2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2006
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
32 * Design Document: http://lwn.net/Articles/253651/
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/init.h>
41 #include <linux/spinlock.h>
42 #include <linux/smp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/interrupt.h>
45 #include <linux/sched.h>
46 #include <asm/atomic.h>
47 #include <linux/bitops.h>
48 #include <linux/module.h>
49 #include <linux/kthread.h>
50 #include <linux/completion.h>
51 #include <linux/moduleparam.h>
52 #include <linux/percpu.h>
53 #include <linux/notifier.h>
54 #include <linux/cpu.h>
55 #include <linux/random.h>
56 #include <linux/delay.h>
57 #include <linux/cpumask.h>
58 #include <linux/rcupreempt_trace.h>
59 #include <asm/byteorder.h>
62 * PREEMPT_RCU data structures.
66 * GP_STAGES specifies the number of times the state machine has
67 * to go through the all the rcu_try_flip_states (see below)
68 * in a single Grace Period.
70 * GP in GP_STAGES stands for Grace Period ;)
74 spinlock_t lock
; /* Protect rcu_data fields. */
75 long completed
; /* Number of last completed batch. */
77 struct rcu_head
*nextlist
;
78 struct rcu_head
**nexttail
;
79 struct rcu_head
*waitlist
[GP_STAGES
];
80 struct rcu_head
**waittail
[GP_STAGES
];
81 struct rcu_head
*donelist
; /* from waitlist & waitschedlist */
82 struct rcu_head
**donetail
;
84 struct rcu_head
*nextschedlist
;
85 struct rcu_head
**nextschedtail
;
86 struct rcu_head
*waitschedlist
;
87 struct rcu_head
**waitschedtail
;
88 int rcu_sched_sleeping
;
89 #ifdef CONFIG_RCU_TRACE
90 struct rcupreempt_trace trace
;
91 #endif /* #ifdef CONFIG_RCU_TRACE */
95 * States for rcu_try_flip() and friends.
98 enum rcu_try_flip_states
{
101 * Stay here if nothing is happening. Flip the counter if somthing
102 * starts happening. Denoted by "I"
104 rcu_try_flip_idle_state
,
107 * Wait here for all CPUs to notice that the counter has flipped. This
108 * prevents the old set of counters from ever being incremented once
109 * we leave this state, which in turn is necessary because we cannot
110 * test any individual counter for zero -- we can only check the sum.
113 rcu_try_flip_waitack_state
,
116 * Wait here for the sum of the old per-CPU counters to reach zero.
119 rcu_try_flip_waitzero_state
,
122 * Wait here for each of the other CPUs to execute a memory barrier.
123 * This is necessary to ensure that these other CPUs really have
124 * completed executing their RCU read-side critical sections, despite
125 * their CPUs wildly reordering memory. Denoted by "M".
127 rcu_try_flip_waitmb_state
,
131 * States for rcu_ctrlblk.rcu_sched_sleep.
134 enum rcu_sched_sleep_states
{
135 rcu_sched_not_sleeping
, /* Not sleeping, callbacks need GP. */
136 rcu_sched_sleep_prep
, /* Thinking of sleeping, rechecking. */
137 rcu_sched_sleeping
, /* Sleeping, awaken if GP needed. */
141 spinlock_t fliplock
; /* Protect state-machine transitions. */
142 long completed
; /* Number of last completed batch. */
143 enum rcu_try_flip_states rcu_try_flip_state
; /* The current state of
144 the rcu state machine */
145 spinlock_t schedlock
; /* Protect rcu_sched sleep state. */
146 enum rcu_sched_sleep_states sched_sleep
; /* rcu_sched state. */
147 wait_queue_head_t sched_wq
; /* Place for rcu_sched to sleep. */
150 static DEFINE_PER_CPU(struct rcu_data
, rcu_data
);
151 static struct rcu_ctrlblk rcu_ctrlblk
= {
152 .fliplock
= __SPIN_LOCK_UNLOCKED(rcu_ctrlblk
.fliplock
),
154 .rcu_try_flip_state
= rcu_try_flip_idle_state
,
155 .schedlock
= __SPIN_LOCK_UNLOCKED(rcu_ctrlblk
.schedlock
),
156 .sched_sleep
= rcu_sched_not_sleeping
,
157 .sched_wq
= __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk
.sched_wq
),
160 static struct task_struct
*rcu_sched_grace_period_task
;
162 #ifdef CONFIG_RCU_TRACE
163 static char *rcu_try_flip_state_names
[] =
164 { "idle", "waitack", "waitzero", "waitmb" };
165 #endif /* #ifdef CONFIG_RCU_TRACE */
167 static DECLARE_BITMAP(rcu_cpu_online_map
, NR_CPUS
) __read_mostly
171 * Enum and per-CPU flag to determine when each CPU has seen
172 * the most recent counter flip.
175 enum rcu_flip_flag_values
{
176 rcu_flip_seen
, /* Steady/initial state, last flip seen. */
177 /* Only GP detector can update. */
178 rcu_flipped
/* Flip just completed, need confirmation. */
179 /* Only corresponding CPU can update. */
181 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values
, rcu_flip_flag
)
185 * Enum and per-CPU flag to determine when each CPU has executed the
186 * needed memory barrier to fence in memory references from its last RCU
187 * read-side critical section in the just-completed grace period.
