2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 static unsigned int ata_unique_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
93 module_param(ata_probe_timeout
, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
96 MODULE_AUTHOR("Jeff Garzik");
97 MODULE_DESCRIPTION("Library module for ATA devices");
98 MODULE_LICENSE("GPL");
99 MODULE_VERSION(DRV_VERSION
);
103 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
104 * @tf: Taskfile to convert
105 * @fis: Buffer into which data will output
106 * @pmp: Port multiplier port
108 * Converts a standard ATA taskfile to a Serial ATA
109 * FIS structure (Register - Host to Device).
112 * Inherited from caller.
115 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
117 fis
[0] = 0x27; /* Register - Host to Device FIS */
118 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
119 bit 7 indicates Command FIS */
120 fis
[2] = tf
->command
;
121 fis
[3] = tf
->feature
;
128 fis
[8] = tf
->hob_lbal
;
129 fis
[9] = tf
->hob_lbam
;
130 fis
[10] = tf
->hob_lbah
;
131 fis
[11] = tf
->hob_feature
;
134 fis
[13] = tf
->hob_nsect
;
145 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
146 * @fis: Buffer from which data will be input
147 * @tf: Taskfile to output
149 * Converts a serial ATA FIS structure to a standard ATA taskfile.
152 * Inherited from caller.
155 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
157 tf
->command
= fis
[2]; /* status */
158 tf
->feature
= fis
[3]; /* error */
165 tf
->hob_lbal
= fis
[8];
166 tf
->hob_lbam
= fis
[9];
167 tf
->hob_lbah
= fis
[10];
170 tf
->hob_nsect
= fis
[13];
173 static const u8 ata_rw_cmds
[] = {
177 ATA_CMD_READ_MULTI_EXT
,
178 ATA_CMD_WRITE_MULTI_EXT
,
182 ATA_CMD_WRITE_MULTI_FUA_EXT
,
186 ATA_CMD_PIO_READ_EXT
,
187 ATA_CMD_PIO_WRITE_EXT
,
200 ATA_CMD_WRITE_FUA_EXT
204 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
205 * @tf: command to examine and configure
206 * @dev: device tf belongs to
208 * Examine the device configuration and tf->flags to calculate
209 * the proper read/write commands and protocol to use.
214 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
218 int index
, fua
, lba48
, write
;
220 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
221 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
222 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
224 if (dev
->flags
& ATA_DFLAG_PIO
) {
225 tf
->protocol
= ATA_PROT_PIO
;
226 index
= dev
->multi_count
? 0 : 8;
227 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
228 /* Unable to use DMA due to host limitation */
229 tf
->protocol
= ATA_PROT_PIO
;
230 index
= dev
->multi_count
? 0 : 8;
232 tf
->protocol
= ATA_PROT_DMA
;
236 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
245 * ata_tf_read_block - Read block address from ATA taskfile
246 * @tf: ATA taskfile of interest
247 * @dev: ATA device @tf belongs to
252 * Read block address from @tf. This function can handle all
253 * three address formats - LBA, LBA48 and CHS. tf->protocol and
254 * flags select the address format to use.
257 * Block address read from @tf.
259 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
263 if (tf
->flags
& ATA_TFLAG_LBA
) {
264 if (tf
->flags
& ATA_TFLAG_LBA48
) {
265 block
|= (u64
)tf
->hob_lbah
<< 40;
266 block
|= (u64
)tf
->hob_lbam
<< 32;
267 block
|= tf
->hob_lbal
<< 24;
269 block
|= (tf
->device
& 0xf) << 24;
271 block
|= tf
->lbah
<< 16;
272 block
|= tf
->lbam
<< 8;
277 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
278 head
= tf
->device
& 0xf;
281 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
288 * ata_build_rw_tf - Build ATA taskfile for given read/write request
289 * @tf: Target ATA taskfile
290 * @dev: ATA device @tf belongs to
291 * @block: Block address
292 * @n_block: Number of blocks
293 * @tf_flags: RW/FUA etc...
299 * Build ATA taskfile @tf for read/write request described by
300 * @block, @n_block, @tf_flags and @tag on @dev.
304 * 0 on success, -ERANGE if the request is too large for @dev,
305 * -EINVAL if the request is invalid.
307 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
308 u64 block
, u32 n_block
, unsigned int tf_flags
,
311 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
312 tf
->flags
|= tf_flags
;
314 if ((dev
->flags
& (ATA_DFLAG_PIO
| ATA_DFLAG_NCQ_OFF
|
315 ATA_DFLAG_NCQ
)) == ATA_DFLAG_NCQ
&&
316 likely(tag
!= ATA_TAG_INTERNAL
)) {
318 if (!lba_48_ok(block
, n_block
))
321 tf
->protocol
= ATA_PROT_NCQ
;
322 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
324 if (tf
->flags
& ATA_TFLAG_WRITE
)
325 tf
->command
= ATA_CMD_FPDMA_WRITE
;
327 tf
->command
= ATA_CMD_FPDMA_READ
;
329 tf
->nsect
= tag
<< 3;
330 tf
->hob_feature
= (n_block
>> 8) & 0xff;
331 tf
->feature
= n_block
& 0xff;
333 tf
->hob_lbah
= (block
>> 40) & 0xff;
334 tf
->hob_lbam
= (block
>> 32) & 0xff;
335 tf
->hob_lbal
= (block
>> 24) & 0xff;
336 tf
->lbah
= (block
>> 16) & 0xff;
337 tf
->lbam
= (block
>> 8) & 0xff;
338 tf
->lbal
= block
& 0xff;
341 if (tf
->flags
& ATA_TFLAG_FUA
)
342 tf
->device
|= 1 << 7;
343 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
344 tf
->flags
|= ATA_TFLAG_LBA
;
346 if (lba_28_ok(block
, n_block
)) {
348 tf
->device
|= (block
>> 24) & 0xf;
349 } else if (lba_48_ok(block
, n_block
)) {
350 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
354 tf
->flags
|= ATA_TFLAG_LBA48
;
356 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
358 tf
->hob_lbah
= (block
>> 40) & 0xff;
359 tf
->hob_lbam
= (block
>> 32) & 0xff;
360 tf
->hob_lbal
= (block
>> 24) & 0xff;
362 /* request too large even for LBA48 */
365 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
368 tf
->nsect
= n_block
& 0xff;
370 tf
->lbah
= (block
>> 16) & 0xff;
371 tf
->lbam
= (block
>> 8) & 0xff;
372 tf
->lbal
= block
& 0xff;
374 tf
->device
|= ATA_LBA
;
377 u32 sect
, head
, cyl
, track
;
379 /* The request -may- be too large for CHS addressing. */
380 if (!lba_28_ok(block
, n_block
))
383 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
386 /* Convert LBA to CHS */
387 track
= (u32
)block
/ dev
->sectors
;
388 cyl
= track
/ dev
->heads
;
389 head
= track
% dev
->heads
;
390 sect
= (u32
)block
% dev
->sectors
+ 1;
392 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
393 (u32
)block
, track
, cyl
, head
, sect
);
395 /* Check whether the converted CHS can fit.
399 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
402 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
413 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
414 * @pio_mask: pio_mask
415 * @mwdma_mask: mwdma_mask
416 * @udma_mask: udma_mask
418 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
419 * unsigned int xfer_mask.
427 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
428 unsigned int mwdma_mask
,
429 unsigned int udma_mask
)
431 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
432 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
433 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
437 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
438 * @xfer_mask: xfer_mask to unpack
439 * @pio_mask: resulting pio_mask
440 * @mwdma_mask: resulting mwdma_mask
441 * @udma_mask: resulting udma_mask
443 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
444 * Any NULL distination masks will be ignored.
446 static void ata_unpack_xfermask(unsigned int xfer_mask
,
447 unsigned int *pio_mask
,
448 unsigned int *mwdma_mask
,
449 unsigned int *udma_mask
)
452 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
454 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
456 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
459 static const struct ata_xfer_ent
{
463 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
464 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
465 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
470 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
471 * @xfer_mask: xfer_mask of interest
473 * Return matching XFER_* value for @xfer_mask. Only the highest
474 * bit of @xfer_mask is considered.
480 * Matching XFER_* value, 0 if no match found.
482 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
484 int highbit
= fls(xfer_mask
) - 1;
485 const struct ata_xfer_ent
*ent
;
487 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
488 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
489 return ent
->base
+ highbit
- ent
->shift
;
494 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
495 * @xfer_mode: XFER_* of interest
497 * Return matching xfer_mask for @xfer_mode.
503 * Matching xfer_mask, 0 if no match found.
505 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
507 const struct ata_xfer_ent
*ent
;
509 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
510 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
511 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
516 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
517 * @xfer_mode: XFER_* of interest
519 * Return matching xfer_shift for @xfer_mode.
525 * Matching xfer_shift, -1 if no match found.
527 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
529 const struct ata_xfer_ent
*ent
;
531 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
532 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
538 * ata_mode_string - convert xfer_mask to string
539 * @xfer_mask: mask of bits supported; only highest bit counts.
541 * Determine string which represents the highest speed
542 * (highest bit in @modemask).
548 * Constant C string representing highest speed listed in
549 * @mode_mask, or the constant C string "<n/a>".
551 static const char *ata_mode_string(unsigned int xfer_mask
)
553 static const char * const xfer_mode_str
[] = {
577 highbit
= fls(xfer_mask
) - 1;
578 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
579 return xfer_mode_str
[highbit
];
583 static const char *sata_spd_string(unsigned int spd
)
585 static const char * const spd_str
[] = {
590 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
592 return spd_str
[spd
- 1];
595 void ata_dev_disable(struct ata_device
*dev
)
597 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
598 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
604 * ata_devchk - PATA device presence detection
605 * @ap: ATA channel to examine
606 * @device: Device to examine (starting at zero)
608 * This technique was originally described in
609 * Hale Landis's ATADRVR (www.ata-atapi.com), and
610 * later found its way into the ATA/ATAPI spec.
612 * Write a pattern to the ATA shadow registers,
613 * and if a device is present, it will respond by
614 * correctly storing and echoing back the
615 * ATA shadow register contents.
621 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
623 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
626 ap
->ops
->dev_select(ap
, device
);
628 iowrite8(0x55, ioaddr
->nsect_addr
);
629 iowrite8(0xaa, ioaddr
->lbal_addr
);
631 iowrite8(0xaa, ioaddr
->nsect_addr
);
632 iowrite8(0x55, ioaddr
->lbal_addr
);
634 iowrite8(0x55, ioaddr
->nsect_addr
);
635 iowrite8(0xaa, ioaddr
->lbal_addr
);
637 nsect
= ioread8(ioaddr
->nsect_addr
);
638 lbal
= ioread8(ioaddr
->lbal_addr
);
640 if ((nsect
== 0x55) && (lbal
== 0xaa))
641 return 1; /* we found a device */
643 return 0; /* nothing found */
647 * ata_dev_classify - determine device type based on ATA-spec signature
648 * @tf: ATA taskfile register set for device to be identified
650 * Determine from taskfile register contents whether a device is
651 * ATA or ATAPI, as per "Signature and persistence" section
652 * of ATA/PI spec (volume 1, sect 5.14).
658 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
659 * the event of failure.
662 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
664 /* Apple's open source Darwin code hints that some devices only
665 * put a proper signature into the LBA mid/high registers,
666 * So, we only check those. It's sufficient for uniqueness.
669 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
670 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
671 DPRINTK("found ATA device by sig\n");
675 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
676 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
677 DPRINTK("found ATAPI device by sig\n");
678 return ATA_DEV_ATAPI
;
681 DPRINTK("unknown device\n");
682 return ATA_DEV_UNKNOWN
;
686 * ata_dev_try_classify - Parse returned ATA device signature
687 * @ap: ATA channel to examine
688 * @device: Device to examine (starting at zero)
689 * @r_err: Value of error register on completion
691 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
692 * an ATA/ATAPI-defined set of values is placed in the ATA
693 * shadow registers, indicating the results of device detection
696 * Select the ATA device, and read the values from the ATA shadow
697 * registers. Then parse according to the Error register value,
698 * and the spec-defined values examined by ata_dev_classify().
704 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
708 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
710 struct ata_taskfile tf
;
714 ap
->ops
->dev_select(ap
, device
);
716 memset(&tf
, 0, sizeof(tf
));
718 ap
->ops
->tf_read(ap
, &tf
);
723 /* see if device passed diags: if master then continue and warn later */
724 if (err
== 0 && device
== 0)
725 /* diagnostic fail : do nothing _YET_ */
726 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
729 else if ((device
== 0) && (err
== 0x81))
734 /* determine if device is ATA or ATAPI */
735 class = ata_dev_classify(&tf
);
737 if (class == ATA_DEV_UNKNOWN
)
739 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
745 * ata_id_string - Convert IDENTIFY DEVICE page into string
746 * @id: IDENTIFY DEVICE results we will examine
747 * @s: string into which data is output
748 * @ofs: offset into identify device page
749 * @len: length of string to return. must be an even number.
751 * The strings in the IDENTIFY DEVICE page are broken up into
752 * 16-bit chunks. Run through the string, and output each
753 * 8-bit chunk linearly, regardless of platform.
759 void ata_id_string(const u16
*id
, unsigned char *s
,
760 unsigned int ofs
, unsigned int len
)
779 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
780 * @id: IDENTIFY DEVICE results we will examine
781 * @s: string into which data is output
782 * @ofs: offset into identify device page
783 * @len: length of string to return. must be an odd number.
785 * This function is identical to ata_id_string except that it
786 * trims trailing spaces and terminates the resulting string with
787 * null. @len must be actual maximum length (even number) + 1.
792 void ata_id_c_string(const u16
*id
, unsigned char *s
,
793 unsigned int ofs
, unsigned int len
)
799 ata_id_string(id
, s
, ofs
, len
- 1);
801 p
= s
+ strnlen(s
, len
- 1);
802 while (p
> s
&& p
[-1] == ' ')
807 static u64
ata_id_n_sectors(const u16
*id
)
809 if (ata_id_has_lba(id
)) {
810 if (ata_id_has_lba48(id
))
811 return ata_id_u64(id
, 100);
813 return ata_id_u32(id
, 60);
815 if (ata_id_current_chs_valid(id
))
816 return ata_id_u32(id
, 57);
818 return id
[1] * id
[3] * id
[6];
823 * ata_noop_dev_select - Select device 0/1 on ATA bus
824 * @ap: ATA channel to manipulate
825 * @device: ATA device (numbered from zero) to select
827 * This function performs no actual function.
829 * May be used as the dev_select() entry in ata_port_operations.
834 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
840 * ata_std_dev_select - Select device 0/1 on ATA bus
841 * @ap: ATA channel to manipulate
842 * @device: ATA device (numbered from zero) to select
844 * Use the method defined in the ATA specification to
845 * make either device 0, or device 1, active on the
846 * ATA channel. Works with both PIO and MMIO.
848 * May be used as the dev_select() entry in ata_port_operations.
854 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
859 tmp
= ATA_DEVICE_OBS
;
861 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
863 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
864 ata_pause(ap
); /* needed; also flushes, for mmio */
868 * ata_dev_select - Select device 0/1 on ATA bus
869 * @ap: ATA channel to manipulate
870 * @device: ATA device (numbered from zero) to select
871 * @wait: non-zero to wait for Status register BSY bit to clear
872 * @can_sleep: non-zero if context allows sleeping
874 * Use the method defined in the ATA specification to
875 * make either device 0, or device 1, active on the
878 * This is a high-level version of ata_std_dev_select(),
879 * which additionally provides the services of inserting
880 * the proper pauses and status polling, where needed.
886 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
887 unsigned int wait
, unsigned int can_sleep
)
889 if (ata_msg_probe(ap
))
890 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, ata%u: "
891 "device %u, wait %u\n", ap
->id
, device
, wait
);
896 ap
->ops
->dev_select(ap
, device
);
899 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
906 * ata_dump_id - IDENTIFY DEVICE info debugging output
907 * @id: IDENTIFY DEVICE page to dump
909 * Dump selected 16-bit words from the given IDENTIFY DEVICE
916 static inline void ata_dump_id(const u16
*id
)
918 DPRINTK("49==0x%04x "
928 DPRINTK("80==0x%04x "
938 DPRINTK("88==0x%04x "
945 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
946 * @id: IDENTIFY data to compute xfer mask from
948 * Compute the xfermask for this device. This is not as trivial
949 * as it seems if we must consider early devices correctly.
951 * FIXME: pre IDE drive timing (do we care ?).
