /* re-use the page, so don't erase
993 * buffer_info->page */
994 skb_put(skb, length);
995 } else {
996 skb_fill_page_desc(skb, 0,
997 buffer_info->page, 0,
998 length);
999 e1000_consume_page(buffer_info, skb,
1000 length);
1005 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1006 e1000_rx_checksum(adapter,
1007 (u32)(status) |
1008 ((u32)(rx_desc->errors) << 24),
1009 le16_to_cpu(rx_desc->csum), skb);
1011 /* probably a little skewed due to removing CRC */
1012 total_rx_bytes += skb->len;
1013 total_rx_packets++;
1015 /* eth type trans needs skb->data to point to something */
1016 if (!pskb_may_pull(skb, ETH_HLEN)) {
1017 e_err("pskb_may_pull failed.\n");
1018 dev_kfree_skb(skb);
1019 goto next_desc;
1022 e1000_receive_skb(adapter, netdev, skb, status,
1023 rx_desc->special);
1025 next_desc:
1026 rx_desc->status = 0;
1028 /* return some buffers to hardware, one at a time is too slow */
1029 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1030 adapter->alloc_rx_buf(adapter, cleaned_count);
1031 cleaned_count = 0;
1034 /* use prefetched values */
1035 rx_desc = next_rxd;
1036 buffer_info = next_buffer;
1038 rx_ring->next_to_clean = i;
1040 cleaned_count = e1000_desc_unused(rx_ring);
1041 if (cleaned_count)
1042 adapter->alloc_rx_buf(adapter, cleaned_count);
1044 adapter->total_rx_bytes += total_rx_bytes;
1045 adapter->total_rx_packets += total_rx_packets;
1046 adapter->net_stats.rx_bytes += total_rx_bytes;
1047 adapter->net_stats.rx_packets += total_rx_packets;
1048 return cleaned;
1052 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1053 * @adapter: board private structure
1055 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1057 struct e1000_ring *rx_ring = adapter->rx_ring;
1058 struct e1000_buffer *buffer_info;
1059 struct e1000_ps_page *ps_page;
1060 struct pci_dev *pdev = adapter->pdev;
1061 unsigned int i, j;
1063 /* Free all the Rx ring sk_buffs */
1064 for (i = 0; i < rx_ring->count; i++) {
1065 buffer_info = &rx_ring->buffer_info[i];
1066 if (buffer_info->dma) {
1067 if (adapter->clean_rx == e1000_clean_rx_irq)
1068 pci_unmap_single(pdev, buffer_info->dma,
1069 adapter->rx_buffer_len,
1070 PCI_DMA_FROMDEVICE);
1071 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1072 pci_unmap_page(pdev, buffer_info->dma,
1073 PAGE_SIZE,
1074 PCI_DMA_FROMDEVICE);
1075 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1076 pci_unmap_single(pdev, buffer_info->dma,
1077 adapter->rx_ps_bsize0,
1078 PCI_DMA_FROMDEVICE);
1079 buffer_info->dma = 0;
1082 if (buffer_info->page) {
1083 put_page(buffer_info->page);
1084 buffer_info->page = NULL;
1087 if (buffer_info->skb) {
1088 dev_kfree_skb(buffer_info->skb);
1089 buffer_info->skb = NULL;
1092 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1093 ps_page = &buffer_info->ps_pages[j];
1094 if (!ps_page->page)
1095 break;
1096 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1097 PCI_DMA_FROMDEVICE);
1098 ps_page->dma = 0;
1099 put_page(ps_page->page);
1100 ps_page->page = NULL;
1104 /* there also may be some cached data from a chained receive */
1105 if (rx_ring->rx_skb_top) {
1106 dev_kfree_skb(rx_ring->rx_skb_top);
1107 rx_ring->rx_skb_top = NULL;
1110 /* Zero out the descriptor ring */
1111 memset(rx_ring->desc, 0, rx_ring->size);
1113 rx_ring->next_to_clean = 0;
1114 rx_ring->next_to_use = 0;
1116 writel(0, adapter->hw.hw_addr + rx_ring->head);
1117 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1120 static void e1000e_downshift_workaround(struct work_struct *work)
1122 struct e1000_adapter *adapter = container_of(work,
1123 struct e1000_adapter, downshift_task);
1125 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1129 * e1000_intr_msi - Interrupt Handler
1130 * @irq: interrupt number
1131 * @data: pointer to a network interface device structure
1133 static irqreturn_t e1000_intr_msi(int irq, void *data)
1135 struct net_device *netdev = data;
1136 struct e1000_adapter *adapter = netdev_priv(netdev);
1137 struct e1000_hw *hw = &adapter->hw;
1138 u32 icr = er32(ICR);
1141 * read ICR disables interrupts using IAM
1144 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1145 hw->mac.get_link_status = 1;
1147 * ICH8 workaround-- Call gig speed drop workaround on cable
1148 * disconnect (LSC) before accessing any PHY registers
1150 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1151 (!(er32(STATUS) & E1000_STATUS_LU)))
1152 schedule_work(&adapter->downshift_task);
1155 * 80003ES2LAN workaround-- For packet buffer work-around on
1156 * link down event; disable receives here in the ISR and reset
1157 * adapter in watchdog
1159 if (netif_carrier_ok(netdev) &&
1160 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1161 /* disable receives */
1162 u32 rctl = er32(RCTL);
1163 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1164 adapter->flags |= FLAG_RX_RESTART_NOW;
1166 /* guard against interrupt when we're going down */
1167 if (!test_bit(__E1000_DOWN, &adapter->state))
1168 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1171 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1172 adapter->total_tx_bytes = 0;
1173 adapter->total_tx_packets = 0;
1174 adapter->total_rx_bytes = 0;
1175 adapter->total_rx_packets = 0;
1176 __netif_rx_schedule(netdev, &adapter->napi);
1179 return IRQ_HANDLED;
1183 * e1000_intr - Interrupt Handler
1184 * @irq: interrupt number
1185 * @data: pointer to a network interface device structure
1187 static irqreturn_t e1000_intr(int irq, void *data)
1189 struct net_device *netdev = data;
1190 struct e1000_adapter *adapter = netdev_priv(netdev);
1191 struct e1000_hw *hw = &adapter->hw;
1192 u32 rctl, icr = er32(ICR);
1194 if (!icr)
1195 return IRQ_NONE; /* Not our interrupt */
1198 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1199 * not set, then the adapter didn't send an interrupt
1201 if (!(icr & E1000_ICR_INT_ASSERTED))
1202 return IRQ_NONE;
1205 * Interrupt Auto-Mask...upon reading ICR,
1206 * interrupts are masked. No need for the
1207 * IMC write
1210 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1211 hw->mac.get_link_status = 1;
1213 * ICH8 workaround-- Call gig speed drop workaround on cable
1214 * disconnect (LSC) before accessing any PHY registers
1216 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1217 (!(er32(STATUS) & E1000_STATUS_LU)))
1218 schedule_work(&adapter->downshift_task);
1221 * 80003ES2LAN workaround--
1222 * For packet buffer work-around on link down event;
1223 * disable receives here in the ISR and
1224 * reset adapter in watchdog
1226 if (netif_carrier_ok(netdev) &&
1227 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1228 /* disable receives */
1229 rctl = er32(RCTL);
1230 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1231 adapter->flags |= FLAG_RX_RESTART_NOW;
1233 /* guard against interrupt when we're going down */
1234 if (!test_bit(__E1000_DOWN, &adapter->state))
1235 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1238 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1239 adapter->total_tx_bytes = 0;
1240 adapter->total_tx_packets = 0;
1241 adapter->total_rx_bytes = 0;
1242 adapter->total_rx_packets = 0;
1243 __netif_rx_schedule(netdev, &adapter->napi);
1246 return IRQ_HANDLED;
1249 static irqreturn_t e1000_msix_other(int irq, void *data)
1251 struct net_device *netdev = data;
1252 struct e1000_adapter *adapter = netdev_priv(netdev);
1253 struct e1000_hw *hw = &adapter->hw;
1254 u32 icr = er32(ICR);
1256 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1257 ew32(IMS, E1000_IMS_OTHER);
1258 return IRQ_NONE;
1261 if (icr & adapter->eiac_mask)
1262 ew32(ICS, (icr & adapter->eiac_mask));
1264 if (icr & E1000_ICR_OTHER) {
1265 if (!(icr & E1000_ICR_LSC))
1266 goto no_link_interrupt;
1267 hw->mac.get_link_status = 1;
1268 /* guard against interrupt when we're going down */
1269 if (!test_bit(__E1000_DOWN, &adapter->state))
1270 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1273 no_link_interrupt:
1274 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1276 return IRQ_HANDLED;
1280 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1282 struct net_device *netdev = data;
1283 struct e1000_adapter *adapter = netdev_priv(netdev);
1284 struct e1000_hw *hw = &adapter->hw;
1285 struct e1000_ring *tx_ring = adapter->tx_ring;
1288 adapter->total_tx_bytes = 0;
1289 adapter->total_tx_packets = 0;
1291 if (!e1000_clean_tx_irq(adapter))
1292 /* Ring was not completely cleaned, so fire another interrupt */
1293 ew32(ICS, tx_ring->ims_val);
1295 return IRQ_HANDLED;
1298 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1300 struct net_device *netdev = data;
1301 struct e1000_adapter *adapter = netdev_priv(netdev);
1303 /* Write the ITR value calculated at the end of the
1304 * previous interrupt.
1306 if (adapter->rx_ring->set_itr) {
1307 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1308 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1309 adapter->rx_ring->set_itr = 0;
1312 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1313 adapter->total_rx_bytes = 0;
1314 adapter->total_rx_packets = 0;
1315 __netif_rx_schedule(netdev, &adapter->napi);
1317 return IRQ_HANDLED;
1321 * e1000_configure_msix - Configure MSI-X hardware
1323 * e1000_configure_msix sets up the hardware to properly
1324 * generate MSI-X interrupts.
1326 static void e1000_configure_msix(struct e1000_adapter *adapter)
1328 struct e1000_hw *hw = &adapter->hw;
1329 struct e1000_ring *rx_ring = adapter->rx_ring;
1330 struct e1000_ring *tx_ring = adapter->tx_ring;
1331 int vector = 0;
1332 u32 ctrl_ext, ivar = 0;
1334 adapter->eiac_mask = 0;
1336 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1337 if (hw->mac.type == e1000_82574) {
1338 u32 rfctl = er32(RFCTL);
1339 rfctl |= E1000_RFCTL_ACK_DIS;
1340 ew32(RFCTL, rfctl);
1343 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1344 /* Configure Rx vector */
1345 rx_ring->ims_val = E1000_IMS_RXQ0;
1346 adapter->eiac_mask |= rx_ring->ims_val;
1347 if (rx_ring->itr_val)
1348 writel(1000000000 / (rx_ring->itr_val * 256),
1349 hw->hw_addr + rx_ring->itr_register);
1350 else
1351 writel(1, hw->hw_addr + rx_ring->itr_register);
1352 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1354 /* Configure Tx vector */
1355 tx_ring->ims_val = E1000_IMS_TXQ0;
1356 vector++;
1357 if (tx_ring->itr_val)
1358 writel(1000000000 / (tx_ring->itr_val * 256),
1359 hw->hw_addr + tx_ring->itr_register);
1360 else
1361 writel(1, hw->hw_addr + tx_ring->itr_register);
1362 adapter->eiac_mask |= tx_ring->ims_val;
1363 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1365 /* set vector for Other Causes, e.g. link changes */
1366 vector++;
1367 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1368 if (rx_ring->itr_val)
1369 writel(1000000000 / (rx_ring->itr_val * 256),
1370 hw->hw_addr + E1000_EITR_82574(vector));
1371 else
1372 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1374 /* Cause Tx interrupts on every write back */
1375 ivar |= (1 << 31);
1377 ew32(IVAR, ivar);
1379 /* enable MSI-X PBA support */
1380 ctrl_ext = er32(CTRL_EXT);
1381 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1383 /* Auto-Mask Other interrupts upon ICR read */
1384 #define E1000_EIAC_MASK_82574 0x01F00000
1385 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1386 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1387 ew32(CTRL_EXT, ctrl_ext);
1388 e1e_flush();
1391 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1393 if (adapter->msix_entries) {
1394 pci_disable_msix(adapter->pdev);
1395 kfree(adapter->msix_entries);
1396 adapter->msix_entries = NULL;
1397 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1398 pci_disable_msi(adapter->pdev);
1399 adapter->flags &= ~FLAG_MSI_ENABLED;
1402 return;
1406 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1408 * Attempt to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
1411 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1413 int err;
1414 int numvecs, i;
1417 switch (adapter->int_mode) {
1418 case E1000E_INT_MODE_MSIX:
1419 if (adapter->flags & FLAG_HAS_MSIX) {
1420 numvecs = 3; /* RxQ0, TxQ0 and other */
1421 adapter->msix_entries = kcalloc(numvecs,
1422 sizeof(struct msix_entry),
1423 GFP_KERNEL);
1424 if (adapter->msix_entries) {
1425 for (i = 0; i < numvecs; i++)
1426 adapter->msix_entries[i].entry = i;
1428 err = pci_enable_msix(adapter->pdev,
1429 adapter->msix_entries,
1430 numvecs);
1431 if (err == 0)
1432 return;
1434 /* MSI-X failed, so fall through and try MSI */
1435 e_err("Failed to initialize MSI-X interrupts. "
1436 "Falling back to MSI interrupts.\n");
1437 e1000e_reset_interrupt_capability(adapter);
1439 adapter->int_mode = E1000E_INT_MODE_MSI;
1440 /* Fall through */
1441 case E1000E_INT_MODE_MSI:
1442 if (!pci_enable_msi(adapter->pdev)) {
1443 adapter->flags |= FLAG_MSI_ENABLED;
1444 } else {
1445 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1446 e_err("Failed to initialize MSI interrupts. Falling "
1447 "back to legacy interrupts.\n");
1449 /* Fall through */
1450 case E1000E_INT_MODE_LEGACY:
1451 /* Don't do anything; this is the system default */
1452 break;
1455 return;
1459 * e1000_request_msix - Initialize MSI-X interrupts
1461 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1462 * kernel.
1464 static int e1000_request_msix(struct e1000_adapter *adapter)
1466 struct net_device *netdev = adapter->netdev;
1467 int err = 0, vector = 0;
1469 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1470 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1471 else
1472 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1473 err = request_irq(adapter->msix_entries[vector].vector,
1474 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1475 netdev);
1476 if (err)
1477 goto out;
1478 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1479 adapter->rx_ring->itr_val = adapter->itr;
1480 vector++;
1482 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1483 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1484 else
1485 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1486 err = request_irq(adapter->msix_entries[vector].vector,
1487 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1488 netdev);
1489 if (err)
1490 goto out;
1491 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1492 adapter->tx_ring->itr_val = adapter->itr;
1493 vector++;
1495 err = request_irq(adapter->msix_entries[vector].vector,
1496 &e1000_msix_other, 0, netdev->name, netdev);
1497 if (err)
1498 goto out;
1500 e1000_configure_msix(adapter);
1501 return 0;
1502 out:
1503 return err;
1507 * e1000_request_irq - initialize interrupts
1509 * Attempts to configure interrupts using the best available
1510 * capabilities of the hardware and kernel.
