1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
36 #include <asm/uaccess.h>
38 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
39 static struct kmem_cache
*page_cgroup_cache __read_mostly
;
40 #define MEM_CGROUP_RECLAIM_RETRIES 5
43 * Statistics for memory cgroup.
45 enum mem_cgroup_stat_index
{
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
51 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
54 MEM_CGROUP_STAT_NSTATS
,
57 struct mem_cgroup_stat_cpu
{
58 s64 count
[MEM_CGROUP_STAT_NSTATS
];
59 } ____cacheline_aligned_in_smp
;
61 struct mem_cgroup_stat
{
62 struct mem_cgroup_stat_cpu cpustat
[NR_CPUS
];
66 * For accounting under irq disable, no need for increment preempt count.
68 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat
*stat
,
69 enum mem_cgroup_stat_index idx
, int val
)
71 int cpu
= smp_processor_id();
72 stat
->cpustat
[cpu
].count
[idx
] += val
;
75 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
76 enum mem_cgroup_stat_index idx
)
80 for_each_possible_cpu(cpu
)
81 ret
+= stat
->cpustat
[cpu
].count
[idx
];
86 * per-zone information in memory controller.
89 enum mem_cgroup_zstat_index
{
90 MEM_CGROUP_ZSTAT_ACTIVE
,
91 MEM_CGROUP_ZSTAT_INACTIVE
,
96 struct mem_cgroup_per_zone
{
98 * spin_lock to protect the per cgroup LRU
101 struct list_head active_list
;
102 struct list_head inactive_list
;
103 unsigned long count
[NR_MEM_CGROUP_ZSTAT
];
105 /* Macro for accessing counter */
106 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
108 struct mem_cgroup_per_node
{
109 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
112 struct mem_cgroup_lru_info
{
113 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
128 struct cgroup_subsys_state css
;
130 * the counter to account for memory usage
132 struct res_counter res
;
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
137 struct mem_cgroup_lru_info info
;
139 int prev_priority
; /* for recording reclaim priority */
143 struct mem_cgroup_stat stat
;
145 static struct mem_cgroup init_mem_cgroup
;
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
154 #define PAGE_CGROUP_LOCK_BIT 0x0
155 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
158 #define PAGE_CGROUP_LOCK 0x0
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
166 struct list_head lru
; /* per cgroup LRU list */
168 struct mem_cgroup
*mem_cgroup
;
171 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
172 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
174 static int page_cgroup_nid(struct page_cgroup
*pc
)
176 return page_to_nid(pc
->page
);
179 static enum zone_type
page_cgroup_zid(struct page_cgroup
*pc
)
181 return page_zonenum(pc
->page
);
185 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
187 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
193 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
, int flags
,
196 int val
= (charge
)? 1 : -1;
197 struct mem_cgroup_stat
*stat
= &mem
->stat
;
199 VM_BUG_ON(!irqs_disabled());
200 if (flags
& PAGE_CGROUP_FLAG_CACHE
)
201 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_CACHE
, val
);
203 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_RSS
, val
);
206 __mem_cgroup_stat_add_safe(stat
,
207 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
209 __mem_cgroup_stat_add_safe(stat
,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
213 static struct mem_cgroup_per_zone
*
214 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
216 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
219 static struct mem_cgroup_per_zone
*
220 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
222 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
223 int nid
= page_cgroup_nid(pc
);
224 int zid
= page_cgroup_zid(pc
);
226 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
229 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
230 enum mem_cgroup_zstat_index idx
)
233 struct mem_cgroup_per_zone
*mz
;
236 for_each_online_node(nid
)
237 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
238 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
239 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
244 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
246 return container_of(cgroup_subsys_state(cont
,
247 mem_cgroup_subsys_id
), struct mem_cgroup
,
251 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
253 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
254 struct mem_cgroup
, css
);
257 static inline int page_cgroup_locked(struct page
*page
)
259 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
262 static void page_assign_page_cgroup(struct page
*page
, struct page_cgroup
