[MIPS] Remove stray instruction from __get_user_asm_ll32.
[linux-2.6/mini2440.git] / drivers / ata / libata-core.c
blob25d8d3f778a1c980f5537f64648ef69d0d3a911b
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 MODULE_AUTHOR("Jeff Garzik");
97 MODULE_DESCRIPTION("Library module for ATA devices");
98 MODULE_LICENSE("GPL");
99 MODULE_VERSION(DRV_VERSION);
103 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
104 * @tf: Taskfile to convert
105 * @fis: Buffer into which data will output
106 * @pmp: Port multiplier port
108 * Converts a standard ATA taskfile to a Serial ATA
109 * FIS structure (Register - Host to Device).
111 * LOCKING:
112 * Inherited from caller.
115 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
117 fis[0] = 0x27; /* Register - Host to Device FIS */
118 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
119 bit 7 indicates Command FIS */
120 fis[2] = tf->command;
121 fis[3] = tf->feature;
123 fis[4] = tf->lbal;
124 fis[5] = tf->lbam;
125 fis[6] = tf->lbah;
126 fis[7] = tf->device;
128 fis[8] = tf->hob_lbal;
129 fis[9] = tf->hob_lbam;
130 fis[10] = tf->hob_lbah;
131 fis[11] = tf->hob_feature;
133 fis[12] = tf->nsect;
134 fis[13] = tf->hob_nsect;
135 fis[14] = 0;
136 fis[15] = tf->ctl;
138 fis[16] = 0;
139 fis[17] = 0;
140 fis[18] = 0;
141 fis[19] = 0;
145 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
146 * @fis: Buffer from which data will be input
147 * @tf: Taskfile to output
149 * Converts a serial ATA FIS structure to a standard ATA taskfile.
151 * LOCKING:
152 * Inherited from caller.
155 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
157 tf->command = fis[2]; /* status */
158 tf->feature = fis[3]; /* error */
160 tf->lbal = fis[4];
161 tf->lbam = fis[5];
162 tf->lbah = fis[6];
163 tf->device = fis[7];
165 tf->hob_lbal = fis[8];
166 tf->hob_lbam = fis[9];
167 tf->hob_lbah = fis[10];
169 tf->nsect = fis[12];
170 tf->hob_nsect = fis[13];
173 static const u8 ata_rw_cmds[] = {
174 /* pio multi */
175 ATA_CMD_READ_MULTI,
176 ATA_CMD_WRITE_MULTI,
177 ATA_CMD_READ_MULTI_EXT,
178 ATA_CMD_WRITE_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 /* pio */
184 ATA_CMD_PIO_READ,
185 ATA_CMD_PIO_WRITE,
186 ATA_CMD_PIO_READ_EXT,
187 ATA_CMD_PIO_WRITE_EXT,
192 /* dma */
193 ATA_CMD_READ,
194 ATA_CMD_WRITE,
195 ATA_CMD_READ_EXT,
196 ATA_CMD_WRITE_EXT,
200 ATA_CMD_WRITE_FUA_EXT
204 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
205 * @tf: command to examine and configure
206 * @dev: device tf belongs to
208 * Examine the device configuration and tf->flags to calculate
209 * the proper read/write commands and protocol to use.
211 * LOCKING:
212 * caller.
214 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
216 u8 cmd;
218 int index, fua, lba48, write;
220 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
221 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
222 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
224 if (dev->flags & ATA_DFLAG_PIO) {
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
228 /* Unable to use DMA due to host limitation */
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else {
232 tf->protocol = ATA_PROT_DMA;
233 index = 16;
236 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 if (cmd) {
238 tf->command = cmd;
239 return 0;
241 return -1;
245 * ata_tf_read_block - Read block address from ATA taskfile
246 * @tf: ATA taskfile of interest
247 * @dev: ATA device @tf belongs to
249 * LOCKING:
250 * None.
252 * Read block address from @tf. This function can handle all
253 * three address formats - LBA, LBA48 and CHS. tf->protocol and
254 * flags select the address format to use.
256 * RETURNS:
257 * Block address read from @tf.
259 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
261 u64 block = 0;
263 if (tf->flags & ATA_TFLAG_LBA) {
264 if (tf->flags & ATA_TFLAG_LBA48) {
265 block |= (u64)tf->hob_lbah << 40;
266 block |= (u64)tf->hob_lbam << 32;
267 block |= tf->hob_lbal << 24;
268 } else
269 block |= (tf->device & 0xf) << 24;
271 block |= tf->lbah << 16;
272 block |= tf->lbam << 8;
273 block |= tf->lbal;
274 } else {
275 u32 cyl, head, sect;
277 cyl = tf->lbam | (tf->lbah << 8);
278 head = tf->device & 0xf;
279 sect = tf->lbal;
281 block = (cyl * dev->heads + head) * dev->sectors + sect;
284 return block;
288 * ata_build_rw_tf - Build ATA taskfile for given read/write request
289 * @tf: Target ATA taskfile
290 * @dev: ATA device @tf belongs to
291 * @block: Block address
292 * @n_block: Number of blocks
293 * @tf_flags: RW/FUA etc...
294 * @tag: tag
296 * LOCKING:
297 * None.
299 * Build ATA taskfile @tf for read/write request described by
300 * @block, @n_block, @tf_flags and @tag on @dev.
302 * RETURNS:
304 * 0 on success, -ERANGE if the request is too large for @dev,
305 * -EINVAL if the request is invalid.
307 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
308 u64 block, u32 n_block, unsigned int tf_flags,
309 unsigned int tag)
311 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
312 tf->flags |= tf_flags;
314 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
315 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
316 likely(tag != ATA_TAG_INTERNAL)) {
317 /* yay, NCQ */
318 if (!lba_48_ok(block, n_block))
319 return -ERANGE;
321 tf->protocol = ATA_PROT_NCQ;
322 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
324 if (tf->flags & ATA_TFLAG_WRITE)
325 tf->command = ATA_CMD_FPDMA_WRITE;
326 else
327 tf->command = ATA_CMD_FPDMA_READ;
329 tf->nsect = tag << 3;
330 tf->hob_feature = (n_block >> 8) & 0xff;
331 tf->feature = n_block & 0xff;
333 tf->hob_lbah = (block >> 40) & 0xff;
334 tf->hob_lbam = (block >> 32) & 0xff;
335 tf->hob_lbal = (block >> 24) & 0xff;
336 tf->lbah = (block >> 16) & 0xff;
337 tf->lbam = (block >> 8) & 0xff;
338 tf->lbal = block & 0xff;
340 tf->device = 1 << 6;
341 if (tf->flags & ATA_TFLAG_FUA)
342 tf->device |= 1 << 7;
343 } else if (dev->flags & ATA_DFLAG_LBA) {
344 tf->flags |= ATA_TFLAG_LBA;
346 if (lba_28_ok(block, n_block)) {
347 /* use LBA28 */
348 tf->device |= (block >> 24) & 0xf;
349 } else if (lba_48_ok(block, n_block)) {
350 if (!(dev->flags & ATA_DFLAG_LBA48))
351 return -ERANGE;
353 /* use LBA48 */
354 tf->flags |= ATA_TFLAG_LBA48;
356 tf->hob_nsect = (n_block >> 8) & 0xff;
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 } else
362 /* request too large even for LBA48 */
363 return -ERANGE;
365 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
366 return -EINVAL;
368 tf->nsect = n_block & 0xff;
370 tf->lbah = (block >> 16) & 0xff;
371 tf->lbam = (block >> 8) & 0xff;
372 tf->lbal = block & 0xff;
374 tf->device |= ATA_LBA;
375 } else {
376 /* CHS */
377 u32 sect, head, cyl, track;
379 /* The request -may- be too large for CHS addressing. */
380 if (!lba_28_ok(block, n_block))
381 return -ERANGE;
383 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
384 return -EINVAL;
386 /* Convert LBA to CHS */
387 track = (u32)block / dev->sectors;
388 cyl = track / dev->heads;
389 head = track % dev->heads;
390 sect = (u32)block % dev->sectors + 1;
392 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
393 (u32)block, track, cyl, head, sect);
395 /* Check whether the converted CHS can fit.
396 Cylinder: 0-65535
397 Head: 0-15
398 Sector: 1-255*/
399 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
400 return -ERANGE;
402 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
403 tf->lbal = sect;
404 tf->lbam = cyl;
405 tf->lbah = cyl >> 8;
406 tf->device |= head;
409 return 0;
413 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
414 * @pio_mask: pio_mask
415 * @mwdma_mask: mwdma_mask
416 * @udma_mask: udma_mask
418 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
419 * unsigned int xfer_mask.
421 * LOCKING:
422 * None.
424 * RETURNS:
425 * Packed xfer_mask.
427 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
428 unsigned int mwdma_mask,
429 unsigned int udma_mask)
431 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
432 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
433 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
437 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
438 * @xfer_mask: xfer_mask to unpack
439 * @pio_mask: resulting pio_mask
440 * @mwdma_mask: resulting mwdma_mask
441 * @udma_mask: resulting udma_mask
443 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
444 * Any NULL distination masks will be ignored.
446 static void ata_unpack_xfermask(unsigned int xfer_mask,
447 unsigned int *pio_mask,
448 unsigned int *mwdma_mask,
449 unsigned int *udma_mask)
451 if (pio_mask)
452 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
453 if (mwdma_mask)
454 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
455 if (udma_mask)
456 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459 static const struct ata_xfer_ent {
460 int shift, bits;
461 u8 base;
462 } ata_xfer_tbl[] = {
463 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
464 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
465 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
466 { -1, },
470 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
471 * @xfer_mask: xfer_mask of interest
473 * Return matching XFER_* value for @xfer_mask. Only the highest
474 * bit of @xfer_mask is considered.
476 * LOCKING:
477 * None.
479 * RETURNS:
480 * Matching XFER_* value, 0 if no match found.
482 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
484 int highbit = fls(xfer_mask) - 1;
485 const struct ata_xfer_ent *ent;
487 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
488 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
489 return ent->base + highbit - ent->shift;
490 return 0;
494 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
495 * @xfer_mode: XFER_* of interest
497 * Return matching xfer_mask for @xfer_mode.
499 * LOCKING:
500 * None.
502 * RETURNS:
503 * Matching xfer_mask, 0 if no match found.
505 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
507 const struct ata_xfer_ent *ent;
509 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
510 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
511 return 1 << (ent->shift + xfer_mode - ent->base);
512 return 0;
516 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
517 * @xfer_mode: XFER_* of interest
519 * Return matching xfer_shift for @xfer_mode.
521 * LOCKING:
522 * None.
524 * RETURNS:
525 * Matching xfer_shift, -1 if no match found.
527 static int ata_xfer_mode2shift(unsigned int xfer_mode)
529 const struct ata_xfer_ent *ent;
531 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
532 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
533 return ent->shift;
534 return -1;
538 * ata_mode_string - convert xfer_mask to string
539 * @xfer_mask: mask of bits supported; only highest bit counts.
541 * Determine string which represents the highest speed
542 * (highest bit in @modemask).
544 * LOCKING:
545 * None.
547 * RETURNS:
548 * Constant C string representing highest speed listed in
549 * @mode_mask, or the constant C string "<n/a>".
551 static const char *ata_mode_string(unsigned int xfer_mask)
553 static const char * const xfer_mode_str[] = {
554 "PIO0",
555 "PIO1",
556 "PIO2",
557 "PIO3",
558 "PIO4",
559 "PIO5",
560 "PIO6",
561 "MWDMA0",
562 "MWDMA1",
563 "MWDMA2",
564 "MWDMA3",
565 "MWDMA4",
566 "UDMA/16",
567 "UDMA/25",
568 "UDMA/33",
569 "UDMA/44",
570 "UDMA/66",
571 "UDMA/100",
572 "UDMA/133",
573 "UDMA7",
575 int highbit;
577 highbit = fls(xfer_mask) - 1;
578 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
579 return xfer_mode_str[highbit];
580 return "<n/a>";
583 static const char *sata_spd_string(unsigned int spd)
585 static const char * const spd_str[] = {
586 "1.5 Gbps",
587 "3.0 Gbps",
590 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
591 return "<unknown>";
592 return spd_str[spd - 1];
595 void ata_dev_disable(struct ata_device *dev)
597 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
598 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
599 dev->class++;
604 * ata_devchk - PATA device presence detection
605 * @ap: ATA channel to examine
606 * @device: Device to examine (starting at zero)
608 * This technique was originally described in
609 * Hale Landis's ATADRVR (www.ata-atapi.com), and
610 * later found its way into the ATA/ATAPI spec.
612 * Write a pattern to the ATA shadow registers,
613 * and if a device is present, it will respond by
614 * correctly storing and echoing back the
615 * ATA shadow register contents.
617 * LOCKING:
618 * caller.
621 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
623 struct ata_ioports *ioaddr = &ap->ioaddr;
624 u8 nsect, lbal;
626 ap->ops->dev_select(ap, device);
628 iowrite8(0x55, ioaddr->nsect_addr);
629 iowrite8(0xaa, ioaddr->lbal_addr);
631 iowrite8(0xaa, ioaddr->nsect_addr);
632 iowrite8(0x55, ioaddr->lbal_addr);
634 iowrite8(0x55, ioaddr->nsect_addr);
635 iowrite8(0xaa, ioaddr->lbal_addr);
637 nsect = ioread8(ioaddr->nsect_addr);
638 lbal = ioread8(ioaddr->lbal_addr);
640 if ((nsect == 0x55) && (lbal == 0xaa))
641 return 1; /* we found a device */
643 return 0; /* nothing found */
647 * ata_dev_classify - determine device type based on ATA-spec signature
648 * @tf: ATA taskfile register set for device to be identified
650 * Determine from taskfile register contents whether a device is
651 * ATA or ATAPI, as per "Signature and persistence" section
652 * of ATA/PI spec (volume 1, sect 5.14).
654 * LOCKING:
655 * None.
657 * RETURNS:
658 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
659 * the event of failure.
662 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
664 /* Apple's open source Darwin code hints that some devices only
665 * put a proper signature into the LBA mid/high registers,
666 * So, we only check those. It's sufficient for uniqueness.
669 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
670 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
671 DPRINTK("found ATA device by sig\n");
672 return ATA_DEV_ATA;
675 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
676 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
677 DPRINTK("found ATAPI device by sig\n");
678 return ATA_DEV_ATAPI;
681 DPRINTK("unknown device\n");
682 return ATA_DEV_UNKNOWN;
686 * ata_dev_try_classify - Parse returned ATA device signature
687 * @ap: ATA channel to examine
688 * @device: Device to examine (starting at zero)
689 * @r_err: Value of error register on completion
691 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
692 * an ATA/ATAPI-defined set of values is placed in the ATA
693 * shadow registers, indicating the results of device detection
694 * and diagnostics.
696 * Select the ATA device, and read the values from the ATA shadow
697 * registers. Then parse according to the Error register value,
698 * and the spec-defined values examined by ata_dev_classify().
700 * LOCKING:
701 * caller.
703 * RETURNS:
704 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
707 static unsigned int
708 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
710 struct ata_taskfile tf;
711 unsigned int class;
712 u8 err;
714 ap->ops->dev_select(ap, device);
716 memset(&tf, 0, sizeof(tf));
718 ap->ops->tf_read(ap, &tf);
719 err = tf.feature;
720 if (r_err)
721 *r_err = err;
723 /* see if device passed diags: if master then continue and warn later */
724 if (err == 0 && device == 0)
725 /* diagnostic fail : do nothing _YET_ */
726 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
727 else if (err == 1)
728 /* do nothing */ ;
729 else if ((device == 0) && (err == 0x81))
730 /* do nothing */ ;
731 else
732 return ATA_DEV_NONE;
734 /* determine if device is ATA or ATAPI */
735 class = ata_dev_classify(&tf);
737 if (class == ATA_DEV_UNKNOWN)
738 return ATA_DEV_NONE;
739 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
740 return ATA_DEV_NONE;
741 return class;
745 * ata_id_string - Convert IDENTIFY DEVICE page into string
746 * @id: IDENTIFY DEVICE results we will examine
747 * @s: string into which data is output
748 * @ofs: offset into identify device page
749 * @len: length of string to return. must be an even number.
751 * The strings in the IDENTIFY DEVICE page are broken up into
752 * 16-bit chunks. Run through the string, and output each
753 * 8-bit chunk linearly, regardless of platform.
755 * LOCKING:
756 * caller.
759 void ata_id_string(const u16 *id, unsigned char *s,
760 unsigned int ofs, unsigned int len)
762 unsigned int c;
764 while (len > 0) {
765 c = id[ofs] >> 8;
766 *s = c;
767 s++;
769 c = id[ofs] & 0xff;
770 *s = c;
771 s++;
773 ofs++;
774 len -= 2;
779 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
780 * @id: IDENTIFY DEVICE results we will examine
781 * @s: string into which data is output
782 * @ofs: offset into identify device page
783 * @len: length of string to return. must be an odd number.
785 * This function is identical to ata_id_string except that it
786 * trims trailing spaces and terminates the resulting string with
787 * null. @len must be actual maximum length (even number) + 1.
789 * LOCKING:
790 * caller.
792 void ata_id_c_string(const u16 *id, unsigned char *s,
793 unsigned int ofs, unsigned int len)
795 unsigned char *p;
797 WARN_ON(!(len & 1));
799 ata_id_string(id, s, ofs, len - 1);
801 p = s + strnlen(s, len - 1);
802 while (p > s && p[-1] == ' ')
803 p--;
804 *p = '\0';
807 static u64 ata_id_n_sectors(const u16 *id)
809 if (ata_id_has_lba(id)) {
810 if (ata_id_has_lba48(id))
811 return ata_id_u64(id, 100);
812 else
813 return ata_id_u32(id, 60);
814 } else {
815 if (ata_id_current_chs_valid(id))
816 return ata_id_u32(id, 57);
817 else
818 return id[1] * id[3] * id[6];
823 * ata_noop_dev_select - Select device 0/1 on ATA bus
824 * @ap: ATA channel to manipulate
825 * @device: ATA device (numbered from zero) to select
827 * This function performs no actual function.
829 * May be used as the dev_select() entry in ata_port_operations.
831 * LOCKING:
832 * caller.
834 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
840 * ata_std_dev_select - Select device 0/1 on ATA bus
841 * @ap: ATA channel to manipulate
842 * @device: ATA device (numbered from zero) to select
844 * Use the method defined in the ATA specification to
845 * make either device 0, or device 1, active on the
846 * ATA channel. Works with both PIO and MMIO.
848 * May be used as the dev_select() entry in ata_port_operations.
850 * LOCKING:
851 * caller.
854 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
856 u8 tmp;
858 if (device == 0)
859 tmp = ATA_DEVICE_OBS;
860 else
861 tmp = ATA_DEVICE_OBS | ATA_DEV1;
863 iowrite8(tmp, ap->ioaddr.device_addr);
864 ata_pause(ap); /* needed; also flushes, for mmio */
868 * ata_dev_select - Select device 0/1 on ATA bus
869 * @ap: ATA channel to manipulate
870 * @device: ATA device (numbered from zero) to select
871 * @wait: non-zero to wait for Status register BSY bit to clear
872 * @can_sleep: non-zero if context allows sleeping
874 * Use the method defined in the ATA specification to
875 * make either device 0, or device 1, active on the
876 * ATA channel.
878 * This is a high-level version of ata_std_dev_select(),
879 * which additionally provides the services of inserting
880 * the proper pauses and status polling, where needed.
882 * LOCKING:
883 * caller.
886 void ata_dev_select(struct ata_port *ap, unsigned int device,
887 unsigned int wait, unsigned int can_sleep)
889 if (ata_msg_probe(ap))
890 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
891 "device %u, wait %u\n", ap->id, device, wait);
893 if (wait)
894 ata_wait_idle(ap);
896 ap->ops->dev_select(ap, device);
898 if (wait) {
899 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
900 msleep(150);
901 ata_wait_idle(ap);
906 * ata_dump_id - IDENTIFY DEVICE info debugging output
907 * @id: IDENTIFY DEVICE page to dump
909 * Dump selected 16-bit words from the given IDENTIFY DEVICE
910 * page.