190 enum rcu_mb_flag_values
{
191 rcu_mb_done
, /* Steady/initial state, no mb()s required. */
192 /* Only GP detector can update. */
193 rcu_mb_needed
/* Flip just completed, need an mb(). */
194 /* Only corresponding CPU can update. */
196 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values
, rcu_mb_flag
)
200 * RCU_DATA_ME: find the current CPU's rcu_data structure.
201 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
203 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
204 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
207 * Helper macro for tracing when the appropriate rcu_data is not
208 * cached in a local variable, but where the CPU number is so cached.
210 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
213 * Helper macro for tracing when the appropriate rcu_data is not
214 * cached in a local variable.
216 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
219 * Helper macro for tracing when the appropriate rcu_data is pointed
220 * to by a local variable.
222 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
224 #define RCU_SCHED_BATCH_TIME (HZ / 50)
227 * Return the number of RCU batches processed thus far. Useful
228 * for debug and statistics.
230 long rcu_batches_completed(void)
232 return rcu_ctrlblk
.completed
;
234 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
236 void __rcu_read_lock(void)
239 struct task_struct
*t
= current
;
242 nesting
= ACCESS_ONCE(t
->rcu_read_lock_nesting
);
245 /* An earlier rcu_read_lock() covers us, just count it. */
247 t
->rcu_read_lock_nesting
= nesting
+ 1;
253 * We disable interrupts for the following reasons:
254 * - If we get scheduling clock interrupt here, and we
255 * end up acking the counter flip, it's like a promise
256 * that we will never increment the old counter again.
257 * Thus we will break that promise if that
258 * scheduling clock interrupt happens between the time
259 * we pick the .completed field and the time that we
260 * increment our counter.
262 * - We don't want to be preempted out here.
264 * NMIs can still occur, of course, and might themselves
265 * contain rcu_read_lock().
268 local_irq_save(flags
);
271 * Outermost nesting of rcu_read_lock(), so increment
272 * the current counter for the current CPU. Use volatile
273 * casts to prevent the compiler from reordering.
276 idx
= ACCESS_ONCE(rcu_ctrlblk
.completed
) & 0x1;
277 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr
[idx
])++;
280 * Now that the per-CPU counter has been incremented, we
281 * are protected from races with rcu_read_lock() invoked
282 * from NMI handlers on this CPU. We can therefore safely
283 * increment the nesting counter, relieving further NMIs
284 * of the need to increment the per-CPU counter.
287 ACCESS_ONCE(t
->rcu_read_lock_nesting
) = nesting
+ 1;
290 * Now that we have preventing any NMIs from storing
291 * to the ->rcu_flipctr_idx, we can safely use it to
292 * remember which counter to decrement in the matching
296 ACCESS_ONCE(t
->rcu_flipctr_idx
) = idx
;
297 local_irq_restore(flags
);
300 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
302 void __rcu_read_unlock(void)
305 struct task_struct
*t
= current
;
308 nesting
= ACCESS_ONCE(t
->rcu_read_lock_nesting
);
312 * We are still protected by the enclosing rcu_read_lock(),
313 * so simply decrement the counter.
316 t
->rcu_read_lock_nesting
= nesting
- 1;
322 * Disable local interrupts to prevent the grace-period
323 * detection state machine from seeing us half-done.
324 * NMIs can still occur, of course, and might themselves
325 * contain rcu_read_lock() and rcu_read_unlock().
328 local_irq_save(flags
);
331 * Outermost nesting of rcu_read_unlock(), so we must
332 * decrement the current counter for the current CPU.
333 * This must be done carefully, because NMIs can
334 * occur at any point in this code, and any rcu_read_lock()
335 * and rcu_read_unlock() pairs in the NMI handlers
336 * must interact non-destructively with this code.
337 * Lots of volatile casts, and -very- careful ordering.
339 * Changes to this code, including this one, must be
340 * inspected, validated, and tested extremely carefully!!!
344 * First, pick up the index.
347 idx
= ACCESS_ONCE(t
->rcu_flipctr_idx
);
350 * Now that we have fetched the counter index, it is
351 * safe to decrement the per-task RCU nesting counter.
352 * After this, any interrupts or NMIs will increment and
353 * decrement the per-CPU counters.
355 ACCESS_ONCE(t
->rcu_read_lock_nesting
) = nesting
- 1;
358 * It is now safe to decrement this task's nesting count.
359 * NMIs that occur after this statement will route their
360 * rcu_read_lock() calls through this "else" clause, and
361 * will thus start incrementing the per-CPU counter on
362 * their own. They will also clobber ->rcu_flipctr_idx,
363 * but that is OK, since we have already fetched it.
366 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr
[idx
])--;
367 local_irq_restore(flags
);
370 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
373 * If a global counter flip has occurred since the last time that we
374 * advanced callbacks, advance them. Hardware interrupts must be
375 * disabled when calling this function.
