drivers/dma/dmatest.c: switch a GFP_ATOMIC to GFP_KERNEL
[linux-2.6/mini2440.git] / mm / slub.c
blobfb486d5540f8bb0a7110245f2368fe2ace28338d
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG 1
107 #else
108 #define SLABDEBUG 0
109 #endif
112 * Issues still to be resolved:
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 * - Variable sizing of the per node arrays
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 #define MIN_PARTIAL 5
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
133 #define MAX_PARTIAL 10
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 SLAB_POISON | SLAB_STORE_USER)
139 * Set of flags that will prevent slab merging
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 SLAB_CACHE_DMA)
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149 #endif
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153 #endif
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON 0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
159 static int kmem_size = sizeof(struct kmem_cache);
161 #ifdef CONFIG_SMP
162 static struct notifier_block slab_notifier;
163 #endif
165 static enum {
166 DOWN, /* No slab functionality available */
167 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
168 UP, /* Everything works but does not show up in sysfs */
169 SYSFS /* Sysfs up */
170 } slab_state = DOWN;
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock);
174 static LIST_HEAD(slab_caches);
177 * Tracking user of a slab.
179 struct track {
180 void *addr; /* Called from address */
181 int cpu; /* Was running on cpu */
182 int pid; /* Pid context */
183 unsigned long when; /* When did the operation occur */
186 enum track_item { TRACK_ALLOC, TRACK_FREE };
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache *);
190 static int sysfs_slab_alias(struct kmem_cache *, const char *);
191 static void sysfs_slab_remove(struct kmem_cache *);
193 #else
194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196 { return 0; }
197 static inline void sysfs_slab_remove(struct kmem_cache *s)
199 kfree(s);
202 #endif
204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
206 #ifdef CONFIG_SLUB_STATS
207 c->stat[si]++;
208 #endif
211 /********************************************************************
212 * Core slab cache functions
213 *******************************************************************/
215 int slab_is_available(void)
217 return slab_state >= UP;
220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
222 #ifdef CONFIG_NUMA
223 return s->node[node];
224 #else
225 return &s->local_node;
226 #endif
229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
231 #ifdef CONFIG_SMP
232 return s->cpu_slab[cpu];
233 #else
234 return &s->cpu_slab;
235 #endif
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
242 void *base;
244 if (!object)
245 return 1;
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
250 return 0;
253 return 1;
257 * Slow version of get and set free pointer.
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 return *(void **)(object + s->offset);
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 *(void **)(object + s->offset) = fp;
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 __p += (__s)->size)
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 return (p - addr) / s->size;
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 unsigned long size)
291 struct kmem_cache_order_objects x = {
292 (order << 16) + (PAGE_SIZE << order) / size
295 return x;
298 static inline int oo_order(struct kmem_cache_order_objects x)
300 return x.x >> 16;
303 static inline int oo_objects(struct kmem_cache_order_objects x)
305 return x.x & ((1 << 16) - 1);
308 #ifdef CONFIG_SLUB_DEBUG
310 * Debug settings:
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
318 static char *slub_debug_slabs;
321 * Object debugging
323 static void print_section(char *text, u8 *addr, unsigned int length)
325 int i, offset;
326 int newline = 1;
327 char ascii[17];
329 ascii[16] = 0;
331 for (i = 0; i < length; i++) {
332 if (newline) {
333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334 newline = 0;
336 printk(KERN_CONT " %02x", addr[i]);
337 offset = i % 16;
338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 if (offset == 15) {
340 printk(KERN_CONT " %s\n", ascii);
341 newline = 1;
344 if (!newline) {
345 i %= 16;
346 while (i < 16) {
347 printk(KERN_CONT " ");
348 ascii[i] = ' ';
349 i++;
351 printk(KERN_CONT " %s\n", ascii);
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 enum track_item alloc)
358 struct track *p;
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
365 return p + alloc;
368 static void set_track(struct kmem_cache *s, void *object,
369 enum track_item alloc, void *addr)
371 struct track *p;
373 if (s->offset)
374 p = object + s->offset + sizeof(void *);
375 else
376 p = object + s->inuse;
378 p += alloc;
379 if (addr) {
380 p->addr = addr;
381 p->cpu = smp_processor_id();
382 p->pid = current->pid;
383 p->when = jiffies;
384 } else
385 memset(p, 0, sizeof(struct track));
388 static void init_tracking(struct kmem_cache *s, void *object)
390 if (!(s->flags & SLAB_STORE_USER))
391 return;
393 set_track(s, object, TRACK_FREE, NULL);
394 set_track(s, object, TRACK_ALLOC, NULL);
397 static void print_track(const char *s, struct track *t)
399 if (!t->addr)
400 return;
402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s, t->addr, jiffies - t->when, t->cpu, t->pid);
406 static void print_tracking(struct kmem_cache *s, void *object)
408 if (!(s->flags & SLAB_STORE_USER))
409 return;
411 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 print_track("Freed", get_track(s, object, TRACK_FREE));
415 static void print_page_info(struct page *page)
417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page, page->objects, page->inuse, page->freelist, page->flags);
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424 va_list args;
425 char buf[100];
427 va_start(args, fmt);
428 vsnprintf(buf, sizeof(buf), fmt, args);
429 va_end(args);
430 printk(KERN_ERR "========================================"
431 "=====================================\n");
432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 printk(KERN_ERR "----------------------------------------"
434 "-------------------------------------\n\n");
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439 va_list args;
440 char buf[100];
442 va_start(args, fmt);
443 vsnprintf(buf, sizeof(buf), fmt, args);
444 va_end(args);
445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 unsigned int off; /* Offset of last byte */
451 u8 *addr = page_address(page);
453 print_tracking(s, p);
455 print_page_info(page);
457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p, p - addr, get_freepointer(s, p));
460 if (p > addr + 16)
461 print_section("Bytes b4", p - 16, 16);
463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465 if (s->flags & SLAB_RED_ZONE)
466 print_section("Redzone", p + s->objsize,
467 s->inuse - s->objsize);
469 if (s->offset)
470 off = s->offset + sizeof(void *);
471 else
472 off = s->inuse;
474 if (s->flags & SLAB_STORE_USER)
475 off += 2 * sizeof(struct track);
477 if (off != s->size)
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p + off, s->size - off);
481 dump_stack();
484 static void object_err(struct kmem_cache *s, struct page *page,
485 u8 *object, char *reason)
487 slab_bug(s, "%s", reason);
488 print_trailer(s, page, object);
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493 va_list args;
494 char buf[100];
496 va_start(args, fmt);
497 vsnprintf(buf, sizeof(buf), fmt, args);
498 va_end(args);
499 slab_bug(s, "%s", buf);
500 print_page_info(page);
501 dump_stack();
504 static void init_object(struct kmem_cache *s, void *object, int active)
506 u8 *p = object;
508 if (s->flags & __OBJECT_POISON) {
509 memset(p, POISON_FREE, s->objsize - 1);
510 p[s->objsize - 1] = POISON_END;
513 if (s->flags & SLAB_RED_ZONE)
514 memset(p + s->objsize,
515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 s->inuse - s->objsize);
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521 while (bytes) {
522 if (*start != (u8)value)
523 return start;
524 start++;
525 bytes--;
527 return NULL;
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 void *from, void *to)
533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 memset(from, data, to - from);
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 u8 *object, char *what,
539 u8 *start, unsigned int value, unsigned int bytes)
541 u8 *fault;
542 u8 *end;
544 fault = check_bytes(start, value, bytes);
545 if (!fault)
546 return 1;
548 end = start + bytes;
549 while (end > fault && end[-1] == value)
550 end--;
552 slab_bug(s, "%s overwritten", what);
553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault, end - 1, fault[0], value);
555 print_trailer(s, page, object);
557 restore_bytes(s, what, value, fault, end);
558 return 0;
562 * Object layout:
564 * object address
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 0xa5 (POISON_END)
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
575 * objsize == inuse.
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
580 * object + s->inuse
581 * Meta data starts here.
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
589 * Padding is done using 0x5a (POISON_INUSE)
591 * object + s->size
592 * Nothing is used beyond s->size.
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 unsigned long off = s->inuse; /* The end of info */
603 if (s->offset)
604 /* Freepointer is placed after the object. */
605 off += sizeof(void *);
607 if (s->flags & SLAB_STORE_USER)
608 /* We also have user information there */
609 off += 2 * sizeof(struct track);
611 if (s->size == off)
612 return 1;
614 return check_bytes_and_report(s, page, p, "Object padding",
615 p + off, POISON_INUSE, s->size - off);
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
621 u8 *start;
622 u8 *fault;
623 u8 *end;
624 int length;
625 int remainder;
627 if (!(s->flags & SLAB_POISON))
628 return 1;
630 start = page_address(page);
631 length = (PAGE_SIZE << compound_order(page));
632 end = start + length;
633 remainder = length % s->size;
634 if (!remainder)
635 return 1;
637 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 if (!fault)
639 return 1;
640 while (end > fault && end[-1] == POISON_INUSE)
641 end--;
643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 print_section("Padding", end - remainder, remainder);
646 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 return 0;
650 static int check_object(struct kmem_cache *s, struct page *page,
651 void *object, int active)
653 u8 *p = object;
654 u8 *endobject = object + s->objsize;
656 if (s->flags & SLAB_RED_ZONE) {
657 unsigned int red =
658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660 if (!check_bytes_and_report(s, page, object, "Redzone",
661 endobject, red, s->inuse - s->objsize))
662 return 0;
663 } else {
664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 check_bytes_and_report(s, page, p, "Alignment padding",
666 endobject, POISON_INUSE, s->inuse - s->objsize);
670 if (s->flags & SLAB_POISON) {
671 if (!active && (s->flags & __OBJECT_POISON) &&
672 (!check_bytes_and_report(s, page, p, "Poison", p,
673 POISON_FREE, s->objsize - 1) ||
674 !check_bytes_and_report(s, page, p, "Poison",
675 p + s->objsize - 1, POISON_END, 1)))
676 return 0;
678 * check_pad_bytes cleans up on its own.
680 check_pad_bytes(s, page, p);
683 if (!s->offset && active)
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
688 return 1;
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 object_err(s, page, p, "Freepointer corrupt");
694 * No choice but to zap it and thus loose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
698 set_freepointer(s, p, NULL);
699 return 0;
701 return 1;
704 static int check_slab(struct kmem_cache *s, struct page *page)
706 int maxobj;
708 VM_BUG_ON(!irqs_disabled());
710 if (!PageSlab(page)) {
711 slab_err(s, page, "Not a valid slab page");
712 return 0;
715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 if (page->objects > maxobj) {
717 slab_err(s, page, "objects %u > max %u",
718 s->name, page->objects, maxobj);
719 return 0;
721 if (page->inuse > page->objects) {
722 slab_err(s, page, "inuse %u > max %u",
723 s->name, page->inuse, page->objects);
724 return 0;
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s, page);
728 return 1;
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737 int nr = 0;
738 void *fp = page->freelist;
739 void *object = NULL;
740 unsigned long max_objects;
742 while (fp && nr <= page->objects) {
743 if (fp == search)
744 return 1;
745 if (!check_valid_pointer(s, page, fp)) {
746 if (object) {
747 object_err(s, page, object,
748 "Freechain corrupt");
749 set_freepointer(s, object, NULL);
750 break;
751 } else {
752 slab_err(s, page, "Freepointer corrupt");
753 page->freelist = NULL;
754 page->inuse = page->objects;
755 slab_fix(s, "Freelist cleared");
756 return 0;
758 break;
760 object = fp;
761 fp = get_freepointer(s, object);
762 nr++;
765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 if (max_objects > 65535)
767 max_objects = 65535;
769 if (page->objects != max_objects) {
770 slab_err(s, page, "Wrong number of objects. Found %d but "
771 "should be %d", page->objects, max_objects);
772 page->objects = max_objects;
773 slab_fix(s, "Number of objects adjusted.");
775 if (page->inuse != page->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, page->objects - nr);
778 page->inuse = page->objects - nr;
779 slab_fix(s, "Object count adjusted.");
781 return search == NULL;
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
785 int alloc)
787 if (s->flags & SLAB_TRACE) {
788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 s->name,
790 alloc ? "alloc" : "free",
791 object, page->inuse,
792 page->freelist);
794 if (!alloc)
795 print_section("Object", (void *)object, s->objsize);
797 dump_stack();
802 * Tracking of fully allocated slabs for debugging purposes.