912 * LOCKING:
913 * caller.
916 static inline void ata_dump_id(const u16 *id)
918 DPRINTK("49==0x%04x "
919 "53==0x%04x "
920 "63==0x%04x "
921 "64==0x%04x "
922 "75==0x%04x \n",
923 id[49],
924 id[53],
925 id[63],
926 id[64],
927 id[75]);
928 DPRINTK("80==0x%04x "
929 "81==0x%04x "
930 "82==0x%04x "
931 "83==0x%04x "
932 "84==0x%04x \n",
933 id[80],
934 id[81],
935 id[82],
936 id[83],
937 id[84]);
938 DPRINTK("88==0x%04x "
939 "93==0x%04x\n",
940 id[88],
941 id[93]);
945 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
946 * @id: IDENTIFY data to compute xfer mask from
948 * Compute the xfermask for this device. This is not as trivial
949 * as it seems if we must consider early devices correctly.
951 * FIXME: pre IDE drive timing (do we care ?).
953 * LOCKING:
954 * None.
956 * RETURNS:
957 * Computed xfermask
959 static unsigned int ata_id_xfermask(const u16 *id)
961 unsigned int pio_mask, mwdma_mask, udma_mask;
963 /* Usual case. Word 53 indicates word 64 is valid */
964 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
965 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
966 pio_mask <<= 3;
967 pio_mask |= 0x7;
968 } else {
969 /* If word 64 isn't valid then Word 51 high byte holds
970 * the PIO timing number for the maximum. Turn it into
971 * a mask.
973 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
974 if (mode < 5) /* Valid PIO range */
975 pio_mask = (2 << mode) - 1;
976 else
977 pio_mask = 1;
979 /* But wait.. there's more. Design your standards by
980 * committee and you too can get a free iordy field to
981 * process. However its the speeds not the modes that
982 * are supported... Note drivers using the timing API
983 * will get this right anyway
987 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
989 if (ata_id_is_cfa(id)) {
991 * Process compact flash extended modes
993 int pio = id[163] & 0x7;
994 int dma = (id[163] >> 3) & 7;
996 if (pio)
997 pio_mask |= (1 << 5);
998 if (pio > 1)
999 pio_mask |= (1 << 6);
1000 if (dma)
1001 mwdma_mask |= (1 << 3);
1002 if (dma > 1)
1003 mwdma_mask |= (1 << 4);
1006 udma_mask = 0;
1007 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1008 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1010 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1014 * ata_port_queue_task - Queue port_task
1015 * @ap: The ata_port to queue port_task for
1016 * @fn: workqueue function to be scheduled
1017 * @data: data for @fn to use
1018 * @delay: delay time for workqueue function
1020 * Schedule @fn(@data) for execution after @delay jiffies using
1021 * port_task. There is one port_task per port and it's the
1022 * user(low level driver)'s responsibility to make sure that only
1023 * one task is active at any given time.
1025 * libata core layer takes care of synchronization between
1026 * port_task and EH. ata_port_queue_task() may be ignored for EH
1027 * synchronization.
1029 * LOCKING:
1030 * Inherited from caller.
1032 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1033 unsigned long delay)
1035 int rc;
1037 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1038 return;
1040 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1041 ap->port_task_data = data;
1043 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1045 /* rc == 0 means that another user is using port task */
1046 WARN_ON(rc == 0);
1050 * ata_port_flush_task - Flush port_task
1051 * @ap: The ata_port to flush port_task for
1053 * After this function completes, port_task is guranteed not to
1054 * be running or scheduled.
1056 * LOCKING:
1057 * Kernel thread context (may sleep)
1059 void ata_port_flush_task(struct ata_port *ap)
1061 unsigned long flags;
1063 DPRINTK("ENTER\n");
1065 spin_lock_irqsave(ap->lock, flags);
1066 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1067 spin_unlock_irqrestore(ap->lock, flags);
1069 DPRINTK("flush #1\n");
1070 flush_workqueue(ata_wq);
1073 * At this point, if a task is running, it's guaranteed to see
1074 * the FLUSH flag; thus, it will never queue pio tasks again.
1075 * Cancel and flush.
1077 if (!cancel_delayed_work(&ap->port_task)) {
1078 if (ata_msg_ctl(ap))
1079 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1080 __FUNCTION__);
1081 flush_workqueue(ata_wq);
1084 spin_lock_irqsave(ap->lock, flags);
1085 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1086 spin_unlock_irqrestore(ap->lock, flags);
1088 if (ata_msg_ctl(ap))
1089 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1092 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1094 struct completion *waiting = qc->private_data;
1096 complete(waiting);
1100 * ata_exec_internal_sg - execute libata internal command
1101 * @dev: Device to which the command is sent
1102 * @tf: Taskfile registers for the command and the result
1103 * @cdb: CDB for packet command
1104 * @dma_dir: Data tranfer direction of the command
1105 * @sg: sg list for the data buffer of the command
1106 * @n_elem: Number of sg entries
1108 * Executes libata internal command with timeout. @tf contains
1109 * command on entry and result on return. Timeout and error
1110 * conditions are reported via return value. No recovery action
1111 * is taken after a command times out. It's caller's duty to
1112 * clean up after timeout.
1114 * LOCKING:
1115 * None. Should be called with kernel context, might sleep.
1117 * RETURNS:
1118 * Zero on success, AC_ERR_* mask on failure
1120 unsigned ata_exec_internal_sg(struct ata_device *dev,
1121 struct ata_taskfile *tf, const u8 *cdb,
1122 int dma_dir, struct scatterlist *sg,
1123 unsigned int n_elem)
1125 struct ata_port *ap = dev->ap;
1126 u8 command = tf->command;
1127 struct ata_queued_cmd *qc;
1128 unsigned int tag, preempted_tag;
1129 u32 preempted_sactive, preempted_qc_active;
1130 DECLARE_COMPLETION_ONSTACK(wait);
1131 unsigned long flags;
1132 unsigned int err_mask;
1133 int rc;
1135 spin_lock_irqsave(ap->lock, flags);
1137 /* no internal command while frozen */
1138 if (ap->pflags & ATA_PFLAG_FROZEN) {
1139 spin_unlock_irqrestore(ap->lock, flags);
1140 return AC_ERR_SYSTEM;
1143 /* initialize internal qc */
1145 /* XXX: Tag 0 is used for drivers with legacy EH as some
1146 * drivers choke if any other tag is given. This breaks
1147 * ata_tag_internal() test for those drivers. Don't use new
1148 * EH stuff without converting to it.
1150 if (ap->ops->error_handler)
1151 tag = ATA_TAG_INTERNAL;
1152 else
1153 tag = 0;
1155 if (test_and_set_bit(tag, &ap->qc_allocated))
1156 BUG();
1157 qc = __ata_qc_from_tag(ap, tag);
1159 qc->tag = tag;
1160 qc->scsicmd = NULL;
1161 qc->ap = ap;
1162 qc->dev = dev;
1163 ata_qc_reinit(qc);
1165 preempted_tag = ap->active_tag;
1166 preempted_sactive = ap->sactive;
1167 preempted_qc_active = ap->qc_active;
1168 ap->active_tag = ATA_TAG_POISON;
1169 ap->sactive = 0;
1170 ap->qc_active = 0;
1172 /* prepare & issue qc */
1173 qc->tf = *tf;
1174 if (cdb)
1175 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1176 qc->flags |= ATA_QCFLAG_RESULT_TF;
1177 qc->dma_dir = dma_dir;
1178 if (dma_dir != DMA_NONE) {
1179 unsigned int i, buflen = 0;
1181 for (i = 0; i < n_elem; i++)
1182 buflen += sg[i].length;
1184 ata_sg_init(qc, sg, n_elem);
1185 qc->nbytes = buflen;
1188 qc->private_data = &wait;
1189 qc->complete_fn = ata_qc_complete_internal;
1191 ata_qc_issue(qc);
1193 spin_unlock_irqrestore(ap->lock, flags);
1195 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1197 ata_port_flush_task(ap);
1199 if (!rc) {
1200 spin_lock_irqsave(ap->lock, flags);
1202 /* We're racing with irq here. If we lose, the
1203 * following test prevents us from completing the qc
1204 * twice. If we win, the port is frozen and will be
1205 * cleaned up by ->post_internal_cmd().
1207 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1208 qc->err_mask |= AC_ERR_TIMEOUT;
1210 if (ap->ops->error_handler)
1211 ata_port_freeze(ap);
1212 else
1213 ata_qc_complete(qc);
1215 if (ata_msg_warn(ap))
1216 ata_dev_printk(dev, KERN_WARNING,
1217 "qc timeout (cmd 0x%x)\n", command);
1220 spin_unlock_irqrestore(ap->lock, flags);
1223 /* do post_internal_cmd */
1224 if (ap->ops->post_internal_cmd)
1225 ap->ops->post_internal_cmd(qc);
1227 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1228 if (ata_msg_warn(ap))
1229 ata_dev_printk(dev, KERN_WARNING,
1230 "zero err_mask for failed "
1231 "internal command, assuming AC_ERR_OTHER\n");
1232 qc->err_mask |= AC_ERR_OTHER;
1235 /* finish up */
1236 spin_lock_irqsave(ap->lock, flags);
1238 *tf = qc->result_tf;
1239 err_mask = qc->err_mask;
1241 ata_qc_free(qc);
1242 ap->active_tag = preempted_tag;
1243 ap->sactive = preempted_sactive;
1244 ap->qc_active = preempted_qc_active;
1246 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1247 * Until those drivers are fixed, we detect the condition
1248 * here, fail the command with AC_ERR_SYSTEM and reenable the
1249 * port.
1251 * Note that this doesn't change any behavior as internal
1252 * command failure results in disabling the device in the
1253 * higher layer for LLDDs without new reset/EH callbacks.
1255 * Kill the following code as soon as those drivers are fixed.
1257 if (ap->flags & ATA_FLAG_DISABLED) {
1258 err_mask |= AC_ERR_SYSTEM;
1259 ata_port_probe(ap);
1262 spin_unlock_irqrestore(ap->lock, flags);
1264 return err_mask;
1268 * ata_exec_internal - execute libata internal command
1269 * @dev: Device to which the command is sent
1270 * @tf: Taskfile registers for the command and the result
1271 * @cdb: CDB for packet command
1272 * @dma_dir: Data tranfer direction of the command
1273 * @buf: Data buffer of the command
1274 * @buflen: Length of data buffer
1276 * Wrapper around ata_exec_internal_sg() which takes simple
1277 * buffer instead of sg list.
1279 * LOCKING:
1280 * None. Should be called with kernel context, might sleep.
1282 * RETURNS:
1283 * Zero on success, AC_ERR_* mask on failure
1285 unsigned ata_exec_internal(struct ata_device *dev,
1286 struct ata_taskfile *tf, const u8 *cdb,
1287 int dma_dir, void *buf, unsigned int buflen)
1289 struct scatterlist *psg = NULL, sg;
1290 unsigned int n_elem = 0;
1292 if (dma_dir != DMA_NONE) {
1293 WARN_ON(!buf);
1294 sg_init_one(&sg, buf, buflen);
1295 psg = &sg;
1296 n_elem++;
1299 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1303 * ata_do_simple_cmd - execute simple internal command
1304 * @dev: Device to which the command is sent
1305 * @cmd: Opcode to execute
1307 * Execute a 'simple' command, that only consists of the opcode
1308 * 'cmd' itself, without filling any other registers
1310 * LOCKING:
1311 * Kernel thread context (may sleep).
1313 * RETURNS:
1314 * Zero on success, AC_ERR_* mask on failure
1316 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1318 struct ata_taskfile tf;
1320 ata_tf_init(dev, &tf);
1322 tf.command = cmd;
1323 tf.flags |= ATA_TFLAG_DEVICE;
1324 tf.protocol = ATA_PROT_NODATA;
1326 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1330 * ata_pio_need_iordy - check if iordy needed
1331 * @adev: ATA device
1333 * Check if the current speed of the device requires IORDY. Used
1334 * by various controllers for chip configuration.
1337 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1339 int pio;
1340 int speed = adev->pio_mode - XFER_PIO_0;
1342 if (speed < 2)
1343 return 0;
1344 if (speed > 2)
1345 return 1;
1347 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1349 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1350 pio = adev->id[ATA_ID_EIDE_PIO];
1351 /* Is the speed faster than the drive allows non IORDY ? */
1352 if (pio) {
1353 /* This is cycle times not frequency - watch the logic! */
1354 if (pio > 240) /* PIO2 is 240nS per cycle */
1355 return 1;
1356 return 0;
1359 return 0;
1363 * ata_dev_read_id - Read ID data from the specified device
1364 * @dev: target device
1365 * @p_class: pointer to class of the target device (may be changed)
1366 * @flags: ATA_READID_* flags
1367 * @id: buffer to read IDENTIFY data into
1369 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1370 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1371 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1372 * for pre-ATA4 drives.
1374 * LOCKING:
1375 * Kernel thread context (may sleep)
1377 * RETURNS:
1378 * 0 on success, -errno otherwise.
1380 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1381 unsigned int flags, u16 *id)
1383 struct ata_port *ap = dev->ap;
1384 unsigned int class = *p_class;
1385 struct ata_taskfile tf;
1386 unsigned int err_mask = 0;
1387 const char *reason;
1388 int rc;
1390 if (ata_msg_ctl(ap))
1391 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1392 __FUNCTION__, ap->id, dev->devno);
1394 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1396 retry:
1397 ata_tf_init(dev, &tf);
1399 switch (class) {
1400 case ATA_DEV_ATA:
1401 tf.command = ATA_CMD_ID_ATA;
1402 break;
1403 case ATA_DEV_ATAPI:
1404 tf.command = ATA_CMD_ID_ATAPI;
1405 break;
1406 default:
1407 rc = -ENODEV;
1408 reason = "unsupported class";
1409 goto err_out;
1412 tf.protocol = ATA_PROT_PIO;
1413 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1415 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1416 id, sizeof(id[0]) * ATA_ID_WORDS);
1417 if (err_mask) {
1418 if (err_mask & AC_ERR_NODEV_HINT) {
1419 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1420 ap->id, dev->devno);
1421 return -ENOENT;
1424 rc = -EIO;
1425 reason = "I/O error";
1426 goto err_out;
1429 swap_buf_le16(id, ATA_ID_WORDS);
1431 /* sanity check */
1432 rc = -EINVAL;
1433 reason = "device reports illegal type";
1435 if (class == ATA_DEV_ATA) {
1436 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1437 goto err_out;
1438 } else {
1439 if (ata_id_is_ata(id))
1440 goto err_out;
1443 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1445 * The exact sequence expected by certain pre-ATA4 drives is:
1446 * SRST RESET
1447 * IDENTIFY
1448 * INITIALIZE DEVICE PARAMETERS
1449 * anything else..
1450 * Some drives were very specific about that exact sequence.
1452 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1453 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1454 if (err_mask) {
1455 rc = -EIO;
1456 reason = "INIT_DEV_PARAMS failed";
1457 goto err_out;
1460 /* current CHS translation info (id[53-58]) might be
1461 * changed. reread the identify device info.
1463 flags &= ~ATA_READID_POSTRESET;
1464 goto retry;
1468 *p_class = class;
1470 return 0;
1472 err_out:
1473 if (ata_msg_warn(ap))
1474 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1475 "(%s, err_mask=0x%x)\n", reason, err_mask);
1476 return rc;
1479 static inline u8 ata_dev_knobble(struct ata_device *dev)
1481 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1484 static void ata_dev_config_ncq(struct ata_device *dev,
1485 char *desc, size_t desc_sz)
1487 struct ata_port *ap = dev->ap;
1488 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1490 if (!ata_id_has_ncq(dev->id)) {
1491 desc[0] = '\0';
1492 return;
1494 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1495 snprintf(desc, desc_sz, "NCQ (not used)");
1496 return;
1498 if (ap->flags & ATA_FLAG_NCQ) {
1499 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1500 dev->flags |= ATA_DFLAG_NCQ;
1503 if (hdepth >= ddepth)
1504 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1505 else
1506 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1509 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1511 int i;
1513 if (ap->scsi_host) {
1514 unsigned int len = 0;
1516 for (i = 0; i < ATA_MAX_DEVICES; i++)
1517 len = max(len, ap->device[i].cdb_len);
1519 ap->scsi_host->max_cmd_len = len;
1524 * ata_dev_configure - Configure the specified ATA/ATAPI device
1525 * @dev: Target device to configure
1527 * Configure @dev according to @dev->id. Generic and low-level
1528 * driver specific fixups are also applied.
1530 * LOCKING:
1531 * Kernel thread context (may sleep)
1533 * RETURNS:
1534 * 0 on success, -errno otherwise
1536 int ata_dev_configure(struct ata_device *dev)
1538 struct ata_port *ap = dev->ap;
1539 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1540 const u16 *id = dev->id;
1541 unsigned int xfer_mask;
1542 char revbuf[7]; /* XYZ-99\0 */
1543 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1544 char modelbuf[ATA_ID_PROD_LEN+1];
1545 int rc;
1547 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1548 ata_dev_printk(dev, KERN_INFO,
1549 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1550 __FUNCTION__, ap->id, dev->devno);
1551 return 0;
1554 if (ata_msg_probe(ap))
1555 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1556 __FUNCTION__, ap->id, dev->devno);
1558 /* print device capabilities */
1559 if (ata_msg_probe(ap))
1560 ata_dev_printk(dev, KERN_DEBUG,
1561 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1562 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1563 __FUNCTION__,
1564 id[49], id[82], id[83], id[84],
1565 id[85], id[86], id[87], id[88]);
1567 /* initialize to-be-configured parameters */
1568 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1569 dev->max_sectors = 0;
1570 dev->cdb_len = 0;
1571 dev->n_sectors = 0;
1572 dev->cylinders = 0;
1573 dev->heads = 0;
1574 dev->sectors = 0;
1577 * common ATA, ATAPI feature tests
1580 /* find max transfer mode; for printk only */
1581 xfer_mask = ata_id_xfermask(id);
1583 if (ata_msg_probe(ap))
1584 ata_dump_id(id);
1586 /* ATA-specific feature tests */
1587 if (dev->class == ATA_DEV_ATA) {
1588 if (ata_id_is_cfa(id)) {
1589 if (id[162] & 1) /* CPRM may make this media unusable */
1590 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1591 ap->id, dev->devno);
1592 snprintf(revbuf, 7, "CFA");
1594 else
1595 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1597 dev->n_sectors = ata_id_n_sectors(id);
1599 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1600 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1601 sizeof(fwrevbuf));
1603 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1604 sizeof(modelbuf));
1606 if (dev->id[59] & 0x100)
1607 dev->multi_count = dev->id[59] & 0xff;
1609 if (ata_id_has_lba(id)) {
1610 const char *lba_desc;
1611 char ncq_desc[20];
1613 lba_desc = "LBA";
1614 dev->flags |= ATA_DFLAG_LBA;
1615 if (ata_id_has_lba48(id)) {
1616 dev->flags |= ATA_DFLAG_LBA48;
1617 lba_desc = "LBA48";
1619 if (dev->n_sectors >= (1UL << 28) &&
1620 ata_id_has_flush_ext(id))
1621 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1624 /* config NCQ */
1625 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1627 /* print device info to dmesg */
1628 if (ata_msg_drv(ap) && print_info) {
1629 ata_dev_printk(dev, KERN_INFO,
1630 "%s: %s, %s, max %s\n",
1631 revbuf, modelbuf, fwrevbuf,
1632 ata_mode_string(xfer_mask));
1633 ata_dev_printk(dev, KERN_INFO,
1634 "%Lu sectors, multi %u: %s %s\n",
1635 (unsigned long long)dev->n_sectors,
1636 dev->multi_count, lba_desc, ncq_desc);
1638 } else {
1639 /* CHS */
1641 /* Default translation */
1642 dev->cylinders = id[1];
1643 dev->heads = id[3];
1644 dev->sectors = id[6];
1646 if (ata_id_current_chs_valid(id)) {
1647 /* Current CHS translation is valid. */
1648 dev->cylinders = id[54];
1649 dev->heads = id[55];
1650 dev->sectors = id[56];
1653 /* print device info to dmesg */
1654 if (ata_msg_drv(ap) && print_info) {
1655 ata_dev_printk(dev, KERN_INFO,
1656 "%s: %s, %s, max %s\n",
1657 revbuf, modelbuf, fwrevbuf,
1658 ata_mode_string(xfer_mask));
1659 ata_dev_printk(dev, KERN_INFO,
1660 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1661 (unsigned long long)dev->n_sectors,
1662 dev->multi_count, dev->cylinders,
1663 dev->heads, dev->sectors);
1667 dev->cdb_len = 16;
1670 /* ATAPI-specific feature tests */
1671 else if (dev->class == ATA_DEV_ATAPI) {
1672 char *cdb_intr_string = "";
1674 rc = atapi_cdb_len(id);
1675 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1676 if (ata_msg_warn(ap))
1677 ata_dev_printk(dev, KERN_WARNING,
1678 "unsupported CDB len\n");
1679 rc = -EINVAL;
1680 goto err_out_nosup;
1682 dev->cdb_len = (unsigned int) rc;
1684 if (ata_id_cdb_intr(dev->id)) {
1685 dev->flags |= ATA_DFLAG_CDB_INTR;
1686 cdb_intr_string = ", CDB intr";
1689 /* print device info to dmesg */
1690 if (ata_msg_drv(ap) && print_info)
1691 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1692 ata_mode_string(xfer_mask),
1693 cdb_intr_string);
1696 /* determine max_sectors */
1697 dev->max_sectors = ATA_MAX_SECTORS;
1698 if (dev->flags & ATA_DFLAG_LBA48)
1699 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1701 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1702 /* Let the user know. We don't want to disallow opens for
1703 rescue purposes, or in case the vendor is just a blithering
1704 idiot */
1705 if (print_info) {
1706 ata_dev_printk(dev, KERN_WARNING,
1707 "Drive reports diagnostics failure. This may indicate a drive\n");
1708 ata_dev_printk(dev, KERN_WARNING,
1709 "fault or invalid emulation. Contact drive vendor for information.\n");
1713 ata_set_port_max_cmd_len(ap);
1715 /* limit bridge transfers to udma5, 200 sectors */
1716 if (ata_dev_knobble(dev)) {
1717 if (ata_msg_drv(ap) && print_info)
1718 ata_dev_printk(dev, KERN_INFO,
1719 "applying bridge limits\n");
1720 dev->udma_mask &= ATA_UDMA5;
1721 dev->max_sectors = ATA_MAX_SECTORS;
1724 if (ap->ops->dev_config)
1725 ap->ops->dev_config(ap, dev);
1727 if (ata_msg_probe(ap))
1728 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1729 __FUNCTION__, ata_chk_status(ap));
1730 return 0;
1732 err_out_nosup:
1733 if (ata_msg_probe(ap))
1734 ata_dev_printk(dev, KERN_DEBUG,
1735 "%s: EXIT, err\n", __FUNCTION__);
1736 return rc;
1740 * ata_bus_probe - Reset and probe ATA bus
1741 * @ap: Bus to probe
1743 * Master ATA bus probing function. Initiates a hardware-dependent
1744 * bus reset, then attempts to identify any devices found on
1745 * the bus.
