2 * This code largely moved from arch/i386/kernel/time.c.
3 * See comments there for proper credits.
5 * 2004-06-25 Jesper Juhl
6 * moved mark_offset_tsc below cpufreq_delayed_get to avoid gcc 3.4
10 #include <linux/spinlock.h>
11 #include <linux/init.h>
12 #include <linux/timex.h>
13 #include <linux/errno.h>
14 #include <linux/cpufreq.h>
15 #include <linux/string.h>
16 #include <linux/jiffies.h>
18 #include <asm/timer.h>
20 /* processor.h for distable_tsc flag */
21 #include <asm/processor.h>
24 #include "mach_timer.h"
27 #include <asm/i8253.h>
29 #ifdef CONFIG_HPET_TIMER
30 static unsigned long hpet_usec_quotient
;
31 static unsigned long hpet_last
;
32 static struct timer_opts timer_tsc
;
36 /* Number of usecs that the last interrupt was delayed */
37 static int delay_at_last_interrupt
;
39 static unsigned long last_tsc_low
; /* lsb 32 bits of Time Stamp Counter */
40 static unsigned long last_tsc_high
; /* msb 32 bits of Time Stamp Counter */
41 static unsigned long long monotonic_base
;
42 static seqlock_t monotonic_lock
= SEQLOCK_UNLOCKED
;
44 /* Avoid compensating for lost ticks before TSCs are synched */
45 static int detect_lost_ticks
;
46 static int __init
start_lost_tick_compensation(void)
48 detect_lost_ticks
= 1;
51 late_initcall(start_lost_tick_compensation
);
53 /* convert from cycles(64bits) => nanoseconds (64bits)
55 * ns = cycles / (freq / ns_per_sec)
56 * ns = cycles * (ns_per_sec / freq)
57 * ns = cycles * (10^9 / (cpu_khz * 10^3))
58 * ns = cycles * (10^6 / cpu_khz)
60 * Then we use scaling math (suggested by george@mvista.com) to get:
61 * ns = cycles * (10^6 * SC / cpu_khz) / SC
62 * ns = cycles * cyc2ns_scale / SC
64 * And since SC is a constant power of two, we can convert the div
67 * We can use khz divisor instead of mhz to keep a better percision, since
68 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
69 * (mathieu.desnoyers@polymtl.ca)
71 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
73 static unsigned long cyc2ns_scale __read_mostly
;
74 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
76 static inline void set_cyc2ns_scale(unsigned long cpu_khz
)
78 cyc2ns_scale
= (1000000 << CYC2NS_SCALE_FACTOR
)/cpu_khz
;
81 static inline unsigned long long cycles_2_ns(unsigned long long cyc
)
83 return (cyc
* cyc2ns_scale
) >> CYC2NS_SCALE_FACTOR
;
86 static int count2
; /* counter for mark_offset_tsc() */
88 /* Cached *multiplier* to convert TSC counts to microseconds.
89 * (see the equation below).
90 * Equal to 2^32 * (1 / (clocks per usec) ).
91 * Initialized in time_init.
93 static unsigned long fast_gettimeoffset_quotient
;
95 static unsigned long get_offset_tsc(void)
97 register unsigned long eax
, edx
;
99 /* Read the Time Stamp Counter */
103 /* .. relative to previous jiffy (32 bits is enough) */
104 eax
-= last_tsc_low
; /* tsc_low delta */
107 * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient
108 * = (tsc_low delta) * (usecs_per_clock)
109 * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy)
111 * Using a mull instead of a divl saves up to 31 clock cycles
112 * in the critical path.