1512 static int e1000_request_irq(struct e1000_adapter *adapter)
1514 struct net_device *netdev = adapter->netdev;
1515 int err;
1517 if (adapter->msix_entries) {
1518 err = e1000_request_msix(adapter);
1519 if (!err)
1520 return err;
1521 /* fall back to MSI */
1522 e1000e_reset_interrupt_capability(adapter);
1523 adapter->int_mode = E1000E_INT_MODE_MSI;
1524 e1000e_set_interrupt_capability(adapter);
1526 if (adapter->flags & FLAG_MSI_ENABLED) {
1527 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1528 netdev->name, netdev);
1529 if (!err)
1530 return err;
1532 /* fall back to legacy interrupt */
1533 e1000e_reset_interrupt_capability(adapter);
1534 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1537 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1538 netdev->name, netdev);
1539 if (err)
1540 e_err("Unable to allocate interrupt, Error: %d\n", err);
1542 return err;
1545 static void e1000_free_irq(struct e1000_adapter *adapter)
1547 struct net_device *netdev = adapter->netdev;
1549 if (adapter->msix_entries) {
1550 int vector = 0;
1552 free_irq(adapter->msix_entries[vector].vector, netdev);
1553 vector++;
1555 free_irq(adapter->msix_entries[vector].vector, netdev);
1556 vector++;
1558 /* Other Causes interrupt vector */
1559 free_irq(adapter->msix_entries[vector].vector, netdev);
1560 return;
1563 free_irq(adapter->pdev->irq, netdev);
1567 * e1000_irq_disable - Mask off interrupt generation on the NIC
1569 static void e1000_irq_disable(struct e1000_adapter *adapter)
1571 struct e1000_hw *hw = &adapter->hw;
1573 ew32(IMC, ~0);
1574 if (adapter->msix_entries)
1575 ew32(EIAC_82574, 0);
1576 e1e_flush();
1577 synchronize_irq(adapter->pdev->irq);
1581 * e1000_irq_enable - Enable default interrupt generation settings
1583 static void e1000_irq_enable(struct e1000_adapter *adapter)
1585 struct e1000_hw *hw = &adapter->hw;
1587 if (adapter->msix_entries) {
1588 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1589 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1590 } else {
1591 ew32(IMS, IMS_ENABLE_MASK);
1593 e1e_flush();
1597 * e1000_get_hw_control - get control of the h/w from f/w
1598 * @adapter: address of board private structure
1600 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1601 * For ASF and Pass Through versions of f/w this means that
1602 * the driver is loaded. For AMT version (only with 82573)
1603 * of the f/w this means that the network i/f is open.
1605 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1607 struct e1000_hw *hw = &adapter->hw;
1608 u32 ctrl_ext;
1609 u32 swsm;
1611 /* Let firmware know the driver has taken over */
1612 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1613 swsm = er32(SWSM);
1614 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1615 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1616 ctrl_ext = er32(CTRL_EXT);
1617 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1622 * e1000_release_hw_control - release control of the h/w to f/w
1623 * @adapter: address of board private structure
1625 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1626 * For ASF and Pass Through versions of f/w this means that the
1627 * driver is no longer loaded. For AMT version (only with 82573) i
1628 * of the f/w this means that the network i/f is closed.
1631 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1633 struct e1000_hw *hw = &adapter->hw;
1634 u32 ctrl_ext;
1635 u32 swsm;
1637 /* Let firmware taken over control of h/w */
1638 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1639 swsm = er32(SWSM);
1640 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1641 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1642 ctrl_ext = er32(CTRL_EXT);
1643 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1648 * @e1000_alloc_ring - allocate memory for a ring structure
1650 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1651 struct e1000_ring *ring)
1653 struct pci_dev *pdev = adapter->pdev;
1655 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1656 GFP_KERNEL);
1657 if (!ring->desc)
1658 return -ENOMEM;
1660 return 0;
1664 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1665 * @adapter: board private structure
1667 * Return 0 on success, negative on failure
1669 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1671 struct e1000_ring *tx_ring = adapter->tx_ring;
1672 int err = -ENOMEM, size;
1674 size = sizeof(struct e1000_buffer) * tx_ring->count;
1675 tx_ring->buffer_info = vmalloc(size);
1676 if (!tx_ring->buffer_info)
1677 goto err;
1678 memset(tx_ring->buffer_info, 0, size);
1680 /* round up to nearest 4K */
1681 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1682 tx_ring->size = ALIGN(tx_ring->size, 4096);
1684 err = e1000_alloc_ring_dma(adapter, tx_ring);
1685 if (err)
1686 goto err;
1688 tx_ring->next_to_use = 0;
1689 tx_ring->next_to_clean = 0;
1690 spin_lock_init(&adapter->tx_queue_lock);
1692 return 0;
1693 err:
1694 vfree(tx_ring->buffer_info);
1695 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1696 return err;
1700 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1701 * @adapter: board private structure
1703 * Returns 0 on success, negative on failure
1705 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1707 struct e1000_ring *rx_ring = adapter->rx_ring;
1708 struct e1000_buffer *buffer_info;
1709 int i, size, desc_len, err = -ENOMEM;
1711 size = sizeof(struct e1000_buffer) * rx_ring->count;
1712 rx_ring->buffer_info = vmalloc(size);
1713 if (!rx_ring->buffer_info)
1714 goto err;
1715 memset(rx_ring->buffer_info, 0, size);
1717 for (i = 0; i < rx_ring->count; i++) {
1718 buffer_info = &rx_ring->buffer_info[i];
1719 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1720 sizeof(struct e1000_ps_page),
1721 GFP_KERNEL);
1722 if (!buffer_info->ps_pages)
1723 goto err_pages;
1726 desc_len = sizeof(union e1000_rx_desc_packet_split);
1728 /* Round up to nearest 4K */
1729 rx_ring->size = rx_ring->count * desc_len;
1730 rx_ring->size = ALIGN(rx_ring->size, 4096);
1732 err = e1000_alloc_ring_dma(adapter, rx_ring);
1733 if (err)
1734 goto err_pages;
1736 rx_ring->next_to_clean = 0;
1737 rx_ring->next_to_use = 0;
1738 rx_ring->rx_skb_top = NULL;
1740 return 0;
1742 err_pages:
1743 for (i = 0; i < rx_ring->count; i++) {
1744 buffer_info = &rx_ring->buffer_info[i];
1745 kfree(buffer_info->ps_pages);
1747 err:
1748 vfree(rx_ring->buffer_info);
1749 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1750 return err;
1754 * e1000_clean_tx_ring - Free Tx Buffers
1755 * @adapter: board private structure
1757 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1759 struct e1000_ring *tx_ring = adapter->tx_ring;
1760 struct e1000_buffer *buffer_info;
1761 unsigned long size;
1762 unsigned int i;
1764 for (i = 0; i < tx_ring->count; i++) {
1765 buffer_info = &tx_ring->buffer_info[i];
1766 e1000_put_txbuf(adapter, buffer_info);
1769 size = sizeof(struct e1000_buffer) * tx_ring->count;
1770 memset(tx_ring->buffer_info, 0, size);
1772 memset(tx_ring->desc, 0, tx_ring->size);
1774 tx_ring->next_to_use = 0;
1775 tx_ring->next_to_clean = 0;
1777 writel(0, adapter->hw.hw_addr + tx_ring->head);
1778 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1782 * e1000e_free_tx_resources - Free Tx Resources per Queue
1783 * @adapter: board private structure
1785 * Free all transmit software resources
1787 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1789 struct pci_dev *pdev = adapter->pdev;
1790 struct e1000_ring *tx_ring = adapter->tx_ring;
1792 e1000_clean_tx_ring(adapter);
1794 vfree(tx_ring->buffer_info);
1795 tx_ring->buffer_info = NULL;
1797 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1798 tx_ring->dma);
1799 tx_ring->desc = NULL;
1803 * e1000e_free_rx_resources - Free Rx Resources
1804 * @adapter: board private structure
1806 * Free all receive software resources
1809 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1811 struct pci_dev *pdev = adapter->pdev;
1812 struct e1000_ring *rx_ring = adapter->rx_ring;
1813 int i;
1815 e1000_clean_rx_ring(adapter);
1817 for (i = 0; i < rx_ring->count; i++) {
1818 kfree(rx_ring->buffer_info[i].ps_pages);
1821 vfree(rx_ring->buffer_info);
1822 rx_ring->buffer_info = NULL;
1824 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1825 rx_ring->dma);
1826 rx_ring->desc = NULL;
1830 * e1000_update_itr - update the dynamic ITR value based on statistics
1831 * @adapter: pointer to adapter
1832 * @itr_setting: current adapter->itr
1833 * @packets: the number of packets during this measurement interval
1834 * @bytes: the number of bytes during this measurement interval
1836 * Stores a new ITR value based on packets and byte
1837 * counts during the last interrupt. The advantage of per interrupt
1838 * computation is faster updates and more accurate ITR for the current
1839 * traffic pattern. Constants in this function were computed
1840 * based on theoretical maximum wire speed and thresholds were set based
1841 * on testing data as well as attempting to minimize response time
1842 * while increasing bulk throughput. This functionality is controlled
1843 * by the InterruptThrottleRate module parameter.
1845 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1846 u16 itr_setting, int packets,
1847 int bytes)
1849 unsigned int retval = itr_setting;
1851 if (packets == 0)
1852 goto update_itr_done;
1854 switch (itr_setting) {
1855 case lowest_latency:
1856 /* handle TSO and jumbo frames */
1857 if (bytes/packets > 8000)
1858 retval = bulk_latency;
1859 else if ((packets < 5) && (bytes > 512)) {
1860 retval = low_latency;
1862 break;
1863 case low_latency: /* 50 usec aka 20000 ints/s */
1864 if (bytes > 10000) {
1865 /* this if handles the TSO accounting */
1866 if (bytes/packets > 8000) {
1867 retval = bulk_latency;
1868 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1869 retval = bulk_latency;
1870 } else if ((packets > 35)) {
1871 retval = lowest_latency;
1873 } else if (bytes/packets > 2000) {
1874 retval = bulk_latency;
1875 } else if (packets <= 2 && bytes < 512) {
1876 retval = lowest_latency;
1878 break;
1879 case bulk_latency: /* 250 usec aka 4000 ints/s */
1880 if (bytes > 25000) {
1881 if (packets > 35) {
1882 retval = low_latency;
1884 } else if (bytes < 6000) {
1885 retval = low_latency;
1887 break;
1890 update_itr_done:
1891 return retval;
1894 static void e1000_set_itr(struct e1000_adapter *adapter)
1896 struct e1000_hw *hw = &adapter->hw;
1897 u16 current_itr;
1898 u32 new_itr = adapter->itr;
1900 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1901 if (adapter->link_speed != SPEED_1000) {
1902 current_itr = 0;
1903 new_itr = 4000;
1904 goto set_itr_now;
1907 adapter->tx_itr = e1000_update_itr(adapter,
1908 adapter->tx_itr,
1909 adapter->total_tx_packets,
1910 adapter->total_tx_bytes);
1911 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1912 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1913 adapter->tx_itr = low_latency;
1915 adapter->rx_itr = e1000_update_itr(adapter,
1916 adapter->rx_itr,
1917 adapter->total_rx_packets,
1918 adapter->total_rx_bytes);
1919 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1920 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1921 adapter->rx_itr = low_latency;
1923 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1925 switch (current_itr) {
1926 /* counts and packets in update_itr are dependent on these numbers */
1927 case lowest_latency:
1928 new_itr = 70000;
1929 break;
1930 case low_latency:
1931 new_itr = 20000; /* aka hwitr = ~200 */
1932 break;
1933 case bulk_latency:
1934 new_itr = 4000;
1935 break;
1936 default:
1937 break;
1940 set_itr_now:
1941 if (new_itr != adapter->itr) {
1943 * this attempts to bias the interrupt rate towards Bulk
1944 * by adding intermediate steps when interrupt rate is
1945 * increasing
1947 new_itr = new_itr > adapter->itr ?
1948 min(adapter->itr + (new_itr >> 2), new_itr) :
1949 new_itr;
1950 adapter->itr = new_itr;
1951 adapter->rx_ring->itr_val = new_itr;
1952 if (adapter->msix_entries)
1953 adapter->rx_ring->set_itr = 1;
1954 else
1955 ew32(ITR, 1000000000 / (new_itr * 256));
1960 * e1000_alloc_queues - Allocate memory for all rings
1961 * @adapter: board private structure to initialize
1963 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1965 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1966 if (!adapter->tx_ring)
1967 goto err;
1969 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1970 if (!adapter->rx_ring)
1971 goto err;
1973 return 0;
1974 err:
1975 e_err("Unable to allocate memory for queues\n");
1976 kfree(adapter->rx_ring);
1977 kfree(adapter->tx_ring);
1978 return -ENOMEM;
1982 * e1000_clean - NAPI Rx polling callback
1983 * @napi: struct associated with this polling callback
1984 * @budget: amount of packets driver is allowed to process this poll
1986 static int e1000_clean(struct napi_struct *napi, int budget)
1988 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1989 struct e1000_hw *hw = &adapter->hw;
1990 struct net_device *poll_dev = adapter->netdev;
1991 int tx_cleaned = 0, work_done = 0;
1993 /* Must NOT use netdev_priv macro here. */
1994 adapter = poll_dev->priv;
1996 if (adapter->msix_entries &&
1997 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1998 goto clean_rx;
2001 * e1000_clean is called per-cpu. This lock protects
2002 * tx_ring from being cleaned by multiple cpus
2003 * simultaneously. A failure obtaining the lock means
2004 * tx_ring is currently being cleaned anyway.