1747 * LOCKING:
1748 * PCI/etc. bus probe sem.
1750 * RETURNS:
1751 * Zero on success, negative errno otherwise.
1754 int ata_bus_probe(struct ata_port *ap)
1756 unsigned int classes[ATA_MAX_DEVICES];
1757 int tries[ATA_MAX_DEVICES];
1758 int i, rc, down_xfermask;
1759 struct ata_device *dev;
1761 ata_port_probe(ap);
1763 for (i = 0; i < ATA_MAX_DEVICES; i++)
1764 tries[i] = ATA_PROBE_MAX_TRIES;
1766 retry:
1767 down_xfermask = 0;
1769 /* reset and determine device classes */
1770 ap->ops->phy_reset(ap);
1772 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1773 dev = &ap->device[i];
1775 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1776 dev->class != ATA_DEV_UNKNOWN)
1777 classes[dev->devno] = dev->class;
1778 else
1779 classes[dev->devno] = ATA_DEV_NONE;
1781 dev->class = ATA_DEV_UNKNOWN;
1784 ata_port_probe(ap);
1786 /* after the reset the device state is PIO 0 and the controller
1787 state is undefined. Record the mode */
1789 for (i = 0; i < ATA_MAX_DEVICES; i++)
1790 ap->device[i].pio_mode = XFER_PIO_0;
1792 /* read IDENTIFY page and configure devices */
1793 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1794 dev = &ap->device[i];
1796 if (tries[i])
1797 dev->class = classes[i];
1799 if (!ata_dev_enabled(dev))
1800 continue;
1802 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1803 dev->id);
1804 if (rc)
1805 goto fail;
1807 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1808 rc = ata_dev_configure(dev);
1809 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1810 if (rc)
1811 goto fail;
1814 /* configure transfer mode */
1815 rc = ata_set_mode(ap, &dev);
1816 if (rc) {
1817 down_xfermask = 1;
1818 goto fail;
1821 for (i = 0; i < ATA_MAX_DEVICES; i++)
1822 if (ata_dev_enabled(&ap->device[i]))
1823 return 0;
1825 /* no device present, disable port */
1826 ata_port_disable(ap);
1827 ap->ops->port_disable(ap);
1828 return -ENODEV;
1830 fail:
1831 switch (rc) {
1832 case -EINVAL:
1833 case -ENODEV:
1834 tries[dev->devno] = 0;
1835 break;
1836 case -EIO:
1837 sata_down_spd_limit(ap);
1838 /* fall through */
1839 default:
1840 tries[dev->devno]--;
1841 if (down_xfermask &&
1842 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1843 tries[dev->devno] = 0;
1846 if (!tries[dev->devno]) {
1847 ata_down_xfermask_limit(dev, 1);
1848 ata_dev_disable(dev);
1851 goto retry;
1855 * ata_port_probe - Mark port as enabled
1856 * @ap: Port for which we indicate enablement
1858 * Modify @ap data structure such that the system
1859 * thinks that the entire port is enabled.
1861 * LOCKING: host lock, or some other form of
1862 * serialization.
1865 void ata_port_probe(struct ata_port *ap)
1867 ap->flags &= ~ATA_FLAG_DISABLED;
1871 * sata_print_link_status - Print SATA link status
1872 * @ap: SATA port to printk link status about
1874 * This function prints link speed and status of a SATA link.
1876 * LOCKING:
1877 * None.
1879 static void sata_print_link_status(struct ata_port *ap)
1881 u32 sstatus, scontrol, tmp;
1883 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1884 return;
1885 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1887 if (ata_port_online(ap)) {
1888 tmp = (sstatus >> 4) & 0xf;
1889 ata_port_printk(ap, KERN_INFO,
1890 "SATA link up %s (SStatus %X SControl %X)\n",
1891 sata_spd_string(tmp), sstatus, scontrol);
1892 } else {
1893 ata_port_printk(ap, KERN_INFO,
1894 "SATA link down (SStatus %X SControl %X)\n",
1895 sstatus, scontrol);
1900 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1901 * @ap: SATA port associated with target SATA PHY.
1903 * This function issues commands to standard SATA Sxxx
1904 * PHY registers, to wake up the phy (and device), and
1905 * clear any reset condition.
1907 * LOCKING:
1908 * PCI/etc. bus probe sem.
1911 void __sata_phy_reset(struct ata_port *ap)
1913 u32 sstatus;
1914 unsigned long timeout = jiffies + (HZ * 5);
1916 if (ap->flags & ATA_FLAG_SATA_RESET) {
1917 /* issue phy wake/reset */
1918 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1919 /* Couldn't find anything in SATA I/II specs, but
1920 * AHCI-1.1 10.4.2 says at least 1 ms. */
1921 mdelay(1);
1923 /* phy wake/clear reset */
1924 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1926 /* wait for phy to become ready, if necessary */
1927 do {
1928 msleep(200);
1929 sata_scr_read(ap, SCR_STATUS, &sstatus);
1930 if ((sstatus & 0xf) != 1)
1931 break;
1932 } while (time_before(jiffies, timeout));
1934 /* print link status */
1935 sata_print_link_status(ap);
1937 /* TODO: phy layer with polling, timeouts, etc. */
1938 if (!ata_port_offline(ap))
1939 ata_port_probe(ap);
1940 else
1941 ata_port_disable(ap);
1943 if (ap->flags & ATA_FLAG_DISABLED)
1944 return;
1946 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1947 ata_port_disable(ap);
1948 return;
1951 ap->cbl = ATA_CBL_SATA;
1955 * sata_phy_reset - Reset SATA bus.
1956 * @ap: SATA port associated with target SATA PHY.
1958 * This function resets the SATA bus, and then probes
1959 * the bus for devices.
1961 * LOCKING:
1962 * PCI/etc. bus probe sem.
1965 void sata_phy_reset(struct ata_port *ap)
1967 __sata_phy_reset(ap);
1968 if (ap->flags & ATA_FLAG_DISABLED)
1969 return;
1970 ata_bus_reset(ap);
1974 * ata_dev_pair - return other device on cable
1975 * @adev: device
1977 * Obtain the other device on the same cable, or if none is
1978 * present NULL is returned
1981 struct ata_device *ata_dev_pair(struct ata_device *adev)
1983 struct ata_port *ap = adev->ap;
1984 struct ata_device *pair = &ap->device[1 - adev->devno];
1985 if (!ata_dev_enabled(pair))
1986 return NULL;
1987 return pair;
1991 * ata_port_disable - Disable port.
1992 * @ap: Port to be disabled.
1994 * Modify @ap data structure such that the system
1995 * thinks that the entire port is disabled, and should
1996 * never attempt to probe or communicate with devices
1997 * on this port.
1999 * LOCKING: host lock, or some other form of
2000 * serialization.
2003 void ata_port_disable(struct ata_port *ap)
2005 ap->device[0].class = ATA_DEV_NONE;
2006 ap->device[1].class = ATA_DEV_NONE;
2007 ap->flags |= ATA_FLAG_DISABLED;
2011 * sata_down_spd_limit - adjust SATA spd limit downward
2012 * @ap: Port to adjust SATA spd limit for
2014 * Adjust SATA spd limit of @ap downward. Note that this
2015 * function only adjusts the limit. The change must be applied
2016 * using sata_set_spd().
2018 * LOCKING:
2019 * Inherited from caller.
2021 * RETURNS:
2022 * 0 on success, negative errno on failure
2024 int sata_down_spd_limit(struct ata_port *ap)
2026 u32 sstatus, spd, mask;
2027 int rc, highbit;
2029 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2030 if (rc)
2031 return rc;
2033 mask = ap->sata_spd_limit;
2034 if (mask <= 1)
2035 return -EINVAL;
2036 highbit = fls(mask) - 1;
2037 mask &= ~(1 << highbit);
2039 spd = (sstatus >> 4) & 0xf;
2040 if (spd <= 1)
2041 return -EINVAL;
2042 spd--;
2043 mask &= (1 << spd) - 1;
2044 if (!mask)
2045 return -EINVAL;
2047 ap->sata_spd_limit = mask;
2049 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2050 sata_spd_string(fls(mask)));
2052 return 0;
2055 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2057 u32 spd, limit;
2059 if (ap->sata_spd_limit == UINT_MAX)
2060 limit = 0;
2061 else
2062 limit = fls(ap->sata_spd_limit);
2064 spd = (*scontrol >> 4) & 0xf;
2065 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2067 return spd != limit;
2071 * sata_set_spd_needed - is SATA spd configuration needed
2072 * @ap: Port in question
2074 * Test whether the spd limit in SControl matches
2075 * @ap->sata_spd_limit. This function is used to determine
2076 * whether hardreset is necessary to apply SATA spd
2077 * configuration.
2079 * LOCKING:
2080 * Inherited from caller.
2082 * RETURNS:
2083 * 1 if SATA spd configuration is needed, 0 otherwise.
2085 int sata_set_spd_needed(struct ata_port *ap)
2087 u32 scontrol;
2089 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2090 return 0;
2092 return __sata_set_spd_needed(ap, &scontrol);
2096 * sata_set_spd - set SATA spd according to spd limit
2097 * @ap: Port to set SATA spd for
2099 * Set SATA spd of @ap according to sata_spd_limit.
2101 * LOCKING:
2102 * Inherited from caller.
2104 * RETURNS:
2105 * 0 if spd doesn't need to be changed, 1 if spd has been
2106 * changed. Negative errno if SCR registers are inaccessible.
2108 int sata_set_spd(struct ata_port *ap)
2110 u32 scontrol;
2111 int rc;
2113 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2114 return rc;
2116 if (!__sata_set_spd_needed(ap, &scontrol))
2117 return 0;
2119 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2120 return rc;
2122 return 1;
2126 * This mode timing computation functionality is ported over from
2127 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2130 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2131 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2132 * for UDMA6, which is currently supported only by Maxtor drives.
2134 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2137 static const struct ata_timing ata_timing[] = {
2139 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2140 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2141 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2142 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2144 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2145 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2146 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2147 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2148 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2150 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2152 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2153 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2154 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2156 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2157 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2158 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2160 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2161 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2162 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2163 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2165 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2166 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2167 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2169 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2171 { 0xFF }
2174 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2175 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2177 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2179 q->setup = EZ(t->setup * 1000, T);
2180 q->act8b = EZ(t->act8b * 1000, T);
2181 q->rec8b = EZ(t->rec8b * 1000, T);
2182 q->cyc8b = EZ(t->cyc8b * 1000, T);
2183 q->active = EZ(t->active * 1000, T);
2184 q->recover = EZ(t->recover * 1000, T);
2185 q->cycle = EZ(t->cycle * 1000, T);
2186 q->udma = EZ(t->udma * 1000, UT);
2189 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2190 struct ata_timing *m, unsigned int what)
2192 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2193 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2194 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2195 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2196 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2197 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2198 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2199 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2202 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2204 const struct ata_timing *t;
2206 for (t = ata_timing; t->mode != speed; t++)
2207 if (t->mode == 0xFF)
2208 return NULL;
2209 return t;
2212 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2213 struct ata_timing *t, int T, int UT)
2215 const struct ata_timing *s;
2216 struct ata_timing p;
2219 * Find the mode.
2222 if (!(s = ata_timing_find_mode(speed)))
2223 return -EINVAL;
2225 memcpy(t, s, sizeof(*s));
2228 * If the drive is an EIDE drive, it can tell us it needs extended
2229 * PIO/MW_DMA cycle timing.
2232 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2233 memset(&p, 0, sizeof(p));
2234 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2235 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2236 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2237 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2238 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2240 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2244 * Convert the timing to bus clock counts.
2247 ata_timing_quantize(t, t, T, UT);
2250 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2251 * S.M.A.R.T * and some other commands. We have to ensure that the
2252 * DMA cycle timing is slower/equal than the fastest PIO timing.
2255 if (speed > XFER_PIO_6) {
2256 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2257 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2261 * Lengthen active & recovery time so that cycle time is correct.
2264 if (t->act8b + t->rec8b < t->cyc8b) {
2265 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2266 t->rec8b = t->cyc8b - t->act8b;
2269 if (t->active + t->recover < t->cycle) {
2270 t->active += (t->cycle - (t->active + t->recover)) / 2;
2271 t->recover = t->cycle - t->active;
2274 return 0;
2278 * ata_down_xfermask_limit - adjust dev xfer masks downward
2279 * @dev: Device to adjust xfer masks
2280 * @force_pio0: Force PIO0
2282 * Adjust xfer masks of @dev downward. Note that this function
2283 * does not apply the change. Invoking ata_set_mode() afterwards
2284 * will apply the limit.
2286 * LOCKING:
2287 * Inherited from caller.
2289 * RETURNS:
2290 * 0 on success, negative errno on failure
2292 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2294 unsigned long xfer_mask;
2295 int highbit;
2297 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2298 dev->udma_mask);
2300 if (!xfer_mask)
2301 goto fail;
2302 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2303 if (xfer_mask & ATA_MASK_UDMA)
2304 xfer_mask &= ~ATA_MASK_MWDMA;
2306 highbit = fls(xfer_mask) - 1;
2307 xfer_mask &= ~(1 << highbit);
2308 if (force_pio0)
2309 xfer_mask &= 1 << ATA_SHIFT_PIO;
2310 if (!xfer_mask)
2311 goto fail;
2313 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2314 &dev->udma_mask);
2316 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2317 ata_mode_string(xfer_mask));
2319 return 0;
2321 fail:
2322 return -EINVAL;
2325 static int ata_dev_set_mode(struct ata_device *dev)
2327 struct ata_eh_context *ehc = &dev->ap->eh_context;
2328 unsigned int err_mask;
2329 int rc;
2331 dev->flags &= ~ATA_DFLAG_PIO;
2332 if (dev->xfer_shift == ATA_SHIFT_PIO)
2333 dev->flags |= ATA_DFLAG_PIO;
2335 err_mask = ata_dev_set_xfermode(dev);
2336 /* Old CFA may refuse this command, which is just fine */
2337 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2338 err_mask &= ~AC_ERR_DEV;
2340 if (err_mask) {
2341 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2342 "(err_mask=0x%x)\n", err_mask);
2343 return -EIO;
2346 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2347 rc = ata_dev_revalidate(dev, 0);
2348 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2349 if (rc)
2350 return rc;
2352 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2353 dev->xfer_shift, (int)dev->xfer_mode);
2355 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2356 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2357 return 0;
2361 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2362 * @ap: port on which timings will be programmed
2363 * @r_failed_dev: out paramter for failed device
2365 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2366 * ata_set_mode() fails, pointer to the failing device is
2367 * returned in @r_failed_dev.
2369 * LOCKING:
2370 * PCI/etc. bus probe sem.
2372 * RETURNS:
2373 * 0 on success, negative errno otherwise
2375 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2377 struct ata_device *dev;
2378 int i, rc = 0, used_dma = 0, found = 0;
2380 /* has private set_mode? */
2381 if (ap->ops->set_mode)
2382 return ap->ops->set_mode(ap, r_failed_dev);
2384 /* step 1: calculate xfer_mask */
2385 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2386 unsigned int pio_mask, dma_mask;
2388 dev = &ap->device[i];
2390 if (!ata_dev_enabled(dev))
2391 continue;
2393 ata_dev_xfermask(dev);
2395 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2396 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2397 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2398 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2400 found = 1;
2401 if (dev->dma_mode)
2402 used_dma = 1;
2404 if (!found)
2405 goto out;
2407 /* step 2: always set host PIO timings */
2408 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2409 dev = &ap->device[i];
2410 if (!ata_dev_enabled(dev))
2411 continue;
2413 if (!dev->pio_mode) {
2414 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2415 rc = -EINVAL;
2416 goto out;
2419 dev->xfer_mode = dev->pio_mode;
2420 dev->xfer_shift = ATA_SHIFT_PIO;
2421 if (ap->ops->set_piomode)
2422 ap->ops->set_piomode(ap, dev);
2425 /* step 3: set host DMA timings */
2426 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2427 dev = &ap->device[i];
2429 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2430 continue;
2432 dev->xfer_mode = dev->dma_mode;
2433 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2434 if (ap->ops->set_dmamode)
2435 ap->ops->set_dmamode(ap, dev);
2438 /* step 4: update devices' xfer mode */
2439 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2440 dev = &ap->device[i];
2442 /* don't update suspended devices' xfer mode */
2443 if (!ata_dev_ready(dev))
2444 continue;
2446 rc = ata_dev_set_mode(dev);
2447 if (rc)
2448 goto out;
2451 /* Record simplex status. If we selected DMA then the other
2452 * host channels are not permitted to do so.
