2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode
->i_sb
)->s_journal
,
56 &EXT4_I(inode
)->jinode
,
60 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
67 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
68 (inode
->i_sb
->s_blocksize
>> 9) : 0;
70 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
86 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 BUFFER_TRACE(bh
, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 bh
, is_metadata
, inode
->i_mode
,
97 test_opt(inode
->i_sb
, DATA_FLAGS
));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
104 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
105 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
107 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle
, bh
);
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
117 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
119 ext4_abort(inode
->i_sb
, __func__
,
120 "error %d when attempting revoke", err
);
121 BUFFER_TRACE(bh
, "exit");
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode
*inode
)
133 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
144 /* But we need to bound the transaction so we don't overflow the
146 if (needed
> EXT4_MAX_TRANS_DATA
)
147 needed
= EXT4_MAX_TRANS_DATA
;
149 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t
*start_transaction(struct inode
*inode
)
166 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
170 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
182 if (!ext4_handle_valid(handle
))
184 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
186 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
196 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
208 jbd_debug(2, "restarting handle %p\n", handle
);
209 up_write(&EXT4_I(inode
)->i_data_sem
);
210 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
211 down_write(&EXT4_I(inode
)->i_data_sem
);
212 ext4_discard_preallocations(inode
);
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode
*inode
)
225 if (ext4_should_order_data(inode
))
226 ext4_begin_ordered_truncate(inode
, 0);
227 truncate_inode_pages(&inode
->i_data
, 0);
229 if (is_bad_inode(inode
))
232 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
233 if (IS_ERR(handle
)) {
234 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
240 ext4_orphan_del(NULL
, inode
);
245 ext4_handle_sync(handle
);
247 err
= ext4_mark_inode_dirty(handle
, inode
);
249 ext4_warning(inode
->i_sb
, __func__
,
250 "couldn't mark inode dirty (err %d)", err
);
254 ext4_truncate(inode
);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle
, 3)) {
263 err
= ext4_journal_extend(handle
, 3);
265 err
= ext4_journal_restart(handle
, 3);
267 ext4_warning(inode
->i_sb
, __func__
,
268 "couldn't extend journal (err %d)", err
);
270 ext4_journal_stop(handle
);
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle
, inode
);
284 EXT4_I(inode
)->i_dtime
= get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
293 if (ext4_mark_inode_dirty(handle
, inode
))
294 /* If that failed, just do the required in-core inode clear. */
297 ext4_free_inode(handle
, inode
);
298 ext4_journal_stop(handle
);
301 clear_inode(inode
); /* We must guarantee clearing of inode... */
307 struct buffer_head
*bh
;
310 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
312 p
->key
= *(p
->p
= v
);
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
347 static int ext4_block_to_path(struct inode
*inode
,
349 ext4_lblk_t offsets
[4], int *boundary
)
351 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
352 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
353 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
354 indirect_blocks
= ptrs
,
355 double_blocks
= (1 << (ptrs_bits
* 2));
359 if (i_block
< direct_blocks
) {
360 offsets
[n
++] = i_block
;
361 final
= direct_blocks
;
362 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
363 offsets
[n
++] = EXT4_IND_BLOCK
;
364 offsets
[n
++] = i_block
;
366 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
367 offsets
[n
++] = EXT4_DIND_BLOCK
;
368 offsets
[n
++] = i_block
>> ptrs_bits
;
369 offsets
[n
++] = i_block
& (ptrs
- 1);
371 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
372 offsets
[n
++] = EXT4_TIND_BLOCK
;
373 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
374 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
375 offsets
[n
++] = i_block
& (ptrs
- 1);
378 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block
+ direct_blocks
+
381 indirect_blocks
+ double_blocks
, inode
->i_ino
);
384 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
388 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
389 __le32
*p
, unsigned int max
)
394 while (bref
< p
+max
) {
395 blk
= le32_to_cpu(*bref
++);
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
399 ext4_error(inode
->i_sb
, function
,
400 "invalid block reference %u "
401 "in inode #%lu", blk
, inode
->i_ino
);
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
448 ext4_lblk_t
*offsets
,
449 Indirect chain
[4], int *err
)
451 struct super_block
*sb
= inode
->i_sb
;
453 struct buffer_head
*bh
;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
461 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
465 if (!bh_uptodate_or_lock(bh
)) {
466 if (bh_submit_read(bh
) < 0) {
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode
, bh
)) {
477 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