959 static unsigned int ata_id_xfermask(const u16
*id
)
961 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
963 /* Usual case. Word 53 indicates word 64 is valid */
964 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
965 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
969 /* If word 64 isn't valid then Word 51 high byte holds
970 * the PIO timing number for the maximum. Turn it into
973 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
974 if (mode
< 5) /* Valid PIO range */
975 pio_mask
= (2 << mode
) - 1;
979 /* But wait.. there's more. Design your standards by
980 * committee and you too can get a free iordy field to
981 * process. However its the speeds not the modes that
982 * are supported... Note drivers using the timing API
983 * will get this right anyway
987 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
989 if (ata_id_is_cfa(id
)) {
991 * Process compact flash extended modes
993 int pio
= id
[163] & 0x7;
994 int dma
= (id
[163] >> 3) & 7;
997 pio_mask
|= (1 << 5);
999 pio_mask
|= (1 << 6);
1001 mwdma_mask
|= (1 << 3);
1003 mwdma_mask
|= (1 << 4);
1007 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1008 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1010 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1014 * ata_port_queue_task - Queue port_task
1015 * @ap: The ata_port to queue port_task for
1016 * @fn: workqueue function to be scheduled
1017 * @data: data for @fn to use
1018 * @delay: delay time for workqueue function
1020 * Schedule @fn(@data) for execution after @delay jiffies using
1021 * port_task. There is one port_task per port and it's the
1022 * user(low level driver)'s responsibility to make sure that only
1023 * one task is active at any given time.
1025 * libata core layer takes care of synchronization between
1026 * port_task and EH. ata_port_queue_task() may be ignored for EH
1030 * Inherited from caller.
1032 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1033 unsigned long delay
)
1037 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1040 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1041 ap
->port_task_data
= data
;
1043 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1045 /* rc == 0 means that another user is using port task */
1050 * ata_port_flush_task - Flush port_task
1051 * @ap: The ata_port to flush port_task for
1053 * After this function completes, port_task is guranteed not to
1054 * be running or scheduled.
1057 * Kernel thread context (may sleep)
1059 void ata_port_flush_task(struct ata_port
*ap
)
1061 unsigned long flags
;
1065 spin_lock_irqsave(ap
->lock
, flags
);
1066 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1067 spin_unlock_irqrestore(ap
->lock
, flags
);
1069 DPRINTK("flush #1\n");
1070 flush_workqueue(ata_wq
);
1073 * At this point, if a task is running, it's guaranteed to see
1074 * the FLUSH flag; thus, it will never queue pio tasks again.
1077 if (!cancel_delayed_work(&ap
->port_task
)) {
1078 if (ata_msg_ctl(ap
))
1079 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1081 flush_workqueue(ata_wq
);
1084 spin_lock_irqsave(ap
->lock
, flags
);
1085 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1086 spin_unlock_irqrestore(ap
->lock
, flags
);
1088 if (ata_msg_ctl(ap
))
1089 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1092 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1094 struct completion
*waiting
= qc
->private_data
;
1100 * ata_exec_internal_sg - execute libata internal command
1101 * @dev: Device to which the command is sent
1102 * @tf: Taskfile registers for the command and the result
1103 * @cdb: CDB for packet command
1104 * @dma_dir: Data tranfer direction of the command
1105 * @sg: sg list for the data buffer of the command
1106 * @n_elem: Number of sg entries
1108 * Executes libata internal command with timeout. @tf contains
1109 * command on entry and result on return. Timeout and error
1110 * conditions are reported via return value. No recovery action
1111 * is taken after a command times out. It's caller's duty to
1112 * clean up after timeout.
1115 * None. Should be called with kernel context, might sleep.
1118 * Zero on success, AC_ERR_* mask on failure
1120 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1121 struct ata_taskfile
*tf
, const u8
*cdb
,
1122 int dma_dir
, struct scatterlist
*sg
,
1123 unsigned int n_elem
)
1125 struct ata_port
*ap
= dev
->ap
;
1126 u8 command
= tf
->command
;
1127 struct ata_queued_cmd
*qc
;
1128 unsigned int tag
, preempted_tag
;
1129 u32 preempted_sactive
, preempted_qc_active
;
1130 DECLARE_COMPLETION_ONSTACK(wait
);
1131 unsigned long flags
;
1132 unsigned int err_mask
;
1135 spin_lock_irqsave(ap
->lock
, flags
);
1137 /* no internal command while frozen */
1138 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1139 spin_unlock_irqrestore(ap
->lock
, flags
);
1140 return AC_ERR_SYSTEM
;
1143 /* initialize internal qc */
1145 /* XXX: Tag 0 is used for drivers with legacy EH as some
1146 * drivers choke if any other tag is given. This breaks
1147 * ata_tag_internal() test for those drivers. Don't use new
1148 * EH stuff without converting to it.
1150 if (ap
->ops
->error_handler
)
1151 tag
= ATA_TAG_INTERNAL
;
1155 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1157 qc
= __ata_qc_from_tag(ap
, tag
);
1165 preempted_tag
= ap
->active_tag
;
1166 preempted_sactive
= ap
->sactive
;
1167 preempted_qc_active
= ap
->qc_active
;
1168 ap
->active_tag
= ATA_TAG_POISON
;
1172 /* prepare & issue qc */
1175 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1176 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1177 qc
->dma_dir
= dma_dir
;
1178 if (dma_dir
!= DMA_NONE
) {
1179 unsigned int i
, buflen
= 0;
1181 for (i
= 0; i
< n_elem
; i
++)
1182 buflen
+= sg
[i
].length
;
1184 ata_sg_init(qc
, sg
, n_elem
);
1185 qc
->nbytes
= buflen
;
1188 qc
->private_data
= &wait
;
1189 qc
->complete_fn
= ata_qc_complete_internal
;
1193 spin_unlock_irqrestore(ap
->lock
, flags
);
1195 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1197 ata_port_flush_task(ap
);
1200 spin_lock_irqsave(ap
->lock
, flags
);
1202 /* We're racing with irq here. If we lose, the
1203 * following test prevents us from completing the qc
1204 * twice. If we win, the port is frozen and will be
1205 * cleaned up by ->post_internal_cmd().
1207 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1208 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1210 if (ap
->ops
->error_handler
)
1211 ata_port_freeze(ap
);
1213 ata_qc_complete(qc
);
1215 if (ata_msg_warn(ap
))
1216 ata_dev_printk(dev
, KERN_WARNING
,
1217 "qc timeout (cmd 0x%x)\n", command
);
1220 spin_unlock_irqrestore(ap
->lock
, flags
);
1223 /* do post_internal_cmd */
1224 if (ap
->ops
->post_internal_cmd
)
1225 ap
->ops
->post_internal_cmd(qc
);
1227 if ((qc
->flags
& ATA_QCFLAG_FAILED
) && !qc
->err_mask
) {
1228 if (ata_msg_warn(ap
))
1229 ata_dev_printk(dev
, KERN_WARNING
,
1230 "zero err_mask for failed "
1231 "internal command, assuming AC_ERR_OTHER\n");
1232 qc
->err_mask
|= AC_ERR_OTHER
;
1236 spin_lock_irqsave(ap
->lock
, flags
);
1238 *tf
= qc
->result_tf
;
1239 err_mask
= qc
->err_mask
;
1242 ap
->active_tag
= preempted_tag
;
1243 ap
->sactive
= preempted_sactive
;
1244 ap
->qc_active
= preempted_qc_active
;
1246 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1247 * Until those drivers are fixed, we detect the condition
1248 * here, fail the command with AC_ERR_SYSTEM and reenable the
1251 * Note that this doesn't change any behavior as internal
1252 * command failure results in disabling the device in the
1253 * higher layer for LLDDs without new reset/EH callbacks.
1255 * Kill the following code as soon as those drivers are fixed.
1257 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1258 err_mask
|= AC_ERR_SYSTEM
;
1262 spin_unlock_irqrestore(ap
->lock
, flags
);
1268 * ata_exec_internal - execute libata internal command
1269 * @dev: Device to which the command is sent
1270 * @tf: Taskfile registers for the command and the result
1271 * @cdb: CDB for packet command
1272 * @dma_dir: Data tranfer direction of the command
1273 * @buf: Data buffer of the command
1274 * @buflen: Length of data buffer
1276 * Wrapper around ata_exec_internal_sg() which takes simple
1277 * buffer instead of sg list.
1280 * None. Should be called with kernel context, might sleep.
1283 * Zero on success, AC_ERR_* mask on failure
1285 unsigned ata_exec_internal(struct ata_device
*dev
,
1286 struct ata_taskfile
*tf
, const u8
*cdb
,
1287 int dma_dir
, void *buf
, unsigned int buflen
)
1289 struct scatterlist
*psg
= NULL
, sg
;
1290 unsigned int n_elem
= 0;
1292 if (dma_dir
!= DMA_NONE
) {
1294 sg_init_one(&sg
, buf
, buflen
);
1299 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1303 * ata_do_simple_cmd - execute simple internal command
1304 * @dev: Device to which the command is sent
1305 * @cmd: Opcode to execute
1307 * Execute a 'simple' command, that only consists of the opcode
1308 * 'cmd' itself, without filling any other registers
1311 * Kernel thread context (may sleep).
1314 * Zero on success, AC_ERR_* mask on failure
1316 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1318 struct ata_taskfile tf
;
1320 ata_tf_init(dev
, &tf
);
1323 tf
.flags
|= ATA_TFLAG_DEVICE
;
1324 tf
.protocol
= ATA_PROT_NODATA
;
1326 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1330 * ata_pio_need_iordy - check if iordy needed
1333 * Check if the current speed of the device requires IORDY. Used
1334 * by various controllers for chip configuration.
1337 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1340 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1347 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1349 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1350 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1351 /* Is the speed faster than the drive allows non IORDY ? */
1353 /* This is cycle times not frequency - watch the logic! */
1354 if (pio
> 240) /* PIO2 is 240nS per cycle */
1363 * ata_dev_read_id - Read ID data from the specified device
1364 * @dev: target device
1365 * @p_class: pointer to class of the target device (may be changed)
1366 * @flags: ATA_READID_* flags
1367 * @id: buffer to read IDENTIFY data into
1369 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1370 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1371 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1372 * for pre-ATA4 drives.
1375 * Kernel thread context (may sleep)
1378 * 0 on success, -errno otherwise.
1380 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1381 unsigned int flags
, u16
*id
)
1383 struct ata_port
*ap
= dev
->ap
;
1384 unsigned int class = *p_class
;
1385 struct ata_taskfile tf
;
1386 unsigned int err_mask
= 0;
1390 if (ata_msg_ctl(ap
))
1391 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1392 __FUNCTION__
, ap
->id
, dev
->devno
);
1394 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1397 ata_tf_init(dev
, &tf
);
1401 tf
.command
= ATA_CMD_ID_ATA
;
1404 tf
.command
= ATA_CMD_ID_ATAPI
;
1408 reason
= "unsupported class";
1412 tf
.protocol
= ATA_PROT_PIO
;
1413 tf
.flags
|= ATA_TFLAG_POLLING
; /* for polling presence detection */
1415 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1416 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1418 if (err_mask
& AC_ERR_NODEV_HINT
) {
1419 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1420 ap
->id
, dev
->devno
);
1425 reason
= "I/O error";
1429 swap_buf_le16(id
, ATA_ID_WORDS
);
1433 reason
= "device reports illegal type";
1435 if (class == ATA_DEV_ATA
) {
1436 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1439 if (ata_id_is_ata(id
))
1443 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1445 * The exact sequence expected by certain pre-ATA4 drives is:
1448 * INITIALIZE DEVICE PARAMETERS
1450 * Some drives were very specific about that exact sequence.
1452 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1453 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1456 reason
= "INIT_DEV_PARAMS failed";
1460 /* current CHS translation info (id[53-58]) might be
1461 * changed. reread the identify device info.
1463 flags
&= ~ATA_READID_POSTRESET
;
1473 if (ata_msg_warn(ap
))
1474 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1475 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1479 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1481 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1484 static void ata_dev_config_ncq(struct ata_device
*dev
,
1485 char *desc
, size_t desc_sz
)
1487 struct ata_port
*ap
= dev
->ap
;
1488 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1490 if (!ata_id_has_ncq(dev
->id
)) {
1494 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1495 snprintf(desc
, desc_sz
, "NCQ (not used)");
1498 if (ap
->flags
& ATA_FLAG_NCQ
) {
1499 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1500 dev
->flags
|= ATA_DFLAG_NCQ
;
1503 if (hdepth
>= ddepth
)
1504 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1506 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1509 static void ata_set_port_max_cmd_len(struct ata_port
*ap
)
1513 if (ap
->scsi_host
) {
1514 unsigned int len
= 0;
1516 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1517 len
= max(len
, ap
->device
[i
].cdb_len
);
1519 ap
->scsi_host
->max_cmd_len
= len
;
1524 * ata_dev_configure - Configure the specified ATA/ATAPI device
1525 * @dev: Target device to configure
1527 * Configure @dev according to @dev->id. Generic and low-level
1528 * driver specific fixups are also applied.
1531 * Kernel thread context (may sleep)
1534 * 0 on success, -errno otherwise
1536 int ata_dev_configure(struct ata_device
*dev
)
1538 struct ata_port
*ap
= dev
->ap
;
1539 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1540 const u16
*id
= dev
->id
;
1541 unsigned int xfer_mask
;
1542 char revbuf
[7]; /* XYZ-99\0 */
1543 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1544 char modelbuf
[ATA_ID_PROD_LEN
+1];
1547 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1548 ata_dev_printk(dev
, KERN_INFO
,
1549 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1550 __FUNCTION__
, ap
->id
, dev
->devno
);
1554 if (ata_msg_probe(ap
))
1555 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1556 __FUNCTION__
, ap
->id
, dev
->devno
);
1558 /* print device capabilities */
1559 if (ata_msg_probe(ap
))
1560 ata_dev_printk(dev
, KERN_DEBUG
,
1561 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1562 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1564 id
[49], id
[82], id
[83], id
[84],
1565 id
[85], id
[86], id
[87], id
[88]);
1567 /* initialize to-be-configured parameters */
1568 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1569 dev
->max_sectors
= 0;
1577 * common ATA, ATAPI feature tests
1580 /* find max transfer mode; for printk only */
1581 xfer_mask
= ata_id_xfermask(id
);
1583 if (ata_msg_probe(ap
))
1586 /* ATA-specific feature tests */
1587 if (dev
->class == ATA_DEV_ATA
) {
1588 if (ata_id_is_cfa(id
)) {
1589 if (id
[162] & 1) /* CPRM may make this media unusable */
1590 ata_dev_printk(dev
, KERN_WARNING
, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1591 ap
->id
, dev
->devno
);
1592 snprintf(revbuf
, 7, "CFA");
1595 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1597 dev
->n_sectors
= ata_id_n_sectors(id
);
1599 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1600 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1603 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1606 if (dev
->id
[59] & 0x100)
1607 dev
->multi_count
= dev
->id
[59] & 0xff;
1609 if (ata_id_has_lba(id
)) {
1610 const char *lba_desc
;
1614 dev
->flags
|= ATA_DFLAG_LBA
;
1615 if (ata_id_has_lba48(id
)) {
1616 dev
->flags
|= ATA_DFLAG_LBA48
;
1619 if (dev
->n_sectors
>= (1UL << 28) &&
1620 ata_id_has_flush_ext(id
))
1621 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1625 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1627 /* print device info to dmesg */
1628 if (ata_msg_drv(ap
) && print_info
) {
1629 ata_dev_printk(dev
, KERN_INFO
,
1630 "%s: %s, %s, max %s\n",
1631 revbuf
, modelbuf
, fwrevbuf
,
1632 ata_mode_string(xfer_mask
));
1633 ata_dev_printk(dev
, KERN_INFO
,
1634 "%Lu sectors, multi %u: %s %s\n",
1635 (unsigned long long)dev
->n_sectors
,
1636 dev
->multi_count
, lba_desc
, ncq_desc
);
1641 /* Default translation */
1642 dev
->cylinders
= id
[1];
1644 dev
->sectors
= id
[6];
1646 if (ata_id_current_chs_valid(id
)) {
1647 /* Current CHS translation is valid. */
1648 dev
->cylinders
= id
[54];
1649 dev
->heads
= id
[55];
1650 dev
->sectors
= id
[56];
1653 /* print device info to dmesg */
1654 if (ata_msg_drv(ap
) && print_info
) {
1655 ata_dev_printk(dev
, KERN_INFO
,
1656 "%s: %s, %s, max %s\n",
1657 revbuf
, modelbuf
, fwrevbuf
,
1658 ata_mode_string(xfer_mask
));
1659 ata_dev_printk(dev
, KERN_INFO
,
1660 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1661 (unsigned long long)dev
->n_sectors
,
1662 dev
->multi_count
, dev
->cylinders
,
1663 dev
->heads
, dev
->sectors
);
1670 /* ATAPI-specific feature tests */
1671 else if (dev
->class == ATA_DEV_ATAPI
) {
1672 char *cdb_intr_string
= "";
1674 rc
= atapi_cdb_len(id
);
1675 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1676 if (ata_msg_warn(ap
))
1677 ata_dev_printk(dev
, KERN_WARNING
,
1678 "unsupported CDB len\n");
1682 dev
->cdb_len
= (unsigned int) rc
;
1684 if (ata_id_cdb_intr(dev
->id
)) {
1685 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1686 cdb_intr_string
= ", CDB intr";
1689 /* print device info to dmesg */
1690 if (ata_msg_drv(ap
) && print_info
)
1691 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1692 ata_mode_string(xfer_mask
),
1696 /* determine max_sectors */
1697 dev
->max_sectors
= ATA_MAX_SECTORS
;
1698 if (dev
->flags
& ATA_DFLAG_LBA48
)
1699 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
1701 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
1702 /* Let the user know. We don't want to disallow opens for
1703 rescue purposes, or in case the vendor is just a blithering
1706 ata_dev_printk(dev
, KERN_WARNING
,
1707 "Drive reports diagnostics failure. This may indicate a drive\n");
1708 ata_dev_printk(dev
, KERN_WARNING
,
1709 "fault or invalid emulation. Contact drive vendor for information.\n");
1713 ata_set_port_max_cmd_len(ap
);
1715 /* limit bridge transfers to udma5, 200 sectors */
1716 if (ata_dev_knobble(dev
)) {
1717 if (ata_msg_drv(ap
) && print_info
)
1718 ata_dev_printk(dev
, KERN_INFO
,
1719 "applying bridge limits\n");
1720 dev
->udma_mask
&= ATA_UDMA5
;
1721 dev
->max_sectors
= ATA_MAX_SECTORS
;
1724 if (ap
->ops
->dev_config
)
1725 ap
->ops
->dev_config(ap
, dev
);
1727 if (ata_msg_probe(ap
))
1728 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
1729 __FUNCTION__
, ata_chk_status(ap
));
1733 if (ata_msg_probe(ap
))
1734 ata_dev_printk(dev
, KERN_DEBUG
,
1735 "%s: EXIT, err\n", __FUNCTION__
);
1740 * ata_bus_probe - Reset and probe ATA bus
1743 * Master ATA bus probing function. Initiates a hardware-dependent
1744 * bus reset, then attempts to identify any devices found on
1748 * PCI/etc. bus probe sem.