804 static void add_full(struct kmem_cache_node *n, struct page *page)
806 spin_lock(&n->list_lock);
807 list_add(&page->lru, &n->full);
808 spin_unlock(&n->list_lock);
811 static void remove_full(struct kmem_cache *s, struct page *page)
813 struct kmem_cache_node *n;
815 if (!(s->flags & SLAB_STORE_USER))
816 return;
818 n = get_node(s, page_to_nid(page));
820 spin_lock(&n->list_lock);
821 list_del(&page->lru);
822 spin_unlock(&n->list_lock);
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 struct kmem_cache_node *n = get_node(s, node);
830 return atomic_long_read(&n->nr_slabs);
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 struct kmem_cache_node *n = get_node(s, node);
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 struct kmem_cache_node *n = get_node(s, node);
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
863 init_object(s, object, 0);
864 init_tracking(s, object);
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, void *addr)
870 if (!check_slab(s, page))
871 goto bad;
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
883 if (!check_object(s, page, object, 0))
884 goto bad;
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
893 bad:
894 if (PageSlab(page)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
904 return 0;
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, void *addr)
910 if (!check_slab(s, page))
911 goto fail;
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
923 if (!check_object(s, page, object, 1))
924 return 0;
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
955 static int __init setup_slub_debug(char *str)
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
960 * No options specified. Switch on full debugging.
962 goto out;
964 if (*str == ',')
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
969 goto check_slabs;
971 slub_debug = 0;
972 if (*str == '-')
974 * Switch off all debugging measures.
976 goto out;
979 * Determine which debug features should be switched on
981 for (; *str && *str != ','; str++) {
982 switch (tolower(*str)) {
983 case 'f':
984 slub_debug |= SLAB_DEBUG_FREE;
985 break;
986 case 'z':
987 slub_debug |= SLAB_RED_ZONE;
988 break;
989 case 'p':
990 slub_debug |= SLAB_POISON;
991 break;
992 case 'u':
993 slub_debug |= SLAB_STORE_USER;
994 break;
995 case 't':
996 slub_debug |= SLAB_TRACE;
997 break;
998 default:
999 printk(KERN_ERR "slub_debug option '%c' "
1000 "unknown. skipped\n", *str);
1004 check_slabs:
1005 if (*str == ',')
1006 slub_debug_slabs = str + 1;
1007 out:
1008 return 1;
1011 __setup("slub_debug", setup_slub_debug);
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
1015 void (*ctor)(void *))
1018 * Enable debugging if selected on the kernel commandline.
1020 if (slub_debug && (!slub_debug_slabs ||
1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
1024 return flags;
1026 #else
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 struct page *page, void *object) {}
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page, void *object, void *addr) { return 0; }
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 struct page *page, void *object, void *addr) { return 0; }
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 { return 1; }
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 unsigned long flags, const char *name,
1043 void (*ctor)(void *))
1045 return flags;
1047 #define slub_debug 0
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 { return 0; }
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 int objects) {}
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 int objects) {}
1055 #endif
1058 * Slab allocation and freeing
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 struct kmem_cache_order_objects oo)
1063 int order = oo_order(oo);
1065 if (node == -1)
1066 return alloc_pages(flags, order);
1067 else
1068 return alloc_pages_node(node, flags, order);
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 struct page *page;
1074 struct kmem_cache_order_objects oo = s->oo;
1076 flags |= s->allocflags;
1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 oo);
1080 if (unlikely(!page)) {
1081 oo = s->min;
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1086 page = alloc_slab_page(flags, node, oo);
1087 if (!page)
1088 return NULL;
1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 page->objects = oo_objects(oo);
1093 mod_zone_page_state(page_zone(page),
1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096 1 << oo_order(oo));
1098 return page;
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1102 void *object)
1104 setup_object_debug(s, page, object);
1105 if (unlikely(s->ctor))
1106 s->ctor(object);
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111 struct page *page;
1112 void *start;
1113 void *last;
1114 void *p;
1116 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118 page = allocate_slab(s,
1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120 if (!page)
1121 goto out;
1123 inc_slabs_node(s, page_to_nid(page), page->objects);
1124 page->slab = s;
1125 page->flags |= 1 << PG_slab;
1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 SLAB_STORE_USER | SLAB_TRACE))
1128 __SetPageSlubDebug(page);
1130 start = page_address(page);
1132 if (unlikely(s->flags & SLAB_POISON))
1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135 last = start;
1136 for_each_object(p, s, start, page->objects) {
1137 setup_object(s, page, last);
1138 set_freepointer(s, last, p);
1139 last = p;
1141 setup_object(s, page, last);
1142 set_freepointer(s, last, NULL);
1144 page->freelist = start;
1145 page->inuse = 0;
1146 out:
1147 return page;
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 int order = compound_order(page);
1153 int pages = 1 << order;
1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156 void *p;
1158 slab_pad_check(s, page);
1159 for_each_object(p, s, page_address(page),
1160 page->objects)
1161 check_object(s, page, p, 0);
1162 __ClearPageSlubDebug(page);
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168 -pages);
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
1172 __free_pages(page, order);
1175 static void rcu_free_slab(struct rcu_head *h)
1177 struct page *page;
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 * RCU free overloads the RCU head over the LRU
1189 struct rcu_head *head = (void *)&page->lru;
1191 call_rcu(head, rcu_free_slab);
1192 } else
1193 __free_slab(s, page);
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 dec_slabs_node(s, page_to_nid(page), page->objects);
1199 free_slab(s, page);
1203 * Per slab locking using the pagelock
1205 static __always_inline void slab_lock(struct page *page)
1207 bit_spin_lock(PG_locked, &page->flags);
1210 static __always_inline void slab_unlock(struct page *page)
1212 __bit_spin_unlock(PG_locked, &page->flags);
1215 static __always_inline int slab_trylock(struct page *page)
1217 int rc = 1;
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1220 return rc;
1224 * Management of partially allocated slabs
1226 static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
1229 spin_lock(&n->list_lock);
1230 n->nr_partial++;
1231 if (tail)
1232 list_add_tail(&page->lru, &n->partial);
1233 else
1234 list_add(&page->lru, &n->partial);
1235 spin_unlock(&n->list_lock);
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242 spin_lock(&n->list_lock);
1243 list_del(&page->lru);
1244 n->nr_partial--;
1245 spin_unlock(&n->list_lock);
1249 * Lock slab and remove from the partial list.
1251 * Must hold list_lock.
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 struct page *page)
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1258 n->nr_partial--;
1259 __SetPageSlubFrozen(page);
1260 return 1;
1262 return 0;
1266 * Try to allocate a partial slab from a specific node.
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1270 struct page *page;
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1276 * will return NULL.
1278 if (!n || !n->nr_partial)
1279 return NULL;
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
1283 if (lock_and_freeze_slab(n, page))
1284 goto out;
1285 page = NULL;
1286 out:
1287 spin_unlock(&n->list_lock);
1288 return page;
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296 #ifdef CONFIG_NUMA
1297 struct zonelist *zonelist;
1298 struct zoneref *z;
1299 struct zone *zone;
1300 enum zone_type high_zoneidx = gfp_zone(flags);
1301 struct page *page;
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1321 if (!s->remote_node_defrag_ratio ||
1322 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323 return NULL;
1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 struct kmem_cache_node *n;
1329 n = get_node(s, zone_to_nid(zone));
1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 n->nr_partial > n->min_partial) {
1333 page = get_partial_node(n);
1334 if (page)
1335 return page;
1338 #endif
1339 return NULL;
1343 * Get a partial page, lock it and return it.
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347 struct page *page;
1348 int searchnode = (node == -1) ? numa_node_id() : node;
1350 page = get_partial_node(get_node(s, searchnode));
1351 if (page || (flags & __GFP_THISNODE))
1352 return page;
1354 return get_any_partial(s, flags);
1358 * Move a page back to the lists.
1360 * Must be called with the slab lock held.
1362 * On exit the slab lock will have been dropped.
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369 __ClearPageSlubFrozen(page);
1370 if (page->inuse) {
1372 if (page->freelist) {
1373 add_partial(n, page, tail);
1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 } else {
1376 stat(c, DEACTIVATE_FULL);
1377 if (SLABDEBUG && PageSlubDebug(page) &&
1378 (s->flags & SLAB_STORE_USER))
1379 add_full(n, page);
1381 slab_unlock(page);
1382 } else {
1383 stat(c, DEACTIVATE_EMPTY);
1384 if (n->nr_partial < n->min_partial) {
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1392 * kmem_cache_shrink can reclaim any empty slabs from
1393 * the partial list.
1395 add_partial(n, page, 1);
1396 slab_unlock(page);
1397 } else {
1398 slab_unlock(page);
1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 discard_slab(s, page);
1406 * Remove the cpu slab
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 struct page *page = c->page;
1411 int tail = 1;
1413 if (page->freelist)
1414 stat(c, DEACTIVATE_REMOTE_FREES);
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1418 * to occur.
1420 while (unlikely(c->freelist)) {
1421 void **object;
1423 tail = 0; /* Hot objects. Put the slab first */
1425 /* Retrieve object from cpu_freelist */
1426 object = c->freelist;
1427 c->freelist = c->freelist[c->offset];
1429 /* And put onto the regular freelist */
1430 object[c->offset] = page->freelist;
1431 page->freelist = object;
1432 page->inuse--;
1434 c->page = NULL;
1435 unfreeze_slab(s, page, tail);
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 stat(c, CPUSLAB_FLUSH);
1441 slab_lock(c->page);
1442 deactivate_slab(s, c);
1446 * Flush cpu slab.
1448 * Called from IPI handler with interrupts disabled.
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454 if (likely(c && c->page))
1455 flush_slab(s, c);
1458 static void flush_cpu_slab(void *d)
1460 struct kmem_cache *s = d;
1462 __flush_cpu_slab(s, smp_processor_id());
1465 static void flush_all(struct kmem_cache *s)
1467 on_each_cpu(flush_cpu_slab, s, 1);
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1476 #ifdef CONFIG_NUMA
1477 if (node != -1 && c->node != node)
1478 return 0;
1479 #endif
1480 return 1;
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1487 * Interrupts are disabled.
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1501 static void *__slab_alloc(struct kmem_cache *s,
1502 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1504 void **object;
1505 struct page *new;
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags &= ~__GFP_ZERO;
1510 if (!c->page)
1511 goto new_slab;
1513 slab_lock(c->page);
1514 if (unlikely(!node_match(c, node)))
1515 goto another_slab;
1517 stat(c, ALLOC_REFILL);
1519 load_freelist:
1520 object = c->page->freelist;
1521 if (unlikely(!object))
1522 goto another_slab;
1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524 goto debug;
1526 c->freelist = object[c->offset];
1527 c->page->inuse = c->page->objects;
1528 c->page->freelist = NULL;
1529 c->node = page_to_nid(c->page);
1530 unlock_out:
1531 slab_unlock(c->page);
1532 stat(c, ALLOC_SLOWPATH);
1533 return object;
1535 another_slab:
1536 deactivate_slab(s, c);
1538 new_slab:
1539 new = get_partial(s, gfpflags, node);
1540 if (new) {
1541 c->page = new;
1542 stat(c, ALLOC_FROM_PARTIAL);
1543 goto load_freelist;
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_enable();
1549 new = new_slab(s, gfpflags, node);
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1554 if (new) {
1555 c = get_cpu_slab(s, smp_processor_id());
1556 stat(c, ALLOC_SLAB);
1557 if (c->page)
1558 flush_slab(s, c);
1559 slab_lock(new);
1560 __SetPageSlubFrozen(new);
1561 c->page = new;
1562 goto load_freelist;
1564 return NULL;
1565 debug:
1566 if (!alloc_debug_processing(s, c->page, object, addr))
1567 goto another_slab;
1569 c->page->inuse++;
1570 c->page->freelist = object[c->offset];
1571 c->node = -1;
1572 goto unlock_out;
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1583 * Otherwise we can simply pick the next object from the lockless free list.