2006 if (spin_trylock(&adapter->tx_queue_lock)) {
2007 tx_cleaned = e1000_clean_tx_irq(adapter);
2008 spin_unlock(&adapter->tx_queue_lock);
2011 clean_rx:
2012 adapter->clean_rx(adapter, &work_done, budget);
2014 if (tx_cleaned)
2015 work_done = budget;
2017 /* If budget not fully consumed, exit the polling mode */
2018 if (work_done < budget) {
2019 if (adapter->itr_setting & 3)
2020 e1000_set_itr(adapter);
2021 netif_rx_complete(poll_dev, napi);
2022 if (adapter->msix_entries)
2023 ew32(IMS, adapter->rx_ring->ims_val);
2024 else
2025 e1000_irq_enable(adapter);
2028 return work_done;
2031 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2033 struct e1000_adapter *adapter = netdev_priv(netdev);
2034 struct e1000_hw *hw = &adapter->hw;
2035 u32 vfta, index;
2037 /* don't update vlan cookie if already programmed */
2038 if ((adapter->hw.mng_cookie.status &
2039 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2040 (vid == adapter->mng_vlan_id))
2041 return;
2042 /* add VID to filter table */
2043 index = (vid >> 5) & 0x7F;
2044 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2045 vfta |= (1 << (vid & 0x1F));
2046 e1000e_write_vfta(hw, index, vfta);
2049 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 vfta, index;
2055 if (!test_bit(__E1000_DOWN, &adapter->state))
2056 e1000_irq_disable(adapter);
2057 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2059 if (!test_bit(__E1000_DOWN, &adapter->state))
2060 e1000_irq_enable(adapter);
2062 if ((adapter->hw.mng_cookie.status &
2063 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2064 (vid == adapter->mng_vlan_id)) {
2065 /* release control to f/w */
2066 e1000_release_hw_control(adapter);
2067 return;
2070 /* remove VID from filter table */
2071 index = (vid >> 5) & 0x7F;
2072 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2073 vfta &= ~(1 << (vid & 0x1F));
2074 e1000e_write_vfta(hw, index, vfta);
2077 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2079 struct net_device *netdev = adapter->netdev;
2080 u16 vid = adapter->hw.mng_cookie.vlan_id;
2081 u16 old_vid = adapter->mng_vlan_id;
2083 if (!adapter->vlgrp)
2084 return;
2086 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2087 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2088 if (adapter->hw.mng_cookie.status &
2089 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2090 e1000_vlan_rx_add_vid(netdev, vid);
2091 adapter->mng_vlan_id = vid;
2094 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2095 (vid != old_vid) &&
2096 !vlan_group_get_device(adapter->vlgrp, old_vid))
2097 e1000_vlan_rx_kill_vid(netdev, old_vid);
2098 } else {
2099 adapter->mng_vlan_id = vid;
2104 static void e1000_vlan_rx_register(struct net_device *netdev,
2105 struct vlan_group *grp)
2107 struct e1000_adapter *adapter = netdev_priv(netdev);
2108 struct e1000_hw *hw = &adapter->hw;
2109 u32 ctrl, rctl;
2111 if (!test_bit(__E1000_DOWN, &adapter->state))
2112 e1000_irq_disable(adapter);
2113 adapter->vlgrp = grp;
2115 if (grp) {
2116 /* enable VLAN tag insert/strip */
2117 ctrl = er32(CTRL);
2118 ctrl |= E1000_CTRL_VME;
2119 ew32(CTRL, ctrl);
2121 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2122 /* enable VLAN receive filtering */
2123 rctl = er32(RCTL);
2124 rctl &= ~E1000_RCTL_CFIEN;
2125 ew32(RCTL, rctl);
2126 e1000_update_mng_vlan(adapter);
2128 } else {
2129 /* disable VLAN tag insert/strip */
2130 ctrl = er32(CTRL);
2131 ctrl &= ~E1000_CTRL_VME;
2132 ew32(CTRL, ctrl);
2134 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2135 if (adapter->mng_vlan_id !=
2136 (u16)E1000_MNG_VLAN_NONE) {
2137 e1000_vlan_rx_kill_vid(netdev,
2138 adapter->mng_vlan_id);
2139 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2144 if (!test_bit(__E1000_DOWN, &adapter->state))
2145 e1000_irq_enable(adapter);
2148 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2150 u16 vid;
2152 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2154 if (!adapter->vlgrp)
2155 return;
2157 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2158 if (!vlan_group_get_device(adapter->vlgrp, vid))
2159 continue;
2160 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2164 static void e1000_init_manageability(struct e1000_adapter *adapter)
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 manc, manc2h;
2169 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2170 return;
2172 manc = er32(MANC);
2175 * enable receiving management packets to the host. this will probably
2176 * generate destination unreachable messages from the host OS, but
2177 * the packets will be handled on SMBUS
2179 manc |= E1000_MANC_EN_MNG2HOST;
2180 manc2h = er32(MANC2H);
2181 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2182 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2183 manc2h |= E1000_MNG2HOST_PORT_623;
2184 manc2h |= E1000_MNG2HOST_PORT_664;
2185 ew32(MANC2H, manc2h);
2186 ew32(MANC, manc);
2190 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2191 * @adapter: board private structure
2193 * Configure the Tx unit of the MAC after a reset.
2195 static void e1000_configure_tx(struct e1000_adapter *adapter)
2197 struct e1000_hw *hw = &adapter->hw;
2198 struct e1000_ring *tx_ring = adapter->tx_ring;
2199 u64 tdba;
2200 u32 tdlen, tctl, tipg, tarc;
2201 u32 ipgr1, ipgr2;
2203 /* Setup the HW Tx Head and Tail descriptor pointers */
2204 tdba = tx_ring->dma;
2205 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2206 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2207 ew32(TDBAH, (tdba >> 32));
2208 ew32(TDLEN, tdlen);
2209 ew32(TDH, 0);
2210 ew32(TDT, 0);
2211 tx_ring->head = E1000_TDH;
2212 tx_ring->tail = E1000_TDT;
2214 /* Set the default values for the Tx Inter Packet Gap timer */
2215 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2216 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2217 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2219 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2220 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2222 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2223 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2224 ew32(TIPG, tipg);
2226 /* Set the Tx Interrupt Delay register */
2227 ew32(TIDV, adapter->tx_int_delay);
2228 /* Tx irq moderation */
2229 ew32(TADV, adapter->tx_abs_int_delay);
2231 /* Program the Transmit Control Register */
2232 tctl = er32(TCTL);
2233 tctl &= ~E1000_TCTL_CT;
2234 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2235 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2237 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2238 tarc = er32(TARC(0));
2240 * set the speed mode bit, we'll clear it if we're not at
2241 * gigabit link later
2243 #define SPEED_MODE_BIT (1 << 21)
2244 tarc |= SPEED_MODE_BIT;
2245 ew32(TARC(0), tarc);
2248 /* errata: program both queues to unweighted RR */
2249 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2250 tarc = er32(TARC(0));
2251 tarc |= 1;
2252 ew32(TARC(0), tarc);
2253 tarc = er32(TARC(1));
2254 tarc |= 1;
2255 ew32(TARC(1), tarc);
2258 e1000e_config_collision_dist(hw);
2260 /* Setup Transmit Descriptor Settings for eop descriptor */
2261 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2263 /* only set IDE if we are delaying interrupts using the timers */
2264 if (adapter->tx_int_delay)
2265 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2267 /* enable Report Status bit */
2268 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2270 ew32(TCTL, tctl);
2272 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2276 * e1000_setup_rctl - configure the receive control registers
2277 * @adapter: Board private structure
2279 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2280 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2281 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2283 struct e1000_hw *hw = &adapter->hw;
2284 u32 rctl, rfctl;
2285 u32 psrctl = 0;
2286 u32 pages = 0;
2288 /* Program MC offset vector base */
2289 rctl = er32(RCTL);
2290 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2291 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2292 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2293 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2295 /* Do not Store bad packets */
2296 rctl &= ~E1000_RCTL_SBP;
2298 /* Enable Long Packet receive */
2299 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2300 rctl &= ~E1000_RCTL_LPE;
2301 else
2302 rctl |= E1000_RCTL_LPE;
2304 /* Enable hardware CRC frame stripping */
2305 rctl |= E1000_RCTL_SECRC;
2307 /* Setup buffer sizes */
2308 rctl &= ~E1000_RCTL_SZ_4096;
2309 rctl |= E1000_RCTL_BSEX;
2310 switch (adapter->rx_buffer_len) {
2311 case 256:
2312 rctl |= E1000_RCTL_SZ_256;
2313 rctl &= ~E1000_RCTL_BSEX;
2314 break;
2315 case 512:
2316 rctl |= E1000_RCTL_SZ_512;
2317 rctl &= ~E1000_RCTL_BSEX;
2318 break;
2319 case 1024:
2320 rctl |= E1000_RCTL_SZ_1024;
2321 rctl &= ~E1000_RCTL_BSEX;
2322 break;
2323 case 2048:
2324 default:
2325 rctl |= E1000_RCTL_SZ_2048;
2326 rctl &= ~E1000_RCTL_BSEX;
2327 break;
2328 case 4096:
2329 rctl |= E1000_RCTL_SZ_4096;
2330 break;
2331 case 8192:
2332 rctl |= E1000_RCTL_SZ_8192;
2333 break;
2334 case 16384:
2335 rctl |= E1000_RCTL_SZ_16384;
2336 break;
2340 * 82571 and greater support packet-split where the protocol
2341 * header is placed in skb->data and the packet data is
2342 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2343 * In the case of a non-split, skb->data is linearly filled,
2344 * followed by the page buffers. Therefore, skb->data is
2345 * sized to hold the largest protocol header.
2347 * allocations using alloc_page take too long for regular MTU
2348 * so only enable packet split for jumbo frames
2350 * Using pages when the page size is greater than 16k wastes
2351 * a lot of memory, since we allocate 3 pages at all times
2352 * per packet.
2354 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2355 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2356 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2357 adapter->rx_ps_pages = pages;
2358 else
2359 adapter->rx_ps_pages = 0;
2361 if (adapter->rx_ps_pages) {
2362 /* Configure extra packet-split registers */
2363 rfctl = er32(RFCTL);
2364 rfctl |= E1000_RFCTL_EXTEN;
2366 * disable packet split support for IPv6 extension headers,
2367 * because some malformed IPv6 headers can hang the Rx
2369 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2370 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2372 ew32(RFCTL, rfctl);
2374 /* Enable Packet split descriptors */
2375 rctl |= E1000_RCTL_DTYP_PS;
2377 psrctl |= adapter->rx_ps_bsize0 >>
2378 E1000_PSRCTL_BSIZE0_SHIFT;
2380 switch (adapter->rx_ps_pages) {
2381 case 3:
2382 psrctl |= PAGE_SIZE <<
2383 E1000_PSRCTL_BSIZE3_SHIFT;
2384 case 2:
2385 psrctl |= PAGE_SIZE <<
2386 E1000_PSRCTL_BSIZE2_SHIFT;
2387 case 1:
2388 psrctl |= PAGE_SIZE >>
2389 E1000_PSRCTL_BSIZE1_SHIFT;
2390 break;
2393 ew32(PSRCTL, psrctl);
2396 ew32(RCTL, rctl);
2397 /* just started the receive unit, no need to restart */
2398 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2402 * e1000_configure_rx - Configure Receive Unit after Reset
2403 * @adapter: board private structure
2405 * Configure the Rx unit of the MAC after a reset.
2407 static void e1000_configure_rx(struct e1000_adapter *adapter)
2409 struct e1000_hw *hw = &adapter->hw;
2410 struct e1000_ring *rx_ring = adapter->rx_ring;
2411 u64 rdba;
2412 u32 rdlen, rctl, rxcsum, ctrl_ext;
2414 if (adapter->rx_ps_pages) {
2415 /* this is a 32 byte descriptor */
2416 rdlen = rx_ring->count *
2417 sizeof(union e1000_rx_desc_packet_split);
2418 adapter->clean_rx = e1000_clean_rx_irq_ps;
2419 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2420 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2421 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2422 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2423 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2424 } else {
2425 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2426 adapter->clean_rx = e1000_clean_rx_irq;
2427 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2430 /* disable receives while setting up the descriptors */
2431 rctl = er32(RCTL);
2432 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2433 e1e_flush();
2434 msleep(10);
2436 /* set the Receive Delay Timer Register */
2437 ew32(RDTR, adapter->rx_int_delay);
2439 /* irq moderation */
2440 ew32(RADV, adapter->rx_abs_int_delay);
2441 if (adapter->itr_setting != 0)
2442 ew32(ITR, 1000000000 / (adapter->itr * 256));
2444 ctrl_ext = er32(CTRL_EXT);
2445 /* Reset delay timers after every interrupt */
2446 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2447 /* Auto-Mask interrupts upon ICR access */
2448 ctrl_ext |= E1000_CTRL_EXT_IAME;
2449 ew32(IAM, 0xffffffff);
2450 ew32(CTRL_EXT, ctrl_ext);
2451 e1e_flush();
2454 * Setup the HW Rx Head and Tail Descriptor Pointers and
2455 * the Base and Length of the Rx Descriptor Ring
2457 rdba = rx_ring->dma;
2458 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2459 ew32(RDBAH, (rdba >> 32));
2460 ew32(RDLEN, rdlen);
2461 ew32(RDH, 0);
2462 ew32(RDT, 0);
2463 rx_ring->head = E1000_RDH;
2464 rx_ring->tail = E1000_RDT;
2466 /* Enable Receive Checksum Offload for TCP and UDP */
2467 rxcsum = er32(RXCSUM);
2468 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2469 rxcsum |= E1000_RXCSUM_TUOFL;
2472 * IPv4 payload checksum for UDP fragments must be
2473 * used in conjunction with packet-split.
2475 if (adapter->rx_ps_pages)
2476 rxcsum |= E1000_RXCSUM_IPPCSE;
2477 } else {
2478 rxcsum &= ~E1000_RXCSUM_TUOFL;
2479 /* no need to clear IPPCSE as it defaults to 0 */
2481 ew32(RXCSUM, rxcsum);
2484 * Enable early receives on supported devices, only takes effect when
2485 * packet size is equal or larger than the specified value (in 8 byte
2486 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2488 if ((adapter->flags & FLAG_HAS_ERT) &&
2489 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2490 u32 rxdctl = er32(RXDCTL(0));
2491 ew32(RXDCTL(0), rxdctl | 0x3);
2492 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2494 * With jumbo frames and early-receive enabled, excessive
2495 * C4->C2 latencies result in dropped transactions.
2497 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2498 e1000e_driver_name, 55);
2499 } else {
2500 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2501 e1000e_driver_name,
2502 PM_QOS_DEFAULT_VALUE);
2505 /* Enable Receives */
2506 ew32(RCTL, rctl);
2510 * e1000_update_mc_addr_list - Update Multicast addresses
2511 * @hw: pointer to the HW structure
2512 * @mc_addr_list: array of multicast addresses to program
2513 * @mc_addr_count: number of multicast addresses to program
2514 * @rar_used_count: the first RAR register free to program
2515 * @rar_count: total number of supported Receive Address Registers
2517 * Updates the Receive Address Registers and Multicast Table Array.
2518 * The caller must have a packed mc_addr_list of multicast addresses.
2519 * The parameter rar_count will usually be hw->mac.rar_entry_count
2520 * unless there are workarounds that change this. Currently no func pointer
2521 * exists and all implementations are handled in the generic version of this
2522 * function.
2524 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2525 u32 mc_addr_count, u32 rar_used_count,
2526 u32 rar_count)
2528 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2529 rar_used_count, rar_count);
2533 * e1000_set_multi - Multicast and Promiscuous mode set
2534 * @netdev: network interface device structure
2536 * The set_multi entry point is called whenever the multicast address
2537 * list or the network interface flags are updated. This routine is
2538 * responsible for configuring the hardware for proper multicast,
2539 * promiscuous mode, and all-multi behavior.