1751 * Zero on success, negative errno otherwise.
1754 int ata_bus_probe(struct ata_port
*ap
)
1756 unsigned int classes
[ATA_MAX_DEVICES
];
1757 int tries
[ATA_MAX_DEVICES
];
1758 int i
, rc
, down_xfermask
;
1759 struct ata_device
*dev
;
1763 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1764 tries
[i
] = ATA_PROBE_MAX_TRIES
;
1769 /* reset and determine device classes */
1770 ap
->ops
->phy_reset(ap
);
1772 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1773 dev
= &ap
->device
[i
];
1775 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
1776 dev
->class != ATA_DEV_UNKNOWN
)
1777 classes
[dev
->devno
] = dev
->class;
1779 classes
[dev
->devno
] = ATA_DEV_NONE
;
1781 dev
->class = ATA_DEV_UNKNOWN
;
1786 /* after the reset the device state is PIO 0 and the controller
1787 state is undefined. Record the mode */
1789 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1790 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
1792 /* read IDENTIFY page and configure devices */
1793 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1794 dev
= &ap
->device
[i
];
1797 dev
->class = classes
[i
];
1799 if (!ata_dev_enabled(dev
))
1802 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
1807 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
1808 rc
= ata_dev_configure(dev
);
1809 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
1814 /* configure transfer mode */
1815 rc
= ata_set_mode(ap
, &dev
);
1821 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1822 if (ata_dev_enabled(&ap
->device
[i
]))
1825 /* no device present, disable port */
1826 ata_port_disable(ap
);
1827 ap
->ops
->port_disable(ap
);
1834 tries
[dev
->devno
] = 0;
1837 sata_down_spd_limit(ap
);
1840 tries
[dev
->devno
]--;
1841 if (down_xfermask
&&
1842 ata_down_xfermask_limit(dev
, tries
[dev
->devno
] == 1))
1843 tries
[dev
->devno
] = 0;
1846 if (!tries
[dev
->devno
]) {
1847 ata_down_xfermask_limit(dev
, 1);
1848 ata_dev_disable(dev
);
1855 * ata_port_probe - Mark port as enabled
1856 * @ap: Port for which we indicate enablement
1858 * Modify @ap data structure such that the system
1859 * thinks that the entire port is enabled.
1861 * LOCKING: host lock, or some other form of
1865 void ata_port_probe(struct ata_port
*ap
)
1867 ap
->flags
&= ~ATA_FLAG_DISABLED
;
1871 * sata_print_link_status - Print SATA link status
1872 * @ap: SATA port to printk link status about
1874 * This function prints link speed and status of a SATA link.
1879 static void sata_print_link_status(struct ata_port
*ap
)
1881 u32 sstatus
, scontrol
, tmp
;
1883 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
1885 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
1887 if (ata_port_online(ap
)) {
1888 tmp
= (sstatus
>> 4) & 0xf;
1889 ata_port_printk(ap
, KERN_INFO
,
1890 "SATA link up %s (SStatus %X SControl %X)\n",
1891 sata_spd_string(tmp
), sstatus
, scontrol
);
1893 ata_port_printk(ap
, KERN_INFO
,
1894 "SATA link down (SStatus %X SControl %X)\n",
1900 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1901 * @ap: SATA port associated with target SATA PHY.
1903 * This function issues commands to standard SATA Sxxx
1904 * PHY registers, to wake up the phy (and device), and
1905 * clear any reset condition.
1908 * PCI/etc. bus probe sem.
1911 void __sata_phy_reset(struct ata_port
*ap
)
1914 unsigned long timeout
= jiffies
+ (HZ
* 5);
1916 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1917 /* issue phy wake/reset */
1918 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1919 /* Couldn't find anything in SATA I/II specs, but
1920 * AHCI-1.1 10.4.2 says at least 1 ms. */
1923 /* phy wake/clear reset */
1924 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1926 /* wait for phy to become ready, if necessary */
1929 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1930 if ((sstatus
& 0xf) != 1)
1932 } while (time_before(jiffies
, timeout
));
1934 /* print link status */
1935 sata_print_link_status(ap
);
1937 /* TODO: phy layer with polling, timeouts, etc. */
1938 if (!ata_port_offline(ap
))
1941 ata_port_disable(ap
);
1943 if (ap
->flags
& ATA_FLAG_DISABLED
)
1946 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1947 ata_port_disable(ap
);
1951 ap
->cbl
= ATA_CBL_SATA
;
1955 * sata_phy_reset - Reset SATA bus.
1956 * @ap: SATA port associated with target SATA PHY.
1958 * This function resets the SATA bus, and then probes
1959 * the bus for devices.
1962 * PCI/etc. bus probe sem.
1965 void sata_phy_reset(struct ata_port
*ap
)
1967 __sata_phy_reset(ap
);
1968 if (ap
->flags
& ATA_FLAG_DISABLED
)
1974 * ata_dev_pair - return other device on cable
1977 * Obtain the other device on the same cable, or if none is
1978 * present NULL is returned
1981 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
1983 struct ata_port
*ap
= adev
->ap
;
1984 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
1985 if (!ata_dev_enabled(pair
))
1991 * ata_port_disable - Disable port.
1992 * @ap: Port to be disabled.
1994 * Modify @ap data structure such that the system
1995 * thinks that the entire port is disabled, and should
1996 * never attempt to probe or communicate with devices
1999 * LOCKING: host lock, or some other form of
2003 void ata_port_disable(struct ata_port
*ap
)
2005 ap
->device
[0].class = ATA_DEV_NONE
;
2006 ap
->device
[1].class = ATA_DEV_NONE
;
2007 ap
->flags
|= ATA_FLAG_DISABLED
;
2011 * sata_down_spd_limit - adjust SATA spd limit downward
2012 * @ap: Port to adjust SATA spd limit for
2014 * Adjust SATA spd limit of @ap downward. Note that this
2015 * function only adjusts the limit. The change must be applied
2016 * using sata_set_spd().
2019 * Inherited from caller.
2022 * 0 on success, negative errno on failure
2024 int sata_down_spd_limit(struct ata_port
*ap
)
2026 u32 sstatus
, spd
, mask
;
2029 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2033 mask
= ap
->sata_spd_limit
;
2036 highbit
= fls(mask
) - 1;
2037 mask
&= ~(1 << highbit
);
2039 spd
= (sstatus
>> 4) & 0xf;
2043 mask
&= (1 << spd
) - 1;
2047 ap
->sata_spd_limit
= mask
;
2049 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2050 sata_spd_string(fls(mask
)));
2055 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2059 if (ap
->sata_spd_limit
== UINT_MAX
)
2062 limit
= fls(ap
->sata_spd_limit
);
2064 spd
= (*scontrol
>> 4) & 0xf;
2065 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2067 return spd
!= limit
;
2071 * sata_set_spd_needed - is SATA spd configuration needed
2072 * @ap: Port in question
2074 * Test whether the spd limit in SControl matches
2075 * @ap->sata_spd_limit. This function is used to determine
2076 * whether hardreset is necessary to apply SATA spd
2080 * Inherited from caller.
2083 * 1 if SATA spd configuration is needed, 0 otherwise.
2085 int sata_set_spd_needed(struct ata_port
*ap
)
2089 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2092 return __sata_set_spd_needed(ap
, &scontrol
);
2096 * sata_set_spd - set SATA spd according to spd limit
2097 * @ap: Port to set SATA spd for
2099 * Set SATA spd of @ap according to sata_spd_limit.
2102 * Inherited from caller.
2105 * 0 if spd doesn't need to be changed, 1 if spd has been
2106 * changed. Negative errno if SCR registers are inaccessible.
2108 int sata_set_spd(struct ata_port
*ap
)
2113 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2116 if (!__sata_set_spd_needed(ap
, &scontrol
))
2119 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2126 * This mode timing computation functionality is ported over from
2127 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2130 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2131 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2132 * for UDMA6, which is currently supported only by Maxtor drives.
2134 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2137 static const struct ata_timing ata_timing
[] = {
2139 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2140 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2141 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2142 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2144 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2145 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2146 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2147 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2148 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2150 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2152 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2153 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2154 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2156 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2157 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2158 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2160 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2161 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2162 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2163 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2165 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2166 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2167 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2169 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2174 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2175 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2177 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2179 q
->setup
= EZ(t
->setup
* 1000, T
);
2180 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2181 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2182 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2183 q
->active
= EZ(t
->active
* 1000, T
);
2184 q
->recover
= EZ(t
->recover
* 1000, T
);
2185 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2186 q
->udma
= EZ(t
->udma
* 1000, UT
);
2189 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2190 struct ata_timing
*m
, unsigned int what
)
2192 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2193 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2194 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2195 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2196 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2197 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2198 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2199 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2202 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2204 const struct ata_timing
*t
;
2206 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2207 if (t
->mode
== 0xFF)
2212 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2213 struct ata_timing
*t
, int T
, int UT
)
2215 const struct ata_timing
*s
;
2216 struct ata_timing p
;
2222 if (!(s
= ata_timing_find_mode(speed
)))
2225 memcpy(t
, s
, sizeof(*s
));
2228 * If the drive is an EIDE drive, it can tell us it needs extended
2229 * PIO/MW_DMA cycle timing.
2232 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2233 memset(&p
, 0, sizeof(p
));
2234 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2235 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2236 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2237 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2238 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2240 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2244 * Convert the timing to bus clock counts.
2247 ata_timing_quantize(t
, t
, T
, UT
);
2250 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2251 * S.M.A.R.T * and some other commands. We have to ensure that the
2252 * DMA cycle timing is slower/equal than the fastest PIO timing.
2255 if (speed
> XFER_PIO_6
) {
2256 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2257 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2261 * Lengthen active & recovery time so that cycle time is correct.
2264 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2265 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2266 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2269 if (t
->active
+ t
->recover
< t
->cycle
) {
2270 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2271 t
->recover
= t
->cycle
- t
->active
;
2278 * ata_down_xfermask_limit - adjust dev xfer masks downward
2279 * @dev: Device to adjust xfer masks
2280 * @force_pio0: Force PIO0
2282 * Adjust xfer masks of @dev downward. Note that this function
2283 * does not apply the change. Invoking ata_set_mode() afterwards
2284 * will apply the limit.
2287 * Inherited from caller.
2290 * 0 on success, negative errno on failure
2292 int ata_down_xfermask_limit(struct ata_device
*dev
, int force_pio0
)
2294 unsigned long xfer_mask
;
2297 xfer_mask
= ata_pack_xfermask(dev
->pio_mask
, dev
->mwdma_mask
,
2302 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2303 if (xfer_mask
& ATA_MASK_UDMA
)
2304 xfer_mask
&= ~ATA_MASK_MWDMA
;
2306 highbit
= fls(xfer_mask
) - 1;
2307 xfer_mask
&= ~(1 << highbit
);
2309 xfer_mask
&= 1 << ATA_SHIFT_PIO
;
2313 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2316 ata_dev_printk(dev
, KERN_WARNING
, "limiting speed to %s\n",
2317 ata_mode_string(xfer_mask
));
2325 static int ata_dev_set_mode(struct ata_device
*dev
)
2327 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2328 unsigned int err_mask
;
2331 dev
->flags
&= ~ATA_DFLAG_PIO
;
2332 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2333 dev
->flags
|= ATA_DFLAG_PIO
;
2335 err_mask
= ata_dev_set_xfermode(dev
);
2336 /* Old CFA may refuse this command, which is just fine */
2337 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2338 err_mask
&= ~AC_ERR_DEV
;
2341 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2342 "(err_mask=0x%x)\n", err_mask
);
2346 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2347 rc
= ata_dev_revalidate(dev
, 0);
2348 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2352 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2353 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2355 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2356 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2361 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2362 * @ap: port on which timings will be programmed
2363 * @r_failed_dev: out paramter for failed device
2365 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2366 * ata_set_mode() fails, pointer to the failing device is
2367 * returned in @r_failed_dev.
2370 * PCI/etc. bus probe sem.
2373 * 0 on success, negative errno otherwise
2375 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2377 struct ata_device
*dev
;
2378 int i
, rc
= 0, used_dma
= 0, found
= 0;
2380 /* has private set_mode? */
2381 if (ap
->ops
->set_mode
)
2382 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2384 /* step 1: calculate xfer_mask */
2385 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2386 unsigned int pio_mask
, dma_mask
;
2388 dev
= &ap
->device
[i
];
2390 if (!ata_dev_enabled(dev
))
2393 ata_dev_xfermask(dev
);
2395 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2396 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2397 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2398 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2407 /* step 2: always set host PIO timings */
2408 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2409 dev
= &ap
->device
[i
];
2410 if (!ata_dev_enabled(dev
))
2413 if (!dev
->pio_mode
) {
2414 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2419 dev
->xfer_mode
= dev
->pio_mode
;
2420 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2421 if (ap
->ops
->set_piomode
)
2422 ap
->ops
->set_piomode(ap
, dev
);
2425 /* step 3: set host DMA timings */
2426 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2427 dev
= &ap
->device
[i
];
2429 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2432 dev
->xfer_mode
= dev
->dma_mode
;
2433 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2434 if (ap
->ops
->set_dmamode
)
2435 ap
->ops
->set_dmamode(ap
, dev
);
2438 /* step 4: update devices' xfer mode */
2439 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2440 dev
= &ap
->device
[i
];
2442 /* don't update suspended devices' xfer mode */
2443 if (!ata_dev_ready(dev
))
2446 rc
= ata_dev_set_mode(dev
);
2451 /* Record simplex status. If we selected DMA then the other
2452 * host channels are not permitted to do so.