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 gfp_t gfpflags, int node, void *addr)
1588 void **object;
1589 struct kmem_cache_cpu *c;
1590 unsigned long flags;
1591 unsigned int objsize;
1593 local_irq_save(flags);
1594 c = get_cpu_slab(s, smp_processor_id());
1595 objsize = c->objsize;
1596 if (unlikely(!c->freelist || !node_match(c, node)))
1598 object = __slab_alloc(s, gfpflags, node, addr, c);
1600 else {
1601 object = c->freelist;
1602 c->freelist = object[c->offset];
1603 stat(c, ALLOC_FASTPATH);
1605 local_irq_restore(flags);
1607 if (unlikely((gfpflags & __GFP_ZERO) && object))
1608 memset(object, 0, objsize);
1610 return object;
1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1615 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1617 EXPORT_SYMBOL(kmem_cache_alloc);
1619 #ifdef CONFIG_NUMA
1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1622 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1624 EXPORT_SYMBOL(kmem_cache_alloc_node);
1625 #endif
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1635 static void __slab_free(struct kmem_cache *s, struct page *page,
1636 void *x, void *addr, unsigned int offset)
1638 void *prior;
1639 void **object = (void *)x;
1640 struct kmem_cache_cpu *c;
1642 c = get_cpu_slab(s, raw_smp_processor_id());
1643 stat(c, FREE_SLOWPATH);
1644 slab_lock(page);
1646 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647 goto debug;
1649 checks_ok:
1650 prior = object[offset] = page->freelist;
1651 page->freelist = object;
1652 page->inuse--;
1654 if (unlikely(PageSlubFrozen(page))) {
1655 stat(c, FREE_FROZEN);
1656 goto out_unlock;
1659 if (unlikely(!page->inuse))
1660 goto slab_empty;
1663 * Objects left in the slab. If it was not on the partial list before
1664 * then add it.
1666 if (unlikely(!prior)) {
1667 add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 stat(c, FREE_ADD_PARTIAL);
1671 out_unlock:
1672 slab_unlock(page);
1673 return;
1675 slab_empty:
1676 if (prior) {
1678 * Slab still on the partial list.
1680 remove_partial(s, page);
1681 stat(c, FREE_REMOVE_PARTIAL);
1683 slab_unlock(page);
1684 stat(c, FREE_SLAB);
1685 discard_slab(s, page);
1686 return;
1688 debug:
1689 if (!free_debug_processing(s, page, x, addr))
1690 goto out_unlock;
1691 goto checks_ok;
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1700 * the item before.
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1705 static __always_inline void slab_free(struct kmem_cache *s,
1706 struct page *page, void *x, void *addr)
1708 void **object = (void *)x;
1709 struct kmem_cache_cpu *c;
1710 unsigned long flags;
1712 local_irq_save(flags);
1713 c = get_cpu_slab(s, smp_processor_id());
1714 debug_check_no_locks_freed(object, c->objsize);
1715 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716 debug_check_no_obj_freed(object, s->objsize);
1717 if (likely(page == c->page && c->node >= 0)) {
1718 object[c->offset] = c->freelist;
1719 c->freelist = object;
1720 stat(c, FREE_FASTPATH);
1721 } else
1722 __slab_free(s, page, x, addr, c->offset);
1724 local_irq_restore(flags);
1727 void kmem_cache_free(struct kmem_cache *s, void *x)
1729 struct page *page;
1731 page = virt_to_head_page(x);
1733 slab_free(s, page, x, __builtin_return_address(0));
1735 EXPORT_SYMBOL(kmem_cache_free);
1737 /* Figure out on which slab object the object resides */
1738 static struct page *get_object_page(const void *x)
1740 struct page *page = virt_to_head_page(x);
1742 if (!PageSlab(page))
1743 return NULL;
1745 return page;
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1752 * another.
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1758 * locking overhead.
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1767 static int slub_min_order;
1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769 static int slub_min_objects;
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1775 static int slub_nomerge;
1778 * Calculate the order of allocation given an slab object size.
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1785 * would be wasted.
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1802 static inline int slab_order(int size, int min_objects,
1803 int max_order, int fract_leftover)
1805 int order;
1806 int rem;
1807 int min_order = slub_min_order;
1809 if ((PAGE_SIZE << min_order) / size > 65535)
1810 return get_order(size * 65535) - 1;
1812 for (order = max(min_order,
1813 fls(min_objects * size - 1) - PAGE_SHIFT);
1814 order <= max_order; order++) {
1816 unsigned long slab_size = PAGE_SIZE << order;
1818 if (slab_size < min_objects * size)
1819 continue;
1821 rem = slab_size % size;
1823 if (rem <= slab_size / fract_leftover)
1824 break;
1828 return order;
1831 static inline int calculate_order(int size)
1833 int order;
1834 int min_objects;
1835 int fraction;
1838 * Attempt to find best configuration for a slab. This
1839 * works by first attempting to generate a layout with
1840 * the best configuration and backing off gradually.
1842 * First we reduce the acceptable waste in a slab. Then
1843 * we reduce the minimum objects required in a slab.
1845 min_objects = slub_min_objects;
1846 if (!min_objects)
1847 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848 while (min_objects > 1) {
1849 fraction = 16;
1850 while (fraction >= 4) {
1851 order = slab_order(size, min_objects,
1852 slub_max_order, fraction);
1853 if (order <= slub_max_order)
1854 return order;
1855 fraction /= 2;
1857 min_objects /= 2;
1861 * We were unable to place multiple objects in a slab. Now
1862 * lets see if we can place a single object there.
1864 order = slab_order(size, 1, slub_max_order, 1);
1865 if (order <= slub_max_order)
1866 return order;
1869 * Doh this slab cannot be placed using slub_max_order.
1871 order = slab_order(size, 1, MAX_ORDER, 1);
1872 if (order <= MAX_ORDER)
1873 return order;
1874 return -ENOSYS;
1878 * Figure out what the alignment of the objects will be.
1880 static unsigned long calculate_alignment(unsigned long flags,
1881 unsigned long align, unsigned long size)
1884 * If the user wants hardware cache aligned objects then follow that
1885 * suggestion if the object is sufficiently large.
1887 * The hardware cache alignment cannot override the specified
1888 * alignment though. If that is greater then use it.
1890 if (flags & SLAB_HWCACHE_ALIGN) {
1891 unsigned long ralign = cache_line_size();
1892 while (size <= ralign / 2)
1893 ralign /= 2;
1894 align = max(align, ralign);
1897 if (align < ARCH_SLAB_MINALIGN)
1898 align = ARCH_SLAB_MINALIGN;
1900 return ALIGN(align, sizeof(void *));
1903 static void init_kmem_cache_cpu(struct kmem_cache *s,
1904 struct kmem_cache_cpu *c)
1906 c->page = NULL;
1907 c->freelist = NULL;
1908 c->node = 0;
1909 c->offset = s->offset / sizeof(void *);
1910 c->objsize = s->objsize;
1911 #ifdef CONFIG_SLUB_STATS
1912 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913 #endif
1916 static void
1917 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1919 n->nr_partial = 0;
1922 * The larger the object size is, the more pages we want on the partial
1923 * list to avoid pounding the page allocator excessively.
1925 n->min_partial = ilog2(s->size);
1926 if (n->min_partial < MIN_PARTIAL)
1927 n->min_partial = MIN_PARTIAL;
1928 else if (n->min_partial > MAX_PARTIAL)
1929 n->min_partial = MAX_PARTIAL;
1931 spin_lock_init(&n->list_lock);
1932 INIT_LIST_HEAD(&n->partial);
1933 #ifdef CONFIG_SLUB_DEBUG
1934 atomic_long_set(&n->nr_slabs, 0);
1935 INIT_LIST_HEAD(&n->full);
1936 #endif
1939 #ifdef CONFIG_SMP
1941 * Per cpu array for per cpu structures.
1943 * The per cpu array places all kmem_cache_cpu structures from one processor
1944 * close together meaning that it becomes possible that multiple per cpu
1945 * structures are contained in one cacheline. This may be particularly
1946 * beneficial for the kmalloc caches.
1948 * A desktop system typically has around 60-80 slabs. With 100 here we are
1949 * likely able to get per cpu structures for all caches from the array defined
1950 * here. We must be able to cover all kmalloc caches during bootstrap.
1952 * If the per cpu array is exhausted then fall back to kmalloc
1953 * of individual cachelines. No sharing is possible then.
1955 #define NR_KMEM_CACHE_CPU 100
1957 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1958 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1960 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1961 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1963 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1964 int cpu, gfp_t flags)
1966 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1968 if (c)
1969 per_cpu(kmem_cache_cpu_free, cpu) =
1970 (void *)c->freelist;
1971 else {
1972 /* Table overflow: So allocate ourselves */
1973 c = kmalloc_node(
1974 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1975 flags, cpu_to_node(cpu));
1976 if (!c)
1977 return NULL;
1980 init_kmem_cache_cpu(s, c);
1981 return c;
1984 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1986 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1987 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1988 kfree(c);
1989 return;
1991 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1992 per_cpu(kmem_cache_cpu_free, cpu) = c;
1995 static void free_kmem_cache_cpus(struct kmem_cache *s)
1997 int cpu;
1999 for_each_online_cpu(cpu) {
2000 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2002 if (c) {
2003 s->cpu_slab[cpu] = NULL;
2004 free_kmem_cache_cpu(c, cpu);
2009 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2011 int cpu;
2013 for_each_online_cpu(cpu) {
2014 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2016 if (c)
2017 continue;
2019 c = alloc_kmem_cache_cpu(s, cpu, flags);
2020 if (!c) {
2021 free_kmem_cache_cpus(s);
2022 return 0;
2024 s->cpu_slab[cpu] = c;
2026 return 1;
2030 * Initialize the per cpu array.
2032 static void init_alloc_cpu_cpu(int cpu)
2034 int i;
2036 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2037 return;
2039 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2040 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2042 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2045 static void __init init_alloc_cpu(void)
2047 int cpu;
2049 for_each_online_cpu(cpu)
2050 init_alloc_cpu_cpu(cpu);
2053 #else
2054 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2055 static inline void init_alloc_cpu(void) {}
2057 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2059 init_kmem_cache_cpu(s, &s->cpu_slab);
2060 return 1;
2062 #endif
2064 #ifdef CONFIG_NUMA
2066 * No kmalloc_node yet so do it by hand. We know that this is the first
2067 * slab on the node for this slabcache. There are no concurrent accesses
2068 * possible.
2070 * Note that this function only works on the kmalloc_node_cache
2071 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2072 * memory on a fresh node that has no slab structures yet.
2074 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2075 int node)
2077 struct page *page;
2078 struct kmem_cache_node *n;
2079 unsigned long flags;
2081 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2083 page = new_slab(kmalloc_caches, gfpflags, node);
2085 BUG_ON(!page);
2086 if (page_to_nid(page) != node) {
2087 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2088 "node %d\n", node);
2089 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2090 "in order to be able to continue\n");
2093 n = page->freelist;
2094 BUG_ON(!n);
2095 page->freelist = get_freepointer(kmalloc_caches, n);
2096 page->inuse++;
2097 kmalloc_caches->node[node] = n;
2098 #ifdef CONFIG_SLUB_DEBUG
2099 init_object(kmalloc_caches, n, 1);
2100 init_tracking(kmalloc_caches, n);
2101 #endif
2102 init_kmem_cache_node(n, kmalloc_caches);
2103 inc_slabs_node(kmalloc_caches, node, page->objects);
2106 * lockdep requires consistent irq usage for each lock
2107 * so even though there cannot be a race this early in
2108 * the boot sequence, we still disable irqs.