*pc
)
264 VM_BUG_ON(!page_cgroup_locked(page
));
265 page
->page_cgroup
= ((unsigned long)pc
| PAGE_CGROUP_LOCK
);
268 struct page_cgroup
*page_get_page_cgroup(struct page
*page
)
270 return (struct page_cgroup
*) (page
->page_cgroup
& ~PAGE_CGROUP_LOCK
);
273 static void lock_page_cgroup(struct page
*page
)
275 bit_spin_lock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
278 static int try_lock_page_cgroup(struct page
*page
)
280 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
283 static void unlock_page_cgroup(struct page
*page
)
285 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
288 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone
*mz
,
289 struct page_cgroup
*pc
)
291 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
294 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
296 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
298 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, false);
302 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone
*mz
,
303 struct page_cgroup
*pc
)
305 int to
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
308 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
309 list_add(&pc
->lru
, &mz
->inactive_list
);
311 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
312 list_add(&pc
->lru
, &mz
->active_list
);
314 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, true);
317 static void __mem_cgroup_move_lists(struct page_cgroup
*pc
, bool active
)
319 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
320 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
323 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
325 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
328 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
329 pc
->flags
|= PAGE_CGROUP_FLAG_ACTIVE
;
330 list_move(&pc
->lru
, &mz
->active_list
);
332 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
333 pc
->flags
&= ~PAGE_CGROUP_FLAG_ACTIVE
;
334 list_move(&pc
->lru
, &mz
->inactive_list
);
338 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
343 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
349 * This routine assumes that the appropriate zone's lru lock is already held
351 void mem_cgroup_move_lists(struct page
*page
, bool active
)
353 struct page_cgroup
*pc
;
354 struct mem_cgroup_per_zone
*mz
;
357 if (mem_cgroup_subsys
.disabled
)
361 * We cannot lock_page_cgroup while holding zone's lru_lock,
362 * because other holders of lock_page_cgroup can be interrupted
363 * with an attempt to rotate_reclaimable_page. But we cannot
364 * safely get to page_cgroup without it, so just try_lock it:
365 * mem_cgroup_isolate_pages allows for page left on wrong list.
367 if (!try_lock_page_cgroup(page
))
370 pc
= page_get_page_cgroup(page
);
372 mz
= page_cgroup_zoneinfo(pc
);
373 spin_lock_irqsave(&mz
->lru_lock
, flags
);
374 __mem_cgroup_move_lists(pc
, active
);
375 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
377 unlock_page_cgroup(page
);
381 * Calculate mapped_ratio under memory controller. This will be used in
382 * vmscan.c for deteremining we have to reclaim mapped pages.
384 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
389 * usage is recorded in bytes. But, here, we assume the number of
390 * physical pages can be represented by "long" on any arch.
392 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
393 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
394 return (int)((rss
* 100L) / total
);
398 * This function is called from vmscan.c. In page reclaiming loop. balance
399 * between active and inactive list is calculated. For memory controller
400 * page reclaiming, we should use using mem_cgroup's imbalance rather than
401 * zone's global lru imbalance.
403 long mem_cgroup_reclaim_imbalance(struct mem_cgroup
*mem
)
405 unsigned long active
, inactive
;
406 /* active and inactive are the number of pages. 'long' is ok.*/
407 active
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_ACTIVE
);
408 inactive
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_INACTIVE
);
409 return (long) (active
/ (inactive
+ 1));
413 * prev_priority control...this will be used in memory reclaim path.
415 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
417 return mem
->prev_priority
;
420 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
422 if (priority
< mem
->prev_priority
)
423 mem
->prev_priority
= priority
;
426 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
428 mem
->prev_priority
= priority
;
432 * Calculate # of pages to be scanned in this priority/zone.
435 * priority starts from "DEF_PRIORITY" and decremented in each loop.