491 * ext4_find_near - find a place for allocation with sufficient locality
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
512 struct ext4_inode_info
*ei
= EXT4_I(inode
);
513 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
515 ext4_fsblk_t bg_start
;
516 ext4_fsblk_t last_block
;
517 ext4_grpblk_t colour
;
518 ext4_group_t block_group
;
519 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
521 /* Try to find previous block */
522 for (p
= ind
->p
- 1; p
>= start
; p
--) {
524 return le32_to_cpu(*p
);
527 /* No such thing, so let's try location of indirect block */
529 return ind
->bh
->b_blocknr
;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group
= ei
->i_block_group
;
536 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
537 block_group
&= ~(flex_size
-1);
538 if (S_ISREG(inode
->i_mode
))
541 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
542 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode
->i_sb
, DELALLOC
))
551 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
552 colour
= (current
->pid
% 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
555 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
556 return bg_start
+ colour
;
560 * ext4_find_goal - find a preferred place for allocation.
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
567 * Because this is only used for non-extent files, we limit the block nr
570 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
576 * XXX need to get goal block from mballoc's data structures
579 goal
= ext4_find_near(inode
, partial
);
580 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
597 int blocks_to_boundary
)
599 unsigned int count
= 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
606 /* right now we don't handle cross boundary allocation */
607 if (blks
< blocks_to_boundary
+ 1)
610 count
+= blocks_to_boundary
+ 1;
615 while (count
< blks
&& count
<= blocks_to_boundary
&&
616 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
632 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
633 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
634 int indirect_blks
, int blks
,
635 ext4_fsblk_t new_blocks
[4], int *err
)
637 struct ext4_allocation_request ar
;
639 unsigned long count
= 0, blk_allocated
= 0;
641 ext4_fsblk_t current_block
= 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target
= indirect_blks
;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block
= ext4_new_meta_blocks(handle
, inode
,
662 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
665 /* allocate blocks for indirect blocks */
666 while (index
< indirect_blks
&& count
) {
667 new_blocks
[index
++] = current_block
++;
672 * save the new block number
673 * for the first direct block
675 new_blocks
[index
] = current_block
;
676 printk(KERN_INFO
"%s returned more blocks than "
677 "requested\n", __func__
);
683 target
= blks
- count
;
684 blk_allocated
= count
;
687 /* Now allocate data blocks */
688 memset(&ar
, 0, sizeof(ar
));
693 if (S_ISREG(inode
->i_mode
))
694 /* enable in-core preallocation only for regular files */
695 ar
.flags
= EXT4_MB_HINT_DATA
;
697 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
698 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
700 if (*err
&& (target
== blks
)) {
702 * if the allocation failed and we didn't allocate
708 if (target
== blks
) {
710 * save the new block number
711 * for the first direct block
713 new_blocks
[index
] = current_block
;
715 blk_allocated
+= ar
.len
;
718 /* total number of blocks allocated for direct blocks */
723 for (i
= 0; i
< index
; i
++)
724 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
754 ext4_lblk_t iblock
, int indirect_blks
,
755 int *blks
, ext4_fsblk_t goal
,
756 ext4_lblk_t
*offsets
, Indirect
*branch
)
758 int blocksize
= inode
->i_sb
->s_blocksize
;
761 struct buffer_head
*bh
;
763 ext4_fsblk_t new_blocks
[4];
764 ext4_fsblk_t current_block
;
766 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
767 *blks
, new_blocks
, &err
);
771 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n
= 1; n
<= indirect_blks
; n
++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
781 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
784 BUFFER_TRACE(bh
, "call get_create_access");
785 err
= ext4_journal_get_create_access(handle
, bh
);
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
793 memset(bh
->b_data
, 0, blocksize
);
794 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
795 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
796 *branch
[n
].p
= branch
[n
].key
;
797 if (n
== indirect_blks
) {
798 current_block
= new_blocks
[n
];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i
= 1; i
< num
; i
++)
805 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
807 BUFFER_TRACE(bh
, "marking uptodate");
808 set_buffer_uptodate(bh
);
811 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
812 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
819 /* Allocation failed, free what we already allocated */
820 for (i
= 1; i
<= n
; i
++) {
821 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
822 ext4_journal_forget(handle
, branch
[i
].bh
);
824 for (i
= 0; i
< indirect_blks
; i
++)
825 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
827 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
833 * ext4_splice_branch - splice the allocated branch onto inode.