2110 local_irq_save(flags);
2111 add_partial(n, page, 0);
2112 local_irq_restore(flags);
2113 return n;
2116 static void free_kmem_cache_nodes(struct kmem_cache *s)
2118 int node;
2120 for_each_node_state(node, N_NORMAL_MEMORY) {
2121 struct kmem_cache_node *n = s->node[node];
2122 if (n && n != &s->local_node)
2123 kmem_cache_free(kmalloc_caches, n);
2124 s->node[node] = NULL;
2128 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2130 int node;
2131 int local_node;
2133 if (slab_state >= UP)
2134 local_node = page_to_nid(virt_to_page(s));
2135 else
2136 local_node = 0;
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n;
2141 if (local_node == node)
2142 n = &s->local_node;
2143 else {
2144 if (slab_state == DOWN) {
2145 n = early_kmem_cache_node_alloc(gfpflags,
2146 node);
2147 continue;
2149 n = kmem_cache_alloc_node(kmalloc_caches,
2150 gfpflags, node);
2152 if (!n) {
2153 free_kmem_cache_nodes(s);
2154 return 0;
2158 s->node[node] = n;
2159 init_kmem_cache_node(n, s);
2161 return 1;
2163 #else
2164 static void free_kmem_cache_nodes(struct kmem_cache *s)
2168 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2170 init_kmem_cache_node(&s->local_node, s);
2171 return 1;
2173 #endif
2176 * calculate_sizes() determines the order and the distribution of data within
2177 * a slab object.
2179 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2181 unsigned long flags = s->flags;
2182 unsigned long size = s->objsize;
2183 unsigned long align = s->align;
2184 int order;
2187 * Round up object size to the next word boundary. We can only
2188 * place the free pointer at word boundaries and this determines
2189 * the possible location of the free pointer.
2191 size = ALIGN(size, sizeof(void *));
2193 #ifdef CONFIG_SLUB_DEBUG
2195 * Determine if we can poison the object itself. If the user of
2196 * the slab may touch the object after free or before allocation
2197 * then we should never poison the object itself.
2199 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2200 !s->ctor)
2201 s->flags |= __OBJECT_POISON;
2202 else
2203 s->flags &= ~__OBJECT_POISON;
2207 * If we are Redzoning then check if there is some space between the
2208 * end of the object and the free pointer. If not then add an
2209 * additional word to have some bytes to store Redzone information.
2211 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2212 size += sizeof(void *);
2213 #endif
2216 * With that we have determined the number of bytes in actual use
2217 * by the object. This is the potential offset to the free pointer.
2219 s->inuse = size;
2221 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2222 s->ctor)) {
2224 * Relocate free pointer after the object if it is not
2225 * permitted to overwrite the first word of the object on
2226 * kmem_cache_free.
2228 * This is the case if we do RCU, have a constructor or
2229 * destructor or are poisoning the objects.
2231 s->offset = size;
2232 size += sizeof(void *);
2235 #ifdef CONFIG_SLUB_DEBUG
2236 if (flags & SLAB_STORE_USER)
2238 * Need to store information about allocs and frees after
2239 * the object.
2241 size += 2 * sizeof(struct track);
2243 if (flags & SLAB_RED_ZONE)
2245 * Add some empty padding so that we can catch
2246 * overwrites from earlier objects rather than let
2247 * tracking information or the free pointer be
2248 * corrupted if an user writes before the start
2249 * of the object.
2251 size += sizeof(void *);
2252 #endif
2255 * Determine the alignment based on various parameters that the
2256 * user specified and the dynamic determination of cache line size
2257 * on bootup.
2259 align = calculate_alignment(flags, align, s->objsize);
2262 * SLUB stores one object immediately after another beginning from
2263 * offset 0. In order to align the objects we have to simply size
2264 * each object to conform to the alignment.
2266 size = ALIGN(size, align);
2267 s->size = size;
2268 if (forced_order >= 0)
2269 order = forced_order;
2270 else
2271 order = calculate_order(size);
2273 if (order < 0)
2274 return 0;
2276 s->allocflags = 0;
2277 if (order)
2278 s->allocflags |= __GFP_COMP;
2280 if (s->flags & SLAB_CACHE_DMA)
2281 s->allocflags |= SLUB_DMA;
2283 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2284 s->allocflags |= __GFP_RECLAIMABLE;
2287 * Determine the number of objects per slab
2289 s->oo = oo_make(order, size);
2290 s->min = oo_make(get_order(size), size);
2291 if (oo_objects(s->oo) > oo_objects(s->max))
2292 s->max = s->oo;
2294 return !!oo_objects(s->oo);
2298 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2299 const char *name, size_t size,
2300 size_t align, unsigned long flags,
2301 void (*ctor)(void *))
2303 memset(s, 0, kmem_size);
2304 s->name = name;
2305 s->ctor = ctor;
2306 s->objsize = size;
2307 s->align = align;
2308 s->flags = kmem_cache_flags(size, flags, name, ctor);
2310 if (!calculate_sizes(s, -1))
2311 goto error;
2313 s->refcount = 1;
2314 #ifdef CONFIG_NUMA
2315 s->remote_node_defrag_ratio = 1000;
2316 #endif
2317 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2318 goto error;
2320 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2321 return 1;
2322 free_kmem_cache_nodes(s);
2323 error:
2324 if (flags & SLAB_PANIC)
2325 panic("Cannot create slab %s size=%lu realsize=%u "
2326 "order=%u offset=%u flags=%lx\n",
2327 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2328 s->offset, flags);
2329 return 0;
2333 * Check if a given pointer is valid
2335 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2337 struct page *page;
2339 page = get_object_page(object);
2341 if (!page || s != page->slab)
2342 /* No slab or wrong slab */
2343 return 0;
2345 if (!check_valid_pointer(s, page, object))
2346 return 0;
2349 * We could also check if the object is on the slabs freelist.
2350 * But this would be too expensive and it seems that the main
2351 * purpose of kmem_ptr_valid() is to check if the object belongs
2352 * to a certain slab.
2354 return 1;
2356 EXPORT_SYMBOL(kmem_ptr_validate);
2359 * Determine the size of a slab object
2361 unsigned int kmem_cache_size(struct kmem_cache *s)
2363 return s->objsize;
2365 EXPORT_SYMBOL(kmem_cache_size);
2367 const char *kmem_cache_name(struct kmem_cache *s)
2369 return s->name;
2371 EXPORT_SYMBOL(kmem_cache_name);
2373 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2374 const char *text)
2376 #ifdef CONFIG_SLUB_DEBUG
2377 void *addr = page_address(page);
2378 void *p;
2379 DECLARE_BITMAP(map, page->objects);
2381 bitmap_zero(map, page->objects);
2382 slab_err(s, page, "%s", text);
2383 slab_lock(page);
2384 for_each_free_object(p, s, page->freelist)
2385 set_bit(slab_index(p, s, addr), map);
2387 for_each_object(p, s, addr, page->objects) {
2389 if (!test_bit(slab_index(p, s, addr), map)) {
2390 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2391 p, p - addr);
2392 print_tracking(s, p);
2395 slab_unlock(page);
2396 #endif
2400 * Attempt to free all partial slabs on a node.
2402 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2404 unsigned long flags;
2405 struct page *page, *h;
2407 spin_lock_irqsave(&n->list_lock, flags);
2408 list_for_each_entry_safe(page, h, &n->partial, lru) {
2409 if (!page->inuse) {
2410 list_del(&page->lru);
2411 discard_slab(s, page);
2412 n->nr_partial--;
2413 } else {
2414 list_slab_objects(s, page,
2415 "Objects remaining on kmem_cache_close()");
2418 spin_unlock_irqrestore(&n->list_lock, flags);
2422 * Release all resources used by a slab cache.
2424 static inline int kmem_cache_close(struct kmem_cache *s)
2426 int node;
2428 flush_all(s);
2430 /* Attempt to free all objects */
2431 free_kmem_cache_cpus(s);
2432 for_each_node_state(node, N_NORMAL_MEMORY) {
2433 struct kmem_cache_node *n = get_node(s, node);
2435 free_partial(s, n);
2436 if (n->nr_partial || slabs_node(s, node))
2437 return 1;
2439 free_kmem_cache_nodes(s);
2440 return 0;
2444 * Close a cache and release the kmem_cache structure
2445 * (must be used for caches created using kmem_cache_create)
2447 void kmem_cache_destroy(struct kmem_cache *s)
2449 down_write(&slub_lock);
2450 s->refcount--;
2451 if (!s->refcount) {
2452 list_del(&s->list);
2453 up_write(&slub_lock);
2454 if (kmem_cache_close(s)) {
2455 printk(KERN_ERR "SLUB %s: %s called for cache that "
2456 "still has objects.\n", s->name, __func__);
2457 dump_stack();
2459 sysfs_slab_remove(s);
2460 } else
2461 up_write(&slub_lock);
2463 EXPORT_SYMBOL(kmem_cache_destroy);
2465 /********************************************************************
2466 * Kmalloc subsystem
2467 *******************************************************************/
2469 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2470 EXPORT_SYMBOL(kmalloc_caches);
2472 static int __init setup_slub_min_order(char *str)
2474 get_option(&str, &slub_min_order);
2476 return 1;
2479 __setup("slub_min_order=", setup_slub_min_order);
2481 static int __init setup_slub_max_order(char *str)
2483 get_option(&str, &slub_max_order);
2485 return 1;
2488 __setup("slub_max_order=", setup_slub_max_order);
2490 static int __init setup_slub_min_objects(char *str)
2492 get_option(&str, &slub_min_objects);
2494 return 1;
2497 __setup("slub_min_objects=", setup_slub_min_objects);
2499 static int __init setup_slub_nomerge(char *str)
2501 slub_nomerge = 1;
2502 return 1;
2505 __setup("slub_nomerge", setup_slub_nomerge);
2507 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2508 const char *name, int size, gfp_t gfp_flags)
2510 unsigned int flags = 0;
2512 if (gfp_flags & SLUB_DMA)
2513 flags = SLAB_CACHE_DMA;
2515 down_write(&slub_lock);
2516 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2517 flags, NULL))
2518 goto panic;
2520 list_add(&s->list, &slab_caches);
2521 up_write(&slub_lock);
2522 if (sysfs_slab_add(s))
2523 goto panic;
2524 return s;
2526 panic:
2527 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2530 #ifdef CONFIG_ZONE_DMA
2531 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2533 static void sysfs_add_func(struct work_struct *w)
2535 struct kmem_cache *s;
2537 down_write(&slub_lock);
2538 list_for_each_entry(s, &slab_caches, list) {
2539 if (s->flags & __SYSFS_ADD_DEFERRED) {
2540 s->flags &= ~__SYSFS_ADD_DEFERRED;
2541 sysfs_slab_add(s);
2544 up_write(&slub_lock);
2547 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2549 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2551 struct kmem_cache *s;
2552 char *text;
2553 size_t realsize;
2555 s = kmalloc_caches_dma[index];
2556 if (s)
2557 return s;
2559 /* Dynamically create dma cache */
2560 if (flags & __GFP_WAIT)
2561 down_write(&slub_lock);
2562 else {
2563 if (!down_write_trylock(&slub_lock))
2564 goto out;
2567 if (kmalloc_caches_dma[index])
2568 goto unlock_out;
2570 realsize = kmalloc_caches[index].objsize;
2571 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2572 (unsigned int)realsize);
2573 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2575 if (!s || !text || !kmem_cache_open(s, flags, text,
2576 realsize, ARCH_KMALLOC_MINALIGN,
2577 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2578 kfree(s);
2579 kfree(text);
2580 goto unlock_out;
2583 list_add(&s->list, &slab_caches);
2584 kmalloc_caches_dma[index] = s;
2586 schedule_work(&sysfs_add_work);
2588 unlock_out:
2589 up_write(&slub_lock);
2590 out:
2591 return kmalloc_caches_dma[index];
2593 #endif
2596 * Conversion table for small slabs sizes / 8 to the index in the
2597 * kmalloc array. This is necessary for slabs < 192 since we have non power
2598 * of two cache sizes there. The size of larger slabs can be determined using
2599 * fls.