377 static void __rcu_advance_callbacks(struct rcu_data
*rdp
)
383 if (rdp
->completed
!= rcu_ctrlblk
.completed
) {
384 if (rdp
->waitlist
[GP_STAGES
- 1] != NULL
) {
385 *rdp
->donetail
= rdp
->waitlist
[GP_STAGES
- 1];
386 rdp
->donetail
= rdp
->waittail
[GP_STAGES
- 1];
387 RCU_TRACE_RDP(rcupreempt_trace_move2done
, rdp
);
389 for (i
= GP_STAGES
- 2; i
>= 0; i
--) {
390 if (rdp
->waitlist
[i
] != NULL
) {
391 rdp
->waitlist
[i
+ 1] = rdp
->waitlist
[i
];
392 rdp
->waittail
[i
+ 1] = rdp
->waittail
[i
];
395 rdp
->waitlist
[i
+ 1] = NULL
;
396 rdp
->waittail
[i
+ 1] =
397 &rdp
->waitlist
[i
+ 1];
400 if (rdp
->nextlist
!= NULL
) {
401 rdp
->waitlist
[0] = rdp
->nextlist
;
402 rdp
->waittail
[0] = rdp
->nexttail
;
404 rdp
->nextlist
= NULL
;
405 rdp
->nexttail
= &rdp
->nextlist
;
406 RCU_TRACE_RDP(rcupreempt_trace_move2wait
, rdp
);
408 rdp
->waitlist
[0] = NULL
;
409 rdp
->waittail
[0] = &rdp
->waitlist
[0];
411 rdp
->waitlistcount
= wlc
;
412 rdp
->completed
= rcu_ctrlblk
.completed
;
416 * Check to see if this CPU needs to report that it has seen
417 * the most recent counter flip, thereby declaring that all
418 * subsequent rcu_read_lock() invocations will respect this flip.
421 cpu
= raw_smp_processor_id();
422 if (per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) {
423 smp_mb(); /* Subsequent counter accesses must see new value */
424 per_cpu(rcu_flip_flag
, cpu
) = rcu_flip_seen
;
425 smp_mb(); /* Subsequent RCU read-side critical sections */
426 /* seen -after- acknowledgement. */
430 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched
, rcu_dyntick_sched
) = {
435 static DEFINE_PER_CPU(int, rcu_update_flag
);
438 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
440 * If the CPU was idle with dynamic ticks active, this updates the
441 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
444 void rcu_irq_enter(void)
446 int cpu
= smp_processor_id();
447 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
449 if (per_cpu(rcu_update_flag
, cpu
))
450 per_cpu(rcu_update_flag
, cpu
)++;
453 * Only update if we are coming from a stopped ticks mode
454 * (rcu_dyntick_sched.dynticks is even).
456 if (!in_interrupt() &&
457 (rdssp
->dynticks
& 0x1) == 0) {
459 * The following might seem like we could have a race
460 * with NMI/SMIs. But this really isn't a problem.
461 * Here we do a read/modify/write, and the race happens
462 * when an NMI/SMI comes in after the read and before
463 * the write. But NMI/SMIs will increment this counter
464 * twice before returning, so the zero bit will not
465 * be corrupted by the NMI/SMI which is the most important
468 * The only thing is that we would bring back the counter
469 * to a postion that it was in during the NMI/SMI.
470 * But the zero bit would be set, so the rest of the
471 * counter would again be ignored.
473 * On return from the IRQ, the counter may have the zero
474 * bit be 0 and the counter the same as the return from
475 * the NMI/SMI. If the state machine was so unlucky to
476 * see that, it still doesn't matter, since all
477 * RCU read-side critical sections on this CPU would
478 * have already completed.
482 * The following memory barrier ensures that any
483 * rcu_read_lock() primitives in the irq handler
484 * are seen by other CPUs to follow the above
485 * increment to rcu_dyntick_sched.dynticks. This is
486 * required in order for other CPUs to correctly
487 * determine when it is safe to advance the RCU
488 * grace-period state machine.
490 smp_mb(); /* see above block comment. */
492 * Since we can't determine the dynamic tick mode from
493 * the rcu_dyntick_sched.dynticks after this routine,
494 * we use a second flag to acknowledge that we came
495 * from an idle state with ticks stopped.
497 per_cpu(rcu_update_flag
, cpu
)++;
499 * If we take an NMI/SMI now, they will also increment
500 * the rcu_update_flag, and will not update the
501 * rcu_dyntick_sched.dynticks on exit. That is for
508 * rcu_irq_exit - Called from exiting Hard irq context.
510 * If the CPU was idle with dynamic ticks active, update the
511 * rcu_dyntick_sched.dynticks to put let the RCU handling be
512 * aware that the CPU is going back to idle with no ticks.
514 void rcu_irq_exit(void)
516 int cpu
= smp_processor_id();
517 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
520 * rcu_update_flag is set if we interrupted the CPU
521 * when it was idle with ticks stopped.
522 * Once this occurs, we keep track of interrupt nesting
523 * because a NMI/SMI could also come in, and we still
524 * only want the IRQ that started the increment of the
525 * rcu_dyntick_sched.dynticks to be the one that modifies
528 if (per_cpu(rcu_update_flag
, cpu
)) {
529 if (--per_cpu(rcu_update_flag
, cpu
))
532 /* This must match the interrupt nesting */
533 WARN_ON(in_interrupt());
536 * If an NMI/SMI happens now we are still
537 * protected by the rcu_dyntick_sched.dynticks being odd.