2454 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2455 ap->host->simplex_claimed = 1;
2457 /* step5: chip specific finalisation */
2458 if (ap->ops->post_set_mode)
2459 ap->ops->post_set_mode(ap);
2461 out:
2462 if (rc)
2463 *r_failed_dev = dev;
2464 return rc;
2468 * ata_tf_to_host - issue ATA taskfile to host controller
2469 * @ap: port to which command is being issued
2470 * @tf: ATA taskfile register set
2472 * Issues ATA taskfile register set to ATA host controller,
2473 * with proper synchronization with interrupt handler and
2474 * other threads.
2476 * LOCKING:
2477 * spin_lock_irqsave(host lock)
2480 static inline void ata_tf_to_host(struct ata_port *ap,
2481 const struct ata_taskfile *tf)
2483 ap->ops->tf_load(ap, tf);
2484 ap->ops->exec_command(ap, tf);
2488 * ata_busy_sleep - sleep until BSY clears, or timeout
2489 * @ap: port containing status register to be polled
2490 * @tmout_pat: impatience timeout
2491 * @tmout: overall timeout
2493 * Sleep until ATA Status register bit BSY clears,
2494 * or a timeout occurs.
2496 * LOCKING:
2497 * Kernel thread context (may sleep).
2499 * RETURNS:
2500 * 0 on success, -errno otherwise.
2502 int ata_busy_sleep(struct ata_port *ap,
2503 unsigned long tmout_pat, unsigned long tmout)
2505 unsigned long timer_start, timeout;
2506 u8 status;
2508 status = ata_busy_wait(ap, ATA_BUSY, 300);
2509 timer_start = jiffies;
2510 timeout = timer_start + tmout_pat;
2511 while (status != 0xff && (status & ATA_BUSY) &&
2512 time_before(jiffies, timeout)) {
2513 msleep(50);
2514 status = ata_busy_wait(ap, ATA_BUSY, 3);
2517 if (status != 0xff && (status & ATA_BUSY))
2518 ata_port_printk(ap, KERN_WARNING,
2519 "port is slow to respond, please be patient "
2520 "(Status 0x%x)\n", status);
2522 timeout = timer_start + tmout;
2523 while (status != 0xff && (status & ATA_BUSY) &&
2524 time_before(jiffies, timeout)) {
2525 msleep(50);
2526 status = ata_chk_status(ap);
2529 if (status == 0xff)
2530 return -ENODEV;
2532 if (status & ATA_BUSY) {
2533 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2534 "(%lu secs, Status 0x%x)\n",
2535 tmout / HZ, status);
2536 return -EBUSY;
2539 return 0;
2542 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2544 struct ata_ioports *ioaddr = &ap->ioaddr;
2545 unsigned int dev0 = devmask & (1 << 0);
2546 unsigned int dev1 = devmask & (1 << 1);
2547 unsigned long timeout;
2549 /* if device 0 was found in ata_devchk, wait for its
2550 * BSY bit to clear
2552 if (dev0)
2553 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2555 /* if device 1 was found in ata_devchk, wait for
2556 * register access, then wait for BSY to clear
2558 timeout = jiffies + ATA_TMOUT_BOOT;
2559 while (dev1) {
2560 u8 nsect, lbal;
2562 ap->ops->dev_select(ap, 1);
2563 nsect = ioread8(ioaddr->nsect_addr);
2564 lbal = ioread8(ioaddr->lbal_addr);
2565 if ((nsect == 1) && (lbal == 1))
2566 break;
2567 if (time_after(jiffies, timeout)) {
2568 dev1 = 0;
2569 break;
2571 msleep(50); /* give drive a breather */
2573 if (dev1)
2574 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2576 /* is all this really necessary? */
2577 ap->ops->dev_select(ap, 0);
2578 if (dev1)
2579 ap->ops->dev_select(ap, 1);
2580 if (dev0)
2581 ap->ops->dev_select(ap, 0);
2584 static unsigned int ata_bus_softreset(struct ata_port *ap,
2585 unsigned int devmask)
2587 struct ata_ioports *ioaddr = &ap->ioaddr;
2589 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2591 /* software reset. causes dev0 to be selected */
2592 iowrite8(ap->ctl, ioaddr->ctl_addr);
2593 udelay(20); /* FIXME: flush */
2594 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2595 udelay(20); /* FIXME: flush */
2596 iowrite8(ap->ctl, ioaddr->ctl_addr);
2598 /* spec mandates ">= 2ms" before checking status.
2599 * We wait 150ms, because that was the magic delay used for
2600 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2601 * between when the ATA command register is written, and then
2602 * status is checked. Because waiting for "a while" before
2603 * checking status is fine, post SRST, we perform this magic
2604 * delay here as well.
2606 * Old drivers/ide uses the 2mS rule and then waits for ready
2608 msleep(150);
2610 /* Before we perform post reset processing we want to see if
2611 * the bus shows 0xFF because the odd clown forgets the D7
2612 * pulldown resistor.
2614 if (ata_check_status(ap) == 0xFF)
2615 return 0;
2617 ata_bus_post_reset(ap, devmask);
2619 return 0;
2623 * ata_bus_reset - reset host port and associated ATA channel
2624 * @ap: port to reset
2626 * This is typically the first time we actually start issuing
2627 * commands to the ATA channel. We wait for BSY to clear, then
2628 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2629 * result. Determine what devices, if any, are on the channel
2630 * by looking at the device 0/1 error register. Look at the signature
2631 * stored in each device's taskfile registers, to determine if
2632 * the device is ATA or ATAPI.
2634 * LOCKING:
2635 * PCI/etc. bus probe sem.
2636 * Obtains host lock.
2638 * SIDE EFFECTS:
2639 * Sets ATA_FLAG_DISABLED if bus reset fails.
2642 void ata_bus_reset(struct ata_port *ap)
2644 struct ata_ioports *ioaddr = &ap->ioaddr;
2645 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2646 u8 err;
2647 unsigned int dev0, dev1 = 0, devmask = 0;
2649 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2651 /* determine if device 0/1 are present */
2652 if (ap->flags & ATA_FLAG_SATA_RESET)
2653 dev0 = 1;
2654 else {
2655 dev0 = ata_devchk(ap, 0);
2656 if (slave_possible)
2657 dev1 = ata_devchk(ap, 1);
2660 if (dev0)
2661 devmask |= (1 << 0);
2662 if (dev1)
2663 devmask |= (1 << 1);
2665 /* select device 0 again */
2666 ap->ops->dev_select(ap, 0);
2668 /* issue bus reset */
2669 if (ap->flags & ATA_FLAG_SRST)
2670 if (ata_bus_softreset(ap, devmask))
2671 goto err_out;
2674 * determine by signature whether we have ATA or ATAPI devices
2676 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2677 if ((slave_possible) && (err != 0x81))
2678 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2680 /* re-enable interrupts */
2681 ap->ops->irq_on(ap);
2683 /* is double-select really necessary? */
2684 if (ap->device[1].class != ATA_DEV_NONE)
2685 ap->ops->dev_select(ap, 1);
2686 if (ap->device[0].class != ATA_DEV_NONE)
2687 ap->ops->dev_select(ap, 0);
2689 /* if no devices were detected, disable this port */
2690 if ((ap->device[0].class == ATA_DEV_NONE) &&
2691 (ap->device[1].class == ATA_DEV_NONE))
2692 goto err_out;
2694 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2695 /* set up device control for ATA_FLAG_SATA_RESET */
2696 iowrite8(ap->ctl, ioaddr->ctl_addr);
2699 DPRINTK("EXIT\n");
2700 return;
2702 err_out:
2703 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2704 ap->ops->port_disable(ap);
2706 DPRINTK("EXIT\n");
2710 * sata_phy_debounce - debounce SATA phy status
2711 * @ap: ATA port to debounce SATA phy status for
2712 * @params: timing parameters { interval, duratinon, timeout } in msec
2714 * Make sure SStatus of @ap reaches stable state, determined by
2715 * holding the same value where DET is not 1 for @duration polled
2716 * every @interval, before @timeout. Timeout constraints the
2717 * beginning of the stable state. Because, after hot unplugging,
2718 * DET gets stuck at 1 on some controllers, this functions waits
2719 * until timeout then returns 0 if DET is stable at 1.
2721 * LOCKING:
2722 * Kernel thread context (may sleep)
2724 * RETURNS:
2725 * 0 on success, -errno on failure.
2727 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2729 unsigned long interval_msec = params[0];
2730 unsigned long duration = params[1] * HZ / 1000;
2731 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2732 unsigned long last_jiffies;
2733 u32 last, cur;
2734 int rc;
2736 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2737 return rc;
2738 cur &= 0xf;
2740 last = cur;
2741 last_jiffies = jiffies;
2743 while (1) {
2744 msleep(interval_msec);
2745 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2746 return rc;
2747 cur &= 0xf;
2749 /* DET stable? */
2750 if (cur == last) {
2751 if (cur == 1 && time_before(jiffies, timeout))
2752 continue;
2753 if (time_after(jiffies, last_jiffies + duration))
2754 return 0;
2755 continue;
2758 /* unstable, start over */
2759 last = cur;
2760 last_jiffies = jiffies;
2762 /* check timeout */
2763 if (time_after(jiffies, timeout))
2764 return -EBUSY;
2769 * sata_phy_resume - resume SATA phy
2770 * @ap: ATA port to resume SATA phy for
2771 * @params: timing parameters { interval, duratinon, timeout } in msec
2773 * Resume SATA phy of @ap and debounce it.
2775 * LOCKING:
2776 * Kernel thread context (may sleep)
2778 * RETURNS:
2779 * 0 on success, -errno on failure.
2781 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2783 u32 scontrol;
2784 int rc;
2786 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2787 return rc;
2789 scontrol = (scontrol & 0x0f0) | 0x300;
2791 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2792 return rc;
2794 /* Some PHYs react badly if SStatus is pounded immediately
2795 * after resuming. Delay 200ms before debouncing.
2797 msleep(200);
2799 return sata_phy_debounce(ap, params);
2802 static void ata_wait_spinup(struct ata_port *ap)
2804 struct ata_eh_context *ehc = &ap->eh_context;
2805 unsigned long end, secs;
2806 int rc;
2808 /* first, debounce phy if SATA */
2809 if (ap->cbl == ATA_CBL_SATA) {
2810 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2812 /* if debounced successfully and offline, no need to wait */
2813 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2814 return;
2817 /* okay, let's give the drive time to spin up */
2818 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2819 secs = ((end - jiffies) + HZ - 1) / HZ;
2821 if (time_after(jiffies, end))
2822 return;
2824 if (secs > 5)
2825 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2826 "(%lu secs)\n", secs);
2828 schedule_timeout_uninterruptible(end - jiffies);
2832 * ata_std_prereset - prepare for reset
2833 * @ap: ATA port to be reset
2835 * @ap is about to be reset. Initialize it.
2837 * LOCKING:
2838 * Kernel thread context (may sleep)
2840 * RETURNS:
2841 * 0 on success, -errno otherwise.
2843 int ata_std_prereset(struct ata_port *ap)
2845 struct ata_eh_context *ehc = &ap->eh_context;
2846 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2847 int rc;
2849 /* handle link resume & hotplug spinup */
2850 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2851 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2852 ehc->i.action |= ATA_EH_HARDRESET;
2854 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2855 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2856 ata_wait_spinup(ap);
2858 /* if we're about to do hardreset, nothing more to do */
2859 if (ehc->i.action & ATA_EH_HARDRESET)
2860 return 0;
2862 /* if SATA, resume phy */
2863 if (ap->cbl == ATA_CBL_SATA) {
2864 rc = sata_phy_resume(ap, timing);
2865 if (rc && rc != -EOPNOTSUPP) {
2866 /* phy resume failed */
2867 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2868 "link for reset (errno=%d)\n", rc);
2869 return rc;
2873 /* Wait for !BSY if the controller can wait for the first D2H
2874 * Reg FIS and we don't know that no device is attached.
2876 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2877 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2879 return 0;
2883 * ata_std_softreset - reset host port via ATA SRST
2884 * @ap: port to reset
2885 * @classes: resulting classes of attached devices
2887 * Reset host port using ATA SRST.
2889 * LOCKING:
2890 * Kernel thread context (may sleep)
2892 * RETURNS:
2893 * 0 on success, -errno otherwise.
2895 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2897 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2898 unsigned int devmask = 0, err_mask;
2899 u8 err;
2901 DPRINTK("ENTER\n");
2903 if (ata_port_offline(ap)) {
2904 classes[0] = ATA_DEV_NONE;
2905 goto out;
2908 /* determine if device 0/1 are present */
2909 if (ata_devchk(ap, 0))
2910 devmask |= (1 << 0);
2911 if (slave_possible && ata_devchk(ap, 1))
2912 devmask |= (1 << 1);
2914 /* select device 0 again */
2915 ap->ops->dev_select(ap, 0);
2917 /* issue bus reset */
2918 DPRINTK("about to softreset, devmask=%x\n", devmask);
2919 err_mask = ata_bus_softreset(ap, devmask);
2920 if (err_mask) {
2921 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2922 err_mask);
2923 return -EIO;
2926 /* determine by signature whether we have ATA or ATAPI devices */
2927 classes[0] = ata_dev_try_classify(ap, 0, &err);
2928 if (slave_possible && err != 0x81)
2929 classes[1] = ata_dev_try_classify(ap, 1, &err);
2931 out:
2932 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2933 return 0;
2937 * sata_port_hardreset - reset port via SATA phy reset
2938 * @ap: port to reset
2939 * @timing: timing parameters { interval, duratinon, timeout } in msec
2941 * SATA phy-reset host port using DET bits of SControl register.
2943 * LOCKING:
2944 * Kernel thread context (may sleep)
2946 * RETURNS:
2947 * 0 on success, -errno otherwise.
2949 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2951 u32 scontrol;
2952 int rc;
2954 DPRINTK("ENTER\n");
2956 if (sata_set_spd_needed(ap)) {
2957 /* SATA spec says nothing about how to reconfigure
2958 * spd. To be on the safe side, turn off phy during
2959 * reconfiguration. This works for at least ICH7 AHCI
2960 * and Sil3124.
2962 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2963 goto out;
2965 scontrol = (scontrol & 0x0f0) | 0x304;
2967 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2968 goto out;
2970 sata_set_spd(ap);
2973 /* issue phy wake/reset */
2974 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2975 goto out;
2977 scontrol = (scontrol & 0x0f0) | 0x301;
2979 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2980 goto out;
2982 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2983 * 10.4.2 says at least 1 ms.
2985 msleep(1);
2987 /* bring phy back */
2988 rc = sata_phy_resume(ap, timing);
2989 out:
2990 DPRINTK("EXIT, rc=%d\n", rc);
2991 return rc;
2995 * sata_std_hardreset - reset host port via SATA phy reset
2996 * @ap: port to reset
2997 * @class: resulting class of attached device
2999 * SATA phy-reset host port using DET bits of SControl register,
3000 * wait for !BSY and classify the attached device.
3002 * LOCKING:
3003 * Kernel thread context (may sleep)
3005 * RETURNS:
3006 * 0 on success, -errno otherwise.
3008 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3010 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3011 int rc;
3013 DPRINTK("ENTER\n");
3015 /* do hardreset */
3016 rc = sata_port_hardreset(ap, timing);
3017 if (rc) {
3018 ata_port_printk(ap, KERN_ERR,
3019 "COMRESET failed (errno=%d)\n", rc);
3020 return rc;
3023 /* TODO: phy layer with polling, timeouts, etc. */
3024 if (ata_port_offline(ap)) {
3025 *class = ATA_DEV_NONE;
3026 DPRINTK("EXIT, link offline\n");
3027 return 0;
3030 /* wait a while before checking status, see SRST for more info */
3031 msleep(150);
3033 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3034 ata_port_printk(ap, KERN_ERR,
3035 "COMRESET failed (device not ready)\n");
3036 return -EIO;
3039 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3041 *class = ata_dev_try_classify(ap, 0, NULL);
3043 DPRINTK("EXIT, class=%u\n", *class);
3044 return 0;
3048 * ata_std_postreset - standard postreset callback
3049 * @ap: the target ata_port
3050 * @classes: classes of attached devices
3052 * This function is invoked after a successful reset. Note that
3053 * the device might have been reset more than once using
3054 * different reset methods before postreset is invoked.
3056 * LOCKING:
3057 * Kernel thread context (may sleep)
3059 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3061 u32 serror;
3063 DPRINTK("ENTER\n");
3065 /* print link status */
3066 sata_print_link_status(ap);
3068 /* clear SError */
3069 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3070 sata_scr_write(ap, SCR_ERROR, serror);
3072 /* re-enable interrupts */
3073 if (!ap->ops->error_handler)
3074 ap->ops->irq_on(ap);
3076 /* is double-select really necessary? */
3077 if (classes[0] != ATA_DEV_NONE)
3078 ap->ops->dev_select(ap, 1);
3079 if (classes[1] != ATA_DEV_NONE)
3080 ap->ops->dev_select(ap, 0);
3082 /* bail out if no device is present */
3083 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3084 DPRINTK("EXIT, no device\n");
3085 return;
3088 /* set up device control */
3089 if (ap->ioaddr.ctl_addr)
3090 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3092 DPRINTK("EXIT\n");
3096 * ata_dev_same_device - Determine whether new ID matches configured device
3097 * @dev: device to compare against
3098 * @new_class: class of the new device
3099 * @new_id: IDENTIFY page of the new device
3101 * Compare @new_class and @new_id against @dev and determine
3102 * whether @dev is the device indicated by @new_class and
3103 * @new_id.
3105 * LOCKING:
3106 * None.
3108 * RETURNS:
3109 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3111 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3112 const u16 *new_id)
3114 const u16 *old_id = dev->id;
3115 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3116 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3117 u64 new_n_sectors;
3119 if (dev->class != new_class) {
3120 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3121 dev->class, new_class);
3122 return 0;
3125 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3126 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3127 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3128 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3129 new_n_sectors = ata_id_n_sectors(new_id);
3131 if (strcmp(model[0], model[1])) {
3132 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3133 "'%s' != '%s'\n", model[0], model[1]);
3134 return 0;
3137 if (strcmp(serial[0], serial[1])) {
3138 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3139 "'%s' != '%s'\n", serial[0], serial[1]);
3140 return 0;
3143 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3144 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3145 "%llu != %llu\n",
3146 (unsigned long long)dev->n_sectors,
3147 (unsigned long long)new_n_sectors);
3148 return 0;
3151 return 1;
3155 * ata_dev_revalidate - Revalidate ATA device
3156 * @dev: device to revalidate
3157 * @readid_flags: read ID flags
3159 * Re-read IDENTIFY page and make sure @dev is still attached to
3160 * the port.
3162 * LOCKING:
3163 * Kernel thread context (may sleep)
3165 * RETURNS:
3166 * 0 on success, negative errno otherwise
3168 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3170 unsigned int class = dev->class;
3171 u16 *id = (void *)dev->ap->sector_buf;
3172 int rc;
3174 if (!ata_dev_enabled(dev)) {
3175 rc = -ENODEV;
3176 goto fail;
3179 /* read ID data */
3180 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3181 if (rc)
3182 goto fail;
3184 /* is the device still there? */
3185 if (!ata_dev_same_device(dev, class, id)) {
3186 rc = -ENODEV;
3187 goto fail;
3190 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3192 /* configure device according to the new ID */
3193 rc = ata_dev_configure(dev);
3194 if (rc == 0)
3195 return 0;
3197 fail:
3198 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3199 return rc;
3202 struct ata_blacklist_entry {
3203 const char *model_num;
3204 const char *model_rev;
3205 unsigned long horkage;
3208 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3209 /* Devices with DMA related problems under Linux */
3210 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3211 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3212 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3213 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3214 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3215 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3216 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3217 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3218 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3219 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3220 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3221 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3222 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3223 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3224 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3225 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3226 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3227 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3228 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3229 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3230 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3231 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3232 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3233 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3234 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3235 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3236 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3237 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3238 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3239 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3241 /* Devices we expect to fail diagnostics */
3243 /* Devices where NCQ should be avoided */
3244 /* NCQ is slow */
3245 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3247 /* Devices with NCQ limits */
3249 /* End Marker */
3253 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3255 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3256 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3257 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3259 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3260 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3262 while (ad->model_num) {
3263 if (!strcmp(ad->model_num, model_num)) {
3264 if (ad->model_rev == NULL)
3265 return ad->horkage;
3266 if (!strcmp(ad->model_rev, model_rev))
3267 return ad->horkage;
3269 ad++;
3271 return 0;
3274 static int ata_dma_blacklisted(const struct ata_device *dev)
3276 /* We don't support polling DMA.