2454 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2455 ap
->host
->simplex_claimed
= 1;
2457 /* step5: chip specific finalisation */
2458 if (ap
->ops
->post_set_mode
)
2459 ap
->ops
->post_set_mode(ap
);
2463 *r_failed_dev
= dev
;
2468 * ata_tf_to_host - issue ATA taskfile to host controller
2469 * @ap: port to which command is being issued
2470 * @tf: ATA taskfile register set
2472 * Issues ATA taskfile register set to ATA host controller,
2473 * with proper synchronization with interrupt handler and
2477 * spin_lock_irqsave(host lock)
2480 static inline void ata_tf_to_host(struct ata_port
*ap
,
2481 const struct ata_taskfile
*tf
)
2483 ap
->ops
->tf_load(ap
, tf
);
2484 ap
->ops
->exec_command(ap
, tf
);
2488 * ata_busy_sleep - sleep until BSY clears, or timeout
2489 * @ap: port containing status register to be polled
2490 * @tmout_pat: impatience timeout
2491 * @tmout: overall timeout
2493 * Sleep until ATA Status register bit BSY clears,
2494 * or a timeout occurs.
2497 * Kernel thread context (may sleep).
2500 * 0 on success, -errno otherwise.
2502 int ata_busy_sleep(struct ata_port
*ap
,
2503 unsigned long tmout_pat
, unsigned long tmout
)
2505 unsigned long timer_start
, timeout
;
2508 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2509 timer_start
= jiffies
;
2510 timeout
= timer_start
+ tmout_pat
;
2511 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2512 time_before(jiffies
, timeout
)) {
2514 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2517 if (status
!= 0xff && (status
& ATA_BUSY
))
2518 ata_port_printk(ap
, KERN_WARNING
,
2519 "port is slow to respond, please be patient "
2520 "(Status 0x%x)\n", status
);
2522 timeout
= timer_start
+ tmout
;
2523 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2524 time_before(jiffies
, timeout
)) {
2526 status
= ata_chk_status(ap
);
2532 if (status
& ATA_BUSY
) {
2533 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2534 "(%lu secs, Status 0x%x)\n",
2535 tmout
/ HZ
, status
);
2542 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2544 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2545 unsigned int dev0
= devmask
& (1 << 0);
2546 unsigned int dev1
= devmask
& (1 << 1);
2547 unsigned long timeout
;
2549 /* if device 0 was found in ata_devchk, wait for its
2553 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2555 /* if device 1 was found in ata_devchk, wait for
2556 * register access, then wait for BSY to clear
2558 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
2562 ap
->ops
->dev_select(ap
, 1);
2563 nsect
= ioread8(ioaddr
->nsect_addr
);
2564 lbal
= ioread8(ioaddr
->lbal_addr
);
2565 if ((nsect
== 1) && (lbal
== 1))
2567 if (time_after(jiffies
, timeout
)) {
2571 msleep(50); /* give drive a breather */
2574 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2576 /* is all this really necessary? */
2577 ap
->ops
->dev_select(ap
, 0);
2579 ap
->ops
->dev_select(ap
, 1);
2581 ap
->ops
->dev_select(ap
, 0);
2584 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
2585 unsigned int devmask
)
2587 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2589 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
2591 /* software reset. causes dev0 to be selected */
2592 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2593 udelay(20); /* FIXME: flush */
2594 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2595 udelay(20); /* FIXME: flush */
2596 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2598 /* spec mandates ">= 2ms" before checking status.
2599 * We wait 150ms, because that was the magic delay used for
2600 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2601 * between when the ATA command register is written, and then
2602 * status is checked. Because waiting for "a while" before
2603 * checking status is fine, post SRST, we perform this magic
2604 * delay here as well.
2606 * Old drivers/ide uses the 2mS rule and then waits for ready
2610 /* Before we perform post reset processing we want to see if
2611 * the bus shows 0xFF because the odd clown forgets the D7
2612 * pulldown resistor.
2614 if (ata_check_status(ap
) == 0xFF)
2617 ata_bus_post_reset(ap
, devmask
);
2623 * ata_bus_reset - reset host port and associated ATA channel
2624 * @ap: port to reset
2626 * This is typically the first time we actually start issuing
2627 * commands to the ATA channel. We wait for BSY to clear, then
2628 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2629 * result. Determine what devices, if any, are on the channel
2630 * by looking at the device 0/1 error register. Look at the signature
2631 * stored in each device's taskfile registers, to determine if
2632 * the device is ATA or ATAPI.
2635 * PCI/etc. bus probe sem.
2636 * Obtains host lock.
2639 * Sets ATA_FLAG_DISABLED if bus reset fails.
2642 void ata_bus_reset(struct ata_port
*ap
)
2644 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2645 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2647 unsigned int dev0
, dev1
= 0, devmask
= 0;
2649 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2651 /* determine if device 0/1 are present */
2652 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2655 dev0
= ata_devchk(ap
, 0);
2657 dev1
= ata_devchk(ap
, 1);
2661 devmask
|= (1 << 0);
2663 devmask
|= (1 << 1);
2665 /* select device 0 again */
2666 ap
->ops
->dev_select(ap
, 0);
2668 /* issue bus reset */
2669 if (ap
->flags
& ATA_FLAG_SRST
)
2670 if (ata_bus_softreset(ap
, devmask
))
2674 * determine by signature whether we have ATA or ATAPI devices
2676 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2677 if ((slave_possible
) && (err
!= 0x81))
2678 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2680 /* re-enable interrupts */
2681 ap
->ops
->irq_on(ap
);
2683 /* is double-select really necessary? */
2684 if (ap
->device
[1].class != ATA_DEV_NONE
)
2685 ap
->ops
->dev_select(ap
, 1);
2686 if (ap
->device
[0].class != ATA_DEV_NONE
)
2687 ap
->ops
->dev_select(ap
, 0);
2689 /* if no devices were detected, disable this port */
2690 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2691 (ap
->device
[1].class == ATA_DEV_NONE
))
2694 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2695 /* set up device control for ATA_FLAG_SATA_RESET */
2696 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2703 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
2704 ap
->ops
->port_disable(ap
);
2710 * sata_phy_debounce - debounce SATA phy status
2711 * @ap: ATA port to debounce SATA phy status for
2712 * @params: timing parameters { interval, duratinon, timeout } in msec
2714 * Make sure SStatus of @ap reaches stable state, determined by
2715 * holding the same value where DET is not 1 for @duration polled
2716 * every @interval, before @timeout. Timeout constraints the
2717 * beginning of the stable state. Because, after hot unplugging,
2718 * DET gets stuck at 1 on some controllers, this functions waits
2719 * until timeout then returns 0 if DET is stable at 1.
2722 * Kernel thread context (may sleep)
2725 * 0 on success, -errno on failure.
2727 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
)
2729 unsigned long interval_msec
= params
[0];
2730 unsigned long duration
= params
[1] * HZ
/ 1000;
2731 unsigned long timeout
= jiffies
+ params
[2] * HZ
/ 1000;
2732 unsigned long last_jiffies
;
2736 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2741 last_jiffies
= jiffies
;
2744 msleep(interval_msec
);
2745 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2751 if (cur
== 1 && time_before(jiffies
, timeout
))
2753 if (time_after(jiffies
, last_jiffies
+ duration
))
2758 /* unstable, start over */
2760 last_jiffies
= jiffies
;
2763 if (time_after(jiffies
, timeout
))
2769 * sata_phy_resume - resume SATA phy
2770 * @ap: ATA port to resume SATA phy for
2771 * @params: timing parameters { interval, duratinon, timeout } in msec
2773 * Resume SATA phy of @ap and debounce it.
2776 * Kernel thread context (may sleep)
2779 * 0 on success, -errno on failure.
2781 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
)
2786 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2789 scontrol
= (scontrol
& 0x0f0) | 0x300;
2791 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2794 /* Some PHYs react badly if SStatus is pounded immediately
2795 * after resuming. Delay 200ms before debouncing.
2799 return sata_phy_debounce(ap
, params
);
2802 static void ata_wait_spinup(struct ata_port
*ap
)
2804 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2805 unsigned long end
, secs
;
2808 /* first, debounce phy if SATA */
2809 if (ap
->cbl
== ATA_CBL_SATA
) {
2810 rc
= sata_phy_debounce(ap
, sata_deb_timing_hotplug
);
2812 /* if debounced successfully and offline, no need to wait */
2813 if ((rc
== 0 || rc
== -EOPNOTSUPP
) && ata_port_offline(ap
))
2817 /* okay, let's give the drive time to spin up */
2818 end
= ehc
->i
.hotplug_timestamp
+ ATA_SPINUP_WAIT
* HZ
/ 1000;
2819 secs
= ((end
- jiffies
) + HZ
- 1) / HZ
;
2821 if (time_after(jiffies
, end
))
2825 ata_port_printk(ap
, KERN_INFO
, "waiting for device to spin up "
2826 "(%lu secs)\n", secs
);
2828 schedule_timeout_uninterruptible(end
- jiffies
);
2832 * ata_std_prereset - prepare for reset
2833 * @ap: ATA port to be reset
2835 * @ap is about to be reset. Initialize it.
2838 * Kernel thread context (may sleep)
2841 * 0 on success, -errno otherwise.
2843 int ata_std_prereset(struct ata_port
*ap
)
2845 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2846 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2849 /* handle link resume & hotplug spinup */
2850 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
2851 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
2852 ehc
->i
.action
|= ATA_EH_HARDRESET
;
2854 if ((ehc
->i
.flags
& ATA_EHI_HOTPLUGGED
) &&
2855 (ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
))
2856 ata_wait_spinup(ap
);
2858 /* if we're about to do hardreset, nothing more to do */
2859 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
2862 /* if SATA, resume phy */
2863 if (ap
->cbl
== ATA_CBL_SATA
) {
2864 rc
= sata_phy_resume(ap
, timing
);
2865 if (rc
&& rc
!= -EOPNOTSUPP
) {
2866 /* phy resume failed */
2867 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
2868 "link for reset (errno=%d)\n", rc
);
2873 /* Wait for !BSY if the controller can wait for the first D2H
2874 * Reg FIS and we don't know that no device is attached.
2876 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
))
2877 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2883 * ata_std_softreset - reset host port via ATA SRST
2884 * @ap: port to reset
2885 * @classes: resulting classes of attached devices
2887 * Reset host port using ATA SRST.
2890 * Kernel thread context (may sleep)
2893 * 0 on success, -errno otherwise.
2895 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
2897 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2898 unsigned int devmask
= 0, err_mask
;
2903 if (ata_port_offline(ap
)) {
2904 classes
[0] = ATA_DEV_NONE
;
2908 /* determine if device 0/1 are present */
2909 if (ata_devchk(ap
, 0))
2910 devmask
|= (1 << 0);
2911 if (slave_possible
&& ata_devchk(ap
, 1))
2912 devmask
|= (1 << 1);
2914 /* select device 0 again */
2915 ap
->ops
->dev_select(ap
, 0);
2917 /* issue bus reset */
2918 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2919 err_mask
= ata_bus_softreset(ap
, devmask
);
2921 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
2926 /* determine by signature whether we have ATA or ATAPI devices */
2927 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
2928 if (slave_possible
&& err
!= 0x81)
2929 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
2932 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2937 * sata_port_hardreset - reset port via SATA phy reset
2938 * @ap: port to reset
2939 * @timing: timing parameters { interval, duratinon, timeout } in msec
2941 * SATA phy-reset host port using DET bits of SControl register.
2944 * Kernel thread context (may sleep)
2947 * 0 on success, -errno otherwise.
2949 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
)
2956 if (sata_set_spd_needed(ap
)) {
2957 /* SATA spec says nothing about how to reconfigure
2958 * spd. To be on the safe side, turn off phy during
2959 * reconfiguration. This works for at least ICH7 AHCI
2962 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2965 scontrol
= (scontrol
& 0x0f0) | 0x304;
2967 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2973 /* issue phy wake/reset */
2974 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2977 scontrol
= (scontrol
& 0x0f0) | 0x301;
2979 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
2982 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2983 * 10.4.2 says at least 1 ms.
2987 /* bring phy back */
2988 rc
= sata_phy_resume(ap
, timing
);
2990 DPRINTK("EXIT, rc=%d\n", rc
);
2995 * sata_std_hardreset - reset host port via SATA phy reset
2996 * @ap: port to reset
2997 * @class: resulting class of attached device
2999 * SATA phy-reset host port using DET bits of SControl register,
3000 * wait for !BSY and classify the attached device.
3003 * Kernel thread context (may sleep)
3006 * 0 on success, -errno otherwise.
3008 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
3010 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3016 rc
= sata_port_hardreset(ap
, timing
);
3018 ata_port_printk(ap
, KERN_ERR
,
3019 "COMRESET failed (errno=%d)\n", rc
);
3023 /* TODO: phy layer with polling, timeouts, etc. */
3024 if (ata_port_offline(ap
)) {
3025 *class = ATA_DEV_NONE
;
3026 DPRINTK("EXIT, link offline\n");
3030 /* wait a while before checking status, see SRST for more info */
3033 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
3034 ata_port_printk(ap
, KERN_ERR
,
3035 "COMRESET failed (device not ready)\n");
3039 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3041 *class = ata_dev_try_classify(ap
, 0, NULL
);
3043 DPRINTK("EXIT, class=%u\n", *class);
3048 * ata_std_postreset - standard postreset callback
3049 * @ap: the target ata_port
3050 * @classes: classes of attached devices
3052 * This function is invoked after a successful reset. Note that
3053 * the device might have been reset more than once using
3054 * different reset methods before postreset is invoked.
3057 * Kernel thread context (may sleep)
3059 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3065 /* print link status */
3066 sata_print_link_status(ap
);
3069 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3070 sata_scr_write(ap
, SCR_ERROR
, serror
);
3072 /* re-enable interrupts */
3073 if (!ap
->ops
->error_handler
)
3074 ap
->ops
->irq_on(ap
);
3076 /* is double-select really necessary? */
3077 if (classes
[0] != ATA_DEV_NONE
)
3078 ap
->ops
->dev_select(ap
, 1);
3079 if (classes
[1] != ATA_DEV_NONE
)
3080 ap
->ops
->dev_select(ap
, 0);
3082 /* bail out if no device is present */
3083 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3084 DPRINTK("EXIT, no device\n");
3088 /* set up device control */
3089 if (ap
->ioaddr
.ctl_addr
)
3090 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3096 * ata_dev_same_device - Determine whether new ID matches configured device
3097 * @dev: device to compare against
3098 * @new_class: class of the new device
3099 * @new_id: IDENTIFY page of the new device
3101 * Compare @new_class and @new_id against @dev and determine
3102 * whether @dev is the device indicated by @new_class and
3109 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3111 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3114 const u16
*old_id
= dev
->id
;
3115 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3116 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3119 if (dev
->class != new_class
) {
3120 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3121 dev
->class, new_class
);
3125 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3126 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3127 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3128 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3129 new_n_sectors
= ata_id_n_sectors(new_id
);
3131 if (strcmp(model
[0], model
[1])) {
3132 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3133 "'%s' != '%s'\n", model
[0], model
[1]);
3137 if (strcmp(serial
[0], serial
[1])) {
3138 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3139 "'%s' != '%s'\n", serial
[0], serial
[1]);
3143 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
3144 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3146 (unsigned long long)dev
->n_sectors
,
3147 (unsigned long long)new_n_sectors
);
3155 * ata_dev_revalidate - Revalidate ATA device
3156 * @dev: device to revalidate
3157 * @readid_flags: read ID flags
3159 * Re-read IDENTIFY page and make sure @dev is still attached to
3163 * Kernel thread context (may sleep)
3166 * 0 on success, negative errno otherwise
3168 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3170 unsigned int class = dev
->class;
3171 u16
*id
= (void *)dev
->ap
->sector_buf
;
3174 if (!ata_dev_enabled(dev
)) {
3180 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3184 /* is the device still there? */
3185 if (!ata_dev_same_device(dev
, class, id
)) {
3190 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3192 /* configure device according to the new ID */
3193 rc
= ata_dev_configure(dev
);
3198 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3202 struct ata_blacklist_entry
{
3203 const char *model_num
;
3204 const char *model_rev
;
3205 unsigned long horkage
;
3208 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3209 /* Devices with DMA related problems under Linux */
3210 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3211 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3212 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3213 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3214 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3215 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3216 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3217 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3218 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3219 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3220 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3221 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3222 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3223 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3224 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3225 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3226 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3227 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3228 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3229 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3230 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3231 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3232 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3233 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3234 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3235 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3236 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3237 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3238 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3239 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3241 /* Devices we expect to fail diagnostics */
3243 /* Devices where NCQ should be avoided */
3245 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3247 /* Devices with NCQ limits */
3253 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3255 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3256 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3257 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3259 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3260 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3262 while (ad
->model_num
) {
3263 if (!strcmp(ad
->model_num
, model_num
)) {
3264 if (ad
->model_rev
== NULL
)
3266 if (!strcmp(ad
->model_rev
, model_rev
))
3274 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3276 /* We don't support polling DMA.