541 * The following memory barrier ensures that any
542 * rcu_read_unlock() primitives in the irq handler
543 * are seen by other CPUs to preceed the following
544 * increment to rcu_dyntick_sched.dynticks. This
545 * is required in order for other CPUs to determine
546 * when it is safe to advance the RCU grace-period
549 smp_mb(); /* see above block comment. */
551 WARN_ON(rdssp
->dynticks
& 0x1);
555 void rcu_nmi_enter(void)
560 void rcu_nmi_exit(void)
565 static void dyntick_save_progress_counter(int cpu
)
567 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
569 rdssp
->dynticks_snap
= rdssp
->dynticks
;
573 rcu_try_flip_waitack_needed(int cpu
)
577 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
579 curr
= rdssp
->dynticks
;
580 snap
= rdssp
->dynticks_snap
;
581 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
584 * If the CPU remained in dynticks mode for the entire time
585 * and didn't take any interrupts, NMIs, SMIs, or whatever,
586 * then it cannot be in the middle of an rcu_read_lock(), so
587 * the next rcu_read_lock() it executes must use the new value
588 * of the counter. So we can safely pretend that this CPU
589 * already acknowledged the counter.
592 if ((curr
== snap
) && ((curr
& 0x1) == 0))
596 * If the CPU passed through or entered a dynticks idle phase with
597 * no active irq handlers, then, as above, we can safely pretend
598 * that this CPU already acknowledged the counter.
601 if ((curr
- snap
) > 2 || (curr
& 0x1) == 0)
604 /* We need this CPU to explicitly acknowledge the counter flip. */
610 rcu_try_flip_waitmb_needed(int cpu
)
614 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
616 curr
= rdssp
->dynticks
;
617 snap
= rdssp
->dynticks_snap
;
618 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
621 * If the CPU remained in dynticks mode for the entire time
622 * and didn't take any interrupts, NMIs, SMIs, or whatever,
623 * then it cannot have executed an RCU read-side critical section
624 * during that time, so there is no need for it to execute a
628 if ((curr
== snap
) && ((curr
& 0x1) == 0))
632 * If the CPU either entered or exited an outermost interrupt,
633 * SMI, NMI, or whatever handler, then we know that it executed
634 * a memory barrier when doing so. So we don't need another one.
639 /* We need the CPU to execute a memory barrier. */
644 static void dyntick_save_progress_counter_sched(int cpu
)
646 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
648 rdssp
->sched_dynticks_snap
= rdssp
->dynticks
;
651 static int rcu_qsctr_inc_needed_dyntick(int cpu
)
655 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
657 curr
= rdssp
->dynticks
;
658 snap
= rdssp
->sched_dynticks_snap
;
659 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
662 * If the CPU remained in dynticks mode for the entire time
663 * and didn't take any interrupts, NMIs, SMIs, or whatever,
664 * then it cannot be in the middle of an rcu_read_lock(), so
665 * the next rcu_read_lock() it executes must use the new value
666 * of the counter. Therefore, this CPU has been in a quiescent
667 * state the entire time, and we don't need to wait for it.
670 if ((curr
== snap
) && ((curr
& 0x1) == 0))
674 * If the CPU passed through or entered a dynticks idle phase with
675 * no active irq handlers, then, as above, this CPU has already
676 * passed through a quiescent state.
679 if ((curr
- snap
) > 2 || (snap
& 0x1) == 0)
682 /* We need this CPU to go through a quiescent state. */
687 #else /* !CONFIG_NO_HZ */
689 # define dyntick_save_progress_counter(cpu) do { } while (0)
690 # define rcu_try_flip_waitack_needed(cpu) (1)
691 # define rcu_try_flip_waitmb_needed(cpu) (1)
693 # define dyntick_save_progress_counter_sched(cpu) do { } while (0)
694 # define rcu_qsctr_inc_needed_dyntick(cpu) (1)
696 #endif /* CONFIG_NO_HZ */
698 static void save_qsctr_sched(int cpu
)
700 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
702 rdssp
->sched_qs_snap
= rdssp
->sched_qs
;
705 static inline int rcu_qsctr_inc_needed(int cpu
)
707 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
710 * If there has been a quiescent state, no more need to wait
714 if (rdssp
->sched_qs
!= rdssp
->sched_qs_snap
) {
715 smp_mb(); /* force ordering with cpu entering schedule(). */
719 /* We need this CPU to go through a quiescent state. */
725 * Get here when RCU is idle. Decide whether we need to
726 * move out of idle state, and return non-zero if so.
727 * "Straightforward" approach for the moment, might later
728 * use callback-list lengths, grace-period duration, or
729 * some such to determine when to exit idle state.
730 * Might also need a pre-idle test that does not acquire
731 * the lock, but let's get the simple case working first...
735 rcu_try_flip_idle(void)
739 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1
);
740 if (!rcu_pending(smp_processor_id())) {
741 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1
);
749 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1
);
750 rcu_ctrlblk
.completed
++; /* stands in for rcu_try_flip_g2 */
753 * Need a memory barrier so that other CPUs see the new
754 * counter value before they see the subsequent change of all
755 * the rcu_flip_flag instances to rcu_flipped.
758 smp_mb(); /* see above block comment. */
760 /* Now ask each CPU for acknowledgement of the flip. */
762 for_each_cpu(cpu
, to_cpumask(rcu_cpu_online_map
)) {
763 per_cpu(rcu_flip_flag
, cpu
) = rcu_flipped
;
764 dyntick_save_progress_counter(cpu
);
771 * Wait for CPUs to acknowledge the flip.
775 rcu_try_flip_waitack(void)
779 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1
);
780 for_each_cpu(cpu
, to_cpumask(rcu_cpu_online_map
))
781 if (rcu_try_flip_waitack_needed(cpu
) &&
782 per_cpu(rcu_flip_flag
, cpu
) != rcu_flip_seen
) {
783 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1
);
788 * Make sure our checks above don't bleed into subsequent
789 * waiting for the sum of the counters to reach zero.