2601 static s8 size_index[24] = {
2602 3, /* 8 */
2603 4, /* 16 */
2604 5, /* 24 */
2605 5, /* 32 */
2606 6, /* 40 */
2607 6, /* 48 */
2608 6, /* 56 */
2609 6, /* 64 */
2610 1, /* 72 */
2611 1, /* 80 */
2612 1, /* 88 */
2613 1, /* 96 */
2614 7, /* 104 */
2615 7, /* 112 */
2616 7, /* 120 */
2617 7, /* 128 */
2618 2, /* 136 */
2619 2, /* 144 */
2620 2, /* 152 */
2621 2, /* 160 */
2622 2, /* 168 */
2623 2, /* 176 */
2624 2, /* 184 */
2625 2 /* 192 */
2628 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2630 int index;
2632 if (size <= 192) {
2633 if (!size)
2634 return ZERO_SIZE_PTR;
2636 index = size_index[(size - 1) / 8];
2637 } else
2638 index = fls(size - 1);
2640 #ifdef CONFIG_ZONE_DMA
2641 if (unlikely((flags & SLUB_DMA)))
2642 return dma_kmalloc_cache(index, flags);
2644 #endif
2645 return &kmalloc_caches[index];
2648 void *__kmalloc(size_t size, gfp_t flags)
2650 struct kmem_cache *s;
2652 if (unlikely(size > PAGE_SIZE))
2653 return kmalloc_large(size, flags);
2655 s = get_slab(size, flags);
2657 if (unlikely(ZERO_OR_NULL_PTR(s)))
2658 return s;
2660 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2662 EXPORT_SYMBOL(__kmalloc);
2664 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2666 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2667 get_order(size));
2669 if (page)
2670 return page_address(page);
2671 else
2672 return NULL;
2675 #ifdef CONFIG_NUMA
2676 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2678 struct kmem_cache *s;
2680 if (unlikely(size > PAGE_SIZE))
2681 return kmalloc_large_node(size, flags, node);
2683 s = get_slab(size, flags);
2685 if (unlikely(ZERO_OR_NULL_PTR(s)))
2686 return s;
2688 return slab_alloc(s, flags, node, __builtin_return_address(0));
2690 EXPORT_SYMBOL(__kmalloc_node);
2691 #endif
2693 size_t ksize(const void *object)
2695 struct page *page;
2696 struct kmem_cache *s;
2698 if (unlikely(object == ZERO_SIZE_PTR))
2699 return 0;
2701 page = virt_to_head_page(object);
2703 if (unlikely(!PageSlab(page))) {
2704 WARN_ON(!PageCompound(page));
2705 return PAGE_SIZE << compound_order(page);
2707 s = page->slab;
2709 #ifdef CONFIG_SLUB_DEBUG
2711 * Debugging requires use of the padding between object
2712 * and whatever may come after it.
2714 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2715 return s->objsize;
2717 #endif
2719 * If we have the need to store the freelist pointer
2720 * back there or track user information then we can
2721 * only use the space before that information.
2723 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2724 return s->inuse;
2726 * Else we can use all the padding etc for the allocation
2728 return s->size;
2731 void kfree(const void *x)
2733 struct page *page;
2734 void *object = (void *)x;
2736 if (unlikely(ZERO_OR_NULL_PTR(x)))
2737 return;
2739 page = virt_to_head_page(x);
2740 if (unlikely(!PageSlab(page))) {
2741 BUG_ON(!PageCompound(page));
2742 put_page(page);
2743 return;
2745 slab_free(page->slab, page, object, __builtin_return_address(0));
2747 EXPORT_SYMBOL(kfree);
2750 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2751 * the remaining slabs by the number of items in use. The slabs with the
2752 * most items in use come first. New allocations will then fill those up
2753 * and thus they can be removed from the partial lists.
2755 * The slabs with the least items are placed last. This results in them
2756 * being allocated from last increasing the chance that the last objects
2757 * are freed in them.
2759 int kmem_cache_shrink(struct kmem_cache *s)
2761 int node;
2762 int i;
2763 struct kmem_cache_node *n;
2764 struct page *page;
2765 struct page *t;
2766 int objects = oo_objects(s->max);
2767 struct list_head *slabs_by_inuse =
2768 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2769 unsigned long flags;
2771 if (!slabs_by_inuse)
2772 return -ENOMEM;
2774 flush_all(s);
2775 for_each_node_state(node, N_NORMAL_MEMORY) {
2776 n = get_node(s, node);
2778 if (!n->nr_partial)
2779 continue;
2781 for (i = 0; i < objects; i++)
2782 INIT_LIST_HEAD(slabs_by_inuse + i);
2784 spin_lock_irqsave(&n->list_lock, flags);
2787 * Build lists indexed by the items in use in each slab.
2789 * Note that concurrent frees may occur while we hold the
2790 * list_lock. page->inuse here is the upper limit.
2792 list_for_each_entry_safe(page, t, &n->partial, lru) {
2793 if (!page->inuse && slab_trylock(page)) {
2795 * Must hold slab lock here because slab_free
2796 * may have freed the last object and be
2797 * waiting to release the slab.
2799 list_del(&page->lru);
2800 n->nr_partial--;
2801 slab_unlock(page);
2802 discard_slab(s, page);
2803 } else {
2804 list_move(&page->lru,
2805 slabs_by_inuse + page->inuse);
2810 * Rebuild the partial list with the slabs filled up most
2811 * first and the least used slabs at the end.
2813 for (i = objects - 1; i >= 0; i--)
2814 list_splice(slabs_by_inuse + i, n->partial.prev);
2816 spin_unlock_irqrestore(&n->list_lock, flags);
2819 kfree(slabs_by_inuse);
2820 return 0;
2822 EXPORT_SYMBOL(kmem_cache_shrink);
2824 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2825 static int slab_mem_going_offline_callback(void *arg)
2827 struct kmem_cache *s;
2829 down_read(&slub_lock);
2830 list_for_each_entry(s, &slab_caches, list)
2831 kmem_cache_shrink(s);
2832 up_read(&slub_lock);
2834 return 0;
2837 static void slab_mem_offline_callback(void *arg)
2839 struct kmem_cache_node *n;
2840 struct kmem_cache *s;
2841 struct memory_notify *marg = arg;
2842 int offline_node;
2844 offline_node = marg->status_change_nid;
2847 * If the node still has available memory. we need kmem_cache_node
2848 * for it yet.
2850 if (offline_node < 0)
2851 return;
2853 down_read(&slub_lock);
2854 list_for_each_entry(s, &slab_caches, list) {
2855 n = get_node(s, offline_node);
2856 if (n) {
2858 * if n->nr_slabs > 0, slabs still exist on the node
2859 * that is going down. We were unable to free them,
2860 * and offline_pages() function shoudn't call this
2861 * callback. So, we must fail.
2863 BUG_ON(slabs_node(s, offline_node));
2865 s->node[offline_node] = NULL;
2866 kmem_cache_free(kmalloc_caches, n);
2869 up_read(&slub_lock);
2872 static int slab_mem_going_online_callback(void *arg)
2874 struct kmem_cache_node *n;
2875 struct kmem_cache *s;
2876 struct memory_notify *marg = arg;
2877 int nid = marg->status_change_nid;
2878 int ret = 0;
2881 * If the node's memory is already available, then kmem_cache_node is
2882 * already created. Nothing to do.
2884 if (nid < 0)
2885 return 0;
2888 * We are bringing a node online. No memory is available yet. We must
2889 * allocate a kmem_cache_node structure in order to bring the node
2890 * online.
2892 down_read(&slub_lock);
2893 list_for_each_entry(s, &slab_caches, list) {
2895 * XXX: kmem_cache_alloc_node will fallback to other nodes
2896 * since memory is not yet available from the node that
2897 * is brought up.
2899 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2900 if (!n) {
2901 ret = -ENOMEM;
2902 goto out;
2904 init_kmem_cache_node(n, s);
2905 s->node[nid] = n;
2907 out:
2908 up_read(&slub_lock);
2909 return ret;
2912 static int slab_memory_callback(struct notifier_block *self,
2913 unsigned long action, void *arg)
2915 int ret = 0;
2917 switch (action) {
2918 case MEM_GOING_ONLINE:
2919 ret = slab_mem_going_online_callback(arg);
2920 break;
2921 case MEM_GOING_OFFLINE:
2922 ret = slab_mem_going_offline_callback(arg);
2923 break;
2924 case MEM_OFFLINE:
2925 case MEM_CANCEL_ONLINE:
2926 slab_mem_offline_callback(arg);
2927 break;
2928 case MEM_ONLINE:
2929 case MEM_CANCEL_OFFLINE:
2930 break;
2933 ret = notifier_from_errno(ret);
2934 return ret;
2937 #endif /* CONFIG_MEMORY_HOTPLUG */
2939 /********************************************************************
2940 * Basic setup of slabs
2941 *******************************************************************/
2943 void __init kmem_cache_init(void)
2945 int i;
2946 int caches = 0;
2948 init_alloc_cpu();
2950 #ifdef CONFIG_NUMA
2952 * Must first have the slab cache available for the allocations of the
2953 * struct kmem_cache_node's. There is special bootstrap code in
2954 * kmem_cache_open for slab_state == DOWN.
2956 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2957 sizeof(struct kmem_cache_node), GFP_KERNEL);
2958 kmalloc_caches[0].refcount = -1;
2959 caches++;
2961 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2962 #endif
2964 /* Able to allocate the per node structures */
2965 slab_state = PARTIAL;
2967 /* Caches that are not of the two-to-the-power-of size */
2968 if (KMALLOC_MIN_SIZE <= 64) {
2969 create_kmalloc_cache(&kmalloc_caches[1],
2970 "kmalloc-96", 96, GFP_KERNEL);
2971 caches++;
2972 create_kmalloc_cache(&kmalloc_caches[2],
2973 "kmalloc-192", 192, GFP_KERNEL);
2974 caches++;
2977 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2978 create_kmalloc_cache(&kmalloc_caches[i],
2979 "kmalloc", 1 << i, GFP_KERNEL);
2980 caches++;
2985 * Patch up the size_index table if we have strange large alignment
2986 * requirements for the kmalloc array. This is only the case for
2987 * MIPS it seems. The standard arches will not generate any code here.
2989 * Largest permitted alignment is 256 bytes due to the way we
2990 * handle the index determination for the smaller caches.
2992 * Make sure that nothing crazy happens if someone starts tinkering
2993 * around with ARCH_KMALLOC_MINALIGN
2995 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2996 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2998 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2999 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3001 if (KMALLOC_MIN_SIZE == 128) {
3003 * The 192 byte sized cache is not used if the alignment
3004 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3005 * instead.
3007 for (i = 128 + 8; i <= 192; i += 8)
3008 size_index[(i - 1) / 8] = 8;
3011 slab_state = UP;
3013 /* Provide the correct kmalloc names now that the caches are up */
3014 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3015 kmalloc_caches[i]. name =
3016 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3018 #ifdef CONFIG_SMP
3019 register_cpu_notifier(&slab_notifier);
3020 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3021 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3022 #else
3023 kmem_size = sizeof(struct kmem_cache);
3024 #endif
3026 printk(KERN_INFO
3027 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3028 " CPUs=%d, Nodes=%d\n",
3029 caches, cache_line_size(),
3030 slub_min_order, slub_max_order, slub_min_objects,
3031 nr_cpu_ids, nr_node_ids);
3035 * Find a mergeable slab cache
3037 static int slab_unmergeable(struct kmem_cache *s)
3039 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3040 return 1;
3042 if (s->ctor)
3043 return 1;
3046 * We may have set a slab to be unmergeable during bootstrap.