3277 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3278 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3280 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3281 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3283 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3287 * ata_dev_xfermask - Compute supported xfermask of the given device
3288 * @dev: Device to compute xfermask for
3290 * Compute supported xfermask of @dev and store it in
3291 * dev->*_mask. This function is responsible for applying all
3292 * known limits including host controller limits, device
3298 static void ata_dev_xfermask(struct ata_device
*dev
)
3300 struct ata_port
*ap
= dev
->ap
;
3301 struct ata_host
*host
= ap
->host
;
3302 unsigned long xfer_mask
;
3304 /* controller modes available */
3305 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3306 ap
->mwdma_mask
, ap
->udma_mask
);
3308 /* Apply cable rule here. Don't apply it early because when
3309 * we handle hot plug the cable type can itself change.
3311 if (ap
->cbl
== ATA_CBL_PATA40
)
3312 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3313 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3314 * host side are checked drive side as well. Cases where we know a
3315 * 40wire cable is used safely for 80 are not checked here.
3317 if (ata_drive_40wire(dev
->id
) && (ap
->cbl
== ATA_CBL_PATA_UNK
|| ap
->cbl
== ATA_CBL_PATA80
))
3318 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3321 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3322 dev
->mwdma_mask
, dev
->udma_mask
);
3323 xfer_mask
&= ata_id_xfermask(dev
->id
);
3326 * CFA Advanced TrueIDE timings are not allowed on a shared
3329 if (ata_dev_pair(dev
)) {
3330 /* No PIO5 or PIO6 */
3331 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3332 /* No MWDMA3 or MWDMA 4 */
3333 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3336 if (ata_dma_blacklisted(dev
)) {
3337 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3338 ata_dev_printk(dev
, KERN_WARNING
,
3339 "device is on DMA blacklist, disabling DMA\n");
3342 if ((host
->flags
& ATA_HOST_SIMPLEX
) && host
->simplex_claimed
) {
3343 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3344 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3345 "other device, disabling DMA\n");
3348 if (ap
->ops
->mode_filter
)
3349 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
3351 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3352 &dev
->mwdma_mask
, &dev
->udma_mask
);
3356 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3357 * @dev: Device to which command will be sent
3359 * Issue SET FEATURES - XFER MODE command to device @dev
3363 * PCI/etc. bus probe sem.
3366 * 0 on success, AC_ERR_* mask otherwise.
3369 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3371 struct ata_taskfile tf
;
3372 unsigned int err_mask
;
3374 /* set up set-features taskfile */
3375 DPRINTK("set features - xfer mode\n");
3377 ata_tf_init(dev
, &tf
);
3378 tf
.command
= ATA_CMD_SET_FEATURES
;
3379 tf
.feature
= SETFEATURES_XFER
;
3380 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3381 tf
.protocol
= ATA_PROT_NODATA
;
3382 tf
.nsect
= dev
->xfer_mode
;
3384 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3386 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3391 * ata_dev_init_params - Issue INIT DEV PARAMS command
3392 * @dev: Device to which command will be sent
3393 * @heads: Number of heads (taskfile parameter)
3394 * @sectors: Number of sectors (taskfile parameter)
3397 * Kernel thread context (may sleep)
3400 * 0 on success, AC_ERR_* mask otherwise.
3402 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3403 u16 heads
, u16 sectors
)
3405 struct ata_taskfile tf
;
3406 unsigned int err_mask
;
3408 /* Number of sectors per track 1-255. Number of heads 1-16 */
3409 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3410 return AC_ERR_INVALID
;
3412 /* set up init dev params taskfile */
3413 DPRINTK("init dev params \n");
3415 ata_tf_init(dev
, &tf
);
3416 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3417 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3418 tf
.protocol
= ATA_PROT_NODATA
;
3420 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3422 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3424 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3429 * ata_sg_clean - Unmap DMA memory associated with command
3430 * @qc: Command containing DMA memory to be released
3432 * Unmap all mapped DMA memory associated with this command.
3435 * spin_lock_irqsave(host lock)
3437 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3439 struct ata_port
*ap
= qc
->ap
;
3440 struct scatterlist
*sg
= qc
->__sg
;
3441 int dir
= qc
->dma_dir
;
3442 void *pad_buf
= NULL
;
3444 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3445 WARN_ON(sg
== NULL
);
3447 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3448 WARN_ON(qc
->n_elem
> 1);
3450 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3452 /* if we padded the buffer out to 32-bit bound, and data
3453 * xfer direction is from-device, we must copy from the
3454 * pad buffer back into the supplied buffer
3456 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3457 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3459 if (qc
->flags
& ATA_QCFLAG_SG
) {
3461 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3462 /* restore last sg */
3463 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3465 struct scatterlist
*psg
= &qc
->pad_sgent
;
3466 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3467 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3468 kunmap_atomic(addr
, KM_IRQ0
);
3472 dma_unmap_single(ap
->dev
,
3473 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3476 sg
->length
+= qc
->pad_len
;
3478 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3479 pad_buf
, qc
->pad_len
);
3482 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3487 * ata_fill_sg - Fill PCI IDE PRD table
3488 * @qc: Metadata associated with taskfile to be transferred
3490 * Fill PCI IDE PRD (scatter-gather) table with segments
3491 * associated with the current disk command.
3494 * spin_lock_irqsave(host lock)
3497 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3499 struct ata_port
*ap
= qc
->ap
;
3500 struct scatterlist
*sg
;
3503 WARN_ON(qc
->__sg
== NULL
);
3504 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3507 ata_for_each_sg(sg
, qc
) {
3511 /* determine if physical DMA addr spans 64K boundary.
3512 * Note h/w doesn't support 64-bit, so we unconditionally
3513 * truncate dma_addr_t to u32.
3515 addr
= (u32
) sg_dma_address(sg
);
3516 sg_len
= sg_dma_len(sg
);
3519 offset
= addr
& 0xffff;
3521 if ((offset
+ sg_len
) > 0x10000)
3522 len
= 0x10000 - offset
;
3524 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3525 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3526 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
3535 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
3538 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3539 * @qc: Metadata associated with taskfile to check
3541 * Allow low-level driver to filter ATA PACKET commands, returning
3542 * a status indicating whether or not it is OK to use DMA for the
3543 * supplied PACKET command.
3546 * spin_lock_irqsave(host lock)
3548 * RETURNS: 0 when ATAPI DMA can be used
3551 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
3553 struct ata_port
*ap
= qc
->ap
;
3554 int rc
= 0; /* Assume ATAPI DMA is OK by default */
3556 if (ap
->ops
->check_atapi_dma
)
3557 rc
= ap
->ops
->check_atapi_dma(qc
);
3562 * ata_qc_prep - Prepare taskfile for submission
3563 * @qc: Metadata associated with taskfile to be prepared
3565 * Prepare ATA taskfile for submission.
3568 * spin_lock_irqsave(host lock)
3570 void ata_qc_prep(struct ata_queued_cmd
*qc
)
3572 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3578 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
3581 * ata_sg_init_one - Associate command with memory buffer
3582 * @qc: Command to be associated
3583 * @buf: Memory buffer
3584 * @buflen: Length of memory buffer, in bytes.
3586 * Initialize the data-related elements of queued_cmd @qc
3587 * to point to a single memory buffer, @buf of byte length @buflen.
3590 * spin_lock_irqsave(host lock)
3593 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
3595 qc
->flags
|= ATA_QCFLAG_SINGLE
;
3597 qc
->__sg
= &qc
->sgent
;
3599 qc
->orig_n_elem
= 1;
3601 qc
->nbytes
= buflen
;
3603 sg_init_one(&qc
->sgent
, buf
, buflen
);
3607 * ata_sg_init - Associate command with scatter-gather table.
3608 * @qc: Command to be associated
3609 * @sg: Scatter-gather table.
3610 * @n_elem: Number of elements in s/g table.
3612 * Initialize the data-related elements of queued_cmd @qc
3613 * to point to a scatter-gather table @sg, containing @n_elem
3617 * spin_lock_irqsave(host lock)
3620 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
3621 unsigned int n_elem
)
3623 qc
->flags
|= ATA_QCFLAG_SG
;
3625 qc
->n_elem
= n_elem
;
3626 qc
->orig_n_elem
= n_elem
;
3630 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3631 * @qc: Command with memory buffer to be mapped.
3633 * DMA-map the memory buffer associated with queued_cmd @qc.
3636 * spin_lock_irqsave(host lock)
3639 * Zero on success, negative on error.
3642 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3644 struct ata_port
*ap
= qc
->ap
;
3645 int dir
= qc
->dma_dir
;
3646 struct scatterlist
*sg
= qc
->__sg
;
3647 dma_addr_t dma_address
;
3650 /* we must lengthen transfers to end on a 32-bit boundary */
3651 qc
->pad_len
= sg
->length
& 3;
3653 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3654 struct scatterlist
*psg
= &qc
->pad_sgent
;
3656 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3658 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3660 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3661 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3664 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3665 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3667 sg
->length
-= qc
->pad_len
;
3668 if (sg
->length
== 0)
3671 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3672 sg
->length
, qc
->pad_len
);
3680 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3682 if (dma_mapping_error(dma_address
)) {
3684 sg
->length
+= qc
->pad_len
;
3688 sg_dma_address(sg
) = dma_address
;
3689 sg_dma_len(sg
) = sg
->length
;
3692 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3693 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3699 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3700 * @qc: Command with scatter-gather table to be mapped.
3702 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3705 * spin_lock_irqsave(host lock)
3708 * Zero on success, negative on error.
3712 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3714 struct ata_port
*ap
= qc
->ap
;
3715 struct scatterlist
*sg
= qc
->__sg
;
3716 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3717 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3719 VPRINTK("ENTER, ata%u\n", ap
->id
);
3720 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3722 /* we must lengthen transfers to end on a 32-bit boundary */
3723 qc
->pad_len
= lsg
->length
& 3;
3725 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3726 struct scatterlist
*psg
= &qc
->pad_sgent
;
3727 unsigned int offset
;
3729 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3731 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3734 * psg->page/offset are used to copy to-be-written
3735 * data in this function or read data in ata_sg_clean.
3737 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3738 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3739 psg
->offset
= offset_in_page(offset
);
3741 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3742 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3743 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3744 kunmap_atomic(addr
, KM_IRQ0
);
3747 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3748 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3750 lsg
->length
-= qc
->pad_len
;
3751 if (lsg
->length
== 0)
3754 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3755 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3758 pre_n_elem
= qc
->n_elem
;
3759 if (trim_sg
&& pre_n_elem
)
3768 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3770 /* restore last sg */
3771 lsg
->length
+= qc
->pad_len
;
3775 DPRINTK("%d sg elements mapped\n", n_elem
);
3778 qc
->n_elem
= n_elem
;
3784 * swap_buf_le16 - swap halves of 16-bit words in place
3785 * @buf: Buffer to swap
3786 * @buf_words: Number of 16-bit words in buffer.
3788 * Swap halves of 16-bit words if needed to convert from
3789 * little-endian byte order to native cpu byte order, or
3793 * Inherited from caller.
3795 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3800 for (i
= 0; i
< buf_words
; i
++)
3801 buf
[i
] = le16_to_cpu(buf
[i
]);
3802 #endif /* __BIG_ENDIAN */
3806 * ata_data_xfer - Transfer data by PIO
3807 * @adev: device to target
3809 * @buflen: buffer length
3810 * @write_data: read/write
3812 * Transfer data from/to the device data register by PIO.
3815 * Inherited from caller.
3817 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3818 unsigned int buflen
, int write_data
)
3820 struct ata_port
*ap
= adev
->ap
;
3821 unsigned int words
= buflen
>> 1;
3823 /* Transfer multiple of 2 bytes */
3825 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
3827 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
3829 /* Transfer trailing 1 byte, if any. */
3830 if (unlikely(buflen
& 0x01)) {
3831 u16 align_buf
[1] = { 0 };
3832 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3835 memcpy(align_buf
, trailing_buf
, 1);
3836 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3838 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
3839 memcpy(trailing_buf
, align_buf
, 1);
3845 * ata_data_xfer_noirq - Transfer data by PIO
3846 * @adev: device to target
3848 * @buflen: buffer length
3849 * @write_data: read/write
3851 * Transfer data from/to the device data register by PIO. Do the
3852 * transfer with interrupts disabled.
3855 * Inherited from caller.
3857 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
3858 unsigned int buflen
, int write_data
)
3860 unsigned long flags
;
3861 local_irq_save(flags
);
3862 ata_data_xfer(adev
, buf
, buflen
, write_data
);
3863 local_irq_restore(flags
);
3868 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3869 * @qc: Command on going
3871 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3874 * Inherited from caller.
3877 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3879 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3880 struct scatterlist
*sg
= qc
->__sg
;
3881 struct ata_port
*ap
= qc
->ap
;
3883 unsigned int offset
;
3886 if (qc
->curbytes
== qc
->nbytes
- ATA_SECT_SIZE
)
3887 ap
->hsm_task_state
= HSM_ST_LAST
;
3889 page
= sg
[qc
->cursg
].page
;
3890 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
3892 /* get the current page and offset */
3893 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3894 offset
%= PAGE_SIZE
;
3896 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3898 if (PageHighMem(page
)) {
3899 unsigned long flags
;
3901 /* FIXME: use a bounce buffer */
3902 local_irq_save(flags
);
3903 buf
= kmap_atomic(page
, KM_IRQ0
);
3905 /* do the actual data transfer */
3906 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3908 kunmap_atomic(buf
, KM_IRQ0
);
3909 local_irq_restore(flags
);
3911 buf
= page_address(page
);
3912 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3915 qc
->curbytes
+= ATA_SECT_SIZE
;
3916 qc
->cursg_ofs
+= ATA_SECT_SIZE
;
3918 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
3925 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3926 * @qc: Command on going
3928 * Transfer one or many ATA_SECT_SIZE of data from/to the
3929 * ATA device for the DRQ request.
3932 * Inherited from caller.
3935 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
3937 if (is_multi_taskfile(&qc
->tf
)) {
3938 /* READ/WRITE MULTIPLE */
3941 WARN_ON(qc
->dev
->multi_count
== 0);
3943 nsect
= min((qc
->nbytes
- qc
->curbytes
) / ATA_SECT_SIZE
,
3944 qc
->dev
->multi_count
);
3952 * atapi_send_cdb - Write CDB bytes to hardware
3953 * @ap: Port to which ATAPI device is attached.
3954 * @qc: Taskfile currently active
3956 * When device has indicated its readiness to accept
3957 * a CDB, this function is called. Send the CDB.
3963 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3966 DPRINTK("send cdb\n");
3967 WARN_ON(qc
->dev
->cdb_len
< 12);
3969 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3970 ata_altstatus(ap
); /* flush */
3972 switch (qc
->tf
.protocol
) {
3973 case ATA_PROT_ATAPI
:
3974 ap
->hsm_task_state
= HSM_ST
;
3976 case ATA_PROT_ATAPI_NODATA
:
3977 ap
->hsm_task_state
= HSM_ST_LAST
;
3979 case ATA_PROT_ATAPI_DMA
:
3980 ap
->hsm_task_state
= HSM_ST_LAST
;
3981 /* initiate bmdma */
3982 ap
->ops
->bmdma_start(qc
);
3988 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3989 * @qc: Command on going
3990 * @bytes: number of bytes
3992 * Transfer Transfer data from/to the ATAPI device.
3995 * Inherited from caller.
3999 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4001 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4002 struct scatterlist
*sg
= qc
->__sg
;
4003 struct ata_port
*ap
= qc
->ap
;
4006 unsigned int offset
, count
;
4008 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4009 ap
->hsm_task_state
= HSM_ST_LAST
;
4012 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4014 * The end of qc->sg is reached and the device expects
4015 * more data to transfer. In order not to overrun qc->sg
4016 * and fulfill length specified in the byte count register,
4017 * - for read case, discard trailing data from the device
4018 * - for write case, padding zero data to the device
4020 u16 pad_buf
[1] = { 0 };
4021 unsigned int words
= bytes
>> 1;
4024 if (words
) /* warning if bytes > 1 */
4025 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4026 "%u bytes trailing data\n", bytes
);
4028 for (i
= 0; i
< words
; i
++)
4029 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4031 ap
->hsm_task_state
= HSM_ST_LAST
;
4035 sg
= &qc
->__sg
[qc
->cursg
];
4038 offset
= sg
->offset
+ qc
->cursg_ofs
;
4040 /* get the current page and offset */
4041 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4042 offset
%= PAGE_SIZE
;
4044 /* don't overrun current sg */
4045 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4047 /* don't cross page boundaries */
4048 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4050 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4052 if (PageHighMem(page
)) {
4053 unsigned long flags
;
4055 /* FIXME: use bounce buffer */
4056 local_irq_save(flags
);
4057 buf
= kmap_atomic(page
, KM_IRQ0
);
4059 /* do the actual data transfer */
4060 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4062 kunmap_atomic(buf
, KM_IRQ0
);
4063 local_irq_restore(flags
);
4065 buf
= page_address(page
);
4066 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4070 qc
->curbytes
+= count
;
4071 qc
->cursg_ofs
+= count
;
4073 if (qc
->cursg_ofs
== sg
->length
) {
4083 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4084 * @qc: Command on going
4086 * Transfer Transfer data from/to the ATAPI device.