792 smp_mb(); /* see above block comment. */
793 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2
);
798 * Wait for collective ``last'' counter to reach zero,
799 * then tell all CPUs to do an end-of-grace-period memory barrier.
803 rcu_try_flip_waitzero(void)
806 int lastidx
= !(rcu_ctrlblk
.completed
& 0x1);
809 /* Check to see if the sum of the "last" counters is zero. */
811 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1
);
812 for_each_cpu(cpu
, to_cpumask(rcu_cpu_online_map
))
813 sum
+= RCU_DATA_CPU(cpu
)->rcu_flipctr
[lastidx
];
815 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1
);
820 * This ensures that the other CPUs see the call for
821 * memory barriers -after- the sum to zero has been
824 smp_mb(); /* ^^^^^^^^^^^^ */
826 /* Call for a memory barrier from each CPU. */
827 for_each_cpu(cpu
, to_cpumask(rcu_cpu_online_map
)) {
828 per_cpu(rcu_mb_flag
, cpu
) = rcu_mb_needed
;
829 dyntick_save_progress_counter(cpu
);
832 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2
);
837 * Wait for all CPUs to do their end-of-grace-period memory barrier.
838 * Return 0 once all CPUs have done so.
842 rcu_try_flip_waitmb(void)
846 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1
);
847 for_each_cpu(cpu
, to_cpumask(rcu_cpu_online_map
))
848 if (rcu_try_flip_waitmb_needed(cpu
) &&
849 per_cpu(rcu_mb_flag
, cpu
) != rcu_mb_done
) {
850 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1
);
854 smp_mb(); /* Ensure that the above checks precede any following flip. */
855 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2
);
860 * Attempt a single flip of the counters. Remember, a single flip does
861 * -not- constitute a grace period. Instead, the interval between
862 * at least GP_STAGES consecutive flips is a grace period.
864 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
865 * on a large SMP, they might want to use a hierarchical organization of
866 * the per-CPU-counter pairs.
868 static void rcu_try_flip(void)
872 RCU_TRACE_ME(rcupreempt_trace_try_flip_1
);
873 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk
.fliplock
, flags
))) {
874 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1
);
879 * Take the next transition(s) through the RCU grace-period
880 * flip-counter state machine.
883 switch (rcu_ctrlblk
.rcu_try_flip_state
) {
884 case rcu_try_flip_idle_state
:
885 if (rcu_try_flip_idle())
886 rcu_ctrlblk
.rcu_try_flip_state
=
887 rcu_try_flip_waitack_state
;
889 case rcu_try_flip_waitack_state
:
890 if (rcu_try_flip_waitack())
891 rcu_ctrlblk
.rcu_try_flip_state
=
892 rcu_try_flip_waitzero_state
;
894 case rcu_try_flip_waitzero_state
:
895 if (rcu_try_flip_waitzero())
896 rcu_ctrlblk
.rcu_try_flip_state
=
897 rcu_try_flip_waitmb_state
;
899 case rcu_try_flip_waitmb_state
:
900 if (rcu_try_flip_waitmb())
901 rcu_ctrlblk
.rcu_try_flip_state
=
902 rcu_try_flip_idle_state
;
904 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
908 * Check to see if this CPU needs to do a memory barrier in order to
909 * ensure that any prior RCU read-side critical sections have committed
910 * their counter manipulations and critical-section memory references
911 * before declaring the grace period to be completed.
913 static void rcu_check_mb(int cpu
)
915 if (per_cpu(rcu_mb_flag
, cpu
) == rcu_mb_needed
) {
916 smp_mb(); /* Ensure RCU read-side accesses are visible. */
917 per_cpu(rcu_mb_flag
, cpu
) = rcu_mb_done
;
921 void rcu_check_callbacks(int cpu
, int user
)
924 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
927 * If this CPU took its interrupt from user mode or from the
928 * idle loop, and this is not a nested interrupt, then
929 * this CPU has to have exited all prior preept-disable
930 * sections of code. So increment the counter to note this.
932 * The memory barrier is needed to handle the case where
933 * writes from a preempt-disable section of code get reordered
934 * into schedule() by this CPU's write buffer. So the memory
935 * barrier makes sure that the rcu_qsctr_inc() is seen by other
936 * CPUs to happen after any such write.
940 (idle_cpu(cpu
) && !in_softirq() &&
941 hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
942 smp_mb(); /* Guard against aggressive schedule(). */
947 if (rcu_ctrlblk
.completed
== rdp
->completed
)
949 spin_lock_irqsave(&rdp
->lock
, flags
);
950 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks
, rdp
);
951 __rcu_advance_callbacks(rdp
);
952 if (rdp
->donelist
== NULL
) {
953 spin_unlock_irqrestore(&rdp
->lock
, flags
);
955 spin_unlock_irqrestore(&rdp
->lock
, flags
);
956 raise_softirq(RCU_SOFTIRQ
);
961 * Needed by dynticks, to make sure all RCU processing has finished
964 void rcu_advance_callbacks(int cpu
, int user
)
967 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
969 if (rcu_ctrlblk
.completed
== rdp
->completed
) {
971 if (rcu_ctrlblk
.completed
== rdp
->completed
)
974 spin_lock_irqsave(&rdp
->lock
, flags
);
975 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks
, rdp
);
976 __rcu_advance_callbacks(rdp
);
977 spin_unlock_irqrestore(&rdp
->lock
, flags
);
980 #ifdef CONFIG_HOTPLUG_CPU
981 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
982 *dsttail = srclist; \
983 if (srclist != NULL) { \
990 void rcu_offline_cpu(int cpu
)
993 struct rcu_head
*list
= NULL
;
995 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
996 struct rcu_head
*schedlist
= NULL
;
997 struct rcu_head
**schedtail
= &schedlist
;
998 struct rcu_head
**tail
= &list
;
1001 * Remove all callbacks from the newly dead CPU, retaining order.