3048 if (s->refcount < 0)
3049 return 1;
3051 return 0;
3054 static struct kmem_cache *find_mergeable(size_t size,
3055 size_t align, unsigned long flags, const char *name,
3056 void (*ctor)(void *))
3058 struct kmem_cache *s;
3060 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3061 return NULL;
3063 if (ctor)
3064 return NULL;
3066 size = ALIGN(size, sizeof(void *));
3067 align = calculate_alignment(flags, align, size);
3068 size = ALIGN(size, align);
3069 flags = kmem_cache_flags(size, flags, name, NULL);
3071 list_for_each_entry(s, &slab_caches, list) {
3072 if (slab_unmergeable(s))
3073 continue;
3075 if (size > s->size)
3076 continue;
3078 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3079 continue;
3081 * Check if alignment is compatible.
3082 * Courtesy of Adrian Drzewiecki
3084 if ((s->size & ~(align - 1)) != s->size)
3085 continue;
3087 if (s->size - size >= sizeof(void *))
3088 continue;
3090 return s;
3092 return NULL;
3095 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3096 size_t align, unsigned long flags, void (*ctor)(void *))
3098 struct kmem_cache *s;
3100 down_write(&slub_lock);
3101 s = find_mergeable(size, align, flags, name, ctor);
3102 if (s) {
3103 int cpu;
3105 s->refcount++;
3107 * Adjust the object sizes so that we clear
3108 * the complete object on kzalloc.
3110 s->objsize = max(s->objsize, (int)size);
3113 * And then we need to update the object size in the
3114 * per cpu structures
3116 for_each_online_cpu(cpu)
3117 get_cpu_slab(s, cpu)->objsize = s->objsize;
3119 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3120 up_write(&slub_lock);
3122 if (sysfs_slab_alias(s, name))
3123 goto err;
3124 return s;
3127 s = kmalloc(kmem_size, GFP_KERNEL);
3128 if (s) {
3129 if (kmem_cache_open(s, GFP_KERNEL, name,
3130 size, align, flags, ctor)) {
3131 list_add(&s->list, &slab_caches);
3132 up_write(&slub_lock);
3133 if (sysfs_slab_add(s))
3134 goto err;
3135 return s;
3137 kfree(s);
3139 up_write(&slub_lock);
3141 err:
3142 if (flags & SLAB_PANIC)
3143 panic("Cannot create slabcache %s\n", name);
3144 else
3145 s = NULL;
3146 return s;
3148 EXPORT_SYMBOL(kmem_cache_create);
3150 #ifdef CONFIG_SMP
3152 * Use the cpu notifier to insure that the cpu slabs are flushed when
3153 * necessary.
3155 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3156 unsigned long action, void *hcpu)
3158 long cpu = (long)hcpu;
3159 struct kmem_cache *s;
3160 unsigned long flags;
3162 switch (action) {
3163 case CPU_UP_PREPARE:
3164 case CPU_UP_PREPARE_FROZEN:
3165 init_alloc_cpu_cpu(cpu);
3166 down_read(&slub_lock);
3167 list_for_each_entry(s, &slab_caches, list)
3168 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3169 GFP_KERNEL);
3170 up_read(&slub_lock);
3171 break;
3173 case CPU_UP_CANCELED:
3174 case CPU_UP_CANCELED_FROZEN:
3175 case CPU_DEAD:
3176 case CPU_DEAD_FROZEN:
3177 down_read(&slub_lock);
3178 list_for_each_entry(s, &slab_caches, list) {
3179 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3181 local_irq_save(flags);
3182 __flush_cpu_slab(s, cpu);
3183 local_irq_restore(flags);
3184 free_kmem_cache_cpu(c, cpu);
3185 s->cpu_slab[cpu] = NULL;
3187 up_read(&slub_lock);
3188 break;
3189 default:
3190 break;
3192 return NOTIFY_OK;
3195 static struct notifier_block __cpuinitdata slab_notifier = {
3196 .notifier_call = slab_cpuup_callback
3199 #endif
3201 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3203 struct kmem_cache *s;
3205 if (unlikely(size > PAGE_SIZE))
3206 return kmalloc_large(size, gfpflags);
3208 s = get_slab(size, gfpflags);
3210 if (unlikely(ZERO_OR_NULL_PTR(s)))
3211 return s;
3213 return slab_alloc(s, gfpflags, -1, caller);
3216 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3217 int node, void *caller)
3219 struct kmem_cache *s;
3221 if (unlikely(size > PAGE_SIZE))
3222 return kmalloc_large_node(size, gfpflags, node);
3224 s = get_slab(size, gfpflags);
3226 if (unlikely(ZERO_OR_NULL_PTR(s)))
3227 return s;
3229 return slab_alloc(s, gfpflags, node, caller);
3232 #ifdef CONFIG_SLUB_DEBUG
3233 static unsigned long count_partial(struct kmem_cache_node *n,
3234 int (*get_count)(struct page *))
3236 unsigned long flags;
3237 unsigned long x = 0;
3238 struct page *page;
3240 spin_lock_irqsave(&n->list_lock, flags);
3241 list_for_each_entry(page, &n->partial, lru)
3242 x += get_count(page);
3243 spin_unlock_irqrestore(&n->list_lock, flags);
3244 return x;
3247 static int count_inuse(struct page *page)
3249 return page->inuse;
3252 static int count_total(struct page *page)
3254 return page->objects;
3257 static int count_free(struct page *page)
3259 return page->objects - page->inuse;
3262 static int validate_slab(struct kmem_cache *s, struct page *page,
3263 unsigned long *map)
3265 void *p;
3266 void *addr = page_address(page);
3268 if (!check_slab(s, page) ||
3269 !on_freelist(s, page, NULL))
3270 return 0;
3272 /* Now we know that a valid freelist exists */
3273 bitmap_zero(map, page->objects);
3275 for_each_free_object(p, s, page->freelist) {
3276 set_bit(slab_index(p, s, addr), map);
3277 if (!check_object(s, page, p, 0))
3278 return 0;
3281 for_each_object(p, s, addr, page->objects)
3282 if (!test_bit(slab_index(p, s, addr), map))
3283 if (!check_object(s, page, p, 1))
3284 return 0;
3285 return 1;
3288 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3289 unsigned long *map)
3291 if (slab_trylock(page)) {
3292 validate_slab(s, page, map);
3293 slab_unlock(page);
3294 } else
3295 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3296 s->name, page);
3298 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3299 if (!PageSlubDebug(page))
3300 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3301 "on slab 0x%p\n", s->name, page);
3302 } else {
3303 if (PageSlubDebug(page))
3304 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3305 "slab 0x%p\n", s->name, page);
3309 static int validate_slab_node(struct kmem_cache *s,
3310 struct kmem_cache_node *n, unsigned long *map)
3312 unsigned long count = 0;
3313 struct page *page;
3314 unsigned long flags;
3316 spin_lock_irqsave(&n->list_lock, flags);
3318 list_for_each_entry(page, &n->partial, lru) {
3319 validate_slab_slab(s, page, map);
3320 count++;
3322 if (count != n->nr_partial)
3323 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3324 "counter=%ld\n", s->name, count, n->nr_partial);
3326 if (!(s->flags & SLAB_STORE_USER))
3327 goto out;
3329 list_for_each_entry(page, &n->full, lru) {
3330 validate_slab_slab(s, page, map);
3331 count++;
3333 if (count != atomic_long_read(&n->nr_slabs))
3334 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3335 "counter=%ld\n", s->name, count,
3336 atomic_long_read(&n->nr_slabs));
3338 out:
3339 spin_unlock_irqrestore(&n->list_lock, flags);
3340 return count;
3343 static long validate_slab_cache(struct kmem_cache *s)
3345 int node;
3346 unsigned long count = 0;
3347 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3348 sizeof(unsigned long), GFP_KERNEL);
3350 if (!map)
3351 return -ENOMEM;
3353 flush_all(s);
3354 for_each_node_state(node, N_NORMAL_MEMORY) {
3355 struct kmem_cache_node *n = get_node(s, node);
3357 count += validate_slab_node(s, n, map);
3359 kfree(map);
3360 return count;
3363 #ifdef SLUB_RESILIENCY_TEST
3364 static void resiliency_test(void)
3366 u8 *p;
3368 printk(KERN_ERR "SLUB resiliency testing\n");
3369 printk(KERN_ERR "-----------------------\n");
3370 printk(KERN_ERR "A. Corruption after allocation\n");
3372 p = kzalloc(16, GFP_KERNEL);
3373 p[16] = 0x12;
3374 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3375 " 0x12->0x%p\n\n", p + 16);
3377 validate_slab_cache(kmalloc_caches + 4);
3379 /* Hmmm... The next two are dangerous */
3380 p = kzalloc(32, GFP_KERNEL);
3381 p[32 + sizeof(void *)] = 0x34;
3382 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3383 " 0x34 -> -0x%p\n", p);
3384 printk(KERN_ERR
3385 "If allocated object is overwritten then not detectable\n\n");
3387 validate_slab_cache(kmalloc_caches + 5);
3388 p = kzalloc(64, GFP_KERNEL);
3389 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3390 *p = 0x56;
3391 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3393 printk(KERN_ERR
3394 "If allocated object is overwritten then not detectable\n\n");
3395 validate_slab_cache(kmalloc_caches + 6);
3397 printk(KERN_ERR "\nB. Corruption after free\n");
3398 p = kzalloc(128, GFP_KERNEL);
3399 kfree(p);
3400 *p = 0x78;
3401 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3402 validate_slab_cache(kmalloc_caches + 7);
3404 p = kzalloc(256, GFP_KERNEL);
3405 kfree(p);
3406 p[50] = 0x9a;
3407 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3409 validate_slab_cache(kmalloc_caches + 8);
3411 p = kzalloc(512, GFP_KERNEL);
3412 kfree(p);
3413 p[512] = 0xab;
3414 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3415 validate_slab_cache(kmalloc_caches + 9);
3417 #else
3418 static void resiliency_test(void) {};
3419 #endif
3422 * Generate lists of code addresses where slabcache objects are allocated
3423 * and freed.
3426 struct location {
3427 unsigned long count;
3428 void *addr;
3429 long long sum_time;
3430 long min_time;
3431 long max_time;
3432 long min_pid;
3433 long max_pid;
3434 cpumask_t cpus;
3435 nodemask_t nodes;
3438 struct loc_track {
3439 unsigned long max;
3440 unsigned long count;
3441 struct location *loc;
3444 static void free_loc_track(struct loc_track *t)
3446 if (t->max)
3447 free_pages((unsigned long)t->loc,
3448 get_order(sizeof(struct location) * t->max));
3451 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3453 struct location *l;
3454 int order;
3456 order = get_order(sizeof(struct location) * max);
3458 l = (void *)__get_free_pages(flags, order);
3459 if (!l)
3460 return 0;
3462 if (t->count) {
3463 memcpy(l, t->loc, sizeof(struct location) * t->count);
3464 free_loc_track(t);
3466 t->max = max;
3467 t->loc = l;
3468 return 1;
3471 static int add_location(struct loc_track *t, struct kmem_cache *s,
3472 const struct track *track)
3474 long start, end, pos;
3475 struct location *l;
3476 void *caddr;
3477 unsigned long age = jiffies - track->when;
3479 start = -1;
3480 end = t->count;
3482 for ( ; ; ) {
3483 pos = start + (end - start + 1) / 2;
3486 * There is nothing at "end". If we end up there
3487 * we need to add something to before end.
3489 if (pos == end)
3490 break;
3492 caddr = t->loc[pos].addr;
3493 if (track->addr == caddr) {
3495 l = &t->loc[pos];
3496 l->count++;
3497 if (track->when) {
3498 l->sum_time += age;
3499 if (age < l->min_time)
3500 l->min_time = age;
3501 if (age > l->max_time)
3502 l->max_time = age;
3504 if (track->pid < l->min_pid)
3505 l->min_pid = track->pid;
3506 if (track->pid > l->max_pid)
3507 l->max_pid = track->pid;
3509 cpu_set(track->cpu, l->cpus);
3511 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3512 return 1;
3515 if (track->addr < caddr)
3516 end = pos;
3517 else
3518 start = pos;
3522 * Not found. Insert new tracking element.