4089 * Inherited from caller.
4092 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4094 struct ata_port
*ap
= qc
->ap
;
4095 struct ata_device
*dev
= qc
->dev
;
4096 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4097 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4099 /* Abuse qc->result_tf for temp storage of intermediate TF
4100 * here to save some kernel stack usage.
4101 * For normal completion, qc->result_tf is not relevant. For
4102 * error, qc->result_tf is later overwritten by ata_qc_complete().
4103 * So, the correctness of qc->result_tf is not affected.
4105 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4106 ireason
= qc
->result_tf
.nsect
;
4107 bc_lo
= qc
->result_tf
.lbam
;
4108 bc_hi
= qc
->result_tf
.lbah
;
4109 bytes
= (bc_hi
<< 8) | bc_lo
;
4111 /* shall be cleared to zero, indicating xfer of data */
4112 if (ireason
& (1 << 0))
4115 /* make sure transfer direction matches expected */
4116 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4117 if (do_write
!= i_write
)
4120 VPRINTK("ata%u: xfering %d bytes\n", ap
->id
, bytes
);
4122 __atapi_pio_bytes(qc
, bytes
);
4127 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4128 qc
->err_mask
|= AC_ERR_HSM
;
4129 ap
->hsm_task_state
= HSM_ST_ERR
;
4133 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4134 * @ap: the target ata_port
4138 * 1 if ok in workqueue, 0 otherwise.
4141 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4143 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4146 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4147 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4148 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4151 if (is_atapi_taskfile(&qc
->tf
) &&
4152 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4160 * ata_hsm_qc_complete - finish a qc running on standard HSM
4161 * @qc: Command to complete
4162 * @in_wq: 1 if called from workqueue, 0 otherwise
4164 * Finish @qc which is running on standard HSM.
4167 * If @in_wq is zero, spin_lock_irqsave(host lock).
4168 * Otherwise, none on entry and grabs host lock.
4170 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4172 struct ata_port
*ap
= qc
->ap
;
4173 unsigned long flags
;
4175 if (ap
->ops
->error_handler
) {
4177 spin_lock_irqsave(ap
->lock
, flags
);
4179 /* EH might have kicked in while host lock is
4182 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4184 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4185 ap
->ops
->irq_on(ap
);
4186 ata_qc_complete(qc
);
4188 ata_port_freeze(ap
);
4191 spin_unlock_irqrestore(ap
->lock
, flags
);
4193 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4194 ata_qc_complete(qc
);
4196 ata_port_freeze(ap
);
4200 spin_lock_irqsave(ap
->lock
, flags
);
4201 ap
->ops
->irq_on(ap
);
4202 ata_qc_complete(qc
);
4203 spin_unlock_irqrestore(ap
->lock
, flags
);
4205 ata_qc_complete(qc
);
4208 ata_altstatus(ap
); /* flush */
4212 * ata_hsm_move - move the HSM to the next state.
4213 * @ap: the target ata_port
4215 * @status: current device status
4216 * @in_wq: 1 if called from workqueue, 0 otherwise
4219 * 1 when poll next status needed, 0 otherwise.
4221 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4222 u8 status
, int in_wq
)
4224 unsigned long flags
= 0;
4227 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4229 /* Make sure ata_qc_issue_prot() does not throw things
4230 * like DMA polling into the workqueue. Notice that
4231 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4233 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4236 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4237 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4239 switch (ap
->hsm_task_state
) {
4241 /* Send first data block or PACKET CDB */
4243 /* If polling, we will stay in the work queue after
4244 * sending the data. Otherwise, interrupt handler
4245 * takes over after sending the data.
4247 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4249 /* check device status */
4250 if (unlikely((status
& ATA_DRQ
) == 0)) {
4251 /* handle BSY=0, DRQ=0 as error */
4252 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4253 /* device stops HSM for abort/error */
4254 qc
->err_mask
|= AC_ERR_DEV
;
4256 /* HSM violation. Let EH handle this */
4257 qc
->err_mask
|= AC_ERR_HSM
;
4259 ap
->hsm_task_state
= HSM_ST_ERR
;
4263 /* Device should not ask for data transfer (DRQ=1)
4264 * when it finds something wrong.
4265 * We ignore DRQ here and stop the HSM by
4266 * changing hsm_task_state to HSM_ST_ERR and
4267 * let the EH abort the command or reset the device.
4269 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4270 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4272 qc
->err_mask
|= AC_ERR_HSM
;
4273 ap
->hsm_task_state
= HSM_ST_ERR
;
4277 /* Send the CDB (atapi) or the first data block (ata pio out).
4278 * During the state transition, interrupt handler shouldn't
4279 * be invoked before the data transfer is complete and
4280 * hsm_task_state is changed. Hence, the following locking.
4283 spin_lock_irqsave(ap
->lock
, flags
);
4285 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4286 /* PIO data out protocol.
4287 * send first data block.
4290 /* ata_pio_sectors() might change the state
4291 * to HSM_ST_LAST. so, the state is changed here
4292 * before ata_pio_sectors().
4294 ap
->hsm_task_state
= HSM_ST
;
4295 ata_pio_sectors(qc
);
4296 ata_altstatus(ap
); /* flush */
4299 atapi_send_cdb(ap
, qc
);
4302 spin_unlock_irqrestore(ap
->lock
, flags
);
4304 /* if polling, ata_pio_task() handles the rest.
4305 * otherwise, interrupt handler takes over from here.
4310 /* complete command or read/write the data register */
4311 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4312 /* ATAPI PIO protocol */
4313 if ((status
& ATA_DRQ
) == 0) {
4314 /* No more data to transfer or device error.
4315 * Device error will be tagged in HSM_ST_LAST.
4317 ap
->hsm_task_state
= HSM_ST_LAST
;
4321 /* Device should not ask for data transfer (DRQ=1)
4322 * when it finds something wrong.
4323 * We ignore DRQ here and stop the HSM by
4324 * changing hsm_task_state to HSM_ST_ERR and
4325 * let the EH abort the command or reset the device.
4327 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4328 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4330 qc
->err_mask
|= AC_ERR_HSM
;
4331 ap
->hsm_task_state
= HSM_ST_ERR
;
4335 atapi_pio_bytes(qc
);
4337 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4338 /* bad ireason reported by device */
4342 /* ATA PIO protocol */
4343 if (unlikely((status
& ATA_DRQ
) == 0)) {
4344 /* handle BSY=0, DRQ=0 as error */
4345 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4346 /* device stops HSM for abort/error */
4347 qc
->err_mask
|= AC_ERR_DEV
;
4349 /* HSM violation. Let EH handle this.
4350 * Phantom devices also trigger this
4351 * condition. Mark hint.
4353 qc
->err_mask
|= AC_ERR_HSM
|
4356 ap
->hsm_task_state
= HSM_ST_ERR
;
4360 /* For PIO reads, some devices may ask for
4361 * data transfer (DRQ=1) alone with ERR=1.
4362 * We respect DRQ here and transfer one
4363 * block of junk data before changing the
4364 * hsm_task_state to HSM_ST_ERR.
4366 * For PIO writes, ERR=1 DRQ=1 doesn't make
4367 * sense since the data block has been
4368 * transferred to the device.
4370 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4371 /* data might be corrputed */
4372 qc
->err_mask
|= AC_ERR_DEV
;
4374 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4375 ata_pio_sectors(qc
);
4377 status
= ata_wait_idle(ap
);
4380 if (status
& (ATA_BUSY
| ATA_DRQ
))
4381 qc
->err_mask
|= AC_ERR_HSM
;
4383 /* ata_pio_sectors() might change the
4384 * state to HSM_ST_LAST. so, the state
4385 * is changed after ata_pio_sectors().
4387 ap
->hsm_task_state
= HSM_ST_ERR
;
4391 ata_pio_sectors(qc
);
4393 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4394 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4397 status
= ata_wait_idle(ap
);
4402 ata_altstatus(ap
); /* flush */
4407 if (unlikely(!ata_ok(status
))) {
4408 qc
->err_mask
|= __ac_err_mask(status
);
4409 ap
->hsm_task_state
= HSM_ST_ERR
;
4413 /* no more data to transfer */
4414 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4415 ap
->id
, qc
->dev
->devno
, status
);
4417 WARN_ON(qc
->err_mask
);
4419 ap
->hsm_task_state
= HSM_ST_IDLE
;
4421 /* complete taskfile transaction */
4422 ata_hsm_qc_complete(qc
, in_wq
);
4428 /* make sure qc->err_mask is available to
4429 * know what's wrong and recover
4431 WARN_ON(qc
->err_mask
== 0);
4433 ap
->hsm_task_state
= HSM_ST_IDLE
;
4435 /* complete taskfile transaction */
4436 ata_hsm_qc_complete(qc
, in_wq
);
4448 static void ata_pio_task(struct work_struct
*work
)
4450 struct ata_port
*ap
=
4451 container_of(work
, struct ata_port
, port_task
.work
);
4452 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
4457 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4460 * This is purely heuristic. This is a fast path.
4461 * Sometimes when we enter, BSY will be cleared in
4462 * a chk-status or two. If not, the drive is probably seeking
4463 * or something. Snooze for a couple msecs, then
4464 * chk-status again. If still busy, queue delayed work.
4466 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4467 if (status
& ATA_BUSY
) {
4469 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4470 if (status
& ATA_BUSY
) {
4471 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4477 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4479 /* another command or interrupt handler
4480 * may be running at this point.
4487 * ata_qc_new - Request an available ATA command, for queueing
4488 * @ap: Port associated with device @dev
4489 * @dev: Device from whom we request an available command structure
4495 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4497 struct ata_queued_cmd
*qc
= NULL
;
4500 /* no command while frozen */
4501 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4504 /* the last tag is reserved for internal command. */
4505 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4506 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4507 qc
= __ata_qc_from_tag(ap
, i
);
4518 * ata_qc_new_init - Request an available ATA command, and initialize it
4519 * @dev: Device from whom we request an available command structure
4525 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4527 struct ata_port
*ap
= dev
->ap
;
4528 struct ata_queued_cmd
*qc
;
4530 qc
= ata_qc_new(ap
);
4543 * ata_qc_free - free unused ata_queued_cmd
4544 * @qc: Command to complete
4546 * Designed to free unused ata_queued_cmd object
4547 * in case something prevents using it.
4550 * spin_lock_irqsave(host lock)
4552 void ata_qc_free(struct ata_queued_cmd
*qc
)
4554 struct ata_port
*ap
= qc
->ap
;
4557 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4561 if (likely(ata_tag_valid(tag
))) {
4562 qc
->tag
= ATA_TAG_POISON
;
4563 clear_bit(tag
, &ap
->qc_allocated
);
4567 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4569 struct ata_port
*ap
= qc
->ap
;
4571 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4572 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4574 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4577 /* command should be marked inactive atomically with qc completion */
4578 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
4579 ap
->sactive
&= ~(1 << qc
->tag
);
4581 ap
->active_tag
= ATA_TAG_POISON
;
4583 /* atapi: mark qc as inactive to prevent the interrupt handler
4584 * from completing the command twice later, before the error handler
4585 * is called. (when rc != 0 and atapi request sense is needed)
4587 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4588 ap
->qc_active
&= ~(1 << qc
->tag
);
4590 /* call completion callback */
4591 qc
->complete_fn(qc
);
4594 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4596 struct ata_port
*ap
= qc
->ap
;
4598 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4599 qc
->result_tf
.flags
= qc
->tf
.flags
;
4603 * ata_qc_complete - Complete an active ATA command
4604 * @qc: Command to complete
4605 * @err_mask: ATA Status register contents
4607 * Indicate to the mid and upper layers that an ATA
4608 * command has completed, with either an ok or not-ok status.
4611 * spin_lock_irqsave(host lock)
4613 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4615 struct ata_port
*ap
= qc
->ap
;
4617 /* XXX: New EH and old EH use different mechanisms to
4618 * synchronize EH with regular execution path.
4620 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4621 * Normal execution path is responsible for not accessing a
4622 * failed qc. libata core enforces the rule by returning NULL
4623 * from ata_qc_from_tag() for failed qcs.
4625 * Old EH depends on ata_qc_complete() nullifying completion
4626 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4627 * not synchronize with interrupt handler. Only PIO task is
4630 if (ap
->ops
->error_handler
) {
4631 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4633 if (unlikely(qc
->err_mask
))
4634 qc
->flags
|= ATA_QCFLAG_FAILED
;
4636 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4637 if (!ata_tag_internal(qc
->tag
)) {
4638 /* always fill result TF for failed qc */
4640 ata_qc_schedule_eh(qc
);
4645 /* read result TF if requested */
4646 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4649 __ata_qc_complete(qc
);
4651 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4654 /* read result TF if failed or requested */
4655 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4658 __ata_qc_complete(qc
);
4663 * ata_qc_complete_multiple - Complete multiple qcs successfully
4664 * @ap: port in question
4665 * @qc_active: new qc_active mask
4666 * @finish_qc: LLDD callback invoked before completing a qc
4668 * Complete in-flight commands. This functions is meant to be
4669 * called from low-level driver's interrupt routine to complete
4670 * requests normally. ap->qc_active and @qc_active is compared
4671 * and commands are completed accordingly.
4674 * spin_lock_irqsave(host lock)
4677 * Number of completed commands on success, -errno otherwise.
4679 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
4680 void (*finish_qc
)(struct ata_queued_cmd
*))
4686 done_mask
= ap
->qc_active
^ qc_active
;
4688 if (unlikely(done_mask
& qc_active
)) {
4689 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4690 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4694 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4695 struct ata_queued_cmd
*qc
;
4697 if (!(done_mask
& (1 << i
)))
4700 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4703 ata_qc_complete(qc
);
4711 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4713 struct ata_port
*ap
= qc
->ap
;
4715 switch (qc
->tf
.protocol
) {
4718 case ATA_PROT_ATAPI_DMA
:
4721 case ATA_PROT_ATAPI
:
4723 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4736 * ata_qc_issue - issue taskfile to device
4737 * @qc: command to issue to device
4739 * Prepare an ATA command to submission to device.
4740 * This includes mapping the data into a DMA-able
4741 * area, filling in the S/G table, and finally
4742 * writing the taskfile to hardware, starting the command.
4745 * spin_lock_irqsave(host lock)
4747 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4749 struct ata_port
*ap
= qc
->ap
;
4751 /* Make sure only one non-NCQ command is outstanding. The
4752 * check is skipped for old EH because it reuses active qc to
4753 * request ATAPI sense.
4755 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
4757 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4758 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
4759 ap
->sactive
|= 1 << qc
->tag
;
4761 WARN_ON(ap
->sactive
);
4762 ap
->active_tag
= qc
->tag
;
4765 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4766 ap
->qc_active
|= 1 << qc
->tag
;
4768 if (ata_should_dma_map(qc
)) {
4769 if (qc
->flags
& ATA_QCFLAG_SG
) {
4770 if (ata_sg_setup(qc
))
4772 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4773 if (ata_sg_setup_one(qc
))
4777 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4780 ap
->ops
->qc_prep(qc
);
4782 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4783 if (unlikely(qc
->err_mask
))
4788 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4789 qc
->err_mask
|= AC_ERR_SYSTEM
;
4791 ata_qc_complete(qc
);
4795 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4796 * @qc: command to issue to device
4798 * Using various libata functions and hooks, this function
4799 * starts an ATA command. ATA commands are grouped into
4800 * classes called "protocols", and issuing each type of protocol
4801 * is slightly different.
4803 * May be used as the qc_issue() entry in ata_port_operations.
4806 * spin_lock_irqsave(host lock)
4809 * Zero on success, AC_ERR_* mask on failure
4812 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4814 struct ata_port
*ap
= qc
->ap
;
4816 /* Use polling pio if the LLD doesn't handle
4817 * interrupt driven pio and atapi CDB interrupt.