3277 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3278 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3280 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3281 (dev->flags & ATA_DFLAG_CDB_INTR))
3282 return 1;
3283 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3287 * ata_dev_xfermask - Compute supported xfermask of the given device
3288 * @dev: Device to compute xfermask for
3290 * Compute supported xfermask of @dev and store it in
3291 * dev->*_mask. This function is responsible for applying all
3292 * known limits including host controller limits, device
3293 * blacklist, etc...
3295 * LOCKING:
3296 * None.
3298 static void ata_dev_xfermask(struct ata_device *dev)
3300 struct ata_port *ap = dev->ap;
3301 struct ata_host *host = ap->host;
3302 unsigned long xfer_mask;
3304 /* controller modes available */
3305 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3306 ap->mwdma_mask, ap->udma_mask);
3308 /* Apply cable rule here. Don't apply it early because when
3309 * we handle hot plug the cable type can itself change.
3311 if (ap->cbl == ATA_CBL_PATA40)
3312 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3313 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3314 * host side are checked drive side as well. Cases where we know a
3315 * 40wire cable is used safely for 80 are not checked here.
3317 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3318 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3321 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3322 dev->mwdma_mask, dev->udma_mask);
3323 xfer_mask &= ata_id_xfermask(dev->id);
3326 * CFA Advanced TrueIDE timings are not allowed on a shared
3327 * cable
3329 if (ata_dev_pair(dev)) {
3330 /* No PIO5 or PIO6 */
3331 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3332 /* No MWDMA3 or MWDMA 4 */
3333 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3336 if (ata_dma_blacklisted(dev)) {
3337 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3338 ata_dev_printk(dev, KERN_WARNING,
3339 "device is on DMA blacklist, disabling DMA\n");
3342 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3343 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3344 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3345 "other device, disabling DMA\n");
3348 if (ap->ops->mode_filter)
3349 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3351 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3352 &dev->mwdma_mask, &dev->udma_mask);
3356 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3357 * @dev: Device to which command will be sent
3359 * Issue SET FEATURES - XFER MODE command to device @dev
3360 * on port @ap.
3362 * LOCKING:
3363 * PCI/etc. bus probe sem.
3365 * RETURNS:
3366 * 0 on success, AC_ERR_* mask otherwise.
3369 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3371 struct ata_taskfile tf;
3372 unsigned int err_mask;
3374 /* set up set-features taskfile */
3375 DPRINTK("set features - xfer mode\n");
3377 ata_tf_init(dev, &tf);
3378 tf.command = ATA_CMD_SET_FEATURES;
3379 tf.feature = SETFEATURES_XFER;
3380 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3381 tf.protocol = ATA_PROT_NODATA;
3382 tf.nsect = dev->xfer_mode;
3384 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3386 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3387 return err_mask;
3391 * ata_dev_init_params - Issue INIT DEV PARAMS command
3392 * @dev: Device to which command will be sent
3393 * @heads: Number of heads (taskfile parameter)
3394 * @sectors: Number of sectors (taskfile parameter)
3396 * LOCKING:
3397 * Kernel thread context (may sleep)
3399 * RETURNS:
3400 * 0 on success, AC_ERR_* mask otherwise.
3402 static unsigned int ata_dev_init_params(struct ata_device *dev,
3403 u16 heads, u16 sectors)
3405 struct ata_taskfile tf;
3406 unsigned int err_mask;
3408 /* Number of sectors per track 1-255. Number of heads 1-16 */
3409 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3410 return AC_ERR_INVALID;
3412 /* set up init dev params taskfile */
3413 DPRINTK("init dev params \n");
3415 ata_tf_init(dev, &tf);
3416 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3417 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3418 tf.protocol = ATA_PROT_NODATA;
3419 tf.nsect = sectors;
3420 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3422 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3424 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3425 return err_mask;
3429 * ata_sg_clean - Unmap DMA memory associated with command
3430 * @qc: Command containing DMA memory to be released
3432 * Unmap all mapped DMA memory associated with this command.
3434 * LOCKING:
3435 * spin_lock_irqsave(host lock)
3437 void ata_sg_clean(struct ata_queued_cmd *qc)
3439 struct ata_port *ap = qc->ap;
3440 struct scatterlist *sg = qc->__sg;
3441 int dir = qc->dma_dir;
3442 void *pad_buf = NULL;
3444 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3445 WARN_ON(sg == NULL);
3447 if (qc->flags & ATA_QCFLAG_SINGLE)
3448 WARN_ON(qc->n_elem > 1);
3450 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3452 /* if we padded the buffer out to 32-bit bound, and data
3453 * xfer direction is from-device, we must copy from the
3454 * pad buffer back into the supplied buffer
3456 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3457 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3459 if (qc->flags & ATA_QCFLAG_SG) {
3460 if (qc->n_elem)
3461 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3462 /* restore last sg */
3463 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3464 if (pad_buf) {
3465 struct scatterlist *psg = &qc->pad_sgent;
3466 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3467 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3468 kunmap_atomic(addr, KM_IRQ0);
3470 } else {
3471 if (qc->n_elem)
3472 dma_unmap_single(ap->dev,
3473 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3474 dir);
3475 /* restore sg */
3476 sg->length += qc->pad_len;
3477 if (pad_buf)
3478 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3479 pad_buf, qc->pad_len);
3482 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3483 qc->__sg = NULL;
3487 * ata_fill_sg - Fill PCI IDE PRD table
3488 * @qc: Metadata associated with taskfile to be transferred
3490 * Fill PCI IDE PRD (scatter-gather) table with segments
3491 * associated with the current disk command.
3493 * LOCKING:
3494 * spin_lock_irqsave(host lock)
3497 static void ata_fill_sg(struct ata_queued_cmd *qc)
3499 struct ata_port *ap = qc->ap;
3500 struct scatterlist *sg;
3501 unsigned int idx;
3503 WARN_ON(qc->__sg == NULL);
3504 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3506 idx = 0;
3507 ata_for_each_sg(sg, qc) {
3508 u32 addr, offset;
3509 u32 sg_len, len;
3511 /* determine if physical DMA addr spans 64K boundary.
3512 * Note h/w doesn't support 64-bit, so we unconditionally
3513 * truncate dma_addr_t to u32.
3515 addr = (u32) sg_dma_address(sg);
3516 sg_len = sg_dma_len(sg);
3518 while (sg_len) {
3519 offset = addr & 0xffff;
3520 len = sg_len;
3521 if ((offset + sg_len) > 0x10000)
3522 len = 0x10000 - offset;
3524 ap->prd[idx].addr = cpu_to_le32(addr);
3525 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3526 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3528 idx++;
3529 sg_len -= len;
3530 addr += len;
3534 if (idx)
3535 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3538 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3539 * @qc: Metadata associated with taskfile to check
3541 * Allow low-level driver to filter ATA PACKET commands, returning
3542 * a status indicating whether or not it is OK to use DMA for the
3543 * supplied PACKET command.
3545 * LOCKING:
3546 * spin_lock_irqsave(host lock)
3548 * RETURNS: 0 when ATAPI DMA can be used
3549 * nonzero otherwise
3551 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3553 struct ata_port *ap = qc->ap;
3554 int rc = 0; /* Assume ATAPI DMA is OK by default */
3556 if (ap->ops->check_atapi_dma)
3557 rc = ap->ops->check_atapi_dma(qc);
3559 return rc;
3562 * ata_qc_prep - Prepare taskfile for submission
3563 * @qc: Metadata associated with taskfile to be prepared
3565 * Prepare ATA taskfile for submission.
3567 * LOCKING:
3568 * spin_lock_irqsave(host lock)
3570 void ata_qc_prep(struct ata_queued_cmd *qc)
3572 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3573 return;
3575 ata_fill_sg(qc);
3578 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3581 * ata_sg_init_one - Associate command with memory buffer
3582 * @qc: Command to be associated
3583 * @buf: Memory buffer
3584 * @buflen: Length of memory buffer, in bytes.
3586 * Initialize the data-related elements of queued_cmd @qc
3587 * to point to a single memory buffer, @buf of byte length @buflen.
3589 * LOCKING:
3590 * spin_lock_irqsave(host lock)
3593 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3595 qc->flags |= ATA_QCFLAG_SINGLE;
3597 qc->__sg = &qc->sgent;
3598 qc->n_elem = 1;
3599 qc->orig_n_elem = 1;
3600 qc->buf_virt = buf;
3601 qc->nbytes = buflen;
3603 sg_init_one(&qc->sgent, buf, buflen);
3607 * ata_sg_init - Associate command with scatter-gather table.
3608 * @qc: Command to be associated
3609 * @sg: Scatter-gather table.
3610 * @n_elem: Number of elements in s/g table.
3612 * Initialize the data-related elements of queued_cmd @qc
3613 * to point to a scatter-gather table @sg, containing @n_elem
3614 * elements.
3616 * LOCKING:
3617 * spin_lock_irqsave(host lock)
3620 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3621 unsigned int n_elem)
3623 qc->flags |= ATA_QCFLAG_SG;
3624 qc->__sg = sg;
3625 qc->n_elem = n_elem;
3626 qc->orig_n_elem = n_elem;
3630 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3631 * @qc: Command with memory buffer to be mapped.
3633 * DMA-map the memory buffer associated with queued_cmd @qc.
3635 * LOCKING:
3636 * spin_lock_irqsave(host lock)
3638 * RETURNS:
3639 * Zero on success, negative on error.
3642 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3644 struct ata_port *ap = qc->ap;
3645 int dir = qc->dma_dir;
3646 struct scatterlist *sg = qc->__sg;
3647 dma_addr_t dma_address;
3648 int trim_sg = 0;
3650 /* we must lengthen transfers to end on a 32-bit boundary */
3651 qc->pad_len = sg->length & 3;
3652 if (qc->pad_len) {
3653 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3654 struct scatterlist *psg = &qc->pad_sgent;
3656 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3658 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3660 if (qc->tf.flags & ATA_TFLAG_WRITE)
3661 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3662 qc->pad_len);
3664 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3665 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3666 /* trim sg */
3667 sg->length -= qc->pad_len;
3668 if (sg->length == 0)
3669 trim_sg = 1;
3671 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3672 sg->length, qc->pad_len);
3675 if (trim_sg) {
3676 qc->n_elem--;
3677 goto skip_map;
3680 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3681 sg->length, dir);
3682 if (dma_mapping_error(dma_address)) {
3683 /* restore sg */
3684 sg->length += qc->pad_len;
3685 return -1;
3688 sg_dma_address(sg) = dma_address;
3689 sg_dma_len(sg) = sg->length;
3691 skip_map:
3692 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3693 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3695 return 0;
3699 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3700 * @qc: Command with scatter-gather table to be mapped.
3702 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3704 * LOCKING:
3705 * spin_lock_irqsave(host lock)
3707 * RETURNS:
3708 * Zero on success, negative on error.
3712 static int ata_sg_setup(struct ata_queued_cmd *qc)
3714 struct ata_port *ap = qc->ap;
3715 struct scatterlist *sg = qc->__sg;
3716 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3717 int n_elem, pre_n_elem, dir, trim_sg = 0;
3719 VPRINTK("ENTER, ata%u\n", ap->id);
3720 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3722 /* we must lengthen transfers to end on a 32-bit boundary */
3723 qc->pad_len = lsg->length & 3;
3724 if (qc->pad_len) {
3725 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3726 struct scatterlist *psg = &qc->pad_sgent;
3727 unsigned int offset;
3729 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3731 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3734 * psg->page/offset are used to copy to-be-written
3735 * data in this function or read data in ata_sg_clean.
3737 offset = lsg->offset + lsg->length - qc->pad_len;
3738 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3739 psg->offset = offset_in_page(offset);
3741 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3742 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3743 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3744 kunmap_atomic(addr, KM_IRQ0);
3747 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3748 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3749 /* trim last sg */
3750 lsg->length -= qc->pad_len;
3751 if (lsg->length == 0)
3752 trim_sg = 1;
3754 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3755 qc->n_elem - 1, lsg->length, qc->pad_len);
3758 pre_n_elem = qc->n_elem;
3759 if (trim_sg && pre_n_elem)
3760 pre_n_elem--;
3762 if (!pre_n_elem) {
3763 n_elem = 0;
3764 goto skip_map;
3767 dir = qc->dma_dir;
3768 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3769 if (n_elem < 1) {
3770 /* restore last sg */
3771 lsg->length += qc->pad_len;
3772 return -1;
3775 DPRINTK("%d sg elements mapped\n", n_elem);
3777 skip_map:
3778 qc->n_elem = n_elem;
3780 return 0;
3784 * swap_buf_le16 - swap halves of 16-bit words in place
3785 * @buf: Buffer to swap
3786 * @buf_words: Number of 16-bit words in buffer.
3788 * Swap halves of 16-bit words if needed to convert from
3789 * little-endian byte order to native cpu byte order, or
3790 * vice-versa.
3792 * LOCKING:
3793 * Inherited from caller.
3795 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3797 #ifdef __BIG_ENDIAN
3798 unsigned int i;
3800 for (i = 0; i < buf_words; i++)
3801 buf[i] = le16_to_cpu(buf[i]);
3802 #endif /* __BIG_ENDIAN */
3806 * ata_data_xfer - Transfer data by PIO
3807 * @adev: device to target
3808 * @buf: data buffer
3809 * @buflen: buffer length
3810 * @write_data: read/write
3812 * Transfer data from/to the device data register by PIO.
3814 * LOCKING:
3815 * Inherited from caller.
3817 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3818 unsigned int buflen, int write_data)
3820 struct ata_port *ap = adev->ap;
3821 unsigned int words = buflen >> 1;
3823 /* Transfer multiple of 2 bytes */
3824 if (write_data)
3825 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3826 else
3827 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3829 /* Transfer trailing 1 byte, if any. */
3830 if (unlikely(buflen & 0x01)) {
3831 u16 align_buf[1] = { 0 };
3832 unsigned char *trailing_buf = buf + buflen - 1;
3834 if (write_data) {
3835 memcpy(align_buf, trailing_buf, 1);
3836 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3837 } else {
3838 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3839 memcpy(trailing_buf, align_buf, 1);
3845 * ata_data_xfer_noirq - Transfer data by PIO
3846 * @adev: device to target
3847 * @buf: data buffer
3848 * @buflen: buffer length
3849 * @write_data: read/write
3851 * Transfer data from/to the device data register by PIO. Do the
3852 * transfer with interrupts disabled.
3854 * LOCKING:
3855 * Inherited from caller.
3857 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3858 unsigned int buflen, int write_data)
3860 unsigned long flags;
3861 local_irq_save(flags);
3862 ata_data_xfer(adev, buf, buflen, write_data);
3863 local_irq_restore(flags);
3868 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3869 * @qc: Command on going
3871 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3873 * LOCKING:
3874 * Inherited from caller.
3877 static void ata_pio_sector(struct ata_queued_cmd *qc)
3879 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3880 struct scatterlist *sg = qc->__sg;
3881 struct ata_port *ap = qc->ap;
3882 struct page *page;
3883 unsigned int offset;
3884 unsigned char *buf;
3886 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
3887 ap->hsm_task_state = HSM_ST_LAST;
3889 page = sg[qc->cursg].page;
3890 offset = sg[qc->cursg].offset + qc->cursg_ofs;
3892 /* get the current page and offset */
3893 page = nth_page(page, (offset >> PAGE_SHIFT));
3894 offset %= PAGE_SIZE;
3896 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3898 if (PageHighMem(page)) {
3899 unsigned long flags;
3901 /* FIXME: use a bounce buffer */
3902 local_irq_save(flags);
3903 buf = kmap_atomic(page, KM_IRQ0);
3905 /* do the actual data transfer */
3906 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3908 kunmap_atomic(buf, KM_IRQ0);
3909 local_irq_restore(flags);
3910 } else {
3911 buf = page_address(page);
3912 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3915 qc->curbytes += ATA_SECT_SIZE;
3916 qc->cursg_ofs += ATA_SECT_SIZE;
3918 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
3919 qc->cursg++;
3920 qc->cursg_ofs = 0;
3925 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3926 * @qc: Command on going
3928 * Transfer one or many ATA_SECT_SIZE of data from/to the
3929 * ATA device for the DRQ request.
3931 * LOCKING:
3932 * Inherited from caller.
3935 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3937 if (is_multi_taskfile(&qc->tf)) {
3938 /* READ/WRITE MULTIPLE */
3939 unsigned int nsect;
3941 WARN_ON(qc->dev->multi_count == 0);
3943 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
3944 qc->dev->multi_count);
3945 while (nsect--)
3946 ata_pio_sector(qc);
3947 } else
3948 ata_pio_sector(qc);
3952 * atapi_send_cdb - Write CDB bytes to hardware
3953 * @ap: Port to which ATAPI device is attached.
3954 * @qc: Taskfile currently active
3956 * When device has indicated its readiness to accept
3957 * a CDB, this function is called. Send the CDB.
3959 * LOCKING:
3960 * caller.
3963 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3965 /* send SCSI cdb */
3966 DPRINTK("send cdb\n");
3967 WARN_ON(qc->dev->cdb_len < 12);
3969 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3970 ata_altstatus(ap); /* flush */
3972 switch (qc->tf.protocol) {
3973 case ATA_PROT_ATAPI:
3974 ap->hsm_task_state = HSM_ST;
3975 break;
3976 case ATA_PROT_ATAPI_NODATA:
3977 ap->hsm_task_state = HSM_ST_LAST;
3978 break;
3979 case ATA_PROT_ATAPI_DMA:
3980 ap->hsm_task_state = HSM_ST_LAST;
3981 /* initiate bmdma */
3982 ap->ops->bmdma_start(qc);
3983 break;
3988 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3989 * @qc: Command on going
3990 * @bytes: number of bytes
3992 * Transfer Transfer data from/to the ATAPI device.
3994 * LOCKING:
3995 * Inherited from caller.
3999 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4001 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4002 struct scatterlist *sg = qc->__sg;
4003 struct ata_port *ap = qc->ap;
4004 struct page *page;
4005 unsigned char *buf;
4006 unsigned int offset, count;
4008 if (qc->curbytes + bytes >= qc->nbytes)
4009 ap->hsm_task_state = HSM_ST_LAST;
4011 next_sg:
4012 if (unlikely(qc->cursg >= qc->n_elem)) {
4014 * The end of qc->sg is reached and the device expects
4015 * more data to transfer. In order not to overrun qc->sg
4016 * and fulfill length specified in the byte count register,
4017 * - for read case, discard trailing data from the device
4018 * - for write case, padding zero data to the device
4020 u16 pad_buf[1] = { 0 };
4021 unsigned int words = bytes >> 1;
4022 unsigned int i;
4024 if (words) /* warning if bytes > 1 */
4025 ata_dev_printk(qc->dev, KERN_WARNING,
4026 "%u bytes trailing data\n", bytes);
4028 for (i = 0; i < words; i++)
4029 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4031 ap->hsm_task_state = HSM_ST_LAST;
4032 return;
4035 sg = &qc->__sg[qc->cursg];
4037 page = sg->page;
4038 offset = sg->offset + qc->cursg_ofs;
4040 /* get the current page and offset */
4041 page = nth_page(page, (offset >> PAGE_SHIFT));
4042 offset %= PAGE_SIZE;
4044 /* don't overrun current sg */
4045 count = min(sg->length - qc->cursg_ofs, bytes);
4047 /* don't cross page boundaries */
4048 count = min(count, (unsigned int)PAGE_SIZE - offset);
4050 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4052 if (PageHighMem(page)) {
4053 unsigned long flags;
4055 /* FIXME: use bounce buffer */
4056 local_irq_save(flags);
4057 buf = kmap_atomic(page, KM_IRQ0);
4059 /* do the actual data transfer */
4060 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4062 kunmap_atomic(buf, KM_IRQ0);
4063 local_irq_restore(flags);
4064 } else {
4065 buf = page_address(page);
4066 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4069 bytes -= count;
4070 qc->curbytes += count;
4071 qc->cursg_ofs += count;
4073 if (qc->cursg_ofs == sg->length) {
4074 qc->cursg++;
4075 qc->cursg_ofs = 0;
4078 if (bytes)
4079 goto next_sg;
4083 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4084 * @qc: Command on going
4086 * Transfer Transfer data from/to the ATAPI device.