2541 static void e1000_set_multi(struct net_device *netdev)
2543 struct e1000_adapter *adapter = netdev_priv(netdev);
2544 struct e1000_hw *hw = &adapter->hw;
2545 struct e1000_mac_info *mac = &hw->mac;
2546 struct dev_mc_list *mc_ptr;
2547 u8 *mta_list;
2548 u32 rctl;
2549 int i;
2551 /* Check for Promiscuous and All Multicast modes */
2553 rctl = er32(RCTL);
2555 if (netdev->flags & IFF_PROMISC) {
2556 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2557 rctl &= ~E1000_RCTL_VFE;
2558 } else {
2559 if (netdev->flags & IFF_ALLMULTI) {
2560 rctl |= E1000_RCTL_MPE;
2561 rctl &= ~E1000_RCTL_UPE;
2562 } else {
2563 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2565 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2566 rctl |= E1000_RCTL_VFE;
2569 ew32(RCTL, rctl);
2571 if (netdev->mc_count) {
2572 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2573 if (!mta_list)
2574 return;
2576 /* prepare a packed array of only addresses. */
2577 mc_ptr = netdev->mc_list;
2579 for (i = 0; i < netdev->mc_count; i++) {
2580 if (!mc_ptr)
2581 break;
2582 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2583 ETH_ALEN);
2584 mc_ptr = mc_ptr->next;
2587 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2588 mac->rar_entry_count);
2589 kfree(mta_list);
2590 } else {
2592 * if we're called from probe, we might not have
2593 * anything to do here, so clear out the list
2595 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2600 * e1000_configure - configure the hardware for Rx and Tx
2601 * @adapter: private board structure
2603 static void e1000_configure(struct e1000_adapter *adapter)
2605 e1000_set_multi(adapter->netdev);
2607 e1000_restore_vlan(adapter);
2608 e1000_init_manageability(adapter);
2610 e1000_configure_tx(adapter);
2611 e1000_setup_rctl(adapter);
2612 e1000_configure_rx(adapter);
2613 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2617 * e1000e_power_up_phy - restore link in case the phy was powered down
2618 * @adapter: address of board private structure
2620 * The phy may be powered down to save power and turn off link when the
2621 * driver is unloaded and wake on lan is not enabled (among others)
2622 * *** this routine MUST be followed by a call to e1000e_reset ***
2624 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2626 u16 mii_reg = 0;
2628 /* Just clear the power down bit to wake the phy back up */
2629 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2631 * According to the manual, the phy will retain its
2632 * settings across a power-down/up cycle
2634 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2635 mii_reg &= ~MII_CR_POWER_DOWN;
2636 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2639 adapter->hw.mac.ops.setup_link(&adapter->hw);
2643 * e1000_power_down_phy - Power down the PHY
2645 * Power down the PHY so no link is implied when interface is down
2646 * The PHY cannot be powered down is management or WoL is active
2648 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2650 struct e1000_hw *hw = &adapter->hw;
2651 u16 mii_reg;
2653 /* WoL is enabled */
2654 if (adapter->wol)
2655 return;
2657 /* non-copper PHY? */
2658 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2659 return;
2661 /* reset is blocked because of a SoL/IDER session */
2662 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2663 return;
2665 /* manageability (AMT) is enabled */
2666 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2667 return;
2669 /* power down the PHY */
2670 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2671 mii_reg |= MII_CR_POWER_DOWN;
2672 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2673 mdelay(1);
2677 * e1000e_reset - bring the hardware into a known good state
2679 * This function boots the hardware and enables some settings that
2680 * require a configuration cycle of the hardware - those cannot be
2681 * set/changed during runtime. After reset the device needs to be
2682 * properly configured for Rx, Tx etc.
2684 void e1000e_reset(struct e1000_adapter *adapter)
2686 struct e1000_mac_info *mac = &adapter->hw.mac;
2687 struct e1000_fc_info *fc = &adapter->hw.fc;
2688 struct e1000_hw *hw = &adapter->hw;
2689 u32 tx_space, min_tx_space, min_rx_space;
2690 u32 pba = adapter->pba;
2691 u16 hwm;
2693 /* reset Packet Buffer Allocation to default */
2694 ew32(PBA, pba);
2696 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2698 * To maintain wire speed transmits, the Tx FIFO should be
2699 * large enough to accommodate two full transmit packets,
2700 * rounded up to the next 1KB and expressed in KB. Likewise,
2701 * the Rx FIFO should be large enough to accommodate at least
2702 * one full receive packet and is similarly rounded up and
2703 * expressed in KB.
2705 pba = er32(PBA);
2706 /* upper 16 bits has Tx packet buffer allocation size in KB */
2707 tx_space = pba >> 16;
2708 /* lower 16 bits has Rx packet buffer allocation size in KB */
2709 pba &= 0xffff;
2711 * the Tx fifo also stores 16 bytes of information about the tx
2712 * but don't include ethernet FCS because hardware appends it
2714 min_tx_space = (adapter->max_frame_size +
2715 sizeof(struct e1000_tx_desc) -
2716 ETH_FCS_LEN) * 2;
2717 min_tx_space = ALIGN(min_tx_space, 1024);
2718 min_tx_space >>= 10;
2719 /* software strips receive CRC, so leave room for it */
2720 min_rx_space = adapter->max_frame_size;
2721 min_rx_space = ALIGN(min_rx_space, 1024);
2722 min_rx_space >>= 10;
2725 * If current Tx allocation is less than the min Tx FIFO size,
2726 * and the min Tx FIFO size is less than the current Rx FIFO
2727 * allocation, take space away from current Rx allocation
2729 if ((tx_space < min_tx_space) &&
2730 ((min_tx_space - tx_space) < pba)) {
2731 pba -= min_tx_space - tx_space;
2734 * if short on Rx space, Rx wins and must trump tx
2735 * adjustment or use Early Receive if available
2737 if ((pba < min_rx_space) &&
2738 (!(adapter->flags & FLAG_HAS_ERT)))
2739 /* ERT enabled in e1000_configure_rx */
2740 pba = min_rx_space;
2743 ew32(PBA, pba);
2748 * flow control settings
2750 * The high water mark must be low enough to fit one full frame
2751 * (or the size used for early receive) above it in the Rx FIFO.
2752 * Set it to the lower of:
2753 * - 90% of the Rx FIFO size, and
2754 * - the full Rx FIFO size minus the early receive size (for parts
2755 * with ERT support assuming ERT set to E1000_ERT_2048), or
2756 * - the full Rx FIFO size minus one full frame
2758 if (adapter->flags & FLAG_HAS_ERT)
2759 hwm = min(((pba << 10) * 9 / 10),
2760 ((pba << 10) - (E1000_ERT_2048 << 3)));
2761 else
2762 hwm = min(((pba << 10) * 9 / 10),
2763 ((pba << 10) - adapter->max_frame_size));
2765 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2766 fc->low_water = fc->high_water - 8;
2768 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2769 fc->pause_time = 0xFFFF;
2770 else
2771 fc->pause_time = E1000_FC_PAUSE_TIME;
2772 fc->send_xon = 1;
2773 fc->type = fc->original_type;
2775 /* Allow time for pending master requests to run */
2776 mac->ops.reset_hw(hw);
2779 * For parts with AMT enabled, let the firmware know
2780 * that the network interface is in control
2782 if (adapter->flags & FLAG_HAS_AMT)
2783 e1000_get_hw_control(adapter);
2785 ew32(WUC, 0);
2787 if (mac->ops.init_hw(hw))
2788 e_err("Hardware Error\n");
2790 e1000_update_mng_vlan(adapter);
2792 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2793 ew32(VET, ETH_P_8021Q);
2795 e1000e_reset_adaptive(hw);
2796 e1000_get_phy_info(hw);
2798 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2799 u16 phy_data = 0;
2801 * speed up time to link by disabling smart power down, ignore
2802 * the return value of this function because there is nothing
2803 * different we would do if it failed
2805 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2806 phy_data &= ~IGP02E1000_PM_SPD;
2807 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2811 int e1000e_up(struct e1000_adapter *adapter)
2813 struct e1000_hw *hw = &adapter->hw;
2815 /* hardware has been reset, we need to reload some things */
2816 e1000_configure(adapter);
2818 clear_bit(__E1000_DOWN, &adapter->state);
2820 napi_enable(&adapter->napi);
2821 if (adapter->msix_entries)
2822 e1000_configure_msix(adapter);
2823 e1000_irq_enable(adapter);
2825 /* fire a link change interrupt to start the watchdog */
2826 ew32(ICS, E1000_ICS_LSC);
2827 return 0;
2830 void e1000e_down(struct e1000_adapter *adapter)
2832 struct net_device *netdev = adapter->netdev;
2833 struct e1000_hw *hw = &adapter->hw;
2834 u32 tctl, rctl;
2837 * signal that we're down so the interrupt handler does not
2838 * reschedule our watchdog timer
2840 set_bit(__E1000_DOWN, &adapter->state);
2842 /* disable receives in the hardware */
2843 rctl = er32(RCTL);
2844 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2845 /* flush and sleep below */
2847 netif_tx_stop_all_queues(netdev);
2849 /* disable transmits in the hardware */
2850 tctl = er32(TCTL);
2851 tctl &= ~E1000_TCTL_EN;
2852 ew32(TCTL, tctl);
2853 /* flush both disables and wait for them to finish */
2854 e1e_flush();
2855 msleep(10);
2857 napi_disable(&adapter->napi);
2858 e1000_irq_disable(adapter);
2860 del_timer_sync(&adapter->watchdog_timer);
2861 del_timer_sync(&adapter->phy_info_timer);
2863 netdev->tx_queue_len = adapter->tx_queue_len;
2864 netif_carrier_off(netdev);
2865 adapter->link_speed = 0;
2866 adapter->link_duplex = 0;
2868 if (!pci_channel_offline(adapter->pdev))
2869 e1000e_reset(adapter);
2870 e1000_clean_tx_ring(adapter);
2871 e1000_clean_rx_ring(adapter);
2874 * TODO: for power management, we could drop the link and
2875 * pci_disable_device here.
2879 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2881 might_sleep();
2882 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2883 msleep(1);
2884 e1000e_down(adapter);
2885 e1000e_up(adapter);
2886 clear_bit(__E1000_RESETTING, &adapter->state);
2890 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2891 * @adapter: board private structure to initialize
2893 * e1000_sw_init initializes the Adapter private data structure.
2894 * Fields are initialized based on PCI device information and
2895 * OS network device settings (MTU size).
2897 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2899 struct net_device *netdev = adapter->netdev;
2901 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2902 adapter->rx_ps_bsize0 = 128;
2903 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2904 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2906 e1000e_set_interrupt_capability(adapter);
2908 if (e1000_alloc_queues(adapter))
2909 return -ENOMEM;
2911 spin_lock_init(&adapter->tx_queue_lock);
2913 /* Explicitly disable IRQ since the NIC can be in any state. */
2914 e1000_irq_disable(adapter);
2916 set_bit(__E1000_DOWN, &adapter->state);
2917 return 0;
2921 * e1000_intr_msi_test - Interrupt Handler
2922 * @irq: interrupt number
2923 * @data: pointer to a network interface device structure
2925 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2927 struct net_device *netdev = data;
2928 struct e1000_adapter *adapter = netdev_priv(netdev);
2929 struct e1000_hw *hw = &adapter->hw;
2930 u32 icr = er32(ICR);
2932 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2933 if (icr & E1000_ICR_RXSEQ) {
2934 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2935 wmb();
2938 return IRQ_HANDLED;
2942 * e1000_test_msi_interrupt - Returns 0 for successful test
2943 * @adapter: board private struct
2945 * code flow taken from tg3.c
2947 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2949 struct net_device *netdev = adapter->netdev;
2950 struct e1000_hw *hw = &adapter->hw;
2951 int err;
2953 /* poll_enable hasn't been called yet, so don't need disable */
2954 /* clear any pending events */
2955 er32(ICR);
2957 /* free the real vector and request a test handler */
2958 e1000_free_irq(adapter);
2959 e1000e_reset_interrupt_capability(adapter);
2961 /* Assume that the test fails, if it succeeds then the test
2962 * MSI irq handler will unset this flag */
2963 adapter->flags |= FLAG_MSI_TEST_FAILED;
2965 err = pci_enable_msi(adapter->pdev);
2966 if (err)
2967 goto msi_test_failed;
2969 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2970 netdev->name, netdev);
2971 if (err) {
2972 pci_disable_msi(adapter->pdev);
2973 goto msi_test_failed;
2976 wmb();
2978 e1000_irq_enable(adapter);
2980 /* fire an unusual interrupt on the test handler */
2981 ew32(ICS, E1000_ICS_RXSEQ);
2982 e1e_flush();
2983 msleep(50);
2985 e1000_irq_disable(adapter);
2987 rmb();
2989 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2990 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2991 err = -EIO;
2992 e_info("MSI interrupt test failed!\n");
2995 free_irq(adapter->pdev->irq, netdev);
2996 pci_disable_msi(adapter->pdev);
2998 if (err == -EIO)
2999 goto msi_test_failed;
3001 /* okay so the test worked, restore settings */
3002 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3003 msi_test_failed:
3004 e1000e_set_interrupt_capability(adapter);
3005 e1000_request_irq(adapter);
3006 return err;
3010 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3011 * @adapter: board private struct
3013 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3015 static int e1000_test_msi(struct e1000_adapter *adapter)
3017 int err;
3018 u16 pci_cmd;
3020 if (!(adapter->flags & FLAG_MSI_ENABLED))
3021 return 0;
3023 /* disable SERR in case the MSI write causes a master abort */
3024 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3025 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3026 pci_cmd & ~PCI_COMMAND_SERR);
3028 err = e1000_test_msi_interrupt(adapter);
3030 /* restore previous setting of command word */
3031 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3033 /* success ! */
3034 if (!err)
3035 return 0;
3037 /* EIO means MSI test failed */
3038 if (err != -EIO)
3039 return err;
3041 /* back to INTx mode */
3042 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3044 e1000_free_irq(adapter);
3046 err = e1000_request_irq(adapter);
3048 return err;
3052 * e1000_open - Called when a network interface is made active
3053 * @netdev: network interface device structure
3055 * Returns 0 on success, negative value on failure
3057 * The open entry point is called when a network interface is made
3058 * active by the system (IFF_UP). At this point all resources needed
3059 * for transmit and receive operations are allocated, the interrupt
3060 * handler is registered with the OS, the watchdog timer is started,
3061 * and the stack is notified that the interface is ready.
3063 static int e1000_open(struct net_device *netdev)
3065 struct e1000_adapter *adapter = netdev_priv(netdev);
3066 struct e1000_hw *hw = &adapter->hw;
3067 int err;
3069 /* disallow open during test */
3070 if (test_bit(__E1000_TESTING, &adapter->state))
3071 return -EBUSY;
3073 /* allocate transmit descriptors */
3074 err = e1000e_setup_tx_resources(adapter);
3075 if (err)
3076 goto err_setup_tx;
3078 /* allocate receive descriptors */
3079 err = e1000e_setup_rx_resources(adapter);
3080 if (err)
3081 goto err_setup_rx;
3083 e1000e_power_up_phy(adapter);
3085 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3086 if ((adapter->hw.mng_cookie.status &
3087 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3088 e1000_update_mng_vlan(adapter);
3091 * If AMT is enabled, let the firmware know that the network
3092 * interface is now open
3094 if (adapter->flags & FLAG_HAS_AMT)
3095 e1000_get_hw_control(adapter);
3098 * before we allocate an interrupt, we must be ready to handle it.
3099 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3100 * as soon as we call pci_request_irq, so we have to setup our
3101 * clean_rx handler before we do so.