1002 * Otherwise rcu_barrier() will fail
1005 spin_lock_irqsave(&rdp
->lock
, flags
);
1006 rcu_offline_cpu_enqueue(rdp
->donelist
, rdp
->donetail
, list
, tail
);
1007 for (i
= GP_STAGES
- 1; i
>= 0; i
--)
1008 rcu_offline_cpu_enqueue(rdp
->waitlist
[i
], rdp
->waittail
[i
],
1010 rcu_offline_cpu_enqueue(rdp
->nextlist
, rdp
->nexttail
, list
, tail
);
1011 rcu_offline_cpu_enqueue(rdp
->waitschedlist
, rdp
->waitschedtail
,
1012 schedlist
, schedtail
);
1013 rcu_offline_cpu_enqueue(rdp
->nextschedlist
, rdp
->nextschedtail
,
1014 schedlist
, schedtail
);
1015 rdp
->rcu_sched_sleeping
= 0;
1016 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1017 rdp
->waitlistcount
= 0;
1019 /* Disengage the newly dead CPU from the grace-period computation. */
1021 spin_lock_irqsave(&rcu_ctrlblk
.fliplock
, flags
);
1023 if (per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) {
1024 smp_mb(); /* Subsequent counter accesses must see new value */
1025 per_cpu(rcu_flip_flag
, cpu
) = rcu_flip_seen
;
1026 smp_mb(); /* Subsequent RCU read-side critical sections */
1027 /* seen -after- acknowledgement. */
1030 RCU_DATA_ME()->rcu_flipctr
[0] += RCU_DATA_CPU(cpu
)->rcu_flipctr
[0];
1031 RCU_DATA_ME()->rcu_flipctr
[1] += RCU_DATA_CPU(cpu
)->rcu_flipctr
[1];
1033 RCU_DATA_CPU(cpu
)->rcu_flipctr
[0] = 0;
1034 RCU_DATA_CPU(cpu
)->rcu_flipctr
[1] = 0;
1036 cpumask_clear_cpu(cpu
, to_cpumask(rcu_cpu_online_map
));
1038 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
1041 * Place the removed callbacks on the current CPU's queue.
1042 * Make them all start a new grace period: simple approach,
1043 * in theory could starve a given set of callbacks, but
1044 * you would need to be doing some serious CPU hotplugging
1045 * to make this happen. If this becomes a problem, adding
1046 * a synchronize_rcu() to the hotplug path would be a simple
1050 local_irq_save(flags
); /* disable preempt till we know what lock. */
1051 rdp
= RCU_DATA_ME();
1052 spin_lock(&rdp
->lock
);
1053 *rdp
->nexttail
= list
;
1055 rdp
->nexttail
= tail
;
1056 *rdp
->nextschedtail
= schedlist
;
1058 rdp
->nextschedtail
= schedtail
;
1059 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1062 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1064 void rcu_offline_cpu(int cpu
)
1068 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1070 void __cpuinit
rcu_online_cpu(int cpu
)
1072 unsigned long flags
;
1073 struct rcu_data
*rdp
;
1075 spin_lock_irqsave(&rcu_ctrlblk
.fliplock
, flags
);
1076 cpumask_set_cpu(cpu
, to_cpumask(rcu_cpu_online_map
));
1077 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
1080 * The rcu_sched grace-period processing might have bypassed
1081 * this CPU, given that it was not in the rcu_cpu_online_map
1082 * when the grace-period scan started. This means that the
1083 * grace-period task might sleep. So make sure that if this
1084 * should happen, the first callback posted to this CPU will
1085 * wake up the grace-period task if need be.