4088 * LOCKING:
4089 * Inherited from caller.
4092 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4094 struct ata_port *ap = qc->ap;
4095 struct ata_device *dev = qc->dev;
4096 unsigned int ireason, bc_lo, bc_hi, bytes;
4097 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4099 /* Abuse qc->result_tf for temp storage of intermediate TF
4100 * here to save some kernel stack usage.
4101 * For normal completion, qc->result_tf is not relevant. For
4102 * error, qc->result_tf is later overwritten by ata_qc_complete().
4103 * So, the correctness of qc->result_tf is not affected.
4105 ap->ops->tf_read(ap, &qc->result_tf);
4106 ireason = qc->result_tf.nsect;
4107 bc_lo = qc->result_tf.lbam;
4108 bc_hi = qc->result_tf.lbah;
4109 bytes = (bc_hi << 8) | bc_lo;
4111 /* shall be cleared to zero, indicating xfer of data */
4112 if (ireason & (1 << 0))
4113 goto err_out;
4115 /* make sure transfer direction matches expected */
4116 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4117 if (do_write != i_write)
4118 goto err_out;
4120 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4122 __atapi_pio_bytes(qc, bytes);
4124 return;
4126 err_out:
4127 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4128 qc->err_mask |= AC_ERR_HSM;
4129 ap->hsm_task_state = HSM_ST_ERR;
4133 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4134 * @ap: the target ata_port
4135 * @qc: qc on going
4137 * RETURNS:
4138 * 1 if ok in workqueue, 0 otherwise.
4141 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4143 if (qc->tf.flags & ATA_TFLAG_POLLING)
4144 return 1;
4146 if (ap->hsm_task_state == HSM_ST_FIRST) {
4147 if (qc->tf.protocol == ATA_PROT_PIO &&
4148 (qc->tf.flags & ATA_TFLAG_WRITE))
4149 return 1;
4151 if (is_atapi_taskfile(&qc->tf) &&
4152 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4153 return 1;
4156 return 0;
4160 * ata_hsm_qc_complete - finish a qc running on standard HSM
4161 * @qc: Command to complete
4162 * @in_wq: 1 if called from workqueue, 0 otherwise
4164 * Finish @qc which is running on standard HSM.
4166 * LOCKING:
4167 * If @in_wq is zero, spin_lock_irqsave(host lock).
4168 * Otherwise, none on entry and grabs host lock.
4170 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4172 struct ata_port *ap = qc->ap;
4173 unsigned long flags;
4175 if (ap->ops->error_handler) {
4176 if (in_wq) {
4177 spin_lock_irqsave(ap->lock, flags);
4179 /* EH might have kicked in while host lock is
4180 * released.
4182 qc = ata_qc_from_tag(ap, qc->tag);
4183 if (qc) {
4184 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4185 ap->ops->irq_on(ap);
4186 ata_qc_complete(qc);
4187 } else
4188 ata_port_freeze(ap);
4191 spin_unlock_irqrestore(ap->lock, flags);
4192 } else {
4193 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4194 ata_qc_complete(qc);
4195 else
4196 ata_port_freeze(ap);
4198 } else {
4199 if (in_wq) {
4200 spin_lock_irqsave(ap->lock, flags);
4201 ap->ops->irq_on(ap);
4202 ata_qc_complete(qc);
4203 spin_unlock_irqrestore(ap->lock, flags);
4204 } else
4205 ata_qc_complete(qc);
4208 ata_altstatus(ap); /* flush */
4212 * ata_hsm_move - move the HSM to the next state.
4213 * @ap: the target ata_port
4214 * @qc: qc on going
4215 * @status: current device status
4216 * @in_wq: 1 if called from workqueue, 0 otherwise
4218 * RETURNS:
4219 * 1 when poll next status needed, 0 otherwise.
4221 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4222 u8 status, int in_wq)
4224 unsigned long flags = 0;
4225 int poll_next;
4227 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4229 /* Make sure ata_qc_issue_prot() does not throw things
4230 * like DMA polling into the workqueue. Notice that
4231 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4233 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4235 fsm_start:
4236 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4237 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4239 switch (ap->hsm_task_state) {
4240 case HSM_ST_FIRST:
4241 /* Send first data block or PACKET CDB */
4243 /* If polling, we will stay in the work queue after
4244 * sending the data. Otherwise, interrupt handler
4245 * takes over after sending the data.
4247 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4249 /* check device status */
4250 if (unlikely((status & ATA_DRQ) == 0)) {
4251 /* handle BSY=0, DRQ=0 as error */
4252 if (likely(status & (ATA_ERR | ATA_DF)))
4253 /* device stops HSM for abort/error */
4254 qc->err_mask |= AC_ERR_DEV;
4255 else
4256 /* HSM violation. Let EH handle this */
4257 qc->err_mask |= AC_ERR_HSM;
4259 ap->hsm_task_state = HSM_ST_ERR;
4260 goto fsm_start;
4263 /* Device should not ask for data transfer (DRQ=1)
4264 * when it finds something wrong.
4265 * We ignore DRQ here and stop the HSM by
4266 * changing hsm_task_state to HSM_ST_ERR and
4267 * let the EH abort the command or reset the device.
4269 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4270 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4271 ap->id, status);
4272 qc->err_mask |= AC_ERR_HSM;
4273 ap->hsm_task_state = HSM_ST_ERR;
4274 goto fsm_start;
4277 /* Send the CDB (atapi) or the first data block (ata pio out).
4278 * During the state transition, interrupt handler shouldn't
4279 * be invoked before the data transfer is complete and
4280 * hsm_task_state is changed. Hence, the following locking.
4282 if (in_wq)
4283 spin_lock_irqsave(ap->lock, flags);
4285 if (qc->tf.protocol == ATA_PROT_PIO) {
4286 /* PIO data out protocol.
4287 * send first data block.
4290 /* ata_pio_sectors() might change the state
4291 * to HSM_ST_LAST. so, the state is changed here
4292 * before ata_pio_sectors().
4294 ap->hsm_task_state = HSM_ST;
4295 ata_pio_sectors(qc);
4296 ata_altstatus(ap); /* flush */
4297 } else
4298 /* send CDB */
4299 atapi_send_cdb(ap, qc);
4301 if (in_wq)
4302 spin_unlock_irqrestore(ap->lock, flags);
4304 /* if polling, ata_pio_task() handles the rest.
4305 * otherwise, interrupt handler takes over from here.
4307 break;
4309 case HSM_ST:
4310 /* complete command or read/write the data register */
4311 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4312 /* ATAPI PIO protocol */
4313 if ((status & ATA_DRQ) == 0) {
4314 /* No more data to transfer or device error.
4315 * Device error will be tagged in HSM_ST_LAST.
4317 ap->hsm_task_state = HSM_ST_LAST;
4318 goto fsm_start;
4321 /* Device should not ask for data transfer (DRQ=1)
4322 * when it finds something wrong.
4323 * We ignore DRQ here and stop the HSM by
4324 * changing hsm_task_state to HSM_ST_ERR and
4325 * let the EH abort the command or reset the device.
4327 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4328 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4329 ap->id, status);
4330 qc->err_mask |= AC_ERR_HSM;
4331 ap->hsm_task_state = HSM_ST_ERR;
4332 goto fsm_start;
4335 atapi_pio_bytes(qc);
4337 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4338 /* bad ireason reported by device */
4339 goto fsm_start;
4341 } else {
4342 /* ATA PIO protocol */
4343 if (unlikely((status & ATA_DRQ) == 0)) {
4344 /* handle BSY=0, DRQ=0 as error */
4345 if (likely(status & (ATA_ERR | ATA_DF)))
4346 /* device stops HSM for abort/error */
4347 qc->err_mask |= AC_ERR_DEV;
4348 else
4349 /* HSM violation. Let EH handle this.
4350 * Phantom devices also trigger this
4351 * condition. Mark hint.
4353 qc->err_mask |= AC_ERR_HSM |
4354 AC_ERR_NODEV_HINT;
4356 ap->hsm_task_state = HSM_ST_ERR;
4357 goto fsm_start;
4360 /* For PIO reads, some devices may ask for
4361 * data transfer (DRQ=1) alone with ERR=1.
4362 * We respect DRQ here and transfer one
4363 * block of junk data before changing the
4364 * hsm_task_state to HSM_ST_ERR.
4366 * For PIO writes, ERR=1 DRQ=1 doesn't make
4367 * sense since the data block has been
4368 * transferred to the device.
4370 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4371 /* data might be corrputed */
4372 qc->err_mask |= AC_ERR_DEV;
4374 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4375 ata_pio_sectors(qc);
4376 ata_altstatus(ap);
4377 status = ata_wait_idle(ap);
4380 if (status & (ATA_BUSY | ATA_DRQ))
4381 qc->err_mask |= AC_ERR_HSM;
4383 /* ata_pio_sectors() might change the
4384 * state to HSM_ST_LAST. so, the state
4385 * is changed after ata_pio_sectors().
4387 ap->hsm_task_state = HSM_ST_ERR;
4388 goto fsm_start;
4391 ata_pio_sectors(qc);
4393 if (ap->hsm_task_state == HSM_ST_LAST &&
4394 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4395 /* all data read */
4396 ata_altstatus(ap);
4397 status = ata_wait_idle(ap);
4398 goto fsm_start;
4402 ata_altstatus(ap); /* flush */
4403 poll_next = 1;
4404 break;
4406 case HSM_ST_LAST:
4407 if (unlikely(!ata_ok(status))) {
4408 qc->err_mask |= __ac_err_mask(status);
4409 ap->hsm_task_state = HSM_ST_ERR;
4410 goto fsm_start;
4413 /* no more data to transfer */
4414 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4415 ap->id, qc->dev->devno, status);
4417 WARN_ON(qc->err_mask);
4419 ap->hsm_task_state = HSM_ST_IDLE;
4421 /* complete taskfile transaction */
4422 ata_hsm_qc_complete(qc, in_wq);
4424 poll_next = 0;
4425 break;
4427 case HSM_ST_ERR:
4428 /* make sure qc->err_mask is available to
4429 * know what's wrong and recover
4431 WARN_ON(qc->err_mask == 0);
4433 ap->hsm_task_state = HSM_ST_IDLE;
4435 /* complete taskfile transaction */
4436 ata_hsm_qc_complete(qc, in_wq);
4438 poll_next = 0;
4439 break;
4440 default:
4441 poll_next = 0;
4442 BUG();
4445 return poll_next;
4448 static void ata_pio_task(struct work_struct *work)
4450 struct ata_port *ap =
4451 container_of(work, struct ata_port, port_task.work);
4452 struct ata_queued_cmd *qc = ap->port_task_data;
4453 u8 status;
4454 int poll_next;
4456 fsm_start:
4457 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4460 * This is purely heuristic. This is a fast path.
4461 * Sometimes when we enter, BSY will be cleared in
4462 * a chk-status or two. If not, the drive is probably seeking
4463 * or something. Snooze for a couple msecs, then
4464 * chk-status again. If still busy, queue delayed work.
4466 status = ata_busy_wait(ap, ATA_BUSY, 5);
4467 if (status & ATA_BUSY) {
4468 msleep(2);
4469 status = ata_busy_wait(ap, ATA_BUSY, 10);
4470 if (status & ATA_BUSY) {
4471 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4472 return;
4476 /* move the HSM */
4477 poll_next = ata_hsm_move(ap, qc, status, 1);
4479 /* another command or interrupt handler
4480 * may be running at this point.
4482 if (poll_next)
4483 goto fsm_start;
4487 * ata_qc_new - Request an available ATA command, for queueing
4488 * @ap: Port associated with device @dev
4489 * @dev: Device from whom we request an available command structure
4491 * LOCKING:
4492 * None.
4495 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4497 struct ata_queued_cmd *qc = NULL;
4498 unsigned int i;
4500 /* no command while frozen */
4501 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4502 return NULL;
4504 /* the last tag is reserved for internal command. */
4505 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4506 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4507 qc = __ata_qc_from_tag(ap, i);
4508 break;
4511 if (qc)
4512 qc->tag = i;
4514 return qc;
4518 * ata_qc_new_init - Request an available ATA command, and initialize it
4519 * @dev: Device from whom we request an available command structure
4521 * LOCKING:
4522 * None.
4525 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4527 struct ata_port *ap = dev->ap;
4528 struct ata_queued_cmd *qc;
4530 qc = ata_qc_new(ap);
4531 if (qc) {
4532 qc->scsicmd = NULL;
4533 qc->ap = ap;
4534 qc->dev = dev;
4536 ata_qc_reinit(qc);
4539 return qc;
4543 * ata_qc_free - free unused ata_queued_cmd
4544 * @qc: Command to complete
4546 * Designed to free unused ata_queued_cmd object
4547 * in case something prevents using it.
4549 * LOCKING:
4550 * spin_lock_irqsave(host lock)
4552 void ata_qc_free(struct ata_queued_cmd *qc)
4554 struct ata_port *ap = qc->ap;
4555 unsigned int tag;
4557 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4559 qc->flags = 0;
4560 tag = qc->tag;
4561 if (likely(ata_tag_valid(tag))) {
4562 qc->tag = ATA_TAG_POISON;
4563 clear_bit(tag, &ap->qc_allocated);
4567 void __ata_qc_complete(struct ata_queued_cmd *qc)
4569 struct ata_port *ap = qc->ap;
4571 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4572 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4574 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4575 ata_sg_clean(qc);
4577 /* command should be marked inactive atomically with qc completion */
4578 if (qc->tf.protocol == ATA_PROT_NCQ)
4579 ap->sactive &= ~(1 << qc->tag);
4580 else
4581 ap->active_tag = ATA_TAG_POISON;
4583 /* atapi: mark qc as inactive to prevent the interrupt handler
4584 * from completing the command twice later, before the error handler
4585 * is called. (when rc != 0 and atapi request sense is needed)
4587 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4588 ap->qc_active &= ~(1 << qc->tag);
4590 /* call completion callback */
4591 qc->complete_fn(qc);
4594 static void fill_result_tf(struct ata_queued_cmd *qc)
4596 struct ata_port *ap = qc->ap;
4598 ap->ops->tf_read(ap, &qc->result_tf);
4599 qc->result_tf.flags = qc->tf.flags;
4603 * ata_qc_complete - Complete an active ATA command
4604 * @qc: Command to complete
4605 * @err_mask: ATA Status register contents
4607 * Indicate to the mid and upper layers that an ATA
4608 * command has completed, with either an ok or not-ok status.
4610 * LOCKING:
4611 * spin_lock_irqsave(host lock)
4613 void ata_qc_complete(struct ata_queued_cmd *qc)
4615 struct ata_port *ap = qc->ap;
4617 /* XXX: New EH and old EH use different mechanisms to
4618 * synchronize EH with regular execution path.
4620 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4621 * Normal execution path is responsible for not accessing a
4622 * failed qc. libata core enforces the rule by returning NULL
4623 * from ata_qc_from_tag() for failed qcs.
4625 * Old EH depends on ata_qc_complete() nullifying completion
4626 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4627 * not synchronize with interrupt handler. Only PIO task is
4628 * taken care of.
4630 if (ap->ops->error_handler) {
4631 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4633 if (unlikely(qc->err_mask))
4634 qc->flags |= ATA_QCFLAG_FAILED;
4636 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4637 if (!ata_tag_internal(qc->tag)) {
4638 /* always fill result TF for failed qc */
4639 fill_result_tf(qc);
4640 ata_qc_schedule_eh(qc);
4641 return;
4645 /* read result TF if requested */
4646 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4647 fill_result_tf(qc);
4649 __ata_qc_complete(qc);
4650 } else {
4651 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4652 return;
4654 /* read result TF if failed or requested */
4655 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4656 fill_result_tf(qc);
4658 __ata_qc_complete(qc);
4663 * ata_qc_complete_multiple - Complete multiple qcs successfully
4664 * @ap: port in question
4665 * @qc_active: new qc_active mask
4666 * @finish_qc: LLDD callback invoked before completing a qc
4668 * Complete in-flight commands. This functions is meant to be
4669 * called from low-level driver's interrupt routine to complete
4670 * requests normally. ap->qc_active and @qc_active is compared
4671 * and commands are completed accordingly.
4673 * LOCKING:
4674 * spin_lock_irqsave(host lock)
4676 * RETURNS:
4677 * Number of completed commands on success, -errno otherwise.
4679 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4680 void (*finish_qc)(struct ata_queued_cmd *))
4682 int nr_done = 0;
4683 u32 done_mask;
4684 int i;
4686 done_mask = ap->qc_active ^ qc_active;
4688 if (unlikely(done_mask & qc_active)) {
4689 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4690 "(%08x->%08x)\n", ap->qc_active, qc_active);
4691 return -EINVAL;
4694 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4695 struct ata_queued_cmd *qc;
4697 if (!(done_mask & (1 << i)))
4698 continue;
4700 if ((qc = ata_qc_from_tag(ap, i))) {
4701 if (finish_qc)
4702 finish_qc(qc);
4703 ata_qc_complete(qc);
4704 nr_done++;
4708 return nr_done;
4711 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4713 struct ata_port *ap = qc->ap;
4715 switch (qc->tf.protocol) {
4716 case ATA_PROT_NCQ:
4717 case ATA_PROT_DMA:
4718 case ATA_PROT_ATAPI_DMA:
4719 return 1;
4721 case ATA_PROT_ATAPI:
4722 case ATA_PROT_PIO:
4723 if (ap->flags & ATA_FLAG_PIO_DMA)
4724 return 1;
4726 /* fall through */
4728 default:
4729 return 0;
4732 /* never reached */
4736 * ata_qc_issue - issue taskfile to device
4737 * @qc: command to issue to device
4739 * Prepare an ATA command to submission to device.
4740 * This includes mapping the data into a DMA-able
4741 * area, filling in the S/G table, and finally
4742 * writing the taskfile to hardware, starting the command.
4744 * LOCKING:
4745 * spin_lock_irqsave(host lock)
4747 void ata_qc_issue(struct ata_queued_cmd *qc)
4749 struct ata_port *ap = qc->ap;
4751 /* Make sure only one non-NCQ command is outstanding. The
4752 * check is skipped for old EH because it reuses active qc to
4753 * request ATAPI sense.
4755 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4757 if (qc->tf.protocol == ATA_PROT_NCQ) {
4758 WARN_ON(ap->sactive & (1 << qc->tag));
4759 ap->sactive |= 1 << qc->tag;
4760 } else {
4761 WARN_ON(ap->sactive);
4762 ap->active_tag = qc->tag;
4765 qc->flags |= ATA_QCFLAG_ACTIVE;
4766 ap->qc_active |= 1 << qc->tag;
4768 if (ata_should_dma_map(qc)) {
4769 if (qc->flags & ATA_QCFLAG_SG) {
4770 if (ata_sg_setup(qc))
4771 goto sg_err;
4772 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4773 if (ata_sg_setup_one(qc))
4774 goto sg_err;
4776 } else {
4777 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4780 ap->ops->qc_prep(qc);
4782 qc->err_mask |= ap->ops->qc_issue(qc);
4783 if (unlikely(qc->err_mask))
4784 goto err;
4785 return;
4787 sg_err:
4788 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4789 qc->err_mask |= AC_ERR_SYSTEM;
4790 err:
4791 ata_qc_complete(qc);
4795 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4796 * @qc: command to issue to device
4798 * Using various libata functions and hooks, this function
4799 * starts an ATA command. ATA commands are grouped into
4800 * classes called "protocols", and issuing each type of protocol
4801 * is slightly different.