4819 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4820 switch (qc
->tf
.protocol
) {
4822 case ATA_PROT_NODATA
:
4823 case ATA_PROT_ATAPI
:
4824 case ATA_PROT_ATAPI_NODATA
:
4825 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4827 case ATA_PROT_ATAPI_DMA
:
4828 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4829 /* see ata_dma_blacklisted() */
4837 /* Some controllers show flaky interrupt behavior after
4838 * setting xfer mode. Use polling instead.
4840 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
4841 qc
->tf
.feature
== SETFEATURES_XFER
) &&
4842 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
4843 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4845 /* select the device */
4846 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4848 /* start the command */
4849 switch (qc
->tf
.protocol
) {
4850 case ATA_PROT_NODATA
:
4851 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4852 ata_qc_set_polling(qc
);
4854 ata_tf_to_host(ap
, &qc
->tf
);
4855 ap
->hsm_task_state
= HSM_ST_LAST
;
4857 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4858 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4863 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4865 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4866 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4867 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4868 ap
->hsm_task_state
= HSM_ST_LAST
;
4872 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4873 ata_qc_set_polling(qc
);
4875 ata_tf_to_host(ap
, &qc
->tf
);
4877 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4878 /* PIO data out protocol */
4879 ap
->hsm_task_state
= HSM_ST_FIRST
;
4880 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4882 /* always send first data block using
4883 * the ata_pio_task() codepath.
4886 /* PIO data in protocol */
4887 ap
->hsm_task_state
= HSM_ST
;
4889 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4890 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4892 /* if polling, ata_pio_task() handles the rest.
4893 * otherwise, interrupt handler takes over from here.
4899 case ATA_PROT_ATAPI
:
4900 case ATA_PROT_ATAPI_NODATA
:
4901 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4902 ata_qc_set_polling(qc
);
4904 ata_tf_to_host(ap
, &qc
->tf
);
4906 ap
->hsm_task_state
= HSM_ST_FIRST
;
4908 /* send cdb by polling if no cdb interrupt */
4909 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
4910 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
4911 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4914 case ATA_PROT_ATAPI_DMA
:
4915 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4917 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4918 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4919 ap
->hsm_task_state
= HSM_ST_FIRST
;
4921 /* send cdb by polling if no cdb interrupt */
4922 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4923 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4928 return AC_ERR_SYSTEM
;
4935 * ata_host_intr - Handle host interrupt for given (port, task)
4936 * @ap: Port on which interrupt arrived (possibly...)
4937 * @qc: Taskfile currently active in engine
4939 * Handle host interrupt for given queued command. Currently,
4940 * only DMA interrupts are handled. All other commands are
4941 * handled via polling with interrupts disabled (nIEN bit).
4944 * spin_lock_irqsave(host lock)
4947 * One if interrupt was handled, zero if not (shared irq).
4950 inline unsigned int ata_host_intr (struct ata_port
*ap
,
4951 struct ata_queued_cmd
*qc
)
4953 struct ata_eh_info
*ehi
= &ap
->eh_info
;
4954 u8 status
, host_stat
= 0;
4956 VPRINTK("ata%u: protocol %d task_state %d\n",
4957 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
4959 /* Check whether we are expecting interrupt in this state */
4960 switch (ap
->hsm_task_state
) {
4962 /* Some pre-ATAPI-4 devices assert INTRQ
4963 * at this state when ready to receive CDB.
4966 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4967 * The flag was turned on only for atapi devices.
4968 * No need to check is_atapi_taskfile(&qc->tf) again.
4970 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4974 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
4975 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
4976 /* check status of DMA engine */
4977 host_stat
= ap
->ops
->bmdma_status(ap
);
4978 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
4980 /* if it's not our irq... */
4981 if (!(host_stat
& ATA_DMA_INTR
))
4984 /* before we do anything else, clear DMA-Start bit */
4985 ap
->ops
->bmdma_stop(qc
);
4987 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
4988 /* error when transfering data to/from memory */
4989 qc
->err_mask
|= AC_ERR_HOST_BUS
;
4990 ap
->hsm_task_state
= HSM_ST_ERR
;
5000 /* check altstatus */
5001 status
= ata_altstatus(ap
);
5002 if (status
& ATA_BUSY
)
5005 /* check main status, clearing INTRQ */
5006 status
= ata_chk_status(ap
);
5007 if (unlikely(status
& ATA_BUSY
))
5010 /* ack bmdma irq events */
5011 ap
->ops
->irq_clear(ap
);
5013 ata_hsm_move(ap
, qc
, status
, 0);
5015 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5016 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5017 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5019 return 1; /* irq handled */
5022 ap
->stats
.idle_irq
++;
5025 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5026 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5027 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5031 return 0; /* irq not handled */
5035 * ata_interrupt - Default ATA host interrupt handler
5036 * @irq: irq line (unused)
5037 * @dev_instance: pointer to our ata_host information structure
5039 * Default interrupt handler for PCI IDE devices. Calls
5040 * ata_host_intr() for each port that is not disabled.
5043 * Obtains host lock during operation.
5046 * IRQ_NONE or IRQ_HANDLED.
5049 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5051 struct ata_host
*host
= dev_instance
;
5053 unsigned int handled
= 0;
5054 unsigned long flags
;
5056 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5057 spin_lock_irqsave(&host
->lock
, flags
);
5059 for (i
= 0; i
< host
->n_ports
; i
++) {
5060 struct ata_port
*ap
;
5062 ap
= host
->ports
[i
];
5064 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5065 struct ata_queued_cmd
*qc
;
5067 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5068 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5069 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5070 handled
|= ata_host_intr(ap
, qc
);
5074 spin_unlock_irqrestore(&host
->lock
, flags
);
5076 return IRQ_RETVAL(handled
);
5080 * sata_scr_valid - test whether SCRs are accessible
5081 * @ap: ATA port to test SCR accessibility for
5083 * Test whether SCRs are accessible for @ap.
5089 * 1 if SCRs are accessible, 0 otherwise.
5091 int sata_scr_valid(struct ata_port
*ap
)
5093 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5097 * sata_scr_read - read SCR register of the specified port
5098 * @ap: ATA port to read SCR for
5100 * @val: Place to store read value
5102 * Read SCR register @reg of @ap into *@val. This function is
5103 * guaranteed to succeed if the cable type of the port is SATA
5104 * and the port implements ->scr_read.
5110 * 0 on success, negative errno on failure.
5112 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5114 if (sata_scr_valid(ap
)) {
5115 *val
= ap
->ops
->scr_read(ap
, reg
);
5122 * sata_scr_write - write SCR register of the specified port
5123 * @ap: ATA port to write SCR for
5124 * @reg: SCR to write
5125 * @val: value to write
5127 * Write @val to SCR register @reg of @ap. This function is
5128 * guaranteed to succeed if the cable type of the port is SATA
5129 * and the port implements ->scr_read.
5135 * 0 on success, negative errno on failure.
5137 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5139 if (sata_scr_valid(ap
)) {
5140 ap
->ops
->scr_write(ap
, reg
, val
);
5147 * sata_scr_write_flush - write SCR register of the specified port and flush
5148 * @ap: ATA port to write SCR for
5149 * @reg: SCR to write
5150 * @val: value to write
5152 * This function is identical to sata_scr_write() except that this
5153 * function performs flush after writing to the register.
5159 * 0 on success, negative errno on failure.
5161 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5163 if (sata_scr_valid(ap
)) {
5164 ap
->ops
->scr_write(ap
, reg
, val
);
5165 ap
->ops
->scr_read(ap
, reg
);
5172 * ata_port_online - test whether the given port is online
5173 * @ap: ATA port to test
5175 * Test whether @ap is online. Note that this function returns 0
5176 * if online status of @ap cannot be obtained, so
5177 * ata_port_online(ap) != !ata_port_offline(ap).
5183 * 1 if the port online status is available and online.
5185 int ata_port_online(struct ata_port
*ap
)
5189 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5195 * ata_port_offline - test whether the given port is offline
5196 * @ap: ATA port to test
5198 * Test whether @ap is offline. Note that this function returns
5199 * 0 if offline status of @ap cannot be obtained, so
5200 * ata_port_online(ap) != !ata_port_offline(ap).
5206 * 1 if the port offline status is available and offline.
5208 int ata_port_offline(struct ata_port
*ap
)
5212 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5217 int ata_flush_cache(struct ata_device
*dev
)
5219 unsigned int err_mask
;
5222 if (!ata_try_flush_cache(dev
))
5225 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5226 cmd
= ATA_CMD_FLUSH_EXT
;
5228 cmd
= ATA_CMD_FLUSH
;
5230 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5232 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5239 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5240 unsigned int action
, unsigned int ehi_flags
,
5243 unsigned long flags
;
5246 for (i
= 0; i
< host
->n_ports
; i
++) {
5247 struct ata_port
*ap
= host
->ports
[i
];
5249 /* Previous resume operation might still be in
5250 * progress. Wait for PM_PENDING to clear.
5252 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5253 ata_port_wait_eh(ap
);
5254 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5257 /* request PM ops to EH */
5258 spin_lock_irqsave(ap
->lock
, flags
);
5263 ap
->pm_result
= &rc
;
5266 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5267 ap
->eh_info
.action
|= action
;
5268 ap
->eh_info
.flags
|= ehi_flags
;
5270 ata_port_schedule_eh(ap
);
5272 spin_unlock_irqrestore(ap
->lock
, flags
);
5274 /* wait and check result */
5276 ata_port_wait_eh(ap
);
5277 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5287 * ata_host_suspend - suspend host
5288 * @host: host to suspend
5291 * Suspend @host. Actual operation is performed by EH. This
5292 * function requests EH to perform PM operations and waits for EH
5296 * Kernel thread context (may sleep).
5299 * 0 on success, -errno on failure.
5301 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5305 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5309 /* EH is quiescent now. Fail if we have any ready device.
5310 * This happens if hotplug occurs between completion of device
5311 * suspension and here.
5313 for (i
= 0; i
< host
->n_ports
; i
++) {
5314 struct ata_port
*ap
= host
->ports
[i
];
5316 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5317 struct ata_device
*dev
= &ap
->device
[j
];
5319 if (ata_dev_ready(dev
)) {
5320 ata_port_printk(ap
, KERN_WARNING
,
5321 "suspend failed, device %d "
5322 "still active\n", dev
->devno
);
5329 host
->dev
->power
.power_state
= mesg
;
5333 ata_host_resume(host
);
5338 * ata_host_resume - resume host
5339 * @host: host to resume
5341 * Resume @host. Actual operation is performed by EH. This
5342 * function requests EH to perform PM operations and returns.
5343 * Note that all resume operations are performed parallely.
5346 * Kernel thread context (may sleep).
5348 void ata_host_resume(struct ata_host
*host
)
5350 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5351 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5352 host
->dev
->power
.power_state
= PMSG_ON
;
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5362 * May be used as the port_start() entry in ata_port_operations.
5365 * Inherited from caller.
5367 int ata_port_start(struct ata_port
*ap
)
5369 struct device
*dev
= ap
->dev
;
5372 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5377 rc
= ata_pad_alloc(ap
, dev
);
5381 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5382 (unsigned long long)ap
->prd_dma
);
5387 * ata_dev_init - Initialize an ata_device structure
5388 * @dev: Device structure to initialize
5390 * Initialize @dev in preparation for probing.
5393 * Inherited from caller.
5395 void ata_dev_init(struct ata_device
*dev
)
5397 struct ata_port
*ap
= dev
->ap
;
5398 unsigned long flags
;
5400 /* SATA spd limit is bound to the first device */
5401 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5403 /* High bits of dev->flags are used to record warm plug
5404 * requests which occur asynchronously. Synchronize using
5407 spin_lock_irqsave(ap
->lock
, flags
);
5408 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5409 spin_unlock_irqrestore(ap
->lock
, flags
);
5411 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5412 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5413 dev
->pio_mask
= UINT_MAX
;
5414 dev
->mwdma_mask
= UINT_MAX
;
5415 dev
->udma_mask
= UINT_MAX
;
5419 * ata_port_init - Initialize an ata_port structure
5420 * @ap: Structure to initialize
5421 * @host: Collection of hosts to which @ap belongs
5422 * @ent: Probe information provided by low-level driver
5423 * @port_no: Port number associated with this ata_port
5425 * Initialize a new ata_port structure.
5428 * Inherited from caller.
5430 void ata_port_init(struct ata_port
*ap
, struct ata_host
*host
,
5431 const struct ata_probe_ent
*ent
, unsigned int port_no
)
5435 ap
->lock
= &host
->lock
;
5436 ap
->flags
= ATA_FLAG_DISABLED
;
5437 ap
->id
= ata_unique_id
++;
5438 ap
->ctl
= ATA_DEVCTL_OBS
;
5441 ap
->port_no
= port_no
;
5442 if (port_no
== 1 && ent
->pinfo2
) {
5443 ap
->pio_mask
= ent
->pinfo2
->pio_mask
;
5444 ap
->mwdma_mask
= ent
->pinfo2
->mwdma_mask
;
5445 ap
->udma_mask
= ent
->pinfo2
->udma_mask
;
5446 ap
->flags
|= ent
->pinfo2
->flags
;
5447 ap
->ops
= ent
->pinfo2
->port_ops
;
5449 ap
->pio_mask
= ent
->pio_mask
;
5450 ap
->mwdma_mask
= ent
->mwdma_mask
;
5451 ap
->udma_mask
= ent
->udma_mask
;
5452 ap
->flags
|= ent
->port_flags
;
5453 ap
->ops
= ent
->port_ops
;
5455 ap
->hw_sata_spd_limit
= UINT_MAX
;
5456 ap
->active_tag
= ATA_TAG_POISON
;
5457 ap
->last_ctl
= 0xFF;
5459 #if defined(ATA_VERBOSE_DEBUG)
5460 /* turn on all debugging levels */
5461 ap
->msg_enable
= 0x00FF;
5462 #elif defined(ATA_DEBUG)
5463 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5465 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5468 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5469 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5470 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5471 INIT_LIST_HEAD(&ap
->eh_done_q
);
5472 init_waitqueue_head(&ap
->eh_wait_q
);
5474 /* set cable type */
5475 ap
->cbl
= ATA_CBL_NONE
;
5476 if (ap
->flags
& ATA_FLAG_SATA
)
5477 ap
->cbl
= ATA_CBL_SATA
;
5479 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5480 struct ata_device
*dev
= &ap
->device
[i
];
5487 ap
->stats
.unhandled_irq
= 1;
5488 ap
->stats
.idle_irq
= 1;
5491 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
5495 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5496 * @ap: ATA port to initialize SCSI host for
5497 * @shost: SCSI host associated with @ap
5499 * Initialize SCSI host @shost associated with ATA port @ap.
5502 * Inherited from caller.
5504 static void ata_port_init_shost(struct ata_port
*ap
, struct Scsi_Host
*shost
)
5506 ap
->scsi_host
= shost
;
5508 shost
->unique_id
= ap
->id
;
5511 shost
->max_channel
= 1;
5512 shost
->max_cmd_len
= 12;
5516 * ata_port_add - Attach low-level ATA driver to system
5517 * @ent: Information provided by low-level driver
5518 * @host: Collections of ports to which we add
5519 * @port_no: Port number associated with this host
5521 * Attach low-level ATA driver to system.
5524 * PCI/etc. bus probe sem.
5527 * New ata_port on success, for NULL on error.
5529 static struct ata_port
* ata_port_add(const struct ata_probe_ent
*ent
,
5530 struct ata_host
*host
,
5531 unsigned int port_no
)
5533 struct Scsi_Host
*shost
;
5534 struct ata_port
*ap
;
5538 if (!ent
->port_ops
->error_handler
&&
5539 !(ent
->port_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
5540 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
5545 shost
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
5549 shost
->transportt
= &ata_scsi_transport_template
;
5551 ap
= ata_shost_to_port(shost
);
5553 ata_port_init(ap
, host
, ent
, port_no
);
5554 ata_port_init_shost(ap
, shost
);
5559 static void ata_host_release(struct device
*gendev
, void *res
)
5561 struct ata_host
*host
= dev_get_drvdata(gendev
);
5564 for (i
= 0; i
< host
->n_ports
; i
++) {
5565 struct ata_port
*ap
= host
->ports
[i
];
5570 if (ap
->ops
->port_stop
)
5571 ap
->ops
->port_stop(ap
);
5573 scsi_host_put(ap
->scsi_host
);
5576 if (host
->ops
->host_stop
)
5577 host
->ops
->host_stop(host
);
5581 * ata_sas_host_init - Initialize a host struct
5582 * @host: host to initialize
5583 * @dev: device host is attached to
5584 * @flags: host flags
5588 * PCI/etc. bus probe sem.