3103 e1000_configure(adapter);
3105 err = e1000_request_irq(adapter);
3106 if (err)
3107 goto err_req_irq;
3110 * Work around PCIe errata with MSI interrupts causing some chipsets to
3111 * ignore e1000e MSI messages, which means we need to test our MSI
3112 * interrupt now
3114 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3115 err = e1000_test_msi(adapter);
3116 if (err) {
3117 e_err("Interrupt allocation failed\n");
3118 goto err_req_irq;
3122 /* From here on the code is the same as e1000e_up() */
3123 clear_bit(__E1000_DOWN, &adapter->state);
3125 napi_enable(&adapter->napi);
3127 e1000_irq_enable(adapter);
3129 netif_tx_start_all_queues(netdev);
3131 /* fire a link status change interrupt to start the watchdog */
3132 ew32(ICS, E1000_ICS_LSC);
3134 return 0;
3136 err_req_irq:
3137 e1000_release_hw_control(adapter);
3138 e1000_power_down_phy(adapter);
3139 e1000e_free_rx_resources(adapter);
3140 err_setup_rx:
3141 e1000e_free_tx_resources(adapter);
3142 err_setup_tx:
3143 e1000e_reset(adapter);
3145 return err;
3149 * e1000_close - Disables a network interface
3150 * @netdev: network interface device structure
3152 * Returns 0, this is not allowed to fail
3154 * The close entry point is called when an interface is de-activated
3155 * by the OS. The hardware is still under the drivers control, but
3156 * needs to be disabled. A global MAC reset is issued to stop the
3157 * hardware, and all transmit and receive resources are freed.
3159 static int e1000_close(struct net_device *netdev)
3161 struct e1000_adapter *adapter = netdev_priv(netdev);
3163 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3164 e1000e_down(adapter);
3165 e1000_power_down_phy(adapter);
3166 e1000_free_irq(adapter);
3168 e1000e_free_tx_resources(adapter);
3169 e1000e_free_rx_resources(adapter);
3172 * kill manageability vlan ID if supported, but not if a vlan with
3173 * the same ID is registered on the host OS (let 8021q kill it)
3175 if ((adapter->hw.mng_cookie.status &
3176 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3177 !(adapter->vlgrp &&
3178 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3179 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3182 * If AMT is enabled, let the firmware know that the network
3183 * interface is now closed
3185 if (adapter->flags & FLAG_HAS_AMT)
3186 e1000_release_hw_control(adapter);
3188 return 0;
3191 * e1000_set_mac - Change the Ethernet Address of the NIC
3192 * @netdev: network interface device structure
3193 * @p: pointer to an address structure
3195 * Returns 0 on success, negative on failure
3197 static int e1000_set_mac(struct net_device *netdev, void *p)
3199 struct e1000_adapter *adapter = netdev_priv(netdev);
3200 struct sockaddr *addr = p;
3202 if (!is_valid_ether_addr(addr->sa_data))
3203 return -EADDRNOTAVAIL;
3205 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3206 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3208 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3210 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3211 /* activate the work around */
3212 e1000e_set_laa_state_82571(&adapter->hw, 1);
3215 * Hold a copy of the LAA in RAR[14] This is done so that
3216 * between the time RAR[0] gets clobbered and the time it
3217 * gets fixed (in e1000_watchdog), the actual LAA is in one
3218 * of the RARs and no incoming packets directed to this port
3219 * are dropped. Eventually the LAA will be in RAR[0] and
3220 * RAR[14]
3222 e1000e_rar_set(&adapter->hw,
3223 adapter->hw.mac.addr,
3224 adapter->hw.mac.rar_entry_count - 1);
3227 return 0;
3231 * e1000e_update_phy_task - work thread to update phy
3232 * @work: pointer to our work struct
3234 * this worker thread exists because we must acquire a
3235 * semaphore to read the phy, which we could msleep while
3236 * waiting for it, and we can't msleep in a timer.
3238 static void e1000e_update_phy_task(struct work_struct *work)
3240 struct e1000_adapter *adapter = container_of(work,
3241 struct e1000_adapter, update_phy_task);
3242 e1000_get_phy_info(&adapter->hw);
3246 * Need to wait a few seconds after link up to get diagnostic information from
3247 * the phy
3249 static void e1000_update_phy_info(unsigned long data)
3251 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3252 schedule_work(&adapter->update_phy_task);
3256 * e1000e_update_stats - Update the board statistics counters
3257 * @adapter: board private structure
3259 void e1000e_update_stats(struct e1000_adapter *adapter)
3261 struct e1000_hw *hw = &adapter->hw;
3262 struct pci_dev *pdev = adapter->pdev;
3265 * Prevent stats update while adapter is being reset, or if the pci
3266 * connection is down.
3268 if (adapter->link_speed == 0)
3269 return;
3270 if (pci_channel_offline(pdev))
3271 return;
3273 adapter->stats.crcerrs += er32(CRCERRS);
3274 adapter->stats.gprc += er32(GPRC);
3275 adapter->stats.gorc += er32(GORCL);
3276 er32(GORCH); /* Clear gorc */
3277 adapter->stats.bprc += er32(BPRC);
3278 adapter->stats.mprc += er32(MPRC);
3279 adapter->stats.roc += er32(ROC);
3281 adapter->stats.mpc += er32(MPC);
3282 adapter->stats.scc += er32(SCC);
3283 adapter->stats.ecol += er32(ECOL);
3284 adapter->stats.mcc += er32(MCC);
3285 adapter->stats.latecol += er32(LATECOL);
3286 adapter->stats.dc += er32(DC);
3287 adapter->stats.xonrxc += er32(XONRXC);
3288 adapter->stats.xontxc += er32(XONTXC);
3289 adapter->stats.xoffrxc += er32(XOFFRXC);
3290 adapter->stats.xofftxc += er32(XOFFTXC);
3291 adapter->stats.gptc += er32(GPTC);
3292 adapter->stats.gotc += er32(GOTCL);
3293 er32(GOTCH); /* Clear gotc */
3294 adapter->stats.rnbc += er32(RNBC);
3295 adapter->stats.ruc += er32(RUC);
3297 adapter->stats.mptc += er32(MPTC);
3298 adapter->stats.bptc += er32(BPTC);
3300 /* used for adaptive IFS */
3302 hw->mac.tx_packet_delta = er32(TPT);
3303 adapter->stats.tpt += hw->mac.tx_packet_delta;
3304 hw->mac.collision_delta = er32(COLC);
3305 adapter->stats.colc += hw->mac.collision_delta;
3307 adapter->stats.algnerrc += er32(ALGNERRC);
3308 adapter->stats.rxerrc += er32(RXERRC);
3309 if (hw->mac.type != e1000_82574)
3310 adapter->stats.tncrs += er32(TNCRS);
3311 adapter->stats.cexterr += er32(CEXTERR);
3312 adapter->stats.tsctc += er32(TSCTC);
3313 adapter->stats.tsctfc += er32(TSCTFC);
3315 /* Fill out the OS statistics structure */
3316 adapter->net_stats.multicast = adapter->stats.mprc;
3317 adapter->net_stats.collisions = adapter->stats.colc;
3319 /* Rx Errors */
3322 * RLEC on some newer hardware can be incorrect so build
3323 * our own version based on RUC and ROC
3325 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3326 adapter->stats.crcerrs + adapter->stats.algnerrc +
3327 adapter->stats.ruc + adapter->stats.roc +
3328 adapter->stats.cexterr;
3329 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3330 adapter->stats.roc;
3331 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3332 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3333 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3335 /* Tx Errors */
3336 adapter->net_stats.tx_errors = adapter->stats.ecol +
3337 adapter->stats.latecol;
3338 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3339 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3340 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3342 /* Tx Dropped needs to be maintained elsewhere */
3344 /* Management Stats */
3345 adapter->stats.mgptc += er32(MGTPTC);
3346 adapter->stats.mgprc += er32(MGTPRC);
3347 adapter->stats.mgpdc += er32(MGTPDC);
3351 * e1000_phy_read_status - Update the PHY register status snapshot
3352 * @adapter: board private structure
3354 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3356 struct e1000_hw *hw = &adapter->hw;
3357 struct e1000_phy_regs *phy = &adapter->phy_regs;
3358 int ret_val;
3360 if ((er32(STATUS) & E1000_STATUS_LU) &&
3361 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3362 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3363 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3364 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3365 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3366 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3367 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3368 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3369 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3370 if (ret_val)
3371 e_warn("Error reading PHY register\n");
3372 } else {
3374 * Do not read PHY registers if link is not up
3375 * Set values to typical power-on defaults
3377 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3378 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3379 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3380 BMSR_ERCAP);
3381 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3382 ADVERTISE_ALL | ADVERTISE_CSMA);
3383 phy->lpa = 0;
3384 phy->expansion = EXPANSION_ENABLENPAGE;
3385 phy->ctrl1000 = ADVERTISE_1000FULL;
3386 phy->stat1000 = 0;
3387 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3391 static void e1000_print_link_info(struct e1000_adapter *adapter)
3393 struct e1000_hw *hw = &adapter->hw;
3394 u32 ctrl = er32(CTRL);
3396 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3397 adapter->link_speed,
3398 (adapter->link_duplex == FULL_DUPLEX) ?
3399 "Full Duplex" : "Half Duplex",
3400 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3401 "RX/TX" :
3402 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3403 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3406 static bool e1000_has_link(struct e1000_adapter *adapter)
3408 struct e1000_hw *hw = &adapter->hw;
3409 bool link_active = 0;
3410 s32 ret_val = 0;
3413 * get_link_status is set on LSC (link status) interrupt or
3414 * Rx sequence error interrupt. get_link_status will stay
3415 * false until the check_for_link establishes link
3416 * for copper adapters ONLY
3418 switch (hw->phy.media_type) {
3419 case e1000_media_type_copper:
3420 if (hw->mac.get_link_status) {
3421 ret_val = hw->mac.ops.check_for_link(hw);
3422 link_active = !hw->mac.get_link_status;
3423 } else {
3424 link_active = 1;
3426 break;
3427 case e1000_media_type_fiber:
3428 ret_val = hw->mac.ops.check_for_link(hw);
3429 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3430 break;
3431 case e1000_media_type_internal_serdes:
3432 ret_val = hw->mac.ops.check_for_link(hw);
3433 link_active = adapter->hw.mac.serdes_has_link;
3434 break;
3435 default:
3436 case e1000_media_type_unknown:
3437 break;
3440 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3441 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3442 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3443 e_info("Gigabit has been disabled, downgrading speed\n");
3446 return link_active;
3449 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3451 /* make sure the receive unit is started */
3452 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3453 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3454 struct e1000_hw *hw = &adapter->hw;
3455 u32 rctl = er32(RCTL);
3456 ew32(RCTL, rctl | E1000_RCTL_EN);
3457 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3462 * e1000_watchdog - Timer Call-back
3463 * @data: pointer to adapter cast into an unsigned long
3465 static void e1000_watchdog(unsigned long data)
3467 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3469 /* Do the rest outside of interrupt context */
3470 schedule_work(&adapter->watchdog_task);
3472 /* TODO: make this use queue_delayed_work() */
3475 static void e1000_watchdog_task(struct work_struct *work)
3477 struct e1000_adapter *adapter = container_of(work,
3478 struct e1000_adapter, watchdog_task);
3479 struct net_device *netdev = adapter->netdev;
3480 struct e1000_mac_info *mac = &adapter->hw.mac;
3481 struct e1000_ring *tx_ring = adapter->tx_ring;
3482 struct e1000_hw *hw = &adapter->hw;
3483 u32 link, tctl;
3484 int tx_pending = 0;
3486 link = e1000_has_link(adapter);
3487 if ((netif_carrier_ok(netdev)) && link) {
3488 e1000e_enable_receives(adapter);
3489 goto link_up;
3492 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3493 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3494 e1000_update_mng_vlan(adapter);
3496 if (link) {
3497 if (!netif_carrier_ok(netdev)) {
3498 bool txb2b = 1;
3499 /* update snapshot of PHY registers on LSC */
3500 e1000_phy_read_status(adapter);
3501 mac->ops.get_link_up_info(&adapter->hw,
3502 &adapter->link_speed,
3503 &adapter->link_duplex);
3504 e1000_print_link_info(adapter);
3506 * On supported PHYs, check for duplex mismatch only
3507 * if link has autonegotiated at 10/100 half
3509 if ((hw->phy.type == e1000_phy_igp_3 ||
3510 hw->phy.type == e1000_phy_bm) &&
3511 (hw->mac.autoneg == true) &&
3512 (adapter->link_speed == SPEED_10 ||
3513 adapter->link_speed == SPEED_100) &&
3514 (adapter->link_duplex == HALF_DUPLEX)) {
3515 u16 autoneg_exp;
3517 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3519 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3520 e_info("Autonegotiated half duplex but"
3521 " link partner cannot autoneg. "
3522 " Try forcing full duplex if "
3523 "link gets many collisions.\n");
3527 * tweak tx_queue_len according to speed/duplex
3528 * and adjust the timeout factor
3530 netdev->tx_queue_len = adapter->tx_queue_len;
3531 adapter->tx_timeout_factor = 1;
3532 switch (adapter->link_speed) {
3533 case SPEED_10:
3534 txb2b = 0;
3535 netdev->tx_queue_len = 10;
3536 adapter->tx_timeout_factor = 16;
3537 break;
3538 case SPEED_100:
3539 txb2b = 0;
3540 netdev->tx_queue_len = 100;
3541 /* maybe add some timeout factor ? */
3542 break;
3546 * workaround: re-program speed mode bit after
3547 * link-up event
3549 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3550 !txb2b) {
3551 u32 tarc0;
3552 tarc0 = er32(TARC(0));
3553 tarc0 &= ~SPEED_MODE_BIT;
3554 ew32(TARC(0), tarc0);
3558 * disable TSO for pcie and 10/100 speeds, to avoid
3559 * some hardware issues
3561 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3562 switch (adapter->link_speed) {
3563 case SPEED_10:
3564 case SPEED_100:
3565 e_info("10/100 speed: disabling TSO\n");
3566 netdev->features &= ~NETIF_F_TSO;
3567 netdev->features &= ~NETIF_F_TSO6;
3568 break;
3569 case SPEED_1000:
3570 netdev->features |= NETIF_F_TSO;
3571 netdev->features |= NETIF_F_TSO6;
3572 break;
3573 default:
3574 /* oops */
3575 break;
3580 * enable transmits in the hardware, need to do this
3581 * after setting TARC(0)
3583 tctl = er32(TCTL);
3584 tctl |= E1000_TCTL_EN;
3585 ew32(TCTL, tctl);
3587 netif_carrier_on(netdev);
3588 netif_tx_wake_all_queues(netdev);
3590 if (!test_bit(__E1000_DOWN, &adapter->state))
3591 mod_timer(&adapter->phy_info_timer,
3592 round_jiffies(jiffies + 2 * HZ));
3594 } else {
3595 if (netif_carrier_ok(netdev)) {
3596 adapter->link_speed = 0;
3597 adapter->link_duplex = 0;
3598 e_info("Link is Down\n");
3599 netif_carrier_off(netdev);
3600 netif_tx_stop_all_queues(netdev);
3601 if (!test_bit(__E1000_DOWN, &adapter->state))
3602 mod_timer(&adapter->phy_info_timer,
3603 round_jiffies(jiffies + 2 * HZ));
3605 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3606 schedule_work(&adapter->reset_task);
3610 link_up:
3611 e1000e_update_stats(adapter);
3613 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3614 adapter->tpt_old = adapter->stats.tpt;
3615 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3616 adapter->colc_old = adapter->stats.colc;
3618 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3619 adapter->gorc_old = adapter->stats.gorc;
3620 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3621 adapter->gotc_old = adapter->stats.gotc;
3623 e1000e_update_adaptive(&adapter->hw);
3625 if (!netif_carrier_ok(netdev)) {
3626 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3627 tx_ring->count);
3628 if (tx_pending) {
3630 * We've lost link, so the controller stops DMA,
3631 * but we've got queued Tx work that's never going
3632 * to get done, so reset controller to flush Tx.