4803 * May be used as the qc_issue() entry in ata_port_operations.
4805 * LOCKING:
4806 * spin_lock_irqsave(host lock)
4808 * RETURNS:
4809 * Zero on success, AC_ERR_* mask on failure
4812 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4814 struct ata_port *ap = qc->ap;
4816 /* Use polling pio if the LLD doesn't handle
4817 * interrupt driven pio and atapi CDB interrupt.
4819 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4820 switch (qc->tf.protocol) {
4821 case ATA_PROT_PIO:
4822 case ATA_PROT_NODATA:
4823 case ATA_PROT_ATAPI:
4824 case ATA_PROT_ATAPI_NODATA:
4825 qc->tf.flags |= ATA_TFLAG_POLLING;
4826 break;
4827 case ATA_PROT_ATAPI_DMA:
4828 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4829 /* see ata_dma_blacklisted() */
4830 BUG();
4831 break;
4832 default:
4833 break;
4837 /* Some controllers show flaky interrupt behavior after
4838 * setting xfer mode. Use polling instead.
4840 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4841 qc->tf.feature == SETFEATURES_XFER) &&
4842 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4843 qc->tf.flags |= ATA_TFLAG_POLLING;
4845 /* select the device */
4846 ata_dev_select(ap, qc->dev->devno, 1, 0);
4848 /* start the command */
4849 switch (qc->tf.protocol) {
4850 case ATA_PROT_NODATA:
4851 if (qc->tf.flags & ATA_TFLAG_POLLING)
4852 ata_qc_set_polling(qc);
4854 ata_tf_to_host(ap, &qc->tf);
4855 ap->hsm_task_state = HSM_ST_LAST;
4857 if (qc->tf.flags & ATA_TFLAG_POLLING)
4858 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4860 break;
4862 case ATA_PROT_DMA:
4863 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4865 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4866 ap->ops->bmdma_setup(qc); /* set up bmdma */
4867 ap->ops->bmdma_start(qc); /* initiate bmdma */
4868 ap->hsm_task_state = HSM_ST_LAST;
4869 break;
4871 case ATA_PROT_PIO:
4872 if (qc->tf.flags & ATA_TFLAG_POLLING)
4873 ata_qc_set_polling(qc);
4875 ata_tf_to_host(ap, &qc->tf);
4877 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4878 /* PIO data out protocol */
4879 ap->hsm_task_state = HSM_ST_FIRST;
4880 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4882 /* always send first data block using
4883 * the ata_pio_task() codepath.
4885 } else {
4886 /* PIO data in protocol */
4887 ap->hsm_task_state = HSM_ST;
4889 if (qc->tf.flags & ATA_TFLAG_POLLING)
4890 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4892 /* if polling, ata_pio_task() handles the rest.
4893 * otherwise, interrupt handler takes over from here.
4897 break;
4899 case ATA_PROT_ATAPI:
4900 case ATA_PROT_ATAPI_NODATA:
4901 if (qc->tf.flags & ATA_TFLAG_POLLING)
4902 ata_qc_set_polling(qc);
4904 ata_tf_to_host(ap, &qc->tf);
4906 ap->hsm_task_state = HSM_ST_FIRST;
4908 /* send cdb by polling if no cdb interrupt */
4909 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4910 (qc->tf.flags & ATA_TFLAG_POLLING))
4911 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4912 break;
4914 case ATA_PROT_ATAPI_DMA:
4915 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4917 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4918 ap->ops->bmdma_setup(qc); /* set up bmdma */
4919 ap->hsm_task_state = HSM_ST_FIRST;
4921 /* send cdb by polling if no cdb interrupt */
4922 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4923 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4924 break;
4926 default:
4927 WARN_ON(1);
4928 return AC_ERR_SYSTEM;
4931 return 0;
4935 * ata_host_intr - Handle host interrupt for given (port, task)
4936 * @ap: Port on which interrupt arrived (possibly...)
4937 * @qc: Taskfile currently active in engine
4939 * Handle host interrupt for given queued command. Currently,
4940 * only DMA interrupts are handled. All other commands are
4941 * handled via polling with interrupts disabled (nIEN bit).
4943 * LOCKING:
4944 * spin_lock_irqsave(host lock)
4946 * RETURNS:
4947 * One if interrupt was handled, zero if not (shared irq).
4950 inline unsigned int ata_host_intr (struct ata_port *ap,
4951 struct ata_queued_cmd *qc)
4953 struct ata_eh_info *ehi = &ap->eh_info;
4954 u8 status, host_stat = 0;
4956 VPRINTK("ata%u: protocol %d task_state %d\n",
4957 ap->id, qc->tf.protocol, ap->hsm_task_state);
4959 /* Check whether we are expecting interrupt in this state */
4960 switch (ap->hsm_task_state) {
4961 case HSM_ST_FIRST:
4962 /* Some pre-ATAPI-4 devices assert INTRQ
4963 * at this state when ready to receive CDB.
4966 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4967 * The flag was turned on only for atapi devices.
4968 * No need to check is_atapi_taskfile(&qc->tf) again.
4970 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4971 goto idle_irq;
4972 break;
4973 case HSM_ST_LAST:
4974 if (qc->tf.protocol == ATA_PROT_DMA ||
4975 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4976 /* check status of DMA engine */
4977 host_stat = ap->ops->bmdma_status(ap);
4978 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4980 /* if it's not our irq... */
4981 if (!(host_stat & ATA_DMA_INTR))
4982 goto idle_irq;
4984 /* before we do anything else, clear DMA-Start bit */
4985 ap->ops->bmdma_stop(qc);
4987 if (unlikely(host_stat & ATA_DMA_ERR)) {
4988 /* error when transfering data to/from memory */
4989 qc->err_mask |= AC_ERR_HOST_BUS;
4990 ap->hsm_task_state = HSM_ST_ERR;
4993 break;
4994 case HSM_ST:
4995 break;
4996 default:
4997 goto idle_irq;
5000 /* check altstatus */
5001 status = ata_altstatus(ap);
5002 if (status & ATA_BUSY)
5003 goto idle_irq;
5005 /* check main status, clearing INTRQ */
5006 status = ata_chk_status(ap);
5007 if (unlikely(status & ATA_BUSY))
5008 goto idle_irq;
5010 /* ack bmdma irq events */
5011 ap->ops->irq_clear(ap);
5013 ata_hsm_move(ap, qc, status, 0);
5015 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5016 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5017 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5019 return 1; /* irq handled */
5021 idle_irq:
5022 ap->stats.idle_irq++;
5024 #ifdef ATA_IRQ_TRAP
5025 if ((ap->stats.idle_irq % 1000) == 0) {
5026 ap->ops->irq_ack(ap, 0); /* debug trap */
5027 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5028 return 1;
5030 #endif
5031 return 0; /* irq not handled */
5035 * ata_interrupt - Default ATA host interrupt handler
5036 * @irq: irq line (unused)
5037 * @dev_instance: pointer to our ata_host information structure
5039 * Default interrupt handler for PCI IDE devices. Calls
5040 * ata_host_intr() for each port that is not disabled.
5042 * LOCKING:
5043 * Obtains host lock during operation.
5045 * RETURNS:
5046 * IRQ_NONE or IRQ_HANDLED.
5049 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5051 struct ata_host *host = dev_instance;
5052 unsigned int i;
5053 unsigned int handled = 0;
5054 unsigned long flags;
5056 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5057 spin_lock_irqsave(&host->lock, flags);
5059 for (i = 0; i < host->n_ports; i++) {
5060 struct ata_port *ap;
5062 ap = host->ports[i];
5063 if (ap &&
5064 !(ap->flags & ATA_FLAG_DISABLED)) {
5065 struct ata_queued_cmd *qc;
5067 qc = ata_qc_from_tag(ap, ap->active_tag);
5068 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5069 (qc->flags & ATA_QCFLAG_ACTIVE))
5070 handled |= ata_host_intr(ap, qc);
5074 spin_unlock_irqrestore(&host->lock, flags);
5076 return IRQ_RETVAL(handled);
5080 * sata_scr_valid - test whether SCRs are accessible
5081 * @ap: ATA port to test SCR accessibility for
5083 * Test whether SCRs are accessible for @ap.
5085 * LOCKING:
5086 * None.
5088 * RETURNS:
5089 * 1 if SCRs are accessible, 0 otherwise.
5091 int sata_scr_valid(struct ata_port *ap)
5093 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5097 * sata_scr_read - read SCR register of the specified port
5098 * @ap: ATA port to read SCR for
5099 * @reg: SCR to read
5100 * @val: Place to store read value
5102 * Read SCR register @reg of @ap into *@val. This function is
5103 * guaranteed to succeed if the cable type of the port is SATA
5104 * and the port implements ->scr_read.
5106 * LOCKING:
5107 * None.
5109 * RETURNS:
5110 * 0 on success, negative errno on failure.
5112 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5114 if (sata_scr_valid(ap)) {
5115 *val = ap->ops->scr_read(ap, reg);
5116 return 0;
5118 return -EOPNOTSUPP;
5122 * sata_scr_write - write SCR register of the specified port
5123 * @ap: ATA port to write SCR for
5124 * @reg: SCR to write
5125 * @val: value to write
5127 * Write @val to SCR register @reg of @ap. This function is
5128 * guaranteed to succeed if the cable type of the port is SATA
5129 * and the port implements ->scr_read.
5131 * LOCKING:
5132 * None.
5134 * RETURNS:
5135 * 0 on success, negative errno on failure.
5137 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5139 if (sata_scr_valid(ap)) {
5140 ap->ops->scr_write(ap, reg, val);
5141 return 0;
5143 return -EOPNOTSUPP;
5147 * sata_scr_write_flush - write SCR register of the specified port and flush
5148 * @ap: ATA port to write SCR for
5149 * @reg: SCR to write
5150 * @val: value to write
5152 * This function is identical to sata_scr_write() except that this
5153 * function performs flush after writing to the register.
5155 * LOCKING:
5156 * None.
5158 * RETURNS:
5159 * 0 on success, negative errno on failure.
5161 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5163 if (sata_scr_valid(ap)) {
5164 ap->ops->scr_write(ap, reg, val);
5165 ap->ops->scr_read(ap, reg);
5166 return 0;
5168 return -EOPNOTSUPP;
5172 * ata_port_online - test whether the given port is online
5173 * @ap: ATA port to test
5175 * Test whether @ap is online. Note that this function returns 0
5176 * if online status of @ap cannot be obtained, so
5177 * ata_port_online(ap) != !ata_port_offline(ap).
5179 * LOCKING:
5180 * None.
5182 * RETURNS:
5183 * 1 if the port online status is available and online.
5185 int ata_port_online(struct ata_port *ap)
5187 u32 sstatus;
5189 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5190 return 1;
5191 return 0;
5195 * ata_port_offline - test whether the given port is offline
5196 * @ap: ATA port to test
5198 * Test whether @ap is offline. Note that this function returns
5199 * 0 if offline status of @ap cannot be obtained, so
5200 * ata_port_online(ap) != !ata_port_offline(ap).
5202 * LOCKING:
5203 * None.
5205 * RETURNS:
5206 * 1 if the port offline status is available and offline.
5208 int ata_port_offline(struct ata_port *ap)
5210 u32 sstatus;
5212 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5213 return 1;
5214 return 0;
5217 int ata_flush_cache(struct ata_device *dev)
5219 unsigned int err_mask;
5220 u8 cmd;
5222 if (!ata_try_flush_cache(dev))
5223 return 0;
5225 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5226 cmd = ATA_CMD_FLUSH_EXT;
5227 else
5228 cmd = ATA_CMD_FLUSH;
5230 err_mask = ata_do_simple_cmd(dev, cmd);
5231 if (err_mask) {
5232 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5233 return -EIO;
5236 return 0;
5239 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5240 unsigned int action, unsigned int ehi_flags,
5241 int wait)
5243 unsigned long flags;
5244 int i, rc;
5246 for (i = 0; i < host->n_ports; i++) {
5247 struct ata_port *ap = host->ports[i];
5249 /* Previous resume operation might still be in
5250 * progress. Wait for PM_PENDING to clear.
5252 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5253 ata_port_wait_eh(ap);
5254 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5257 /* request PM ops to EH */
5258 spin_lock_irqsave(ap->lock, flags);
5260 ap->pm_mesg = mesg;
5261 if (wait) {
5262 rc = 0;
5263 ap->pm_result = &rc;
5266 ap->pflags |= ATA_PFLAG_PM_PENDING;
5267 ap->eh_info.action |= action;
5268 ap->eh_info.flags |= ehi_flags;
5270 ata_port_schedule_eh(ap);
5272 spin_unlock_irqrestore(ap->lock, flags);
5274 /* wait and check result */
5275 if (wait) {
5276 ata_port_wait_eh(ap);
5277 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5278 if (rc)
5279 return rc;
5283 return 0;
5287 * ata_host_suspend - suspend host
5288 * @host: host to suspend
5289 * @mesg: PM message
5291 * Suspend @host. Actual operation is performed by EH. This
5292 * function requests EH to perform PM operations and waits for EH
5293 * to finish.
5295 * LOCKING:
5296 * Kernel thread context (may sleep).
5298 * RETURNS:
5299 * 0 on success, -errno on failure.
5301 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5303 int i, j, rc;
5305 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5306 if (rc)
5307 goto fail;
5309 /* EH is quiescent now. Fail if we have any ready device.
5310 * This happens if hotplug occurs between completion of device
5311 * suspension and here.
5313 for (i = 0; i < host->n_ports; i++) {
5314 struct ata_port *ap = host->ports[i];
5316 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5317 struct ata_device *dev = &ap->device[j];
5319 if (ata_dev_ready(dev)) {
5320 ata_port_printk(ap, KERN_WARNING,
5321 "suspend failed, device %d "
5322 "still active\n", dev->devno);
5323 rc = -EBUSY;
5324 goto fail;
5329 host->dev->power.power_state = mesg;
5330 return 0;
5332 fail:
5333 ata_host_resume(host);
5334 return rc;
5338 * ata_host_resume - resume host
5339 * @host: host to resume
5341 * Resume @host. Actual operation is performed by EH. This
5342 * function requests EH to perform PM operations and returns.
5343 * Note that all resume operations are performed parallely.
5345 * LOCKING:
5346 * Kernel thread context (may sleep).
5348 void ata_host_resume(struct ata_host *host)
5350 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5351 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5352 host->dev->power.power_state = PMSG_ON;
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5362 * May be used as the port_start() entry in ata_port_operations.
5364 * LOCKING:
5365 * Inherited from caller.
5367 int ata_port_start(struct ata_port *ap)
5369 struct device *dev = ap->dev;
5370 int rc;
5372 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5373 GFP_KERNEL);
5374 if (!ap->prd)
5375 return -ENOMEM;
5377 rc = ata_pad_alloc(ap, dev);
5378 if (rc)
5379 return rc;
5381 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5382 (unsigned long long)ap->prd_dma);
5383 return 0;
5387 * ata_dev_init - Initialize an ata_device structure
5388 * @dev: Device structure to initialize
5390 * Initialize @dev in preparation for probing.
5392 * LOCKING:
5393 * Inherited from caller.
5395 void ata_dev_init(struct ata_device *dev)
5397 struct ata_port *ap = dev->ap;
5398 unsigned long flags;
5400 /* SATA spd limit is bound to the first device */
5401 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5403 /* High bits of dev->flags are used to record warm plug
5404 * requests which occur asynchronously. Synchronize using
5405 * host lock.
5407 spin_lock_irqsave(ap->lock, flags);
5408 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5409 spin_unlock_irqrestore(ap->lock, flags);
5411 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5412 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5413 dev->pio_mask = UINT_MAX;
5414 dev->mwdma_mask = UINT_MAX;
5415 dev->udma_mask = UINT_MAX;
5419 * ata_port_init - Initialize an ata_port structure
5420 * @ap: Structure to initialize
5421 * @host: Collection of hosts to which @ap belongs
5422 * @ent: Probe information provided by low-level driver
5423 * @port_no: Port number associated with this ata_port
5425 * Initialize a new ata_port structure.
5427 * LOCKING:
5428 * Inherited from caller.
5430 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5431 const struct ata_probe_ent *ent, unsigned int port_no)
5433 unsigned int i;
5435 ap->lock = &host->lock;
5436 ap->flags = ATA_FLAG_DISABLED;
5437 ap->id = ata_unique_id++;
5438 ap->ctl = ATA_DEVCTL_OBS;
5439 ap->host = host;
5440 ap->dev = ent->dev;
5441 ap->port_no = port_no;
5442 if (port_no == 1 && ent->pinfo2) {
5443 ap->pio_mask = ent->pinfo2->pio_mask;
5444 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5445 ap->udma_mask = ent->pinfo2->udma_mask;
5446 ap->flags |= ent->pinfo2->flags;
5447 ap->ops = ent->pinfo2->port_ops;
5448 } else {
5449 ap->pio_mask = ent->pio_mask;
5450 ap->mwdma_mask = ent->mwdma_mask;
5451 ap->udma_mask = ent->udma_mask;
5452 ap->flags |= ent->port_flags;
5453 ap->ops = ent->port_ops;
5455 ap->hw_sata_spd_limit = UINT_MAX;
5456 ap->active_tag = ATA_TAG_POISON;
5457 ap->last_ctl = 0xFF;
5459 #if defined(ATA_VERBOSE_DEBUG)
5460 /* turn on all debugging levels */
5461 ap->msg_enable = 0x00FF;
5462 #elif defined(ATA_DEBUG)
5463 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5464 #else
5465 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5466 #endif
5468 INIT_DELAYED_WORK(&ap->port_task, NULL);
5469 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5470 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5471 INIT_LIST_HEAD(&ap->eh_done_q);
5472 init_waitqueue_head(&ap->eh_wait_q);
5474 /* set cable type */
5475 ap->cbl = ATA_CBL_NONE;
5476 if (ap->flags & ATA_FLAG_SATA)
5477 ap->cbl = ATA_CBL_SATA;
5479 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5480 struct ata_device *dev = &ap->device[i];
5481 dev->ap = ap;
5482 dev->devno = i;
5483 ata_dev_init(dev);
5486 #ifdef ATA_IRQ_TRAP
5487 ap->stats.unhandled_irq = 1;
5488 ap->stats.idle_irq = 1;
5489 #endif
5491 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5495 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5496 * @ap: ATA port to initialize SCSI host for
5497 * @shost: SCSI host associated with @ap
5499 * Initialize SCSI host @shost associated with ATA port @ap.
5501 * LOCKING:
5502 * Inherited from caller.
5504 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5506 ap->scsi_host = shost;
5508 shost->unique_id = ap->id;
5509 shost->max_id = 16;
5510 shost->max_lun = 1;
5511 shost->max_channel = 1;
5512 shost->max_cmd_len = 12;
5516 * ata_port_add - Attach low-level ATA driver to system
5517 * @ent: Information provided by low-level driver
5518 * @host: Collections of ports to which we add
5519 * @port_no: Port number associated with this host
5521 * Attach low-level ATA driver to system.
5523 * LOCKING:
5524 * PCI/etc. bus probe sem.
5526 * RETURNS:
5527 * New ata_port on success, for NULL on error.
5529 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5530 struct ata_host *host,
5531 unsigned int port_no)
5533 struct Scsi_Host *shost;
5534 struct ata_port *ap;
5536 DPRINTK("ENTER\n");
5538 if (!ent->port_ops->error_handler &&
5539 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5540 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5541 port_no);
5542 return NULL;
5545 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5546 if (!shost)
5547 return NULL;
5549 shost->transportt = &ata_scsi_transport_template;
5551 ap = ata_shost_to_port(shost);
5553 ata_port_init(ap, host, ent, port_no);
5554 ata_port_init_shost(ap, shost);
5556 return ap;
5559 static void ata_host_release(struct device *gendev, void *res)
5561 struct ata_host *host = dev_get_drvdata(gendev);
5562 int i;
5564 for (i = 0; i < host->n_ports; i++) {
5565 struct ata_port *ap = host->ports[i];
5567 if (!ap)
5568 continue;
5570 if (ap->ops->port_stop)
5571 ap->ops->port_stop(ap);
5573 scsi_host_put(ap->scsi_host);
5576 if (host->ops->host_stop)
5577 host->ops->host_stop(host);
5581 * ata_sas_host_init - Initialize a host struct
5582 * @host: host to initialize
5583 * @dev: device host is attached to
5584 * @flags: host flags
5585 * @ops: port_ops
5587 * LOCKING:
5588 * PCI/etc. bus probe sem.