3524 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3525 return 0;
3527 l = t->loc + pos;
3528 if (pos < t->count)
3529 memmove(l + 1, l,
3530 (t->count - pos) * sizeof(struct location));
3531 t->count++;
3532 l->count = 1;
3533 l->addr = track->addr;
3534 l->sum_time = age;
3535 l->min_time = age;
3536 l->max_time = age;
3537 l->min_pid = track->pid;
3538 l->max_pid = track->pid;
3539 cpus_clear(l->cpus);
3540 cpu_set(track->cpu, l->cpus);
3541 nodes_clear(l->nodes);
3542 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3543 return 1;
3546 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3547 struct page *page, enum track_item alloc)
3549 void *addr = page_address(page);
3550 DECLARE_BITMAP(map, page->objects);
3551 void *p;
3553 bitmap_zero(map, page->objects);
3554 for_each_free_object(p, s, page->freelist)
3555 set_bit(slab_index(p, s, addr), map);
3557 for_each_object(p, s, addr, page->objects)
3558 if (!test_bit(slab_index(p, s, addr), map))
3559 add_location(t, s, get_track(s, p, alloc));
3562 static int list_locations(struct kmem_cache *s, char *buf,
3563 enum track_item alloc)
3565 int len = 0;
3566 unsigned long i;
3567 struct loc_track t = { 0, 0, NULL };
3568 int node;
3570 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3571 GFP_TEMPORARY))
3572 return sprintf(buf, "Out of memory\n");
3574 /* Push back cpu slabs */
3575 flush_all(s);
3577 for_each_node_state(node, N_NORMAL_MEMORY) {
3578 struct kmem_cache_node *n = get_node(s, node);
3579 unsigned long flags;
3580 struct page *page;
3582 if (!atomic_long_read(&n->nr_slabs))
3583 continue;
3585 spin_lock_irqsave(&n->list_lock, flags);
3586 list_for_each_entry(page, &n->partial, lru)
3587 process_slab(&t, s, page, alloc);
3588 list_for_each_entry(page, &n->full, lru)
3589 process_slab(&t, s, page, alloc);
3590 spin_unlock_irqrestore(&n->list_lock, flags);
3593 for (i = 0; i < t.count; i++) {
3594 struct location *l = &t.loc[i];
3596 if (len > PAGE_SIZE - 100)
3597 break;
3598 len += sprintf(buf + len, "%7ld ", l->count);
3600 if (l->addr)
3601 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3602 else
3603 len += sprintf(buf + len, "<not-available>");
3605 if (l->sum_time != l->min_time) {
3606 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3607 l->min_time,
3608 (long)div_u64(l->sum_time, l->count),
3609 l->max_time);
3610 } else
3611 len += sprintf(buf + len, " age=%ld",
3612 l->min_time);
3614 if (l->min_pid != l->max_pid)
3615 len += sprintf(buf + len, " pid=%ld-%ld",
3616 l->min_pid, l->max_pid);
3617 else
3618 len += sprintf(buf + len, " pid=%ld",
3619 l->min_pid);
3621 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3622 len < PAGE_SIZE - 60) {
3623 len += sprintf(buf + len, " cpus=");
3624 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3625 l->cpus);
3628 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3629 len < PAGE_SIZE - 60) {
3630 len += sprintf(buf + len, " nodes=");
3631 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3632 l->nodes);
3635 len += sprintf(buf + len, "\n");
3638 free_loc_track(&t);
3639 if (!t.count)
3640 len += sprintf(buf, "No data\n");
3641 return len;
3644 enum slab_stat_type {
3645 SL_ALL, /* All slabs */
3646 SL_PARTIAL, /* Only partially allocated slabs */
3647 SL_CPU, /* Only slabs used for cpu caches */
3648 SL_OBJECTS, /* Determine allocated objects not slabs */
3649 SL_TOTAL /* Determine object capacity not slabs */
3652 #define SO_ALL (1 << SL_ALL)
3653 #define SO_PARTIAL (1 << SL_PARTIAL)
3654 #define SO_CPU (1 << SL_CPU)
3655 #define SO_OBJECTS (1 << SL_OBJECTS)
3656 #define SO_TOTAL (1 << SL_TOTAL)
3658 static ssize_t show_slab_objects(struct kmem_cache *s,
3659 char *buf, unsigned long flags)
3661 unsigned long total = 0;
3662 int node;
3663 int x;
3664 unsigned long *nodes;
3665 unsigned long *per_cpu;
3667 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3668 if (!nodes)
3669 return -ENOMEM;
3670 per_cpu = nodes + nr_node_ids;
3672 if (flags & SO_CPU) {
3673 int cpu;
3675 for_each_possible_cpu(cpu) {
3676 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3678 if (!c || c->node < 0)
3679 continue;
3681 if (c->page) {
3682 if (flags & SO_TOTAL)
3683 x = c->page->objects;
3684 else if (flags & SO_OBJECTS)
3685 x = c->page->inuse;
3686 else
3687 x = 1;
3689 total += x;
3690 nodes[c->node] += x;
3692 per_cpu[c->node]++;
3696 if (flags & SO_ALL) {
3697 for_each_node_state(node, N_NORMAL_MEMORY) {
3698 struct kmem_cache_node *n = get_node(s, node);
3700 if (flags & SO_TOTAL)
3701 x = atomic_long_read(&n->total_objects);
3702 else if (flags & SO_OBJECTS)
3703 x = atomic_long_read(&n->total_objects) -
3704 count_partial(n, count_free);
3706 else
3707 x = atomic_long_read(&n->nr_slabs);
3708 total += x;
3709 nodes[node] += x;
3712 } else if (flags & SO_PARTIAL) {
3713 for_each_node_state(node, N_NORMAL_MEMORY) {
3714 struct kmem_cache_node *n = get_node(s, node);
3716 if (flags & SO_TOTAL)
3717 x = count_partial(n, count_total);
3718 else if (flags & SO_OBJECTS)
3719 x = count_partial(n, count_inuse);
3720 else
3721 x = n->nr_partial;
3722 total += x;
3723 nodes[node] += x;
3726 x = sprintf(buf, "%lu", total);
3727 #ifdef CONFIG_NUMA
3728 for_each_node_state(node, N_NORMAL_MEMORY)
3729 if (nodes[node])
3730 x += sprintf(buf + x, " N%d=%lu",
3731 node, nodes[node]);
3732 #endif
3733 kfree(nodes);
3734 return x + sprintf(buf + x, "\n");
3737 static int any_slab_objects(struct kmem_cache *s)
3739 int node;
3741 for_each_online_node(node) {
3742 struct kmem_cache_node *n = get_node(s, node);
3744 if (!n)
3745 continue;
3747 if (atomic_long_read(&n->total_objects))
3748 return 1;
3750 return 0;
3753 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3754 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3756 struct slab_attribute {
3757 struct attribute attr;
3758 ssize_t (*show)(struct kmem_cache *s, char *buf);
3759 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3762 #define SLAB_ATTR_RO(_name) \
3763 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3765 #define SLAB_ATTR(_name) \
3766 static struct slab_attribute _name##_attr = \
3767 __ATTR(_name, 0644, _name##_show, _name##_store)
3769 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3771 return sprintf(buf, "%d\n", s->size);
3773 SLAB_ATTR_RO(slab_size);
3775 static ssize_t align_show(struct kmem_cache *s, char *buf)
3777 return sprintf(buf, "%d\n", s->align);
3779 SLAB_ATTR_RO(align);
3781 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3783 return sprintf(buf, "%d\n", s->objsize);
3785 SLAB_ATTR_RO(object_size);
3787 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3789 return sprintf(buf, "%d\n", oo_objects(s->oo));
3791 SLAB_ATTR_RO(objs_per_slab);
3793 static ssize_t order_store(struct kmem_cache *s,
3794 const char *buf, size_t length)
3796 unsigned long order;
3797 int err;
3799 err = strict_strtoul(buf, 10, &order);
3800 if (err)
3801 return err;
3803 if (order > slub_max_order || order < slub_min_order)
3804 return -EINVAL;
3806 calculate_sizes(s, order);
3807 return length;
3810 static ssize_t order_show(struct kmem_cache *s, char *buf)
3812 return sprintf(buf, "%d\n", oo_order(s->oo));
3814 SLAB_ATTR(order);
3816 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3818 if (s->ctor) {
3819 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3821 return n + sprintf(buf + n, "\n");
3823 return 0;
3825 SLAB_ATTR_RO(ctor);
3827 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3829 return sprintf(buf, "%d\n", s->refcount - 1);
3831 SLAB_ATTR_RO(aliases);
3833 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3835 return show_slab_objects(s, buf, SO_ALL);
3837 SLAB_ATTR_RO(slabs);
3839 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3841 return show_slab_objects(s, buf, SO_PARTIAL);
3843 SLAB_ATTR_RO(partial);
3845 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3847 return show_slab_objects(s, buf, SO_CPU);
3849 SLAB_ATTR_RO(cpu_slabs);
3851 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3853 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3855 SLAB_ATTR_RO(objects);
3857 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3859 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3861 SLAB_ATTR_RO(objects_partial);
3863 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3865 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3867 SLAB_ATTR_RO(total_objects);
3869 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3871 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3874 static ssize_t sanity_checks_store(struct kmem_cache *s,
3875 const char *buf, size_t length)
3877 s->flags &= ~SLAB_DEBUG_FREE;
3878 if (buf[0] == '1')
3879 s->flags |= SLAB_DEBUG_FREE;
3880 return length;
3882 SLAB_ATTR(sanity_checks);
3884 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3889 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3890 size_t length)
3892 s->flags &= ~SLAB_TRACE;
3893 if (buf[0] == '1')
3894 s->flags |= SLAB_TRACE;
3895 return length;
3897 SLAB_ATTR(trace);
3899 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3904 static ssize_t reclaim_account_store(struct kmem_cache *s,
3905 const char *buf, size_t length)
3907 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3908 if (buf[0] == '1')
3909 s->flags |= SLAB_RECLAIM_ACCOUNT;
3910 return length;
3912 SLAB_ATTR(reclaim_account);
3914 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3916 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3918 SLAB_ATTR_RO(hwcache_align);
3920 #ifdef CONFIG_ZONE_DMA
3921 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3923 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3925 SLAB_ATTR_RO(cache_dma);
3926 #endif
3928 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3930 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3932 SLAB_ATTR_RO(destroy_by_rcu);
3934 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3939 static ssize_t red_zone_store(struct kmem_cache *s,
3940 const char *buf, size_t length)
3942 if (any_slab_objects(s))
3943 return -EBUSY;
3945 s->flags &= ~SLAB_RED_ZONE;
3946 if (buf[0] == '1')
3947 s->flags |= SLAB_RED_ZONE;
3948 calculate_sizes(s, -1);
3949 return length;
3951 SLAB_ATTR(red_zone);
3953 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3955 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3958 static ssize_t poison_store(struct kmem_cache *s,
3959 const char *buf, size_t length)
3961 if (any_slab_objects(s))
3962 return -EBUSY;
3964 s->flags &= ~SLAB_POISON;
3965 if (buf[0] == '1')
3966 s->flags |= SLAB_POISON;
3967 calculate_sizes(s, -1);
3968 return length;
3970 SLAB_ATTR(poison);
3972 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3977 static ssize_t store_user_store(struct kmem_cache *s,
3978 const char *buf, size_t length)
3980 if (any_slab_objects(s))
3981 return -EBUSY;
3983 s->flags &= ~SLAB_STORE_USER;
3984 if (buf[0] == '1')
3985 s->flags |= SLAB_STORE_USER;
3986 calculate_sizes(s, -1);
3987 return length;
3989 SLAB_ATTR(store_user);
3991 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3993 return 0;
3996 static ssize_t validate_store(struct kmem_cache *s,
3997 const char *buf, size_t length)
3999 int ret = -EINVAL;
4001 if (buf[0] == '1') {
4002 ret = validate_slab_cache(s);
4003 if (ret >= 0)
4004 ret = length;
4006 return ret;
4008 SLAB_ATTR(validate);
4010 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4012 return 0;
4015 static ssize_t shrink_store(struct kmem_cache *s,