436 * (see include/linux/mmzone.h)
439 long mem_cgroup_calc_reclaim_active(struct mem_cgroup
*mem
,
440 struct zone
*zone
, int priority
)
443 int nid
= zone
->zone_pgdat
->node_id
;
444 int zid
= zone_idx(zone
);
445 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
447 nr_active
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
);
448 return (nr_active
>> priority
);
451 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup
*mem
,
452 struct zone
*zone
, int priority
)
455 int nid
= zone
->zone_pgdat
->node_id
;
456 int zid
= zone_idx(zone
);
457 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
459 nr_inactive
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
);
460 return (nr_inactive
>> priority
);
463 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
464 struct list_head
*dst
,
465 unsigned long *scanned
, int order
,
466 int mode
, struct zone
*z
,
467 struct mem_cgroup
*mem_cont
,
470 unsigned long nr_taken
= 0;
474 struct list_head
*src
;
475 struct page_cgroup
*pc
, *tmp
;
476 int nid
= z
->zone_pgdat
->node_id
;
477 int zid
= zone_idx(z
);
478 struct mem_cgroup_per_zone
*mz
;
481 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
483 src
= &mz
->active_list
;
485 src
= &mz
->inactive_list
;
488 spin_lock(&mz
->lru_lock
);
490 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
491 if (scan
>= nr_to_scan
)
495 if (unlikely(!PageLRU(page
)))
498 if (PageActive(page
) && !active
) {
499 __mem_cgroup_move_lists(pc
, true);
502 if (!PageActive(page
) && active
) {
503 __mem_cgroup_move_lists(pc
, false);
508 list_move(&pc
->lru
, &pc_list
);
510 if (__isolate_lru_page(page
, mode
) == 0) {
511 list_move(&page
->lru
, dst
);
516 list_splice(&pc_list
, src
);
517 spin_unlock(&mz
->lru_lock
);
524 * Charge the memory controller for page usage.
526 * 0 if the charge was successful
527 * < 0 if the cgroup is over its limit
529 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
530 gfp_t gfp_mask
, enum charge_type ctype
,
531 struct mem_cgroup
*memcg
)
533 struct mem_cgroup
*mem
;
534 struct page_cgroup
*pc
;
536 unsigned long nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
537 struct mem_cgroup_per_zone
*mz
;
539 pc
= kmem_cache_alloc(page_cgroup_cache
, gfp_mask
);
540 if (unlikely(pc
== NULL
))
544 * We always charge the cgroup the mm_struct belongs to.
545 * The mm_struct's mem_cgroup changes on task migration if the
546 * thread group leader migrates. It's possible that mm is not
547 * set, if so charge the init_mm (happens for pagecache usage).
549 if (likely(!memcg
)) {
551 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
553 * For every charge from the cgroup, increment reference count
559 css_get(&memcg
->css
);
562 while (res_counter_charge(&mem
->res
, PAGE_SIZE
)) {
563 if (!(gfp_mask
& __GFP_WAIT
))
566 if (try_to_free_mem_cgroup_pages(mem
, gfp_mask
))
570 * try_to_free_mem_cgroup_pages() might not give us a full
571 * picture of reclaim. Some pages are reclaimed and might be
572 * moved to swap cache or just unmapped from the cgroup.
573 * Check the limit again to see if the reclaim reduced the
574 * current usage of the cgroup before giving up
576 if (res_counter_check_under_limit(&mem
->res
))
580 mem_cgroup_out_of_memory(mem
, gfp_mask
);
585 pc
->mem_cgroup
= mem
;
588 * If a page is accounted as a page cache, insert to inactive list.
589 * If anon, insert to active list.
591 if (ctype
== MEM_CGROUP_CHARGE_TYPE_CACHE
)
592 pc
->flags
= PAGE_CGROUP_FLAG_CACHE
;
594 pc
->flags
= PAGE_CGROUP_FLAG_ACTIVE
;
596 lock_page_cgroup(page
);
597 if (unlikely(page_get_page_cgroup(page
))) {
598 unlock_page_cgroup(page
);
599 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
601 kmem_cache_free(page_cgroup_cache
, pc
);
604 page_assign_page_cgroup(page
, pc
);
606 mz
= page_cgroup_zoneinfo(pc
);
607 spin_lock_irqsave(&mz
->lru_lock
, flags
);
608 __mem_cgroup_add_list(mz
, pc
);
609 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
611 unlock_page_cgroup(page
);
616 kmem_cache_free(page_cgroup_cache
, pc
);
621 int mem_cgroup_charge(struct page
*page
, struct mm_struct
*mm
, gfp_t gfp_mask
)
623 if (mem_cgroup_subsys
.disabled
)
627 * If already mapped, we don't have to account.
628 * If page cache, page->mapping has address_space.