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
847 ext4_lblk_t block
, Indirect
*where
, int num
,
852 ext4_fsblk_t current_block
;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
860 BUFFER_TRACE(where
->bh
, "get_write_access");
861 err
= ext4_journal_get_write_access(handle
, where
->bh
);
867 *where
->p
= where
->key
;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num
== 0 && blks
> 1) {
874 current_block
= le32_to_cpu(where
->key
) + 1;
875 for (i
= 1; i
< blks
; i
++)
876 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
892 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle
, inode
);
900 jbd_debug(5, "splicing direct\n");
905 for (i
= 1; i
<= num
; i
++) {
906 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
907 ext4_journal_forget(handle
, where
[i
].bh
);
908 ext4_free_blocks(handle
, inode
,
909 le32_to_cpu(where
[i
-1].key
), 1, 0);
911 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
944 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
945 ext4_lblk_t iblock
, unsigned int maxblocks
,
946 struct buffer_head
*bh_result
,
950 ext4_lblk_t offsets
[4];
955 int blocks_to_boundary
= 0;
958 ext4_fsblk_t first_block
= 0;
960 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
961 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
962 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
963 &blocks_to_boundary
);
968 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
970 /* Simplest case - block found, no allocation needed */
972 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
973 clear_buffer_new(bh_result
);
976 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
979 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
981 if (blk
== first_block
+ count
)
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
994 * Okay, we need to do block allocation.
996 goal
= ext4_find_goal(inode
, iblock
, partial
);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks
= (chain
+ depth
) - partial
- 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1006 maxblocks
, blocks_to_boundary
);
1008 * Block out ext4_truncate while we alter the tree
1010 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1012 offsets
+ (partial
- chain
), partial
);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1022 err
= ext4_splice_branch(handle
, inode
, iblock
,
1023 partial
, indirect_blks
, count
);
1027 set_buffer_new(bh_result
);
1029 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1031 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1032 if (count
> blocks_to_boundary
)
1033 set_buffer_boundary(bh_result
);
1035 /* Clean up and exit */
1036 partial
= chain
+ depth
- 1; /* the whole chain */
1038 while (partial
> chain
) {
1039 BUFFER_TRACE(partial
->bh
, "call brelse");
1040 brelse(partial
->bh
);
1043 BUFFER_TRACE(bh_result
, "returned");
1048 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1050 unsigned long long total
;
1052 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1053 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1054 EXT4_I(inode
)->i_reserved_meta_blocks
;
1055 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1057 return (total
<< inode
->i_blkbits
);
1060 * Calculate the number of metadata blocks need to reserve
1061 * to allocate @blocks for non extent file based file
1063 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1065 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1066 int ind_blks
, dind_blks
, tind_blks
;
1068 /* number of new indirect blocks needed */
1069 ind_blks
= (blocks
+ icap
- 1) / icap
;
1071 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1075 return ind_blks
+ dind_blks
+ tind_blks
;
1079 * Calculate the number of metadata blocks need to reserve
1080 * to allocate given number of blocks
1082 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1087 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1088 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1090 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1093 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1095 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1096 int total
, mdb
, mdb_free
;
1098 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1099 /* recalculate the number of metablocks still need to be reserved */
1100 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1101 mdb
= ext4_calc_metadata_amount(inode
, total
);
1103 /* figure out how many metablocks to release */
1104 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1105 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1108 /* Account for allocated meta_blocks */
1109 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1111 /* update fs dirty blocks counter */
1112 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1113 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1114 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1117 /* update per-inode reservations */
1118 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1119 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1120 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1123 * free those over-booking quota for metadata blocks
1126 vfs_dq_release_reservation_block(inode
, mdb_free
);
1129 * If we have done all the pending block allocations and if
1130 * there aren't any writers on the inode, we can discard the
1131 * inode's preallocations.