3633 * (Do the reset outside of interrupt context).
3635 adapter->tx_timeout_count++;
3636 schedule_work(&adapter->reset_task);
3640 /* Cause software interrupt to ensure Rx ring is cleaned */
3641 if (adapter->msix_entries)
3642 ew32(ICS, adapter->rx_ring->ims_val);
3643 else
3644 ew32(ICS, E1000_ICS_RXDMT0);
3646 /* Force detection of hung controller every watchdog period */
3647 adapter->detect_tx_hung = 1;
3650 * With 82571 controllers, LAA may be overwritten due to controller
3651 * reset from the other port. Set the appropriate LAA in RAR[0]
3653 if (e1000e_get_laa_state_82571(hw))
3654 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3656 /* Reset the timer */
3657 if (!test_bit(__E1000_DOWN, &adapter->state))
3658 mod_timer(&adapter->watchdog_timer,
3659 round_jiffies(jiffies + 2 * HZ));
3662 #define E1000_TX_FLAGS_CSUM 0x00000001
3663 #define E1000_TX_FLAGS_VLAN 0x00000002
3664 #define E1000_TX_FLAGS_TSO 0x00000004
3665 #define E1000_TX_FLAGS_IPV4 0x00000008
3666 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3667 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3669 static int e1000_tso(struct e1000_adapter *adapter,
3670 struct sk_buff *skb)
3672 struct e1000_ring *tx_ring = adapter->tx_ring;
3673 struct e1000_context_desc *context_desc;
3674 struct e1000_buffer *buffer_info;
3675 unsigned int i;
3676 u32 cmd_length = 0;
3677 u16 ipcse = 0, tucse, mss;
3678 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3679 int err;
3681 if (skb_is_gso(skb)) {
3682 if (skb_header_cloned(skb)) {
3683 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3684 if (err)
3685 return err;
3688 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3689 mss = skb_shinfo(skb)->gso_size;
3690 if (skb->protocol == htons(ETH_P_IP)) {
3691 struct iphdr *iph = ip_hdr(skb);
3692 iph->tot_len = 0;
3693 iph->check = 0;
3694 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3695 iph->daddr, 0,
3696 IPPROTO_TCP,
3698 cmd_length = E1000_TXD_CMD_IP;
3699 ipcse = skb_transport_offset(skb) - 1;
3700 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3701 ipv6_hdr(skb)->payload_len = 0;
3702 tcp_hdr(skb)->check =
3703 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3704 &ipv6_hdr(skb)->daddr,
3705 0, IPPROTO_TCP, 0);
3706 ipcse = 0;
3708 ipcss = skb_network_offset(skb);
3709 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3710 tucss = skb_transport_offset(skb);
3711 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3712 tucse = 0;
3714 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3715 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3717 i = tx_ring->next_to_use;
3718 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3719 buffer_info = &tx_ring->buffer_info[i];
3721 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3722 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3723 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3724 context_desc->upper_setup.tcp_fields.tucss = tucss;
3725 context_desc->upper_setup.tcp_fields.tucso = tucso;
3726 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3727 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3728 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3729 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3731 buffer_info->time_stamp = jiffies;
3732 buffer_info->next_to_watch = i;
3734 i++;
3735 if (i == tx_ring->count)
3736 i = 0;
3737 tx_ring->next_to_use = i;
3739 return 1;
3742 return 0;
3745 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3747 struct e1000_ring *tx_ring = adapter->tx_ring;
3748 struct e1000_context_desc *context_desc;
3749 struct e1000_buffer *buffer_info;
3750 unsigned int i;
3751 u8 css;
3752 u32 cmd_len = E1000_TXD_CMD_DEXT;
3754 if (skb->ip_summed != CHECKSUM_PARTIAL)
3755 return 0;
3757 switch (skb->protocol) {
3758 case __constant_htons(ETH_P_IP):
3759 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3760 cmd_len |= E1000_TXD_CMD_TCP;
3761 break;
3762 case __constant_htons(ETH_P_IPV6):
3763 /* XXX not handling all IPV6 headers */
3764 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3765 cmd_len |= E1000_TXD_CMD_TCP;
3766 break;
3767 default:
3768 if (unlikely(net_ratelimit()))
3769 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3770 break;
3773 css = skb_transport_offset(skb);
3775 i = tx_ring->next_to_use;
3776 buffer_info = &tx_ring->buffer_info[i];
3777 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3779 context_desc->lower_setup.ip_config = 0;
3780 context_desc->upper_setup.tcp_fields.tucss = css;
3781 context_desc->upper_setup.tcp_fields.tucso =
3782 css + skb->csum_offset;
3783 context_desc->upper_setup.tcp_fields.tucse = 0;
3784 context_desc->tcp_seg_setup.data = 0;
3785 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3787 buffer_info->time_stamp = jiffies;
3788 buffer_info->next_to_watch = i;
3790 i++;
3791 if (i == tx_ring->count)
3792 i = 0;
3793 tx_ring->next_to_use = i;
3795 return 1;
3798 #define E1000_MAX_PER_TXD 8192
3799 #define E1000_MAX_TXD_PWR 12
3801 static int e1000_tx_map(struct e1000_adapter *adapter,
3802 struct sk_buff *skb, unsigned int first,
3803 unsigned int max_per_txd, unsigned int nr_frags,
3804 unsigned int mss)
3806 struct e1000_ring *tx_ring = adapter->tx_ring;
3807 struct e1000_buffer *buffer_info;
3808 unsigned int len = skb->len - skb->data_len;
3809 unsigned int offset = 0, size, count = 0, i;
3810 unsigned int f;
3812 i = tx_ring->next_to_use;
3814 while (len) {
3815 buffer_info = &tx_ring->buffer_info[i];
3816 size = min(len, max_per_txd);
3818 /* Workaround for premature desc write-backs
3819 * in TSO mode. Append 4-byte sentinel desc */
3820 if (mss && !nr_frags && size == len && size > 8)
3821 size -= 4;
3823 buffer_info->length = size;
3824 /* set time_stamp *before* dma to help avoid a possible race */
3825 buffer_info->time_stamp = jiffies;
3826 buffer_info->dma =
3827 pci_map_single(adapter->pdev,
3828 skb->data + offset,
3829 size,
3830 PCI_DMA_TODEVICE);
3831 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3832 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3833 adapter->tx_dma_failed++;
3834 return -1;
3836 buffer_info->next_to_watch = i;
3838 len -= size;
3839 offset += size;
3840 count++;
3841 i++;
3842 if (i == tx_ring->count)
3843 i = 0;
3846 for (f = 0; f < nr_frags; f++) {
3847 struct skb_frag_struct *frag;
3849 frag = &skb_shinfo(skb)->frags[f];
3850 len = frag->size;
3851 offset = frag->page_offset;
3853 while (len) {
3854 buffer_info = &tx_ring->buffer_info[i];
3855 size = min(len, max_per_txd);
3856 /* Workaround for premature desc write-backs
3857 * in TSO mode. Append 4-byte sentinel desc */
3858 if (mss && f == (nr_frags-1) && size == len && size > 8)
3859 size -= 4;
3861 buffer_info->length = size;
3862 buffer_info->time_stamp = jiffies;
3863 buffer_info->dma =
3864 pci_map_page(adapter->pdev,
3865 frag->page,
3866 offset,
3867 size,
3868 PCI_DMA_TODEVICE);
3869 if (pci_dma_mapping_error(adapter->pdev,
3870 buffer_info->dma)) {
3871 dev_err(&adapter->pdev->dev,
3872 "TX DMA page map failed\n");
3873 adapter->tx_dma_failed++;
3874 return -1;
3877 buffer_info->next_to_watch = i;
3879 len -= size;
3880 offset += size;
3881 count++;
3883 i++;
3884 if (i == tx_ring->count)
3885 i = 0;
3889 if (i == 0)
3890 i = tx_ring->count - 1;
3891 else
3892 i--;
3894 tx_ring->buffer_info[i].skb = skb;
3895 tx_ring->buffer_info[first].next_to_watch = i;
3897 return count;
3900 static void e1000_tx_queue(struct e1000_adapter *adapter,
3901 int tx_flags, int count)
3903 struct e1000_ring *tx_ring = adapter->tx_ring;
3904 struct e1000_tx_desc *tx_desc = NULL;
3905 struct e1000_buffer *buffer_info;
3906 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3907 unsigned int i;
3909 if (tx_flags & E1000_TX_FLAGS_TSO) {
3910 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3911 E1000_TXD_CMD_TSE;
3912 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3914 if (tx_flags & E1000_TX_FLAGS_IPV4)
3915 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3918 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3919 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3920 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3923 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3924 txd_lower |= E1000_TXD_CMD_VLE;
3925 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3928 i = tx_ring->next_to_use;
3930 while (count--) {
3931 buffer_info = &tx_ring->buffer_info[i];
3932 tx_desc = E1000_TX_DESC(*tx_ring, i);
3933 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3934 tx_desc->lower.data =
3935 cpu_to_le32(txd_lower | buffer_info->length);
3936 tx_desc->upper.data = cpu_to_le32(txd_upper);
3938 i++;
3939 if (i == tx_ring->count)
3940 i = 0;
3943 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3946 * Force memory writes to complete before letting h/w
3947 * know there are new descriptors to fetch. (Only
3948 * applicable for weak-ordered memory model archs,
3949 * such as IA-64).
3951 wmb();
3953 tx_ring->next_to_use = i;
3954 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3956 * we need this if more than one processor can write to our tail
3957 * at a time, it synchronizes IO on IA64/Altix systems
3959 mmiowb();
3962 #define MINIMUM_DHCP_PACKET_SIZE 282
3963 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3964 struct sk_buff *skb)
3966 struct e1000_hw *hw = &adapter->hw;
3967 u16 length, offset;
3969 if (vlan_tx_tag_present(skb)) {
3970 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3971 && (adapter->hw.mng_cookie.status &
3972 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3973 return 0;
3976 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3977 return 0;
3979 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3980 return 0;
3983 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3984 struct udphdr *udp;
3986 if (ip->protocol != IPPROTO_UDP)
3987 return 0;
3989 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3990 if (ntohs(udp->dest) != 67)
3991 return 0;
3993 offset = (u8 *)udp + 8 - skb->data;
3994 length = skb->len - offset;
3995 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3998 return 0;
4001 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4003 struct e1000_adapter *adapter = netdev_priv(netdev);
4005 netif_stop_queue(netdev);
4007 * Herbert's original patch had:
4008 * smp_mb__after_netif_stop_queue();
4009 * but since that doesn't exist yet, just open code it.
4011 smp_mb();
4014 * We need to check again in a case another CPU has just
4015 * made room available.
4017 if (e1000_desc_unused(adapter->tx_ring) < size)
4018 return -EBUSY;
4020 /* A reprieve! */
4021 netif_start_queue(netdev);
4022 ++adapter->restart_queue;
4023 return 0;
4026 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4028 struct e1000_adapter *adapter = netdev_priv(netdev);
4030 if (e1000_desc_unused(adapter->tx_ring) >= size)
4031 return 0;
4032 return __e1000_maybe_stop_tx(netdev, size);
4035 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4036 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4038 struct e1000_adapter *adapter = netdev_priv(netdev);
4039 struct e1000_ring *tx_ring = adapter->tx_ring;
4040 unsigned int first;
4041 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4042 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4043 unsigned int tx_flags = 0;
4044 unsigned int len = skb->len - skb->data_len;
4045 unsigned long irq_flags;
4046 unsigned int nr_frags;
4047 unsigned int mss;
4048 int count = 0;
4049 int tso;
4050 unsigned int f;
4052 if (test_bit(__E1000_DOWN, &adapter->state)) {
4053 dev_kfree_skb_any(skb);
4054 return NETDEV_TX_OK;
4057 if (skb->len <= 0) {
4058 dev_kfree_skb_any(skb);
4059 return NETDEV_TX_OK;
4062 mss = skb_shinfo(skb)->gso_size;
4064 * The controller does a simple calculation to
4065 * make sure there is enough room in the FIFO before
4066 * initiating the DMA for each buffer. The calc is:
4067 * 4 = ceil(buffer len/mss). To make sure we don't
4068 * overrun the FIFO, adjust the max buffer len if mss
4069 * drops.
4071 if (mss) {
4072 u8 hdr_len;
4073 max_per_txd = min(mss << 2, max_per_txd);
4074 max_txd_pwr = fls(max_per_txd) - 1;
4077 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4078 * points to just header, pull a few bytes of payload from
4079 * frags into skb->data
4081 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4083 * we do this workaround for ES2LAN, but it is un-necessary,
4084 * avoiding it could save a lot of cycles
4086 if (skb->data_len && (hdr_len == len)) {
4087 unsigned int pull_size;
4089 pull_size = min((unsigned int)4, skb->data_len);
4090 if (!__pskb_pull_tail(skb, pull_size)) {
4091 e_err("__pskb_pull_tail failed.\n");
4092 dev_kfree_skb_any(skb);
4093 return NETDEV_TX_OK;
4095 len = skb->len - skb->data_len;
4099 /* reserve a descriptor for the offload context */
4100 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4101 count++;
4102 count++;
4104 count += TXD_USE_COUNT(len, max_txd_pwr);
4106 nr_frags = skb_shinfo(skb)->nr_frags;
4107 for (f = 0; f < nr_frags; f++)
4108 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4109 max_txd_pwr);
4111 if (adapter->hw.mac.tx_pkt_filtering)
4112 e1000_transfer_dhcp_info(adapter, skb);
4114 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4115 /* Collision - tell upper layer to requeue */
4116 return NETDEV_TX_LOCKED;
4119 * need: count + 2 desc gap to keep tail from touching
4120 * head, otherwise try next time
4122 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4123 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4124 return NETDEV_TX_BUSY;
4127 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4128 tx_flags |= E1000_TX_FLAGS_VLAN;
4129 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4132 first = tx_ring->next_to_use;
4134 tso = e1000_tso(adapter, skb);
4135 if (tso < 0) {
4136 dev_kfree_skb_any(skb);
4137 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4138 return NETDEV_TX_OK;
4141 if (tso)
4142 tx_flags |= E1000_TX_FLAGS_TSO;
4143 else if (e1000_tx_csum(adapter, skb))
4144 tx_flags |= E1000_TX_FLAGS_CSUM;
4147 * Old method was to assume IPv4 packet by default if TSO was enabled.