116 :"=a" (eax
), "=d" (edx
)
117 :"rm" (fast_gettimeoffset_quotient
),
120 /* our adjusted time offset in microseconds */
121 return delay_at_last_interrupt
+ edx
;
124 static unsigned long long monotonic_clock_tsc(void)
126 unsigned long long last_offset
, this_offset
, base
;
129 /* atomically read monotonic base & last_offset */
131 seq
= read_seqbegin(&monotonic_lock
);
132 last_offset
= ((unsigned long long)last_tsc_high
<<32)|last_tsc_low
;
133 base
= monotonic_base
;
134 } while (read_seqretry(&monotonic_lock
, seq
));
136 /* Read the Time Stamp Counter */
137 rdtscll(this_offset
);
139 /* return the value in ns */
140 return base
+ cycles_2_ns(this_offset
- last_offset
);
143 static void delay_tsc(unsigned long loops
)
145 unsigned long bclock
, now
;
152 } while ((now
-bclock
) < loops
);
155 #ifdef CONFIG_HPET_TIMER
156 static void mark_offset_tsc_hpet(void)
158 unsigned long long this_offset
, last_offset
;
159 unsigned long offset
, temp
, hpet_current
;
161 write_seqlock(&monotonic_lock
);
162 last_offset
= ((unsigned long long)last_tsc_high
<<32)|last_tsc_low
;
164 * It is important that these two operations happen almost at
165 * the same time. We do the RDTSC stuff first, since it's
166 * faster. To avoid any inconsistencies, we need interrupts
170 * Interrupts are just disabled locally since the timer irq
171 * has the SA_INTERRUPT flag set. -arca
173 /* read Pentium cycle counter */
175 hpet_current
= hpet_readl(HPET_COUNTER
);
176 rdtsc(last_tsc_low
, last_tsc_high
);
178 /* lost tick compensation */
179 offset
= hpet_readl(HPET_T0_CMP
) - hpet_tick
;
180 if (unlikely(((offset
- hpet_last
) > hpet_tick
) && (hpet_last
!= 0))
181 && detect_lost_ticks
) {
182 int lost_ticks
= (offset
- hpet_last
) / hpet_tick
;
183 jiffies_64
+= lost_ticks
;
185 hpet_last
= hpet_current
;
187 /* update the monotonic base value */
188 this_offset
= ((unsigned long long)last_tsc_high
<<32)|last_tsc_low
;
189 monotonic_base
+= cycles_2_ns(this_offset
- last_offset
);
190 write_sequnlock(&monotonic_lock
);
192 /* calculate delay_at_last_interrupt */
194 * Time offset = (hpet delta) * ( usecs per HPET clock )
195 * = (hpet delta) * ( usecs per tick / HPET clocks per tick)
196 * = (hpet delta) * ( hpet_usec_quotient ) / (2^32)
198 * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick
200 delay_at_last_interrupt
= hpet_current
- offset
;
201 ASM_MUL64_REG(temp
, delay_at_last_interrupt
,
202 hpet_usec_quotient
, delay_at_last_interrupt
);
206 static void mark_offset_tsc(void)
208 unsigned long lost
,delay
;
209 unsigned long delta
= last_tsc_low
;
212 static int count1
= 0;
213 unsigned long long this_offset
, last_offset
;
214 static int lost_count
= 0;
216 write_seqlock(&monotonic_lock
);
217 last_offset
= ((unsigned long long)last_tsc_high
<<32)|last_tsc_low
;
219 * It is important that these two operations happen almost at
220 * the same time. We do the RDTSC stuff first, since it's
221 * faster. To avoid any inconsistencies, we need interrupts
226 * Interrupts are just disabled locally since the timer irq
227 * has the SA_INTERRUPT flag set. -arca
230 /* read Pentium cycle counter */
232 rdtsc(last_tsc_low
, last_tsc_high
);
234 spin_lock(&i8253_lock
);
235 outb_p(0x00, PIT_MODE
); /* latch the count ASAP */
237 count
= inb_p(PIT_CH0
); /* read the latched count */
238 count
|= inb(PIT_CH0
) << 8;
241 * VIA686a test code... reset the latch if count > max + 1
242 * from timer_pit.c - cjb
245 outb_p(0x34, PIT_MODE
);
246 outb_p(LATCH
& 0xff, PIT_CH0
);
247 outb(LATCH
>> 8, PIT_CH0
);
251 spin_unlock(&i8253_lock
);
253 if (pit_latch_buggy
) {
254 /* get center value of last 3 time lutch */
255 if ((count2
>= count
&& count
>= count1
)
256 || (count1
>= count
&& count
>= count2
)) {
257 count2
= count1
; count1
= count
;
258 } else if ((count1
>= count2
&& count2
>= count
)
259 || (count
>= count2
&& count2
>= count1
)) {
260 countmp
= count
;count
= count2
;
261 count2
= count1
;count1
= countmp
;
263 count2
= count1
; count1
= count
; count
= count1
;
267 /* lost tick compensation */
268 delta
= last_tsc_low
- delta
;
270 register unsigned long eax
, edx
;
273 :"=a" (eax
), "=d" (edx
)
274 :"rm" (fast_gettimeoffset_quotient
),
278 delta
+= delay_at_last_interrupt
;
279 lost
= delta
/(1000000/HZ
);
280 delay
= delta
%(1000000/HZ
);
281 if (lost
>= 2 && detect_lost_ticks
) {
282 jiffies_64
+= lost
-1;