1133 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1134 ext4_discard_preallocations(inode
);
1137 static int check_block_validity(struct inode
*inode
, const char *msg
,
1138 sector_t logical
, sector_t phys
, int len
)
1140 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1141 ext4_error(inode
->i_sb
, msg
,
1142 "inode #%lu logical block %llu mapped to %llu "
1143 "(size %d)", inode
->i_ino
,
1144 (unsigned long long) logical
,
1145 (unsigned long long) phys
, len
);
1152 * Return the number of contiguous dirty pages in a given inode
1153 * starting at page frame idx.
1155 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1156 unsigned int max_pages
)
1158 struct address_space
*mapping
= inode
->i_mapping
;
1160 struct pagevec pvec
;
1162 int i
, nr_pages
, done
= 0;
1166 pagevec_init(&pvec
, 0);
1169 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1170 PAGECACHE_TAG_DIRTY
,
1171 (pgoff_t
)PAGEVEC_SIZE
);
1174 for (i
= 0; i
< nr_pages
; i
++) {
1175 struct page
*page
= pvec
.pages
[i
];
1176 struct buffer_head
*bh
, *head
;
1179 if (unlikely(page
->mapping
!= mapping
) ||
1181 PageWriteback(page
) ||
1182 page
->index
!= idx
) {
1187 if (page_has_buffers(page
)) {
1188 bh
= head
= page_buffers(page
);
1190 if (!buffer_delay(bh
) &&
1191 !buffer_unwritten(bh
))
1193 bh
= bh
->b_this_page
;
1194 } while (!done
&& (bh
!= head
));
1201 if (num
>= max_pages
)
1204 pagevec_release(&pvec
);
1210 * The ext4_get_blocks() function tries to look up the requested blocks,
1211 * and returns if the blocks are already mapped.
1213 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1214 * and store the allocated blocks in the result buffer head and mark it
1217 * If file type is extents based, it will call ext4_ext_get_blocks(),
1218 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1221 * On success, it returns the number of blocks being mapped or allocate.
1222 * if create==0 and the blocks are pre-allocated and uninitialized block,
1223 * the result buffer head is unmapped. If the create ==1, it will make sure
1224 * the buffer head is mapped.
1226 * It returns 0 if plain look up failed (blocks have not been allocated), in
1227 * that casem, buffer head is unmapped
1229 * It returns the error in case of allocation failure.
1231 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1232 unsigned int max_blocks
, struct buffer_head
*bh
,
1237 clear_buffer_mapped(bh
);
1238 clear_buffer_unwritten(bh
);
1240 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1241 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1242 (unsigned long)block
);
1244 * Try to see if we can get the block without requesting a new
1245 * file system block.
1247 down_read((&EXT4_I(inode
)->i_data_sem
));
1248 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1249 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1252 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1255 up_read((&EXT4_I(inode
)->i_data_sem
));
1257 if (retval
> 0 && buffer_mapped(bh
)) {
1258 int ret
= check_block_validity(inode
, "file system corruption",
1259 block
, bh
->b_blocknr
, retval
);
1264 /* If it is only a block(s) look up */
1265 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1269 * Returns if the blocks have already allocated
1271 * Note that if blocks have been preallocated
1272 * ext4_ext_get_block() returns th create = 0
1273 * with buffer head unmapped.
1275 if (retval
> 0 && buffer_mapped(bh
))
1279 * When we call get_blocks without the create flag, the
1280 * BH_Unwritten flag could have gotten set if the blocks
1281 * requested were part of a uninitialized extent. We need to
1282 * clear this flag now that we are committed to convert all or
1283 * part of the uninitialized extent to be an initialized
1284 * extent. This is because we need to avoid the combination
1285 * of BH_Unwritten and BH_Mapped flags being simultaneously
1286 * set on the buffer_head.