629 * But page->mapping may have out-of-use anon_vma pointer,
630 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
633 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
637 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
638 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
641 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
644 if (mem_cgroup_subsys
.disabled
)
648 * Corner case handling. This is called from add_to_page_cache()
649 * in usual. But some FS (shmem) precharges this page before calling it
650 * and call add_to_page_cache() with GFP_NOWAIT.
652 * For GFP_NOWAIT case, the page may be pre-charged before calling
653 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
654 * charge twice. (It works but has to pay a bit larger cost.)
656 if (!(gfp_mask
& __GFP_WAIT
)) {
657 struct page_cgroup
*pc
;
659 lock_page_cgroup(page
);
660 pc
= page_get_page_cgroup(page
);
662 VM_BUG_ON(pc
->page
!= page
);
663 VM_BUG_ON(!pc
->mem_cgroup
);
664 unlock_page_cgroup(page
);
667 unlock_page_cgroup(page
);
673 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
674 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
678 * uncharge if !page_mapped(page)
681 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
683 struct page_cgroup
*pc
;
684 struct mem_cgroup
*mem
;
685 struct mem_cgroup_per_zone
*mz
;
688 if (mem_cgroup_subsys
.disabled
)
692 * Check if our page_cgroup is valid
694 lock_page_cgroup(page
);
695 pc
= page_get_page_cgroup(page
);
699 VM_BUG_ON(pc
->page
!= page
);
701 if ((ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
702 && ((pc
->flags
& PAGE_CGROUP_FLAG_CACHE
)
703 || page_mapped(page
)))
706 mz
= page_cgroup_zoneinfo(pc
);
707 spin_lock_irqsave(&mz
->lru_lock
, flags
);
708 __mem_cgroup_remove_list(mz
, pc
);
709 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
711 page_assign_page_cgroup(page
, NULL
);
712 unlock_page_cgroup(page
);
714 mem
= pc
->mem_cgroup
;
715 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
718 kmem_cache_free(page_cgroup_cache
, pc
);
721 unlock_page_cgroup(page
);
724 void mem_cgroup_uncharge_page(struct page
*page
)
726 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
729 void mem_cgroup_uncharge_cache_page(struct page
*page
)
731 VM_BUG_ON(page_mapped(page
));
732 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
736 * Before starting migration, account against new page.
738 int mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
)
740 struct page_cgroup
*pc
;
741 struct mem_cgroup
*mem
= NULL
;
742 enum charge_type ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
745 if (mem_cgroup_subsys
.disabled
)
748 lock_page_cgroup(page
);
749 pc
= page_get_page_cgroup(page
);
751 mem
= pc
->mem_cgroup
;
753 if (pc
->flags
& PAGE_CGROUP_FLAG_CACHE
)
754 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
756 unlock_page_cgroup(page
);
758 ret
= mem_cgroup_charge_common(newpage
, NULL
, GFP_KERNEL
,
765 /* remove redundant charge if migration failed*/
766 void mem_cgroup_end_migration(struct page
*newpage
)
769 * At success, page->mapping is not NULL.
770 * special rollback care is necessary when
771 * 1. at migration failure. (newpage->mapping is cleared in this case)
772 * 2. the newpage was moved but not remapped again because the task
773 * exits and the newpage is obsolete. In this case, the new page
774 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
775 * always for avoiding mess. The page_cgroup will be removed if
776 * unnecessary. File cache pages is still on radix-tree. Don't
779 if (!newpage
->mapping
)
780 __mem_cgroup_uncharge_common(newpage
,
781 MEM_CGROUP_CHARGE_TYPE_FORCE
);
782 else if (PageAnon(newpage
))
783 mem_cgroup_uncharge_page(newpage
);
787 * A call to try to shrink memory usage under specified resource controller.
788 * This is typically used for page reclaiming for shmem for reducing side
789 * effect of page allocation from shmem, which is used by some mem_cgroup.
791 int mem_cgroup_shrink_usage(struct mm_struct
*mm
, gfp_t gfp_mask
)
793 struct mem_cgroup
*mem
;
795 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
797 if (mem_cgroup_subsys
.disabled
)
803 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
808 progress
= try_to_free_mem_cgroup_pages(mem
, gfp_mask
);
809 } while (!progress
&& --retry
);
817 int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
, unsigned long long val
)
820 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
824 while (res_counter_set_limit(&memcg
->res
, val
)) {
825 if (signal_pending(current
)) {
833 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
);
842 * This routine traverse page_cgroup in given list and drop them all.