5592 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5593 unsigned long flags
, const struct ata_port_operations
*ops
)
5595 spin_lock_init(&host
->lock
);
5597 host
->flags
= flags
;
5602 * ata_device_add - Register hardware device with ATA and SCSI layers
5603 * @ent: Probe information describing hardware device to be registered
5605 * This function processes the information provided in the probe
5606 * information struct @ent, allocates the necessary ATA and SCSI
5607 * host information structures, initializes them, and registers
5608 * everything with requisite kernel subsystems.
5610 * This function requests irqs, probes the ATA bus, and probes
5614 * PCI/etc. bus probe sem.
5617 * Number of ports registered. Zero on error (no ports registered).
5619 int ata_device_add(const struct ata_probe_ent
*ent
)
5622 struct device
*dev
= ent
->dev
;
5623 struct ata_host
*host
;
5628 if (ent
->irq
== 0) {
5629 dev_printk(KERN_ERR
, dev
, "is not available: No interrupt assigned.\n");
5633 if (!devres_open_group(dev
, ata_device_add
, GFP_KERNEL
))
5636 /* alloc a container for our list of ATA ports (buses) */
5637 host
= devres_alloc(ata_host_release
, sizeof(struct ata_host
) +
5638 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
5641 devres_add(dev
, host
);
5642 dev_set_drvdata(dev
, host
);
5644 ata_host_init(host
, dev
, ent
->_host_flags
, ent
->port_ops
);
5645 host
->n_ports
= ent
->n_ports
;
5646 host
->irq
= ent
->irq
;
5647 host
->irq2
= ent
->irq2
;
5648 host
->iomap
= ent
->iomap
;
5649 host
->private_data
= ent
->private_data
;
5651 /* register each port bound to this device */
5652 for (i
= 0; i
< host
->n_ports
; i
++) {
5653 struct ata_port
*ap
;
5654 unsigned long xfer_mode_mask
;
5655 int irq_line
= ent
->irq
;
5657 ap
= ata_port_add(ent
, host
, i
);
5658 host
->ports
[i
] = ap
;
5663 if (ent
->dummy_port_mask
& (1 << i
)) {
5664 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5665 ap
->ops
= &ata_dummy_port_ops
;
5670 rc
= ap
->ops
->port_start(ap
);
5672 host
->ports
[i
] = NULL
;
5673 scsi_host_put(ap
->scsi_host
);
5677 /* Report the secondary IRQ for second channel legacy */
5678 if (i
== 1 && ent
->irq2
)
5679 irq_line
= ent
->irq2
;
5681 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
5682 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
5683 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
5685 /* print per-port info to dmesg */
5686 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
5687 "ctl 0x%p bmdma 0x%p irq %d\n",
5688 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
5689 ata_mode_string(xfer_mode_mask
),
5690 ap
->ioaddr
.cmd_addr
,
5691 ap
->ioaddr
.ctl_addr
,
5692 ap
->ioaddr
.bmdma_addr
,
5695 /* freeze port before requesting IRQ */
5696 ata_eh_freeze_port(ap
);
5699 /* obtain irq, that may be shared between channels */
5700 rc
= devm_request_irq(dev
, ent
->irq
, ent
->port_ops
->irq_handler
,
5701 ent
->irq_flags
, DRV_NAME
, host
);
5703 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5708 /* do we have a second IRQ for the other channel, eg legacy mode */
5710 /* We will get weird core code crashes later if this is true
5712 BUG_ON(ent
->irq
== ent
->irq2
);
5714 rc
= devm_request_irq(dev
, ent
->irq2
,
5715 ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5718 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5724 /* resource acquisition complete */
5725 devres_remove_group(dev
, ata_device_add
);
5727 /* perform each probe synchronously */
5728 DPRINTK("probe begin\n");
5729 for (i
= 0; i
< host
->n_ports
; i
++) {
5730 struct ata_port
*ap
= host
->ports
[i
];
5734 /* init sata_spd_limit to the current value */
5735 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
5736 int spd
= (scontrol
>> 4) & 0xf;
5737 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5739 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5741 rc
= scsi_add_host(ap
->scsi_host
, dev
);
5743 ata_port_printk(ap
, KERN_ERR
, "scsi_add_host failed\n");
5744 /* FIXME: do something useful here */
5745 /* FIXME: handle unconditional calls to
5746 * scsi_scan_host and ata_host_remove, below,
5751 if (ap
->ops
->error_handler
) {
5752 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5753 unsigned long flags
;
5757 /* kick EH for boot probing */
5758 spin_lock_irqsave(ap
->lock
, flags
);
5760 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
5761 ehi
->action
|= ATA_EH_SOFTRESET
;
5762 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5764 ap
->pflags
|= ATA_PFLAG_LOADING
;
5765 ata_port_schedule_eh(ap
);
5767 spin_unlock_irqrestore(ap
->lock
, flags
);
5769 /* wait for EH to finish */
5770 ata_port_wait_eh(ap
);
5772 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
5773 rc
= ata_bus_probe(ap
);
5774 DPRINTK("ata%u: bus probe end\n", ap
->id
);
5777 /* FIXME: do something useful here?
5778 * Current libata behavior will
5779 * tear down everything when
5780 * the module is removed
5781 * or the h/w is unplugged.
5787 /* probes are done, now scan each port's disk(s) */
5788 DPRINTK("host probe begin\n");
5789 for (i
= 0; i
< host
->n_ports
; i
++) {
5790 struct ata_port
*ap
= host
->ports
[i
];
5792 ata_scsi_scan_host(ap
);
5795 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
5796 return ent
->n_ports
; /* success */
5799 devres_release_group(dev
, ata_device_add
);
5800 dev_set_drvdata(dev
, NULL
);
5801 VPRINTK("EXIT, returning %d\n", rc
);
5806 * ata_port_detach - Detach ATA port in prepration of device removal
5807 * @ap: ATA port to be detached
5809 * Detach all ATA devices and the associated SCSI devices of @ap;
5810 * then, remove the associated SCSI host. @ap is guaranteed to
5811 * be quiescent on return from this function.
5814 * Kernel thread context (may sleep).
5816 void ata_port_detach(struct ata_port
*ap
)
5818 unsigned long flags
;
5821 if (!ap
->ops
->error_handler
)
5824 /* tell EH we're leaving & flush EH */
5825 spin_lock_irqsave(ap
->lock
, flags
);
5826 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5827 spin_unlock_irqrestore(ap
->lock
, flags
);
5829 ata_port_wait_eh(ap
);
5831 /* EH is now guaranteed to see UNLOADING, so no new device
5832 * will be attached. Disable all existing devices.
5834 spin_lock_irqsave(ap
->lock
, flags
);
5836 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
5837 ata_dev_disable(&ap
->device
[i
]);
5839 spin_unlock_irqrestore(ap
->lock
, flags
);
5841 /* Final freeze & EH. All in-flight commands are aborted. EH
5842 * will be skipped and retrials will be terminated with bad
5845 spin_lock_irqsave(ap
->lock
, flags
);
5846 ata_port_freeze(ap
); /* won't be thawed */
5847 spin_unlock_irqrestore(ap
->lock
, flags
);
5849 ata_port_wait_eh(ap
);
5851 /* Flush hotplug task. The sequence is similar to
5852 * ata_port_flush_task().
5854 flush_workqueue(ata_aux_wq
);
5855 cancel_delayed_work(&ap
->hotplug_task
);
5856 flush_workqueue(ata_aux_wq
);
5859 /* remove the associated SCSI host */
5860 scsi_remove_host(ap
->scsi_host
);
5864 * ata_host_detach - Detach all ports of an ATA host
5865 * @host: Host to detach
5867 * Detach all ports of @host.
5870 * Kernel thread context (may sleep).
5872 void ata_host_detach(struct ata_host
*host
)
5876 for (i
= 0; i
< host
->n_ports
; i
++)
5877 ata_port_detach(host
->ports
[i
]);
5880 struct ata_probe_ent
*
5881 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
5883 struct ata_probe_ent
*probe_ent
;
5885 /* XXX - the following if can go away once all LLDs are managed */
5886 if (!list_empty(&dev
->devres_head
))
5887 probe_ent
= devm_kzalloc(dev
, sizeof(*probe_ent
), GFP_KERNEL
);
5889 probe_ent
= kzalloc(sizeof(*probe_ent
), GFP_KERNEL
);
5891 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
5892 kobject_name(&(dev
->kobj
)));
5896 INIT_LIST_HEAD(&probe_ent
->node
);
5897 probe_ent
->dev
= dev
;
5899 probe_ent
->sht
= port
->sht
;
5900 probe_ent
->port_flags
= port
->flags
;
5901 probe_ent
->pio_mask
= port
->pio_mask
;
5902 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
5903 probe_ent
->udma_mask
= port
->udma_mask
;
5904 probe_ent
->port_ops
= port
->port_ops
;
5905 probe_ent
->private_data
= port
->private_data
;
5911 * ata_std_ports - initialize ioaddr with standard port offsets.
5912 * @ioaddr: IO address structure to be initialized
5914 * Utility function which initializes data_addr, error_addr,
5915 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5916 * device_addr, status_addr, and command_addr to standard offsets
5917 * relative to cmd_addr.
5919 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5922 void ata_std_ports(struct ata_ioports
*ioaddr
)
5924 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
5925 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
5926 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
5927 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
5928 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
5929 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
5930 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
5931 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
5932 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
5933 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
5940 * ata_pci_remove_one - PCI layer callback for device removal
5941 * @pdev: PCI device that was removed
5943 * PCI layer indicates to libata via this hook that hot-unplug or
5944 * module unload event has occurred. Detach all ports. Resource
5945 * release is handled via devres.
5948 * Inherited from PCI layer (may sleep).
5950 void ata_pci_remove_one(struct pci_dev
*pdev
)
5952 struct device
*dev
= pci_dev_to_dev(pdev
);
5953 struct ata_host
*host
= dev_get_drvdata(dev
);
5955 ata_host_detach(host
);
5958 /* move to PCI subsystem */
5959 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5961 unsigned long tmp
= 0;
5963 switch (bits
->width
) {
5966 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5972 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5978 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5989 return (tmp
== bits
->val
) ? 1 : 0;
5992 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5994 pci_save_state(pdev
);
5996 if (mesg
.event
== PM_EVENT_SUSPEND
) {
5997 pci_disable_device(pdev
);
5998 pci_set_power_state(pdev
, PCI_D3hot
);
6002 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6006 pci_set_power_state(pdev
, PCI_D0
);
6007 pci_restore_state(pdev
);
6009 rc
= pcim_enable_device(pdev
);
6011 dev_printk(KERN_ERR
, &pdev
->dev
,
6012 "failed to enable device after resume (%d)\n", rc
);
6016 pci_set_master(pdev
);
6020 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6022 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6025 rc
= ata_host_suspend(host
, mesg
);
6029 ata_pci_device_do_suspend(pdev
, mesg
);
6034 int ata_pci_device_resume(struct pci_dev
*pdev
)
6036 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6039 rc
= ata_pci_device_do_resume(pdev
);
6041 ata_host_resume(host
);
6044 #endif /* CONFIG_PCI */
6047 static int __init
ata_init(void)
6049 ata_probe_timeout
*= HZ
;
6050 ata_wq
= create_workqueue("ata");
6054 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6056 destroy_workqueue(ata_wq
);
6060 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6064 static void __exit
ata_exit(void)
6066 destroy_workqueue(ata_wq
);
6067 destroy_workqueue(ata_aux_wq
);
6070 subsys_initcall(ata_init
);
6071 module_exit(ata_exit
);
6073 static unsigned long ratelimit_time
;
6074 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6076 int ata_ratelimit(void)
6079 unsigned long flags
;
6081 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6083 if (time_after(jiffies
, ratelimit_time
)) {
6085 ratelimit_time
= jiffies
+ (HZ
/5);
6089 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6095 * ata_wait_register - wait until register value changes
6096 * @reg: IO-mapped register
6097 * @mask: Mask to apply to read register value
6098 * @val: Wait condition
6099 * @interval_msec: polling interval in milliseconds
6100 * @timeout_msec: timeout in milliseconds
6102 * Waiting for some bits of register to change is a common
6103 * operation for ATA controllers. This function reads 32bit LE
6104 * IO-mapped register @reg and tests for the following condition.
6106 * (*@reg & mask) != val
6108 * If the condition is met, it returns; otherwise, the process is
6109 * repeated after @interval_msec until timeout.
6112 * Kernel thread context (may sleep)
6115 * The final register value.
6117 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6118 unsigned long interval_msec
,
6119 unsigned long timeout_msec
)
6121 unsigned long timeout
;
6124 tmp
= ioread32(reg
);
6126 /* Calculate timeout _after_ the first read to make sure
6127 * preceding writes reach the controller before starting to
6128 * eat away the timeout.
6130 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6132 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6133 msleep(interval_msec
);
6134 tmp
= ioread32(reg
);
6143 static void ata_dummy_noret(struct ata_port
*ap
) { }
6144 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6145 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6147 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6152 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6154 return AC_ERR_SYSTEM
;
6157 const struct ata_port_operations ata_dummy_port_ops
= {
6158 .port_disable
= ata_port_disable
,
6159 .check_status
= ata_dummy_check_status
,
6160 .check_altstatus
= ata_dummy_check_status
,
6161 .dev_select
= ata_noop_dev_select
,
6162 .qc_prep
= ata_noop_qc_prep
,
6163 .qc_issue
= ata_dummy_qc_issue
,
6164 .freeze
= ata_dummy_noret
,
6165 .thaw
= ata_dummy_noret
,
6166 .error_handler
= ata_dummy_noret
,
6167 .post_internal_cmd
= ata_dummy_qc_noret
,
6168 .irq_clear
= ata_dummy_noret
,
6169 .port_start
= ata_dummy_ret0
,
6170 .port_stop
= ata_dummy_noret
,
6174 * libata is essentially a library of internal helper functions for
6175 * low-level ATA host controller drivers. As such, the API/ABI is
6176 * likely to change as new drivers are added and updated.
6177 * Do not depend on ABI/API stability.
6180 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6181 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6182 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6183 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6184 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6185 EXPORT_SYMBOL_GPL(ata_std_ports
);
6186 EXPORT_SYMBOL_GPL(ata_host_init
);
6187 EXPORT_SYMBOL_GPL(ata_device_add
);
6188 EXPORT_SYMBOL_GPL(ata_host_detach
);
6189 EXPORT_SYMBOL_GPL(ata_sg_init
);
6190 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6191 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6192 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6193 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6194 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6195 EXPORT_SYMBOL_GPL(ata_tf_load
);
6196 EXPORT_SYMBOL_GPL(ata_tf_read
);
6197 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6198 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6199 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6200 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6201 EXPORT_SYMBOL_GPL(ata_check_status
);
6202 EXPORT_SYMBOL_GPL(ata_altstatus
);
6203 EXPORT_SYMBOL_GPL(ata_exec_command
);
6204 EXPORT_SYMBOL_GPL(ata_port_start
);
6205 EXPORT_SYMBOL_GPL(ata_interrupt
);
6206 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6207 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6208 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6209 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6210 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6211 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6212 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6213 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6214 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6215 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6216 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6217 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6218 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6219 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6220 EXPORT_SYMBOL_GPL(ata_port_probe
);
6221 EXPORT_SYMBOL_GPL(sata_set_spd
);
6222 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6223 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6224 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6225 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6226 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6227 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6228 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6229 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6230 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6231 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6232 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6233 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6234 EXPORT_SYMBOL_GPL(ata_port_disable
);
6235 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6236 EXPORT_SYMBOL_GPL(ata_wait_register
);
6237 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6238 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6239 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6240 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6241 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6242 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6243 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6244 EXPORT_SYMBOL_GPL(ata_host_intr
);
6245 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6246 EXPORT_SYMBOL_GPL(sata_scr_read
);
6247 EXPORT_SYMBOL_GPL(sata_scr_write
);
6248 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6249 EXPORT_SYMBOL_GPL(ata_port_online
);
6250 EXPORT_SYMBOL_GPL(ata_port_offline
);
6251 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6252 EXPORT_SYMBOL_GPL(ata_host_resume
);
6253 EXPORT_SYMBOL_GPL(ata_id_string
);
6254 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6255 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6256 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6258 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6259 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6260 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6263 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6264 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
6265 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6266 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6267 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6268 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6269 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6270 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6271 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6272 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6273 #endif /* CONFIG_PCI */
6275 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6276 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6278 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6279 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6280 EXPORT_SYMBOL_GPL(ata_port_abort
);
6281 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6282 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6283 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6284 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6285 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6286 EXPORT_SYMBOL_GPL(ata_do_eh
);
6287 EXPORT_SYMBOL_GPL(ata_irq_on
);
6288 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6289 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6290 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);