1088 rdp
= RCU_DATA_CPU(cpu
);
1089 spin_lock_irqsave(&rdp
->lock
, flags
);
1090 rdp
->rcu_sched_sleeping
= 1;
1091 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1094 static void rcu_process_callbacks(struct softirq_action
*unused
)
1096 unsigned long flags
;
1097 struct rcu_head
*next
, *list
;
1098 struct rcu_data
*rdp
;
1100 local_irq_save(flags
);
1101 rdp
= RCU_DATA_ME();
1102 spin_lock(&rdp
->lock
);
1103 list
= rdp
->donelist
;
1105 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1108 rdp
->donelist
= NULL
;
1109 rdp
->donetail
= &rdp
->donelist
;
1110 RCU_TRACE_RDP(rcupreempt_trace_done_remove
, rdp
);
1111 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1116 RCU_TRACE_ME(rcupreempt_trace_invoke
);
1120 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1122 unsigned long flags
;
1123 struct rcu_data
*rdp
;
1127 local_irq_save(flags
);
1128 rdp
= RCU_DATA_ME();
1129 spin_lock(&rdp
->lock
);
1130 __rcu_advance_callbacks(rdp
);
1131 *rdp
->nexttail
= head
;
1132 rdp
->nexttail
= &head
->next
;
1133 RCU_TRACE_RDP(rcupreempt_trace_next_add
, rdp
);
1134 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1136 EXPORT_SYMBOL_GPL(call_rcu
);
1138 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1140 unsigned long flags
;
1141 struct rcu_data
*rdp
;
1146 local_irq_save(flags
);
1147 rdp
= RCU_DATA_ME();
1148 spin_lock(&rdp
->lock
);
1149 *rdp
->nextschedtail
= head
;
1150 rdp
->nextschedtail
= &head
->next
;
1151 if (rdp
->rcu_sched_sleeping
) {
1153 /* Grace-period processing might be sleeping... */
1155 rdp
->rcu_sched_sleeping
= 0;
1158 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1161 /* Wake up grace-period processing, unless someone beat us. */
1163 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1164 if (rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleeping
)
1166 rcu_ctrlblk
.sched_sleep
= rcu_sched_not_sleeping
;
1167 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1169 wake_up_interruptible(&rcu_ctrlblk
.sched_wq
);
1172 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1175 * Wait until all currently running preempt_disable() code segments
1176 * (including hardware-irq-disable segments) complete. Note that
1177 * in -rt this does -not- necessarily result in all currently executing
1178 * interrupt -handlers- having completed.
1180 void __synchronize_sched(void)
1182 struct rcu_synchronize rcu
;
1184 if (num_online_cpus() == 1)
1185 return; /* blocking is gp if only one CPU! */
1187 init_completion(&rcu
.completion
);
1188 /* Will wake me after RCU finished. */
1189 call_rcu_sched(&rcu
.head
, wakeme_after_rcu
);
1191 wait_for_completion(&rcu
.completion
);
1193 EXPORT_SYMBOL_GPL(__synchronize_sched
);
1196 * kthread function that manages call_rcu_sched grace periods.
1198 static int rcu_sched_grace_period(void *arg
)
1200 int couldsleep
; /* might sleep after current pass. */
1201 int couldsleepnext
= 0; /* might sleep after next pass. */
1203 unsigned long flags
;
1204 struct rcu_data
*rdp
;
1208 * Each pass through the following loop handles one
1209 * rcu_sched grace period cycle.
1212 /* Save each CPU's current state. */
1214 for_each_online_cpu(cpu
) {
1215 dyntick_save_progress_counter_sched(cpu
);
1216 save_qsctr_sched(cpu
);
1220 * Sleep for about an RCU grace-period's worth to
1221 * allow better batching and to consume less CPU.
1223 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME
);
1226 * If there was nothing to do last time, prepare to
1227 * sleep at the end of the current grace period cycle.
1229 couldsleep
= couldsleepnext
;
1232 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1233 rcu_ctrlblk
.sched_sleep
= rcu_sched_sleep_prep
;
1234 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1238 * Wait on each CPU in turn to have either visited
1239 * a quiescent state or been in dynticks-idle mode.
1241 for_each_online_cpu(cpu
) {
1242 while (rcu_qsctr_inc_needed(cpu
) &&
1243 rcu_qsctr_inc_needed_dyntick(cpu
)) {
1244 /* resched_cpu(cpu); @@@ */
1245 schedule_timeout_interruptible(1);
1249 /* Advance callbacks for each CPU. */
1251 for_each_online_cpu(cpu
) {
1253 rdp
= RCU_DATA_CPU(cpu
);
1254 spin_lock_irqsave(&rdp
->lock
, flags
);
1257 * We are running on this CPU irq-disabled, so no
1258 * CPU can go offline until we re-enable irqs.
1259 * The current CPU might have already gone
1260 * offline (between the for_each_offline_cpu and
1261 * the spin_lock_irqsave), but in that case all its
1262 * callback lists will be empty, so no harm done.
1264 * Advance the callbacks! We share normal RCU's
1265 * donelist, since callbacks are invoked the
1266 * same way in either case.
1268 if (rdp
->waitschedlist
!= NULL
) {
1269 *rdp
->donetail
= rdp
->waitschedlist
;
1270 rdp
->donetail
= rdp
->waitschedtail
;
1273 * Next rcu_check_callbacks() will
1274 * do the required raise_softirq().
1277 if (rdp
->nextschedlist
!= NULL
) {
1278 rdp
->waitschedlist
= rdp
->nextschedlist
;
1279 rdp
->waitschedtail
= rdp
->nextschedtail
;
1283 rdp
->waitschedlist
= NULL
;
1284 rdp
->waitschedtail
= &rdp
->waitschedlist
;
1286 rdp
->nextschedlist
= NULL
;
1287 rdp
->nextschedtail
= &rdp
->nextschedlist
;
1289 /* Mark sleep intention. */
1291 rdp
->rcu_sched_sleeping
= couldsleep
;
1293 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1296 /* If we saw callbacks on the last scan, go deal with them. */
1301 /* Attempt to block... */
1303 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1304 if (rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleep_prep
) {
1307 * Someone posted a callback after we scanned.
1308 * Go take care of it.
1310 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1315 /* Block until the next person posts a callback. */
1317 rcu_ctrlblk
.sched_sleep
= rcu_sched_sleeping
;
1318 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1320 __wait_event_interruptible(rcu_ctrlblk
.sched_wq
,
1321 rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleeping
,
1325 * Signals would prevent us from sleeping, and we cannot
1326 * do much with them in any case. So flush them.