843 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
845 #define FORCE_UNCHARGE_BATCH (128)
846 static void mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
847 struct mem_cgroup_per_zone
*mz
,
850 struct page_cgroup
*pc
;
852 int count
= FORCE_UNCHARGE_BATCH
;
854 struct list_head
*list
;
857 list
= &mz
->active_list
;
859 list
= &mz
->inactive_list
;
861 spin_lock_irqsave(&mz
->lru_lock
, flags
);
862 while (!list_empty(list
)) {
863 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
866 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
868 * Check if this page is on LRU. !LRU page can be found
869 * if it's under page migration.
872 __mem_cgroup_uncharge_common(page
,
873 MEM_CGROUP_CHARGE_TYPE_FORCE
);
876 count
= FORCE_UNCHARGE_BATCH
;
881 spin_lock_irqsave(&mz
->lru_lock
, flags
);
883 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
887 * make mem_cgroup's charge to be 0 if there is no task.
888 * This enables deleting this mem_cgroup.
890 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
)
897 * page reclaim code (kswapd etc..) will move pages between
898 * active_list <-> inactive_list while we don't take a lock.
899 * So, we have to do loop here until all lists are empty.
901 while (mem
->res
.usage
> 0) {
902 if (atomic_read(&mem
->css
.cgroup
->count
) > 0)
904 for_each_node_state(node
, N_POSSIBLE
)
905 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
906 struct mem_cgroup_per_zone
*mz
;
907 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
908 /* drop all page_cgroup in active_list */
909 mem_cgroup_force_empty_list(mem
, mz
, 1);
910 /* drop all page_cgroup in inactive_list */
911 mem_cgroup_force_empty_list(mem
, mz
, 0);
920 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
922 return res_counter_read_u64(&mem_cgroup_from_cont(cont
)->res
,
926 * The user of this function is...
929 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
932 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
933 unsigned long long val
;
936 switch (cft
->private) {
938 /* This function does all necessary parse...reuse it */
939 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
941 ret
= mem_cgroup_resize_limit(memcg
, val
);
944 ret
= -EINVAL
; /* should be BUG() ? */
950 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
952 struct mem_cgroup
*mem
;
954 mem
= mem_cgroup_from_cont(cont
);
957 res_counter_reset_max(&mem
->res
);
960 res_counter_reset_failcnt(&mem
->res
);
966 static int mem_force_empty_write(struct cgroup
*cont
, unsigned int event
)
968 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
));
971 static const struct mem_cgroup_stat_desc
{
974 } mem_cgroup_stat_desc
[] = {
975 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
976 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
977 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
978 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
981 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
982 struct cgroup_map_cb
*cb
)
984 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
985 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
988 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
991 val
= mem_cgroup_read_stat(stat
, i
);
992 val
*= mem_cgroup_stat_desc
[i
].unit
;
993 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
995 /* showing # of active pages */
997 unsigned long active
, inactive
;
999 inactive
= mem_cgroup_get_all_zonestat(mem_cont
,
1000 MEM_CGROUP_ZSTAT_INACTIVE
);
1001 active
= mem_cgroup_get_all_zonestat(mem_cont
,
1002 MEM_CGROUP_ZSTAT_ACTIVE
);
1003 cb
->fill(cb
, "active", (active
) * PAGE_SIZE
);
1004 cb
->fill(cb
, "inactive", (inactive
) * PAGE_SIZE
);
1009 static struct cftype mem_cgroup_files
[] = {
1011 .name
= "usage_in_bytes",
1012 .private = RES_USAGE
,
1013 .read_u64
= mem_cgroup_read
,
1016 .name
= "max_usage_in_bytes",
1017 .private = RES_MAX_USAGE
,
1018 .trigger
= mem_cgroup_reset
,
1019 .read_u64
= mem_cgroup_read
,
1022 .name
= "limit_in_bytes",
1023 .private = RES_LIMIT
,
1024 .write_string
= mem_cgroup_write
,
1025 .read_u64
= mem_cgroup_read
,
1029 .private = RES_FAILCNT
,
1030 .trigger
= mem_cgroup_reset
,
1031 .read_u64
= mem_cgroup_read
,
1034 .name
= "force_empty",
1035 .trigger
= mem_force_empty_write
,
1039 .read_map
= mem_control_stat_show
,
1043 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
1045 struct mem_cgroup_per_node
*pn
;
1046 struct mem_cgroup_per_zone
*mz
;
1047 int zone
, tmp
= node
;
1049 * This routine is called against possible nodes.