1288 clear_buffer_unwritten(bh
);
1291 * New blocks allocate and/or writing to uninitialized extent
1292 * will possibly result in updating i_data, so we take
1293 * the write lock of i_data_sem, and call get_blocks()
1294 * with create == 1 flag.
1296 down_write((&EXT4_I(inode
)->i_data_sem
));
1299 * if the caller is from delayed allocation writeout path
1300 * we have already reserved fs blocks for allocation
1301 * let the underlying get_block() function know to
1302 * avoid double accounting
1304 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1305 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1307 * We need to check for EXT4 here because migrate
1308 * could have changed the inode type in between
1310 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1311 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1314 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1315 max_blocks
, bh
, flags
);
1317 if (retval
> 0 && buffer_new(bh
)) {
1319 * We allocated new blocks which will result in
1320 * i_data's format changing. Force the migrate
1321 * to fail by clearing migrate flags
1323 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_EXT_MIGRATE
;
1327 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1328 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now.
1334 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1335 ext4_da_update_reserve_space(inode
, retval
);
1337 up_write((&EXT4_I(inode
)->i_data_sem
));
1338 if (retval
> 0 && buffer_mapped(bh
)) {
1339 int ret
= check_block_validity(inode
, "file system "
1340 "corruption after allocation",
1341 block
, bh
->b_blocknr
, retval
);
1348 /* Maximum number of blocks we map for direct IO at once. */
1349 #define DIO_MAX_BLOCKS 4096
1351 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1352 struct buffer_head
*bh_result
, int create
)
1354 handle_t
*handle
= ext4_journal_current_handle();
1355 int ret
= 0, started
= 0;
1356 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1359 if (create
&& !handle
) {
1360 /* Direct IO write... */
1361 if (max_blocks
> DIO_MAX_BLOCKS
)
1362 max_blocks
= DIO_MAX_BLOCKS
;
1363 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1364 handle
= ext4_journal_start(inode
, dio_credits
);
1365 if (IS_ERR(handle
)) {
1366 ret
= PTR_ERR(handle
);
1372 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1373 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1375 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1379 ext4_journal_stop(handle
);
1385 * `handle' can be NULL if create is zero
1387 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1388 ext4_lblk_t block
, int create
, int *errp
)
1390 struct buffer_head dummy
;
1394 J_ASSERT(handle
!= NULL
|| create
== 0);
1397 dummy
.b_blocknr
= -1000;
1398 buffer_trace_init(&dummy
.b_history
);
1400 flags
|= EXT4_GET_BLOCKS_CREATE
;
1401 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1403 * ext4_get_blocks() returns number of blocks mapped. 0 in
1412 if (!err
&& buffer_mapped(&dummy
)) {
1413 struct buffer_head
*bh
;
1414 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1419 if (buffer_new(&dummy
)) {
1420 J_ASSERT(create
!= 0);
1421 J_ASSERT(handle
!= NULL
);
1424 * Now that we do not always journal data, we should
1425 * keep in mind whether this should always journal the
1426 * new buffer as metadata. For now, regular file
1427 * writes use ext4_get_block instead, so it's not a
1431 BUFFER_TRACE(bh
, "call get_create_access");
1432 fatal
= ext4_journal_get_create_access(handle
, bh
);
1433 if (!fatal
&& !buffer_uptodate(bh
)) {
1434 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1435 set_buffer_uptodate(bh
);
1438 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1439 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1443 BUFFER_TRACE(bh
, "not a new buffer");
1456 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1457 ext4_lblk_t block
, int create
, int *err
)
1459 struct buffer_head
*bh
;
1461 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1464 if (buffer_uptodate(bh
))
1466 ll_rw_block(READ_META
, 1, &bh
);
1468 if (buffer_uptodate(bh
))
1475 static int walk_page_buffers(handle_t
*handle
,
1476 struct buffer_head
*head
,
1480 int (*fn
)(handle_t
*handle
,
1481 struct buffer_head
*bh
))
1483 struct buffer_head
*bh
;
1484 unsigned block_start
, block_end
;
1485 unsigned blocksize
= head
->b_size
;
1487 struct buffer_head
*next
;
1489 for (bh
= head
, block_start
= 0;
1490 ret
== 0 && (bh
!= head
|| !block_start
);
1491 block_start
= block_end
, bh
= next
) {
1492 next
= bh
->b_this_page
;
1493 block_end
= block_start
+ blocksize
;
1494 if (block_end
<= from
|| block_start
>= to
) {
1495 if (partial
&& !buffer_uptodate(bh
))
1499 err
= (*fn
)(handle
, bh
);
1507 * To preserve ordering, it is essential that the hole instantiation and
1508 * the data write be encapsulated in a single transaction. We cannot
1509 * close off a transaction and start a new one between the ext4_get_block()
1510 * and the commit_write(). So doing the jbd2_journal_start at the start of
1511 * prepare_write() is the right place.