1329 flush_signals(current
);
1332 } while (!kthread_should_stop());
1338 * Check to see if any future RCU-related work will need to be done
1339 * by the current CPU, even if none need be done immediately, returning
1340 * 1 if so. Assumes that notifiers would take care of handling any
1341 * outstanding requests from the RCU core.
1343 * This function is part of the RCU implementation; it is -not-
1344 * an exported member of the RCU API.
1346 int rcu_needs_cpu(int cpu
)
1348 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1350 return (rdp
->donelist
!= NULL
||
1351 !!rdp
->waitlistcount
||
1352 rdp
->nextlist
!= NULL
||
1353 rdp
->nextschedlist
!= NULL
||
1354 rdp
->waitschedlist
!= NULL
);
1357 int rcu_pending(int cpu
)
1359 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1361 /* The CPU has at least one callback queued somewhere. */
1363 if (rdp
->donelist
!= NULL
||
1364 !!rdp
->waitlistcount
||
1365 rdp
->nextlist
!= NULL
||
1366 rdp
->nextschedlist
!= NULL
||
1367 rdp
->waitschedlist
!= NULL
)
1370 /* The RCU core needs an acknowledgement from this CPU. */
1372 if ((per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) ||
1373 (per_cpu(rcu_mb_flag
, cpu
) == rcu_mb_needed
))
1376 /* This CPU has fallen behind the global grace-period number. */
1378 if (rdp
->completed
!= rcu_ctrlblk
.completed
)
1381 /* Nothing needed from this CPU. */
1386 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1387 unsigned long action
, void *hcpu
)
1389 long cpu
= (long)hcpu
;
1392 case CPU_UP_PREPARE
:
1393 case CPU_UP_PREPARE_FROZEN
:
1394 rcu_online_cpu(cpu
);
1396 case CPU_UP_CANCELED
:
1397 case CPU_UP_CANCELED_FROZEN
:
1399 case CPU_DEAD_FROZEN
:
1400 rcu_offline_cpu(cpu
);
1408 static struct notifier_block __cpuinitdata rcu_nb
= {
1409 .notifier_call
= rcu_cpu_notify
,
1412 void __init
__rcu_init(void)
1416 struct rcu_data
*rdp
;
1418 printk(KERN_NOTICE
"Preemptible RCU implementation.\n");
1419 for_each_possible_cpu(cpu
) {
1420 rdp
= RCU_DATA_CPU(cpu
);
1421 spin_lock_init(&rdp
->lock
);
1423 rdp
->waitlistcount
= 0;
1424 rdp
->nextlist
= NULL
;
1425 rdp
->nexttail
= &rdp
->nextlist
;
1426 for (i
= 0; i
< GP_STAGES
; i
++) {
1427 rdp
->waitlist
[i
] = NULL
;
1428 rdp
->waittail
[i
] = &rdp
->waitlist
[i
];
1430 rdp
->donelist
= NULL
;
1431 rdp
->donetail
= &rdp
->donelist
;
1432 rdp
->rcu_flipctr
[0] = 0;
1433 rdp
->rcu_flipctr
[1] = 0;
1434 rdp
->nextschedlist
= NULL
;
1435 rdp
->nextschedtail
= &rdp
->nextschedlist
;
1436 rdp
->waitschedlist
= NULL
;
1437 rdp
->waitschedtail
= &rdp
->waitschedlist
;
1438 rdp
->rcu_sched_sleeping
= 0;
1440 register_cpu_notifier(&rcu_nb
);
1443 * We don't need protection against CPU-Hotplug here
1445 * a) If a CPU comes online while we are iterating over the
1446 * cpu_online_mask below, we would only end up making a
1447 * duplicate call to rcu_online_cpu() which sets the corresponding
1448 * CPU's mask in the rcu_cpu_online_map.
1450 * b) A CPU cannot go offline at this point in time since the user
1451 * does not have access to the sysfs interface, nor do we
1452 * suspend the system.
1454 for_each_online_cpu(cpu
)
1455 rcu_cpu_notify(&rcu_nb
, CPU_UP_PREPARE
, (void *)(long) cpu
);
1457 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1461 * Late-boot-time RCU initialization that must wait until after scheduler
1462 * has been initialized.
1464 void __init
rcu_init_sched(void)
1466 rcu_sched_grace_period_task
= kthread_run(rcu_sched_grace_period
,
1468 "rcu_sched_grace_period");
1469 WARN_ON(IS_ERR(rcu_sched_grace_period_task
));
1472 #ifdef CONFIG_RCU_TRACE
1473 long *rcupreempt_flipctr(int cpu
)
1475 return &RCU_DATA_CPU(cpu
)->rcu_flipctr
[0];
1477 EXPORT_SYMBOL_GPL(rcupreempt_flipctr
);
1479 int rcupreempt_flip_flag(int cpu
)
1481 return per_cpu(rcu_flip_flag
, cpu
);
1483 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag
);
1485 int rcupreempt_mb_flag(int cpu
)
1487 return per_cpu(rcu_mb_flag
, cpu
);
1489 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag
);
1491 char *rcupreempt_try_flip_state_name(void)
1493 return rcu_try_flip_state_names
[rcu_ctrlblk
.rcu_try_flip_state
];
1495 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name
);
1497 struct rcupreempt_trace
*rcupreempt_trace_cpu(int cpu
)
1499 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1503 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu
);
1505 #endif /* #ifdef RCU_TRACE */