1050 * But it's BUG to call kmalloc() against offline node.
1052 * TODO: this routine can waste much memory for nodes which will
1053 * never be onlined. It's better to use memory hotplug callback
1056 if (!node_state(node
, N_NORMAL_MEMORY
))
1058 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
1062 mem
->info
.nodeinfo
[node
] = pn
;
1063 memset(pn
, 0, sizeof(*pn
));
1065 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
1066 mz
= &pn
->zoneinfo
[zone
];
1067 INIT_LIST_HEAD(&mz
->active_list
);
1068 INIT_LIST_HEAD(&mz
->inactive_list
);
1069 spin_lock_init(&mz
->lru_lock
);
1074 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
1076 kfree(mem
->info
.nodeinfo
[node
]);
1079 static struct mem_cgroup
*mem_cgroup_alloc(void)
1081 struct mem_cgroup
*mem
;
1083 if (sizeof(*mem
) < PAGE_SIZE
)
1084 mem
= kmalloc(sizeof(*mem
), GFP_KERNEL
);
1086 mem
= vmalloc(sizeof(*mem
));
1089 memset(mem
, 0, sizeof(*mem
));
1093 static void mem_cgroup_free(struct mem_cgroup
*mem
)
1095 if (sizeof(*mem
) < PAGE_SIZE
)
1102 static struct cgroup_subsys_state
*
1103 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1105 struct mem_cgroup
*mem
;
1108 if (unlikely((cont
->parent
) == NULL
)) {
1109 mem
= &init_mem_cgroup
;
1110 page_cgroup_cache
= KMEM_CACHE(page_cgroup
, SLAB_PANIC
);
1112 mem
= mem_cgroup_alloc();
1114 return ERR_PTR(-ENOMEM
);
1117 res_counter_init(&mem
->res
);
1119 for_each_node_state(node
, N_POSSIBLE
)
1120 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
1125 for_each_node_state(node
, N_POSSIBLE
)
1126 free_mem_cgroup_per_zone_info(mem
, node
);
1127 if (cont
->parent
!= NULL
)
1128 mem_cgroup_free(mem
);
1129 return ERR_PTR(-ENOMEM
);
1132 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
1133 struct cgroup
*cont
)
1135 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1136 mem_cgroup_force_empty(mem
);
1139 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
1140 struct cgroup
*cont
)
1143 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1145 for_each_node_state(node
, N_POSSIBLE
)
1146 free_mem_cgroup_per_zone_info(mem
, node
);
1148 mem_cgroup_free(mem_cgroup_from_cont(cont
));
1151 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
1152 struct cgroup
*cont
)
1154 return cgroup_add_files(cont
, ss
, mem_cgroup_files
,
1155 ARRAY_SIZE(mem_cgroup_files
));
1158 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
1159 struct cgroup
*cont
,
1160 struct cgroup
*old_cont
,
1161 struct task_struct
*p
)
1163 struct mm_struct
*mm
;
1164 struct mem_cgroup
*mem
, *old_mem
;
1166 mm
= get_task_mm(p
);
1170 mem
= mem_cgroup_from_cont(cont
);
1171 old_mem
= mem_cgroup_from_cont(old_cont
);
1174 * Only thread group leaders are allowed to migrate, the mm_struct is
1175 * in effect owned by the leader
1177 if (!thread_group_leader(p
))
1184 struct cgroup_subsys mem_cgroup_subsys
= {
1186 .subsys_id
= mem_cgroup_subsys_id
,
1187 .create
= mem_cgroup_create
,
1188 .pre_destroy
= mem_cgroup_pre_destroy
,
1189 .destroy
= mem_cgroup_destroy
,
1190 .populate
= mem_cgroup_populate
,
1191 .attach
= mem_cgroup_move_task
,