5592 void ata_host_init(struct ata_host *host, struct device *dev,
5593 unsigned long flags, const struct ata_port_operations *ops)
5595 spin_lock_init(&host->lock);
5596 host->dev = dev;
5597 host->flags = flags;
5598 host->ops = ops;
5602 * ata_device_add - Register hardware device with ATA and SCSI layers
5603 * @ent: Probe information describing hardware device to be registered
5605 * This function processes the information provided in the probe
5606 * information struct @ent, allocates the necessary ATA and SCSI
5607 * host information structures, initializes them, and registers
5608 * everything with requisite kernel subsystems.
5610 * This function requests irqs, probes the ATA bus, and probes
5611 * the SCSI bus.
5613 * LOCKING:
5614 * PCI/etc. bus probe sem.
5616 * RETURNS:
5617 * Number of ports registered. Zero on error (no ports registered).
5619 int ata_device_add(const struct ata_probe_ent *ent)
5621 unsigned int i;
5622 struct device *dev = ent->dev;
5623 struct ata_host *host;
5624 int rc;
5626 DPRINTK("ENTER\n");
5628 if (ent->irq == 0) {
5629 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5630 return 0;
5633 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5634 return 0;
5636 /* alloc a container for our list of ATA ports (buses) */
5637 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5638 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5639 if (!host)
5640 goto err_out;
5641 devres_add(dev, host);
5642 dev_set_drvdata(dev, host);
5644 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5645 host->n_ports = ent->n_ports;
5646 host->irq = ent->irq;
5647 host->irq2 = ent->irq2;
5648 host->iomap = ent->iomap;
5649 host->private_data = ent->private_data;
5651 /* register each port bound to this device */
5652 for (i = 0; i < host->n_ports; i++) {
5653 struct ata_port *ap;
5654 unsigned long xfer_mode_mask;
5655 int irq_line = ent->irq;
5657 ap = ata_port_add(ent, host, i);
5658 host->ports[i] = ap;
5659 if (!ap)
5660 goto err_out;
5662 /* dummy? */
5663 if (ent->dummy_port_mask & (1 << i)) {
5664 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5665 ap->ops = &ata_dummy_port_ops;
5666 continue;
5669 /* start port */
5670 rc = ap->ops->port_start(ap);
5671 if (rc) {
5672 host->ports[i] = NULL;
5673 scsi_host_put(ap->scsi_host);
5674 goto err_out;
5677 /* Report the secondary IRQ for second channel legacy */
5678 if (i == 1 && ent->irq2)
5679 irq_line = ent->irq2;
5681 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5682 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5683 (ap->pio_mask << ATA_SHIFT_PIO);
5685 /* print per-port info to dmesg */
5686 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5687 "ctl 0x%p bmdma 0x%p irq %d\n",
5688 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5689 ata_mode_string(xfer_mode_mask),
5690 ap->ioaddr.cmd_addr,
5691 ap->ioaddr.ctl_addr,
5692 ap->ioaddr.bmdma_addr,
5693 irq_line);
5695 /* freeze port before requesting IRQ */
5696 ata_eh_freeze_port(ap);
5699 /* obtain irq, that may be shared between channels */
5700 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5701 ent->irq_flags, DRV_NAME, host);
5702 if (rc) {
5703 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5704 ent->irq, rc);
5705 goto err_out;
5708 /* do we have a second IRQ for the other channel, eg legacy mode */
5709 if (ent->irq2) {
5710 /* We will get weird core code crashes later if this is true
5711 so trap it now */
5712 BUG_ON(ent->irq == ent->irq2);
5714 rc = devm_request_irq(dev, ent->irq2,
5715 ent->port_ops->irq_handler, ent->irq_flags,
5716 DRV_NAME, host);
5717 if (rc) {
5718 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5719 ent->irq2, rc);
5720 goto err_out;
5724 /* resource acquisition complete */
5725 devres_remove_group(dev, ata_device_add);
5727 /* perform each probe synchronously */
5728 DPRINTK("probe begin\n");
5729 for (i = 0; i < host->n_ports; i++) {
5730 struct ata_port *ap = host->ports[i];
5731 u32 scontrol;
5732 int rc;
5734 /* init sata_spd_limit to the current value */
5735 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5736 int spd = (scontrol >> 4) & 0xf;
5737 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5739 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5741 rc = scsi_add_host(ap->scsi_host, dev);
5742 if (rc) {
5743 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5744 /* FIXME: do something useful here */
5745 /* FIXME: handle unconditional calls to
5746 * scsi_scan_host and ata_host_remove, below,
5747 * at the very least
5751 if (ap->ops->error_handler) {
5752 struct ata_eh_info *ehi = &ap->eh_info;
5753 unsigned long flags;
5755 ata_port_probe(ap);
5757 /* kick EH for boot probing */
5758 spin_lock_irqsave(ap->lock, flags);
5760 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5761 ehi->action |= ATA_EH_SOFTRESET;
5762 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5764 ap->pflags |= ATA_PFLAG_LOADING;
5765 ata_port_schedule_eh(ap);
5767 spin_unlock_irqrestore(ap->lock, flags);
5769 /* wait for EH to finish */
5770 ata_port_wait_eh(ap);
5771 } else {
5772 DPRINTK("ata%u: bus probe begin\n", ap->id);
5773 rc = ata_bus_probe(ap);
5774 DPRINTK("ata%u: bus probe end\n", ap->id);
5776 if (rc) {
5777 /* FIXME: do something useful here?
5778 * Current libata behavior will
5779 * tear down everything when
5780 * the module is removed
5781 * or the h/w is unplugged.
5787 /* probes are done, now scan each port's disk(s) */
5788 DPRINTK("host probe begin\n");
5789 for (i = 0; i < host->n_ports; i++) {
5790 struct ata_port *ap = host->ports[i];
5792 ata_scsi_scan_host(ap);
5795 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5796 return ent->n_ports; /* success */
5798 err_out:
5799 devres_release_group(dev, ata_device_add);
5800 dev_set_drvdata(dev, NULL);
5801 VPRINTK("EXIT, returning %d\n", rc);
5802 return 0;
5806 * ata_port_detach - Detach ATA port in prepration of device removal
5807 * @ap: ATA port to be detached
5809 * Detach all ATA devices and the associated SCSI devices of @ap;
5810 * then, remove the associated SCSI host. @ap is guaranteed to
5811 * be quiescent on return from this function.
5813 * LOCKING:
5814 * Kernel thread context (may sleep).
5816 void ata_port_detach(struct ata_port *ap)
5818 unsigned long flags;
5819 int i;
5821 if (!ap->ops->error_handler)
5822 goto skip_eh;
5824 /* tell EH we're leaving & flush EH */
5825 spin_lock_irqsave(ap->lock, flags);
5826 ap->pflags |= ATA_PFLAG_UNLOADING;
5827 spin_unlock_irqrestore(ap->lock, flags);
5829 ata_port_wait_eh(ap);
5831 /* EH is now guaranteed to see UNLOADING, so no new device
5832 * will be attached. Disable all existing devices.
5834 spin_lock_irqsave(ap->lock, flags);
5836 for (i = 0; i < ATA_MAX_DEVICES; i++)
5837 ata_dev_disable(&ap->device[i]);
5839 spin_unlock_irqrestore(ap->lock, flags);
5841 /* Final freeze & EH. All in-flight commands are aborted. EH
5842 * will be skipped and retrials will be terminated with bad
5843 * target.
5845 spin_lock_irqsave(ap->lock, flags);
5846 ata_port_freeze(ap); /* won't be thawed */
5847 spin_unlock_irqrestore(ap->lock, flags);
5849 ata_port_wait_eh(ap);
5851 /* Flush hotplug task. The sequence is similar to
5852 * ata_port_flush_task().
5854 flush_workqueue(ata_aux_wq);
5855 cancel_delayed_work(&ap->hotplug_task);
5856 flush_workqueue(ata_aux_wq);
5858 skip_eh:
5859 /* remove the associated SCSI host */
5860 scsi_remove_host(ap->scsi_host);
5864 * ata_host_detach - Detach all ports of an ATA host
5865 * @host: Host to detach
5867 * Detach all ports of @host.
5869 * LOCKING:
5870 * Kernel thread context (may sleep).
5872 void ata_host_detach(struct ata_host *host)
5874 int i;
5876 for (i = 0; i < host->n_ports; i++)
5877 ata_port_detach(host->ports[i]);
5880 struct ata_probe_ent *
5881 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5883 struct ata_probe_ent *probe_ent;
5885 /* XXX - the following if can go away once all LLDs are managed */
5886 if (!list_empty(&dev->devres_head))
5887 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5888 else
5889 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5890 if (!probe_ent) {
5891 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5892 kobject_name(&(dev->kobj)));
5893 return NULL;
5896 INIT_LIST_HEAD(&probe_ent->node);
5897 probe_ent->dev = dev;
5899 probe_ent->sht = port->sht;
5900 probe_ent->port_flags = port->flags;
5901 probe_ent->pio_mask = port->pio_mask;
5902 probe_ent->mwdma_mask = port->mwdma_mask;
5903 probe_ent->udma_mask = port->udma_mask;
5904 probe_ent->port_ops = port->port_ops;
5905 probe_ent->private_data = port->private_data;
5907 return probe_ent;
5911 * ata_std_ports - initialize ioaddr with standard port offsets.
5912 * @ioaddr: IO address structure to be initialized
5914 * Utility function which initializes data_addr, error_addr,
5915 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5916 * device_addr, status_addr, and command_addr to standard offsets
5917 * relative to cmd_addr.
5919 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5922 void ata_std_ports(struct ata_ioports *ioaddr)
5924 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5925 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5926 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5927 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5928 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5929 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5930 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5931 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5932 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5933 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5937 #ifdef CONFIG_PCI
5940 * ata_pci_remove_one - PCI layer callback for device removal
5941 * @pdev: PCI device that was removed
5943 * PCI layer indicates to libata via this hook that hot-unplug or
5944 * module unload event has occurred. Detach all ports. Resource
5945 * release is handled via devres.
5947 * LOCKING:
5948 * Inherited from PCI layer (may sleep).
5950 void ata_pci_remove_one(struct pci_dev *pdev)
5952 struct device *dev = pci_dev_to_dev(pdev);
5953 struct ata_host *host = dev_get_drvdata(dev);
5955 ata_host_detach(host);
5958 /* move to PCI subsystem */
5959 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5961 unsigned long tmp = 0;
5963 switch (bits->width) {
5964 case 1: {
5965 u8 tmp8 = 0;
5966 pci_read_config_byte(pdev, bits->reg, &tmp8);
5967 tmp = tmp8;
5968 break;
5970 case 2: {
5971 u16 tmp16 = 0;
5972 pci_read_config_word(pdev, bits->reg, &tmp16);
5973 tmp = tmp16;
5974 break;
5976 case 4: {
5977 u32 tmp32 = 0;
5978 pci_read_config_dword(pdev, bits->reg, &tmp32);
5979 tmp = tmp32;
5980 break;
5983 default:
5984 return -EINVAL;
5987 tmp &= bits->mask;
5989 return (tmp == bits->val) ? 1 : 0;
5992 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5994 pci_save_state(pdev);
5996 if (mesg.event == PM_EVENT_SUSPEND) {
5997 pci_disable_device(pdev);
5998 pci_set_power_state(pdev, PCI_D3hot);
6002 int ata_pci_device_do_resume(struct pci_dev *pdev)
6004 int rc;
6006 pci_set_power_state(pdev, PCI_D0);
6007 pci_restore_state(pdev);
6009 rc = pcim_enable_device(pdev);
6010 if (rc) {
6011 dev_printk(KERN_ERR, &pdev->dev,
6012 "failed to enable device after resume (%d)\n", rc);
6013 return rc;
6016 pci_set_master(pdev);
6017 return 0;
6020 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6022 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6023 int rc = 0;
6025 rc = ata_host_suspend(host, mesg);
6026 if (rc)
6027 return rc;
6029 ata_pci_device_do_suspend(pdev, mesg);
6031 return 0;
6034 int ata_pci_device_resume(struct pci_dev *pdev)
6036 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6037 int rc;
6039 rc = ata_pci_device_do_resume(pdev);
6040 if (rc == 0)
6041 ata_host_resume(host);
6042 return rc;
6044 #endif /* CONFIG_PCI */
6047 static int __init ata_init(void)
6049 ata_probe_timeout *= HZ;
6050 ata_wq = create_workqueue("ata");
6051 if (!ata_wq)
6052 return -ENOMEM;
6054 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6055 if (!ata_aux_wq) {
6056 destroy_workqueue(ata_wq);
6057 return -ENOMEM;
6060 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6061 return 0;
6064 static void __exit ata_exit(void)
6066 destroy_workqueue(ata_wq);
6067 destroy_workqueue(ata_aux_wq);
6070 subsys_initcall(ata_init);
6071 module_exit(ata_exit);
6073 static unsigned long ratelimit_time;
6074 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6076 int ata_ratelimit(void)
6078 int rc;
6079 unsigned long flags;
6081 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6083 if (time_after(jiffies, ratelimit_time)) {
6084 rc = 1;
6085 ratelimit_time = jiffies + (HZ/5);
6086 } else
6087 rc = 0;
6089 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6091 return rc;
6095 * ata_wait_register - wait until register value changes
6096 * @reg: IO-mapped register
6097 * @mask: Mask to apply to read register value
6098 * @val: Wait condition
6099 * @interval_msec: polling interval in milliseconds
6100 * @timeout_msec: timeout in milliseconds
6102 * Waiting for some bits of register to change is a common
6103 * operation for ATA controllers. This function reads 32bit LE
6104 * IO-mapped register @reg and tests for the following condition.
6106 * (*@reg & mask) != val
6108 * If the condition is met, it returns; otherwise, the process is
6109 * repeated after @interval_msec until timeout.
6111 * LOCKING:
6112 * Kernel thread context (may sleep)
6114 * RETURNS:
6115 * The final register value.
6117 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6118 unsigned long interval_msec,
6119 unsigned long timeout_msec)
6121 unsigned long timeout;
6122 u32 tmp;
6124 tmp = ioread32(reg);
6126 /* Calculate timeout _after_ the first read to make sure
6127 * preceding writes reach the controller before starting to
6128 * eat away the timeout.
6130 timeout = jiffies + (timeout_msec * HZ) / 1000;
6132 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6133 msleep(interval_msec);
6134 tmp = ioread32(reg);
6137 return tmp;
6141 * Dummy port_ops
6143 static void ata_dummy_noret(struct ata_port *ap) { }
6144 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6145 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6147 static u8 ata_dummy_check_status(struct ata_port *ap)
6149 return ATA_DRDY;
6152 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6154 return AC_ERR_SYSTEM;
6157 const struct ata_port_operations ata_dummy_port_ops = {
6158 .port_disable = ata_port_disable,
6159 .check_status = ata_dummy_check_status,
6160 .check_altstatus = ata_dummy_check_status,
6161 .dev_select = ata_noop_dev_select,
6162 .qc_prep = ata_noop_qc_prep,
6163 .qc_issue = ata_dummy_qc_issue,
6164 .freeze = ata_dummy_noret,
6165 .thaw = ata_dummy_noret,
6166 .error_handler = ata_dummy_noret,
6167 .post_internal_cmd = ata_dummy_qc_noret,
6168 .irq_clear = ata_dummy_noret,
6169 .port_start = ata_dummy_ret0,
6170 .port_stop = ata_dummy_noret,
6174 * libata is essentially a library of internal helper functions for
6175 * low-level ATA host controller drivers. As such, the API/ABI is
6176 * likely to change as new drivers are added and updated.
6177 * Do not depend on ABI/API stability.
6180 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6181 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6182 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6183 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6184 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6185 EXPORT_SYMBOL_GPL(ata_std_ports);
6186 EXPORT_SYMBOL_GPL(ata_host_init);
6187 EXPORT_SYMBOL_GPL(ata_device_add);
6188 EXPORT_SYMBOL_GPL(ata_host_detach);
6189 EXPORT_SYMBOL_GPL(ata_sg_init);
6190 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6191 EXPORT_SYMBOL_GPL(ata_hsm_move);
6192 EXPORT_SYMBOL_GPL(ata_qc_complete);
6193 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6194 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6195 EXPORT_SYMBOL_GPL(ata_tf_load);
6196 EXPORT_SYMBOL_GPL(ata_tf_read);
6197 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6198 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6199 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6200 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6201 EXPORT_SYMBOL_GPL(ata_check_status);
6202 EXPORT_SYMBOL_GPL(ata_altstatus);
6203 EXPORT_SYMBOL_GPL(ata_exec_command);
6204 EXPORT_SYMBOL_GPL(ata_port_start);
6205 EXPORT_SYMBOL_GPL(ata_interrupt);
6206 EXPORT_SYMBOL_GPL(ata_data_xfer);
6207 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6208 EXPORT_SYMBOL_GPL(ata_qc_prep);
6209 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6210 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6211 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6212 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6213 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6214 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6215 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6216 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6217 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6218 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6219 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6220 EXPORT_SYMBOL_GPL(ata_port_probe);
6221 EXPORT_SYMBOL_GPL(sata_set_spd);
6222 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6223 EXPORT_SYMBOL_GPL(sata_phy_resume);
6224 EXPORT_SYMBOL_GPL(sata_phy_reset);
6225 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6226 EXPORT_SYMBOL_GPL(ata_bus_reset);
6227 EXPORT_SYMBOL_GPL(ata_std_prereset);
6228 EXPORT_SYMBOL_GPL(ata_std_softreset);
6229 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6230 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6231 EXPORT_SYMBOL_GPL(ata_std_postreset);
6232 EXPORT_SYMBOL_GPL(ata_dev_classify);
6233 EXPORT_SYMBOL_GPL(ata_dev_pair);
6234 EXPORT_SYMBOL_GPL(ata_port_disable);
6235 EXPORT_SYMBOL_GPL(ata_ratelimit);
6236 EXPORT_SYMBOL_GPL(ata_wait_register);
6237 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6238 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6239 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6240 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6241 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6242 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6243 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6244 EXPORT_SYMBOL_GPL(ata_host_intr);
6245 EXPORT_SYMBOL_GPL(sata_scr_valid);
6246 EXPORT_SYMBOL_GPL(sata_scr_read);
6247 EXPORT_SYMBOL_GPL(sata_scr_write);
6248 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6249 EXPORT_SYMBOL_GPL(ata_port_online);
6250 EXPORT_SYMBOL_GPL(ata_port_offline);
6251 EXPORT_SYMBOL_GPL(ata_host_suspend);
6252 EXPORT_SYMBOL_GPL(ata_host_resume);
6253 EXPORT_SYMBOL_GPL(ata_id_string);
6254 EXPORT_SYMBOL_GPL(ata_id_c_string);
6255 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6256 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6258 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6259 EXPORT_SYMBOL_GPL(ata_timing_compute);
6260 EXPORT_SYMBOL_GPL(ata_timing_merge);
6262 #ifdef CONFIG_PCI
6263 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6264 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6265 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6266 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6267 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6268 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6269 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6270 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6271 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6272 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6273 #endif /* CONFIG_PCI */
6275 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6276 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6278 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6279 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6280 EXPORT_SYMBOL_GPL(ata_port_abort);
6281 EXPORT_SYMBOL_GPL(ata_port_freeze);
6282 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6283 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6284 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6285 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6286 EXPORT_SYMBOL_GPL(ata_do_eh);
6287 EXPORT_SYMBOL_GPL(ata_irq_on);
6288 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6289 EXPORT_SYMBOL_GPL(ata_irq_ack);
6290 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);