4148 * 82571 hardware supports TSO capabilities for IPv6 as well...
4149 * no longer assume, we must.
4151 if (skb->protocol == htons(ETH_P_IP))
4152 tx_flags |= E1000_TX_FLAGS_IPV4;
4154 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4155 if (count < 0) {
4156 /* handle pci_map_single() error in e1000_tx_map */
4157 dev_kfree_skb_any(skb);
4158 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4159 return NETDEV_TX_OK;
4162 e1000_tx_queue(adapter, tx_flags, count);
4164 netdev->trans_start = jiffies;
4166 /* Make sure there is space in the ring for the next send. */
4167 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4169 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4170 return NETDEV_TX_OK;
4174 * e1000_tx_timeout - Respond to a Tx Hang
4175 * @netdev: network interface device structure
4177 static void e1000_tx_timeout(struct net_device *netdev)
4179 struct e1000_adapter *adapter = netdev_priv(netdev);
4181 /* Do the reset outside of interrupt context */
4182 adapter->tx_timeout_count++;
4183 schedule_work(&adapter->reset_task);
4186 static void e1000_reset_task(struct work_struct *work)
4188 struct e1000_adapter *adapter;
4189 adapter = container_of(work, struct e1000_adapter, reset_task);
4191 e1000e_reinit_locked(adapter);
4195 * e1000_get_stats - Get System Network Statistics
4196 * @netdev: network interface device structure
4198 * Returns the address of the device statistics structure.
4199 * The statistics are actually updated from the timer callback.
4201 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4203 struct e1000_adapter *adapter = netdev_priv(netdev);
4205 /* only return the current stats */
4206 return &adapter->net_stats;
4210 * e1000_change_mtu - Change the Maximum Transfer Unit
4211 * @netdev: network interface device structure
4212 * @new_mtu: new value for maximum frame size
4214 * Returns 0 on success, negative on failure
4216 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4218 struct e1000_adapter *adapter = netdev_priv(netdev);
4219 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4221 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4222 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4223 e_err("Invalid MTU setting\n");
4224 return -EINVAL;
4227 /* Jumbo frame size limits */
4228 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4229 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4230 e_err("Jumbo Frames not supported.\n");
4231 return -EINVAL;
4233 if (adapter->hw.phy.type == e1000_phy_ife) {
4234 e_err("Jumbo Frames not supported.\n");
4235 return -EINVAL;
4239 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4240 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4241 e_err("MTU > 9216 not supported.\n");
4242 return -EINVAL;
4245 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4246 msleep(1);
4247 /* e1000e_down has a dependency on max_frame_size */
4248 adapter->max_frame_size = max_frame;
4249 if (netif_running(netdev))
4250 e1000e_down(adapter);
4253 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4254 * means we reserve 2 more, this pushes us to allocate from the next
4255 * larger slab size.
4256 * i.e. RXBUFFER_2048 --> size-4096 slab
4257 * However with the new *_jumbo_rx* routines, jumbo receives will use
4258 * fragmented skbs
4261 if (max_frame <= 256)
4262 adapter->rx_buffer_len = 256;
4263 else if (max_frame <= 512)
4264 adapter->rx_buffer_len = 512;
4265 else if (max_frame <= 1024)
4266 adapter->rx_buffer_len = 1024;
4267 else if (max_frame <= 2048)
4268 adapter->rx_buffer_len = 2048;
4269 else
4270 adapter->rx_buffer_len = 4096;
4272 /* adjust allocation if LPE protects us, and we aren't using SBP */
4273 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4274 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4275 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4276 + ETH_FCS_LEN;
4278 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4279 netdev->mtu = new_mtu;
4281 if (netif_running(netdev))
4282 e1000e_up(adapter);
4283 else
4284 e1000e_reset(adapter);
4286 clear_bit(__E1000_RESETTING, &adapter->state);
4288 return 0;
4291 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4292 int cmd)
4294 struct e1000_adapter *adapter = netdev_priv(netdev);
4295 struct mii_ioctl_data *data = if_mii(ifr);
4297 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4298 return -EOPNOTSUPP;
4300 switch (cmd) {
4301 case SIOCGMIIPHY:
4302 data->phy_id = adapter->hw.phy.addr;
4303 break;
4304 case SIOCGMIIREG:
4305 if (!capable(CAP_NET_ADMIN))
4306 return -EPERM;
4307 switch (data->reg_num & 0x1F) {
4308 case MII_BMCR:
4309 data->val_out = adapter->phy_regs.bmcr;
4310 break;
4311 case MII_BMSR:
4312 data->val_out = adapter->phy_regs.bmsr;
4313 break;
4314 case MII_PHYSID1:
4315 data->val_out = (adapter->hw.phy.id >> 16);
4316 break;
4317 case MII_PHYSID2:
4318 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4319 break;
4320 case MII_ADVERTISE:
4321 data->val_out = adapter->phy_regs.advertise;
4322 break;
4323 case MII_LPA:
4324 data->val_out = adapter->phy_regs.lpa;
4325 break;
4326 case MII_EXPANSION:
4327 data->val_out = adapter->phy_regs.expansion;
4328 break;
4329 case MII_CTRL1000:
4330 data->val_out = adapter->phy_regs.ctrl1000;
4331 break;
4332 case MII_STAT1000:
4333 data->val_out = adapter->phy_regs.stat1000;
4334 break;
4335 case MII_ESTATUS:
4336 data->val_out = adapter->phy_regs.estatus;
4337 break;
4338 default:
4339 return -EIO;
4341 break;
4342 case SIOCSMIIREG:
4343 default:
4344 return -EOPNOTSUPP;
4346 return 0;
4349 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4351 switch (cmd) {
4352 case SIOCGMIIPHY:
4353 case SIOCGMIIREG:
4354 case SIOCSMIIREG:
4355 return e1000_mii_ioctl(netdev, ifr, cmd);
4356 default:
4357 return -EOPNOTSUPP;
4361 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4363 struct net_device *netdev = pci_get_drvdata(pdev);
4364 struct e1000_adapter *adapter = netdev_priv(netdev);
4365 struct e1000_hw *hw = &adapter->hw;
4366 u32 ctrl, ctrl_ext, rctl, status;
4367 u32 wufc = adapter->wol;
4368 int retval = 0;
4370 netif_device_detach(netdev);
4372 if (netif_running(netdev)) {
4373 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4374 e1000e_down(adapter);
4375 e1000_free_irq(adapter);
4377 e1000e_reset_interrupt_capability(adapter);
4379 retval = pci_save_state(pdev);
4380 if (retval)
4381 return retval;
4383 status = er32(STATUS);
4384 if (status & E1000_STATUS_LU)
4385 wufc &= ~E1000_WUFC_LNKC;
4387 if (wufc) {
4388 e1000_setup_rctl(adapter);
4389 e1000_set_multi(netdev);
4391 /* turn on all-multi mode if wake on multicast is enabled */
4392 if (wufc & E1000_WUFC_MC) {
4393 rctl = er32(RCTL);
4394 rctl |= E1000_RCTL_MPE;
4395 ew32(RCTL, rctl);
4398 ctrl = er32(CTRL);
4399 /* advertise wake from D3Cold */
4400 #define E1000_CTRL_ADVD3WUC 0x00100000
4401 /* phy power management enable */
4402 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4403 ctrl |= E1000_CTRL_ADVD3WUC |
4404 E1000_CTRL_EN_PHY_PWR_MGMT;
4405 ew32(CTRL, ctrl);
4407 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4408 adapter->hw.phy.media_type ==
4409 e1000_media_type_internal_serdes) {
4410 /* keep the laser running in D3 */
4411 ctrl_ext = er32(CTRL_EXT);
4412 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4413 ew32(CTRL_EXT, ctrl_ext);
4416 if (adapter->flags & FLAG_IS_ICH)
4417 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4419 /* Allow time for pending master requests to run */
4420 e1000e_disable_pcie_master(&adapter->hw);
4422 ew32(WUC, E1000_WUC_PME_EN);
4423 ew32(WUFC, wufc);
4424 pci_enable_wake(pdev, PCI_D3hot, 1);
4425 pci_enable_wake(pdev, PCI_D3cold, 1);
4426 } else {
4427 ew32(WUC, 0);
4428 ew32(WUFC, 0);
4429 pci_enable_wake(pdev, PCI_D3hot, 0);
4430 pci_enable_wake(pdev, PCI_D3cold, 0);
4433 /* make sure adapter isn't asleep if manageability is enabled */
4434 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4435 pci_enable_wake(pdev, PCI_D3hot, 1);
4436 pci_enable_wake(pdev, PCI_D3cold, 1);
4439 if (adapter->hw.phy.type == e1000_phy_igp_3)
4440 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4443 * Release control of h/w to f/w. If f/w is AMT enabled, this
4444 * would have already happened in close and is redundant.
4446 e1000_release_hw_control(adapter);
4448 pci_disable_device(pdev);
4450 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4452 return 0;
4455 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4457 int pos;
4458 u16 val;
4461 * 82573 workaround - disable L1 ASPM on mobile chipsets
4463 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4464 * resulting in lost data or garbage information on the pci-e link
4465 * level. This could result in (false) bad EEPROM checksum errors,
4466 * long ping times (up to 2s) or even a system freeze/hang.
4468 * Unfortunately this feature saves about 1W power consumption when
4469 * active.
4471 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4472 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4473 if (val & 0x2) {
4474 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4475 val &= ~0x2;
4476 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4480 #ifdef CONFIG_PM
4481 static int e1000_resume(struct pci_dev *pdev)
4483 struct net_device *netdev = pci_get_drvdata(pdev);
4484 struct e1000_adapter *adapter = netdev_priv(netdev);
4485 struct e1000_hw *hw = &adapter->hw;
4486 u32 err;
4488 pci_set_power_state(pdev, PCI_D0);
4489 pci_restore_state(pdev);
4490 e1000e_disable_l1aspm(pdev);
4492 err = pci_enable_device_mem(pdev);
4493 if (err) {
4494 dev_err(&pdev->dev,
4495 "Cannot enable PCI device from suspend\n");
4496 return err;
4499 pci_set_master(pdev);
4501 pci_enable_wake(pdev, PCI_D3hot, 0);
4502 pci_enable_wake(pdev, PCI_D3cold, 0);
4504 e1000e_set_interrupt_capability(adapter);
4505 if (netif_running(netdev)) {
4506 err = e1000_request_irq(adapter);
4507 if (err)
4508 return err;
4511 e1000e_power_up_phy(adapter);
4512 e1000e_reset(adapter);
4513 ew32(WUS, ~0);
4515 e1000_init_manageability(adapter);
4517 if (netif_running(netdev))
4518 e1000e_up(adapter);
4520 netif_device_attach(netdev);
4523 * If the controller has AMT, do not set DRV_LOAD until the interface
4524 * is up. For all other cases, let the f/w know that the h/w is now
4525 * under the control of the driver.
4527 if (!(adapter->flags & FLAG_HAS_AMT))
4528 e1000_get_hw_control(adapter);
4530 return 0;
4532 #endif
4534 static void e1000_shutdown(struct pci_dev *pdev)
4536 e1000_suspend(pdev, PMSG_SUSPEND);
4539 #ifdef CONFIG_NET_POLL_CONTROLLER
4541 * Polling 'interrupt' - used by things like netconsole to send skbs
4542 * without having to re-enable interrupts. It's not called while
4543 * the interrupt routine is executing.
4545 static void e1000_netpoll(struct net_device *netdev)
4547 struct e1000_adapter *adapter = netdev_priv(netdev);
4549 disable_irq(adapter->pdev->irq);
4550 e1000_intr(adapter->pdev->irq, netdev);
4552 enable_irq(adapter->pdev->irq);
4554 #endif
4557 * e1000_io_error_detected - called when PCI error is detected
4558 * @pdev: Pointer to PCI device
4559 * @state: The current pci connection state
4561 * This function is called after a PCI bus error affecting
4562 * this device has been detected.
4564 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4565 pci_channel_state_t state)
4567 struct net_device *netdev = pci_get_drvdata(pdev);
4568 struct e1000_adapter *adapter = netdev_priv(netdev);
4570 netif_device_detach(netdev);
4572 if (netif_running(netdev))
4573 e1000e_down(adapter);
4574 pci_disable_device(pdev);
4576 /* Request a slot slot reset. */
4577 return PCI_ERS_RESULT_NEED_RESET;
4581 * e1000_io_slot_reset - called after the pci bus has been reset.
4582 * @pdev: Pointer to PCI device
4584 * Restart the card from scratch, as if from a cold-boot. Implementation
4585 * resembles the first-half of the e1000_resume routine.
4587 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4589 struct net_device *netdev = pci_get_drvdata(pdev);
4590 struct e1000_adapter *adapter = netdev_priv(netdev);
4591 struct e1000_hw *hw = &adapter->hw;
4592 int err;
4594 e1000e_disable_l1aspm(pdev);
4595 err = pci_enable_device_mem(pdev);
4596 if (err) {
4597 dev_err(&pdev->dev,
4598 "Cannot re-enable PCI device after reset.\n");
4599 return PCI_ERS_RESULT_DISCONNECT;
4601 pci_set_master(pdev);
4602 pci_restore_state(pdev);
4604 pci_enable_wake(pdev, PCI_D3hot, 0);
4605 pci_enable_wake(pdev, PCI_D3cold, 0);
4607 e1000e_reset(adapter);
4608 ew32(WUS, ~0);
4610 return PCI_ERS_RESULT_RECOVERED;
4614 * e1000_io_resume - called when traffic can start flowing again.
4615 * @pdev: Pointer to PCI device
4617 * This callback is called when the error recovery driver tells us that
4618 * its OK to resume normal operation. Implementation resembles the
4619 * second-half of the e1000_resume routine.
4621 static void e1000_io_resume(struct pci_dev *pdev)
4623 struct net_device *netdev = pci_get_drvdata(pdev);
4624 struct e1000_adapter *adapter = netdev_priv(netdev);
4626 e1000_init_manageability(adapter);
4628 if (netif_running(netdev)) {
4629 if (e1000e_up(adapter)) {
4630 dev_err(&pdev->dev,
4631 "can't bring device back up after reset\n");
4632 return;
4636 netif_device_attach(netdev);
4639 * If the controller has AMT, do not set DRV_LOAD until the interface
4640 * is up. For all other cases, let the f/w know that the h/w is now
4641 * under the control of the driver.