1513 * Also, this function can nest inside ext4_writepage() ->
1514 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1515 * has generated enough buffer credits to do the whole page. So we won't
1516 * block on the journal in that case, which is good, because the caller may
1519 * By accident, ext4 can be reentered when a transaction is open via
1520 * quota file writes. If we were to commit the transaction while thus
1521 * reentered, there can be a deadlock - we would be holding a quota
1522 * lock, and the commit would never complete if another thread had a
1523 * transaction open and was blocking on the quota lock - a ranking
1526 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1527 * will _not_ run commit under these circumstances because handle->h_ref
1528 * is elevated. We'll still have enough credits for the tiny quotafile
1531 static int do_journal_get_write_access(handle_t
*handle
,
1532 struct buffer_head
*bh
)
1534 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1536 return ext4_journal_get_write_access(handle
, bh
);
1540 * Truncate blocks that were not used by write. We have to truncate the
1541 * pagecache as well so that corresponding buffers get properly unmapped.
1543 static void ext4_truncate_failed_write(struct inode
*inode
)
1545 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1546 ext4_truncate(inode
);
1549 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1550 loff_t pos
, unsigned len
, unsigned flags
,
1551 struct page
**pagep
, void **fsdata
)
1553 struct inode
*inode
= mapping
->host
;
1554 int ret
, needed_blocks
;
1561 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1563 * Reserve one block more for addition to orphan list in case
1564 * we allocate blocks but write fails for some reason
1566 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1567 index
= pos
>> PAGE_CACHE_SHIFT
;
1568 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1572 handle
= ext4_journal_start(inode
, needed_blocks
);
1573 if (IS_ERR(handle
)) {
1574 ret
= PTR_ERR(handle
);
1578 /* We cannot recurse into the filesystem as the transaction is already
1580 flags
|= AOP_FLAG_NOFS
;
1582 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1584 ext4_journal_stop(handle
);
1590 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1593 if (!ret
&& ext4_should_journal_data(inode
)) {
1594 ret
= walk_page_buffers(handle
, page_buffers(page
),
1595 from
, to
, NULL
, do_journal_get_write_access
);
1600 page_cache_release(page
);
1602 * block_write_begin may have instantiated a few blocks
1603 * outside i_size. Trim these off again. Don't need
1604 * i_size_read because we hold i_mutex.
1606 * Add inode to orphan list in case we crash before
1609 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1610 ext4_orphan_add(handle
, inode
);
1612 ext4_journal_stop(handle
);
1613 if (pos
+ len
> inode
->i_size
) {
1614 ext4_truncate_failed_write(inode
);
1616 * If truncate failed early the inode might
1617 * still be on the orphan list; we need to
1618 * make sure the inode is removed from the
1619 * orphan list in that case.
1622 ext4_orphan_del(NULL
, inode
);
1626 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1632 /* For write_end() in data=journal mode */
1633 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1635 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1637 set_buffer_uptodate(bh
);
1638 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1641 static int ext4_generic_write_end(struct file
*file
,
1642 struct address_space
*mapping
,
1643 loff_t pos
, unsigned len
, unsigned copied
,
1644 struct page
*page
, void *fsdata
)
1646 int i_size_changed
= 0;
1647 struct inode
*inode
= mapping
->host
;
1648 handle_t
*handle
= ext4_journal_current_handle();
1650 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1653 * No need to use i_size_read() here, the i_size
1654 * cannot change under us because we hold i_mutex.