284 /* sanity check to ensure we're not always losing ticks */
285 if (lost_count
++ > 100) {
286 printk(KERN_WARNING
"Losing too many ticks!\n");
287 printk(KERN_WARNING
"TSC cannot be used as a timesource. \n");
288 printk(KERN_WARNING
"Possible reasons for this are:\n");
289 printk(KERN_WARNING
" You're running with Speedstep,\n");
290 printk(KERN_WARNING
" You don't have DMA enabled for your hard disk (see hdparm),\n");
291 printk(KERN_WARNING
" Incorrect TSC synchronization on an SMP system (see dmesg).\n");
292 printk(KERN_WARNING
"Falling back to a sane timesource now.\n");
298 /* update the monotonic base value */
299 this_offset
= ((unsigned long long)last_tsc_high
<<32)|last_tsc_low
;
300 monotonic_base
+= cycles_2_ns(this_offset
- last_offset
);
301 write_sequnlock(&monotonic_lock
);
303 /* calculate delay_at_last_interrupt */
304 count
= ((LATCH
-1) - count
) * TICK_SIZE
;
305 delay_at_last_interrupt
= (count
+ LATCH
/2) / LATCH
;
307 /* catch corner case where tick rollover occured
308 * between tsc and pit reads (as noted when
309 * usec delta is > 90% # of usecs/tick)
311 if (lost
&& abs(delay
- delay_at_last_interrupt
) > (900000/HZ
))
315 static int __init
init_tsc(char* override
)
318 /* check clock override */
319 if (override
[0] && strncmp(override
,"tsc",3)) {
320 #ifdef CONFIG_HPET_TIMER
321 if (is_hpet_enabled()) {
322 printk(KERN_ERR
"Warning: clock= override failed. Defaulting to tsc\n");
331 * If we have APM enabled or the CPU clock speed is variable
332 * (CPU stops clock on HLT or slows clock to save power)
333 * then the TSC timestamps may diverge by up to 1 jiffy from
334 * 'real time' but nothing will break.
335 * The most frequent case is that the CPU is "woken" from a halt
336 * state by the timer interrupt itself, so we get 0 error. In the
337 * rare cases where a driver would "wake" the CPU and request a
338 * timestamp, the maximum error is < 1 jiffy. But timestamps are
339 * still perfectly ordered.
340 * Note that the TSC counter will be reset if APM suspends
341 * to disk; this won't break the kernel, though, 'cuz we're
342 * smart. See arch/i386/kernel/apm.c.
345 * Firstly we have to do a CPU check for chips with
346 * a potentially buggy TSC. At this point we haven't run
347 * the ident/bugs checks so we must run this hook as it
348 * may turn off the TSC flag.
350 * NOTE: this doesn't yet handle SMP 486 machines where only
351 * some CPU's have a TSC. Thats never worked and nobody has
352 * moaned if you have the only one in the world - you fix it!
355 count2
= LATCH
; /* initialize counter for mark_offset_tsc() */
358 unsigned long tsc_quotient
;
359 #ifdef CONFIG_HPET_TIMER
360 if (is_hpet_enabled() && hpet_use_timer
) {
361 unsigned long result
, remain
;
362 printk("Using TSC for gettimeofday\n");
363 tsc_quotient
= calibrate_tsc_hpet(NULL
);
364 timer_tsc
.mark_offset
= &mark_offset_tsc_hpet
;
366 * Math to calculate hpet to usec multiplier
367 * Look for the comments at get_offset_tsc_hpet()
369 ASM_DIV64_REG(result
, remain
, hpet_tick
,
370 0, KERNEL_TICK_USEC
);
371 if (remain
> (hpet_tick
>> 1))
372 result
++; /* rounding the result */
374 hpet_usec_quotient
= result
;
378 tsc_quotient
= calibrate_tsc();
382 fast_gettimeoffset_quotient
= tsc_quotient
;
385 * We could be more selective here I suspect
386 * and just enable this for the next intel chips ?
388 /* report CPU clock rate in Hz.
389 * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) =
390 * clock/second. Our precision is about 100 ppm.
392 { unsigned long eax
=0, edx
=1000;
394 :"=a" (cpu_khz
), "=d" (edx
)
396 "0" (eax
), "1" (edx
));
397 printk("Detected %u.%03u MHz processor.\n",
398 cpu_khz
/ 1000, cpu_khz
% 1000);
400 set_cyc2ns_scale(cpu_khz
);
407 static int tsc_resume(void)
409 write_seqlock(&monotonic_lock
);
410 /* Assume this is the last mark offset time */
411 rdtsc(last_tsc_low
, last_tsc_high
);
412 #ifdef CONFIG_HPET_TIMER
413 if (is_hpet_enabled() && hpet_use_timer
)
414 hpet_last
= hpet_readl(HPET_COUNTER
);
416 write_sequnlock(&monotonic_lock
);
423 /************************************************************/
425 /* tsc timer_opts struct */
426 static struct timer_opts timer_tsc
= {
428 .mark_offset
= mark_offset_tsc
,
429 .get_offset
= get_offset_tsc
,
430 .monotonic_clock
= monotonic_clock_tsc
,
432 .read_timer
= read_timer_tsc
,
433 .resume
= tsc_resume
,
436 struct init_timer_opts __initdata timer_tsc_init
= {