4643 if (!(adapter->flags & FLAG_HAS_AMT))
4644 e1000_get_hw_control(adapter);
4648 static void e1000_print_device_info(struct e1000_adapter *adapter)
4650 struct e1000_hw *hw = &adapter->hw;
4651 struct net_device *netdev = adapter->netdev;
4652 u32 pba_num;
4654 /* print bus type/speed/width info */
4655 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4656 /* bus width */
4657 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4658 "Width x1"),
4659 /* MAC address */
4660 netdev->dev_addr[0], netdev->dev_addr[1],
4661 netdev->dev_addr[2], netdev->dev_addr[3],
4662 netdev->dev_addr[4], netdev->dev_addr[5]);
4663 e_info("Intel(R) PRO/%s Network Connection\n",
4664 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4665 e1000e_read_pba_num(hw, &pba_num);
4666 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4667 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4670 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4672 struct e1000_hw *hw = &adapter->hw;
4673 int ret_val;
4674 u16 buf = 0;
4676 if (hw->mac.type != e1000_82573)
4677 return;
4679 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4680 if (!(le16_to_cpu(buf) & (1 << 0))) {
4681 /* Deep Smart Power Down (DSPD) */
4682 dev_warn(&adapter->pdev->dev,
4683 "Warning: detected DSPD enabled in EEPROM\n");
4686 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4687 if (le16_to_cpu(buf) & (3 << 2)) {
4688 /* ASPM enable */
4689 dev_warn(&adapter->pdev->dev,
4690 "Warning: detected ASPM enabled in EEPROM\n");
4695 * e1000_probe - Device Initialization Routine
4696 * @pdev: PCI device information struct
4697 * @ent: entry in e1000_pci_tbl
4699 * Returns 0 on success, negative on failure
4701 * e1000_probe initializes an adapter identified by a pci_dev structure.
4702 * The OS initialization, configuring of the adapter private structure,
4703 * and a hardware reset occur.
4705 static int __devinit e1000_probe(struct pci_dev *pdev,
4706 const struct pci_device_id *ent)
4708 struct net_device *netdev;
4709 struct e1000_adapter *adapter;
4710 struct e1000_hw *hw;
4711 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4712 resource_size_t mmio_start, mmio_len;
4713 resource_size_t flash_start, flash_len;
4715 static int cards_found;
4716 int i, err, pci_using_dac;
4717 u16 eeprom_data = 0;
4718 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4720 e1000e_disable_l1aspm(pdev);
4722 err = pci_enable_device_mem(pdev);
4723 if (err)
4724 return err;
4726 pci_using_dac = 0;
4727 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4728 if (!err) {
4729 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4730 if (!err)
4731 pci_using_dac = 1;
4732 } else {
4733 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4734 if (err) {
4735 err = pci_set_consistent_dma_mask(pdev,
4736 DMA_32BIT_MASK);
4737 if (err) {
4738 dev_err(&pdev->dev, "No usable DMA "
4739 "configuration, aborting\n");
4740 goto err_dma;
4745 err = pci_request_selected_regions(pdev,
4746 pci_select_bars(pdev, IORESOURCE_MEM),
4747 e1000e_driver_name);
4748 if (err)
4749 goto err_pci_reg;
4751 pci_set_master(pdev);
4752 pci_save_state(pdev);
4754 err = -ENOMEM;
4755 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4756 if (!netdev)
4757 goto err_alloc_etherdev;
4759 SET_NETDEV_DEV(netdev, &pdev->dev);
4761 pci_set_drvdata(pdev, netdev);
4762 adapter = netdev_priv(netdev);
4763 hw = &adapter->hw;
4764 adapter->netdev = netdev;
4765 adapter->pdev = pdev;
4766 adapter->ei = ei;
4767 adapter->pba = ei->pba;
4768 adapter->flags = ei->flags;
4769 adapter->hw.adapter = adapter;
4770 adapter->hw.mac.type = ei->mac;
4771 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4773 mmio_start = pci_resource_start(pdev, 0);
4774 mmio_len = pci_resource_len(pdev, 0);
4776 err = -EIO;
4777 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4778 if (!adapter->hw.hw_addr)
4779 goto err_ioremap;
4781 if ((adapter->flags & FLAG_HAS_FLASH) &&
4782 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4783 flash_start = pci_resource_start(pdev, 1);
4784 flash_len = pci_resource_len(pdev, 1);
4785 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4786 if (!adapter->hw.flash_address)
4787 goto err_flashmap;
4790 /* construct the net_device struct */
4791 netdev->open = &e1000_open;
4792 netdev->stop = &e1000_close;
4793 netdev->hard_start_xmit = &e1000_xmit_frame;
4794 netdev->get_stats = &e1000_get_stats;
4795 netdev->set_multicast_list = &e1000_set_multi;
4796 netdev->set_mac_address = &e1000_set_mac;
4797 netdev->change_mtu = &e1000_change_mtu;
4798 netdev->do_ioctl = &e1000_ioctl;
4799 e1000e_set_ethtool_ops(netdev);
4800 netdev->tx_timeout = &e1000_tx_timeout;
4801 netdev->watchdog_timeo = 5 * HZ;
4802 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4803 netdev->vlan_rx_register = e1000_vlan_rx_register;
4804 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4805 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4806 #ifdef CONFIG_NET_POLL_CONTROLLER
4807 netdev->poll_controller = e1000_netpoll;
4808 #endif
4809 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4811 netdev->mem_start = mmio_start;
4812 netdev->mem_end = mmio_start + mmio_len;
4814 adapter->bd_number = cards_found++;
4816 e1000e_check_options(adapter);
4818 /* setup adapter struct */
4819 err = e1000_sw_init(adapter);
4820 if (err)
4821 goto err_sw_init;
4823 err = -EIO;
4825 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4826 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4827 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4829 err = ei->get_variants(adapter);
4830 if (err)
4831 goto err_hw_init;
4833 if ((adapter->flags & FLAG_IS_ICH) &&
4834 (adapter->flags & FLAG_READ_ONLY_NVM))
4835 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4837 hw->mac.ops.get_bus_info(&adapter->hw);
4839 adapter->hw.phy.autoneg_wait_to_complete = 0;
4841 /* Copper options */
4842 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4843 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4844 adapter->hw.phy.disable_polarity_correction = 0;
4845 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4848 if (e1000_check_reset_block(&adapter->hw))
4849 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4851 netdev->features = NETIF_F_SG |
4852 NETIF_F_HW_CSUM |
4853 NETIF_F_HW_VLAN_TX |
4854 NETIF_F_HW_VLAN_RX;
4856 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4857 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4859 netdev->features |= NETIF_F_TSO;
4860 netdev->features |= NETIF_F_TSO6;
4862 netdev->vlan_features |= NETIF_F_TSO;
4863 netdev->vlan_features |= NETIF_F_TSO6;
4864 netdev->vlan_features |= NETIF_F_HW_CSUM;
4865 netdev->vlan_features |= NETIF_F_SG;
4867 if (pci_using_dac)
4868 netdev->features |= NETIF_F_HIGHDMA;
4871 * We should not be using LLTX anymore, but we are still Tx faster with
4872 * it.
4874 netdev->features |= NETIF_F_LLTX;
4876 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4877 adapter->flags |= FLAG_MNG_PT_ENABLED;
4880 * before reading the NVM, reset the controller to
4881 * put the device in a known good starting state
4883 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4886 * systems with ASPM and others may see the checksum fail on the first
4887 * attempt. Let's give it a few tries
4889 for (i = 0;; i++) {
4890 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4891 break;
4892 if (i == 2) {
4893 e_err("The NVM Checksum Is Not Valid\n");
4894 err = -EIO;
4895 goto err_eeprom;
4899 e1000_eeprom_checks(adapter);
4901 /* copy the MAC address out of the NVM */
4902 if (e1000e_read_mac_addr(&adapter->hw))
4903 e_err("NVM Read Error while reading MAC address\n");
4905 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4906 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4908 if (!is_valid_ether_addr(netdev->perm_addr)) {
4909 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4910 netdev->perm_addr[0], netdev->perm_addr[1],
4911 netdev->perm_addr[2], netdev->perm_addr[3],
4912 netdev->perm_addr[4], netdev->perm_addr[5]);
4913 err = -EIO;
4914 goto err_eeprom;
4917 init_timer(&adapter->watchdog_timer);
4918 adapter->watchdog_timer.function = &e1000_watchdog;
4919 adapter->watchdog_timer.data = (unsigned long) adapter;
4921 init_timer(&adapter->phy_info_timer);
4922 adapter->phy_info_timer.function = &e1000_update_phy_info;
4923 adapter->phy_info_timer.data = (unsigned long) adapter;
4925 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4926 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4927 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4928 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4930 /* Initialize link parameters. User can change them with ethtool */
4931 adapter->hw.mac.autoneg = 1;
4932 adapter->fc_autoneg = 1;
4933 adapter->hw.fc.original_type = e1000_fc_default;
4934 adapter->hw.fc.type = e1000_fc_default;
4935 adapter->hw.phy.autoneg_advertised = 0x2f;
4937 /* ring size defaults */
4938 adapter->rx_ring->count = 256;
4939 adapter->tx_ring->count = 256;
4942 * Initial Wake on LAN setting - If APM wake is enabled in
4943 * the EEPROM, enable the ACPI Magic Packet filter
4945 if (adapter->flags & FLAG_APME_IN_WUC) {
4946 /* APME bit in EEPROM is mapped to WUC.APME */
4947 eeprom_data = er32(WUC);
4948 eeprom_apme_mask = E1000_WUC_APME;
4949 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4950 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4951 (adapter->hw.bus.func == 1))
4952 e1000_read_nvm(&adapter->hw,
4953 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4954 else
4955 e1000_read_nvm(&adapter->hw,
4956 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4959 /* fetch WoL from EEPROM */
4960 if (eeprom_data & eeprom_apme_mask)
4961 adapter->eeprom_wol |= E1000_WUFC_MAG;
4964 * now that we have the eeprom settings, apply the special cases
4965 * where the eeprom may be wrong or the board simply won't support
4966 * wake on lan on a particular port
4968 if (!(adapter->flags & FLAG_HAS_WOL))
4969 adapter->eeprom_wol = 0;
4971 /* initialize the wol settings based on the eeprom settings */
4972 adapter->wol = adapter->eeprom_wol;
4973 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
4975 /* reset the hardware with the new settings */
4976 e1000e_reset(adapter);
4979 * If the controller has AMT, do not set DRV_LOAD until the interface
4980 * is up. For all other cases, let the f/w know that the h/w is now
4981 * under the control of the driver.
4983 if (!(adapter->flags & FLAG_HAS_AMT))
4984 e1000_get_hw_control(adapter);
4986 /* tell the stack to leave us alone until e1000_open() is called */
4987 netif_carrier_off(netdev);
4988 netif_tx_stop_all_queues(netdev);
4990 strcpy(netdev->name, "eth%d");
4991 err = register_netdev(netdev);
4992 if (err)
4993 goto err_register;
4995 e1000_print_device_info(adapter);
4997 return 0;
4999 err_register:
5000 if (!(adapter->flags & FLAG_HAS_AMT))
5001 e1000_release_hw_control(adapter);
5002 err_eeprom:
5003 if (!e1000_check_reset_block(&adapter->hw))
5004 e1000_phy_hw_reset(&adapter->hw);
5005 err_hw_init:
5007 kfree(adapter->tx_ring);
5008 kfree(adapter->rx_ring);
5009 err_sw_init:
5010 if (adapter->hw.flash_address)
5011 iounmap(adapter->hw.flash_address);
5012 err_flashmap:
5013 iounmap(adapter->hw.hw_addr);
5014 err_ioremap:
5015 free_netdev(netdev);
5016 err_alloc_etherdev:
5017 pci_release_selected_regions(pdev,
5018 pci_select_bars(pdev, IORESOURCE_MEM));
5019 err_pci_reg:
5020 err_dma:
5021 pci_disable_device(pdev);
5022 return err;
5026 * e1000_remove - Device Removal Routine
5027 * @pdev: PCI device information struct
5029 * e1000_remove is called by the PCI subsystem to alert the driver
5030 * that it should release a PCI device. The could be caused by a
5031 * Hot-Plug event, or because the driver is going to be removed from
5032 * memory.
5034 static void __devexit e1000_remove(struct pci_dev *pdev)
5036 struct net_device *netdev = pci_get_drvdata(pdev);
5037 struct e1000_adapter *adapter = netdev_priv(netdev);
5040 * flush_scheduled work may reschedule our watchdog task, so
5041 * explicitly disable watchdog tasks from being rescheduled
5043 set_bit(__E1000_DOWN, &adapter->state);
5044 del_timer_sync(&adapter->watchdog_timer);
5045 del_timer_sync(&adapter->phy_info_timer);
5047 flush_scheduled_work();
5050 * Release control of h/w to f/w. If f/w is AMT enabled, this
5051 * would have already happened in close and is redundant.
5053 e1000_release_hw_control(adapter);
5055 unregister_netdev(netdev);
5057 if (!e1000_check_reset_block(&adapter->hw))
5058 e1000_phy_hw_reset(&adapter->hw);
5060 e1000e_reset_interrupt_capability(adapter);
5061 kfree(adapter->tx_ring);
5062 kfree(adapter->rx_ring);
5064 iounmap(adapter->hw.hw_addr);
5065 if (adapter->hw.flash_address)
5066 iounmap(adapter->hw.flash_address);
5067 pci_release_selected_regions(pdev,
5068 pci_select_bars(pdev, IORESOURCE_MEM));
5070 free_netdev(netdev);
5072 pci_disable_device(pdev);
5075 /* PCI Error Recovery (ERS) */
5076 static struct pci_error_handlers e1000_err_handler = {
5077 .error_detected = e1000_io_error_detected,
5078 .slot_reset = e1000_io_slot_reset,
5079 .resume = e1000_io_resume,
5082 static struct pci_device_id e1000_pci_tbl[] = {
5083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5105 board_80003es2lan },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5107 board_80003es2lan },
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5109 board_80003es2lan },
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5111 board_80003es2lan },
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5127 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5129 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5131 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5132 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5138 { } /* terminate list */
5140 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5142 /* PCI Device API Driver */
5143 static struct pci_driver e1000_driver = {
5144 .name = e1000e_driver_name,
5145 .id_table = e1000_pci_tbl,
5146 .probe = e1000_probe,
5147 .remove = __devexit_p(e1000_remove),
5148 #ifdef CONFIG_PM
5149 /* Power Management Hooks */
5150 .suspend = e1000_suspend,
5151 .resume = e1000_resume,
5152 #endif
5153 .shutdown = e1000_shutdown,
5154 .err_handler = &e1000_err_handler
5158 * e1000_init_module - Driver Registration Routine
5160 * e1000_init_module is the first routine called when the driver is
5161 * loaded. All it does is register with the PCI subsystem.
5163 static int __init e1000_init_module(void)
5165 int ret;
5166 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5167 e1000e_driver_name, e1000e_driver_version);
5168 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5169 e1000e_driver_name);
5170 ret = pci_register_driver(&e1000_driver);
5171 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5172 PM_QOS_DEFAULT_VALUE);
5174 return ret;
5176 module_init(e1000_init_module);
5179 * e1000_exit_module - Driver Exit Cleanup Routine
5181 * e1000_exit_module is called just before the driver is removed
5182 * from memory.
5184 static void __exit e1000_exit_module(void)
5186 pci_unregister_driver(&e1000_driver);
5187 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5189 module_exit(e1000_exit_module);
5192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5194 MODULE_LICENSE("GPL");
5195 MODULE_VERSION(DRV_VERSION);
5197 /* e1000_main.c */