4016 const char *buf, size_t length)
4018 if (buf[0] == '1') {
4019 int rc = kmem_cache_shrink(s);
4021 if (rc)
4022 return rc;
4023 } else
4024 return -EINVAL;
4025 return length;
4027 SLAB_ATTR(shrink);
4029 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4031 if (!(s->flags & SLAB_STORE_USER))
4032 return -ENOSYS;
4033 return list_locations(s, buf, TRACK_ALLOC);
4035 SLAB_ATTR_RO(alloc_calls);
4037 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4039 if (!(s->flags & SLAB_STORE_USER))
4040 return -ENOSYS;
4041 return list_locations(s, buf, TRACK_FREE);
4043 SLAB_ATTR_RO(free_calls);
4045 #ifdef CONFIG_NUMA
4046 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4051 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4052 const char *buf, size_t length)
4054 unsigned long ratio;
4055 int err;
4057 err = strict_strtoul(buf, 10, &ratio);
4058 if (err)
4059 return err;
4061 if (ratio <= 100)
4062 s->remote_node_defrag_ratio = ratio * 10;
4064 return length;
4066 SLAB_ATTR(remote_node_defrag_ratio);
4067 #endif
4069 #ifdef CONFIG_SLUB_STATS
4070 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4072 unsigned long sum = 0;
4073 int cpu;
4074 int len;
4075 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4077 if (!data)
4078 return -ENOMEM;
4080 for_each_online_cpu(cpu) {
4081 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4083 data[cpu] = x;
4084 sum += x;
4087 len = sprintf(buf, "%lu", sum);
4089 #ifdef CONFIG_SMP
4090 for_each_online_cpu(cpu) {
4091 if (data[cpu] && len < PAGE_SIZE - 20)
4092 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4094 #endif
4095 kfree(data);
4096 return len + sprintf(buf + len, "\n");
4099 #define STAT_ATTR(si, text) \
4100 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4102 return show_stat(s, buf, si); \
4104 SLAB_ATTR_RO(text); \
4106 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4107 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4108 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4109 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4110 STAT_ATTR(FREE_FROZEN, free_frozen);
4111 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4112 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4113 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4114 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4115 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4116 STAT_ATTR(FREE_SLAB, free_slab);
4117 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4118 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4119 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4120 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4121 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4122 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4123 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4124 #endif
4126 static struct attribute *slab_attrs[] = {
4127 &slab_size_attr.attr,
4128 &object_size_attr.attr,
4129 &objs_per_slab_attr.attr,
4130 &order_attr.attr,
4131 &objects_attr.attr,
4132 &objects_partial_attr.attr,
4133 &total_objects_attr.attr,
4134 &slabs_attr.attr,
4135 &partial_attr.attr,
4136 &cpu_slabs_attr.attr,
4137 &ctor_attr.attr,
4138 &aliases_attr.attr,
4139 &align_attr.attr,
4140 &sanity_checks_attr.attr,
4141 &trace_attr.attr,
4142 &hwcache_align_attr.attr,
4143 &reclaim_account_attr.attr,
4144 &destroy_by_rcu_attr.attr,
4145 &red_zone_attr.attr,
4146 &poison_attr.attr,
4147 &store_user_attr.attr,
4148 &validate_attr.attr,
4149 &shrink_attr.attr,
4150 &alloc_calls_attr.attr,
4151 &free_calls_attr.attr,
4152 #ifdef CONFIG_ZONE_DMA
4153 &cache_dma_attr.attr,
4154 #endif
4155 #ifdef CONFIG_NUMA
4156 &remote_node_defrag_ratio_attr.attr,
4157 #endif
4158 #ifdef CONFIG_SLUB_STATS
4159 &alloc_fastpath_attr.attr,
4160 &alloc_slowpath_attr.attr,
4161 &free_fastpath_attr.attr,
4162 &free_slowpath_attr.attr,
4163 &free_frozen_attr.attr,
4164 &free_add_partial_attr.attr,
4165 &free_remove_partial_attr.attr,
4166 &alloc_from_partial_attr.attr,
4167 &alloc_slab_attr.attr,
4168 &alloc_refill_attr.attr,
4169 &free_slab_attr.attr,
4170 &cpuslab_flush_attr.attr,
4171 &deactivate_full_attr.attr,
4172 &deactivate_empty_attr.attr,
4173 &deactivate_to_head_attr.attr,
4174 &deactivate_to_tail_attr.attr,
4175 &deactivate_remote_frees_attr.attr,
4176 &order_fallback_attr.attr,
4177 #endif
4178 NULL
4181 static struct attribute_group slab_attr_group = {
4182 .attrs = slab_attrs,
4185 static ssize_t slab_attr_show(struct kobject *kobj,
4186 struct attribute *attr,
4187 char *buf)
4189 struct slab_attribute *attribute;
4190 struct kmem_cache *s;
4191 int err;
4193 attribute = to_slab_attr(attr);
4194 s = to_slab(kobj);
4196 if (!attribute->show)
4197 return -EIO;
4199 err = attribute->show(s, buf);
4201 return err;
4204 static ssize_t slab_attr_store(struct kobject *kobj,
4205 struct attribute *attr,
4206 const char *buf, size_t len)
4208 struct slab_attribute *attribute;
4209 struct kmem_cache *s;
4210 int err;
4212 attribute = to_slab_attr(attr);
4213 s = to_slab(kobj);
4215 if (!attribute->store)
4216 return -EIO;
4218 err = attribute->store(s, buf, len);
4220 return err;
4223 static void kmem_cache_release(struct kobject *kobj)
4225 struct kmem_cache *s = to_slab(kobj);
4227 kfree(s);
4230 static struct sysfs_ops slab_sysfs_ops = {
4231 .show = slab_attr_show,
4232 .store = slab_attr_store,
4235 static struct kobj_type slab_ktype = {
4236 .sysfs_ops = &slab_sysfs_ops,
4237 .release = kmem_cache_release
4240 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4242 struct kobj_type *ktype = get_ktype(kobj);
4244 if (ktype == &slab_ktype)
4245 return 1;
4246 return 0;
4249 static struct kset_uevent_ops slab_uevent_ops = {
4250 .filter = uevent_filter,
4253 static struct kset *slab_kset;
4255 #define ID_STR_LENGTH 64
4257 /* Create a unique string id for a slab cache:
4259 * Format :[flags-]size
4261 static char *create_unique_id(struct kmem_cache *s)
4263 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4264 char *p = name;
4266 BUG_ON(!name);
4268 *p++ = ':';
4270 * First flags affecting slabcache operations. We will only
4271 * get here for aliasable slabs so we do not need to support
4272 * too many flags. The flags here must cover all flags that
4273 * are matched during merging to guarantee that the id is
4274 * unique.
4276 if (s->flags & SLAB_CACHE_DMA)
4277 *p++ = 'd';
4278 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4279 *p++ = 'a';
4280 if (s->flags & SLAB_DEBUG_FREE)
4281 *p++ = 'F';
4282 if (p != name + 1)
4283 *p++ = '-';
4284 p += sprintf(p, "%07d", s->size);
4285 BUG_ON(p > name + ID_STR_LENGTH - 1);
4286 return name;
4289 static int sysfs_slab_add(struct kmem_cache *s)
4291 int err;
4292 const char *name;
4293 int unmergeable;
4295 if (slab_state < SYSFS)
4296 /* Defer until later */
4297 return 0;
4299 unmergeable = slab_unmergeable(s);
4300 if (unmergeable) {
4302 * Slabcache can never be merged so we can use the name proper.
4303 * This is typically the case for debug situations. In that
4304 * case we can catch duplicate names easily.
4306 sysfs_remove_link(&slab_kset->kobj, s->name);
4307 name = s->name;
4308 } else {
4310 * Create a unique name for the slab as a target
4311 * for the symlinks.
4313 name = create_unique_id(s);
4316 s->kobj.kset = slab_kset;
4317 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4318 if (err) {
4319 kobject_put(&s->kobj);
4320 return err;
4323 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4324 if (err)
4325 return err;
4326 kobject_uevent(&s->kobj, KOBJ_ADD);
4327 if (!unmergeable) {
4328 /* Setup first alias */
4329 sysfs_slab_alias(s, s->name);
4330 kfree(name);
4332 return 0;
4335 static void sysfs_slab_remove(struct kmem_cache *s)
4337 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4338 kobject_del(&s->kobj);
4339 kobject_put(&s->kobj);
4343 * Need to buffer aliases during bootup until sysfs becomes
4344 * available lest we loose that information.
4346 struct saved_alias {
4347 struct kmem_cache *s;
4348 const char *name;
4349 struct saved_alias *next;
4352 static struct saved_alias *alias_list;
4354 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4356 struct saved_alias *al;
4358 if (slab_state == SYSFS) {
4360 * If we have a leftover link then remove it.
4362 sysfs_remove_link(&slab_kset->kobj, name);
4363 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4366 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4367 if (!al)
4368 return -ENOMEM;
4370 al->s = s;
4371 al->name = name;
4372 al->next = alias_list;
4373 alias_list = al;
4374 return 0;
4377 static int __init slab_sysfs_init(void)
4379 struct kmem_cache *s;
4380 int err;
4382 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4383 if (!slab_kset) {
4384 printk(KERN_ERR "Cannot register slab subsystem.\n");
4385 return -ENOSYS;
4388 slab_state = SYSFS;
4390 list_for_each_entry(s, &slab_caches, list) {
4391 err = sysfs_slab_add(s);
4392 if (err)
4393 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4394 " to sysfs\n", s->name);
4397 while (alias_list) {
4398 struct saved_alias *al = alias_list;
4400 alias_list = alias_list->next;
4401 err = sysfs_slab_alias(al->s, al->name);
4402 if (err)
4403 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4404 " %s to sysfs\n", s->name);
4405 kfree(al);
4408 resiliency_test();
4409 return 0;
4412 __initcall(slab_sysfs_init);
4413 #endif
4416 * The /proc/slabinfo ABI
4418 #ifdef CONFIG_SLABINFO
4420 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4421 size_t count, loff_t *ppos)
4423 return -EINVAL;
4427 static void print_slabinfo_header(struct seq_file *m)
4429 seq_puts(m, "slabinfo - version: 2.1\n");
4430 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4431 "<objperslab> <pagesperslab>");
4432 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4433 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4434 seq_putc(m, '\n');
4437 static void *s_start(struct seq_file *m, loff_t *pos)
4439 loff_t n = *pos;
4441 down_read(&slub_lock);
4442 if (!n)
4443 print_slabinfo_header(m);
4445 return seq_list_start(&slab_caches, *pos);
4448 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4450 return seq_list_next(p, &slab_caches, pos);
4453 static void s_stop(struct seq_file *m, void *p)
4455 up_read(&slub_lock);
4458 static int s_show(struct seq_file *m, void *p)
4460 unsigned long nr_partials = 0;
4461 unsigned long nr_slabs = 0;
4462 unsigned long nr_inuse = 0;
4463 unsigned long nr_objs = 0;
4464 unsigned long nr_free = 0;
4465 struct kmem_cache *s;
4466 int node;
4468 s = list_entry(p, struct kmem_cache, list);
4470 for_each_online_node(node) {
4471 struct kmem_cache_node *n = get_node(s, node);
4473 if (!n)
4474 continue;
4476 nr_partials += n->nr_partial;
4477 nr_slabs += atomic_long_read(&n->nr_slabs);
4478 nr_objs += atomic_long_read(&n->total_objects);
4479 nr_free += count_partial(n, count_free);
4482 nr_inuse = nr_objs - nr_free;
4484 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4485 nr_objs, s->size, oo_objects(s->oo),
4486 (1 << oo_order(s->oo)));
4487 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4488 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4489 0UL);
4490 seq_putc(m, '\n');
4491 return 0;
4494 const struct seq_operations slabinfo_op = {
4495 .start = s_start,
4496 .next = s_next,
4497 .stop = s_stop,
4498 .show = s_show,
4501 #endif /* CONFIG_SLABINFO */