1656 * But it's important to update i_size while still holding page lock:
1657 * page writeout could otherwise come in and zero beyond i_size.
1659 if (pos
+ copied
> inode
->i_size
) {
1660 i_size_write(inode
, pos
+ copied
);
1664 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1665 /* We need to mark inode dirty even if
1666 * new_i_size is less that inode->i_size
1667 * bu greater than i_disksize.(hint delalloc)
1669 ext4_update_i_disksize(inode
, (pos
+ copied
));
1673 page_cache_release(page
);
1676 * Don't mark the inode dirty under page lock. First, it unnecessarily
1677 * makes the holding time of page lock longer. Second, it forces lock
1678 * ordering of page lock and transaction start for journaling
1682 ext4_mark_inode_dirty(handle
, inode
);
1688 * We need to pick up the new inode size which generic_commit_write gave us
1689 * `file' can be NULL - eg, when called from page_symlink().
1691 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1692 * buffers are managed internally.
1694 static int ext4_ordered_write_end(struct file
*file
,
1695 struct address_space
*mapping
,
1696 loff_t pos
, unsigned len
, unsigned copied
,
1697 struct page
*page
, void *fsdata
)
1699 handle_t
*handle
= ext4_journal_current_handle();
1700 struct inode
*inode
= mapping
->host
;
1703 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1704 ret
= ext4_jbd2_file_inode(handle
, inode
);
1707 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1710 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1711 /* if we have allocated more blocks and copied
1712 * less. We will have blocks allocated outside
1713 * inode->i_size. So truncate them
1715 ext4_orphan_add(handle
, inode
);
1719 ret2
= ext4_journal_stop(handle
);
1723 if (pos
+ len
> inode
->i_size
) {
1724 ext4_truncate_failed_write(inode
);
1726 * If truncate failed early the inode might still be
1727 * on the orphan list; we need to make sure the inode
1728 * is removed from the orphan list in that case.
1731 ext4_orphan_del(NULL
, inode
);
1735 return ret
? ret
: copied
;
1738 static int ext4_writeback_write_end(struct file
*file
,
1739 struct address_space
*mapping
,
1740 loff_t pos
, unsigned len
, unsigned copied
,
1741 struct page
*page
, void *fsdata
)
1743 handle_t
*handle
= ext4_journal_current_handle();
1744 struct inode
*inode
= mapping
->host
;
1747 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1748 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1751 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1752 /* if we have allocated more blocks and copied
1753 * less. We will have blocks allocated outside
1754 * inode->i_size. So truncate them
1756 ext4_orphan_add(handle
, inode
);
1761 ret2
= ext4_journal_stop(handle
);
1765 if (pos
+ len
> inode
->i_size
) {
1766 ext4_truncate_failed_write(inode
);
1768 * If truncate failed early the inode might still be
1769 * on the orphan list; we need to make sure the inode
1770 * is removed from the orphan list in that case.
1773 ext4_orphan_del(NULL
, inode
);
1776 return ret
? ret
: copied
;
1779 static int ext4_journalled_write_end(struct file
*file
,
1780 struct address_space
*mapping
,
1781 loff_t pos
, unsigned len
, unsigned copied
,
1782 struct page
*page
, void *fsdata
)
1784 handle_t
*handle
= ext4_journal_current_handle();
1785 struct inode
*inode
= mapping
->host
;
1791 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1792 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1796 if (!PageUptodate(page
))
1798 page_zero_new_buffers(page
, from
+copied
, to
);
1801 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1802 to
, &partial
, write_end_fn
);
1804 SetPageUptodate(page
);
1805 new_i_size
= pos
+ copied
;
1806 if (new_i_size
> inode
->i_size
)
1807 i_size_write(inode
, pos
+copied
);
1808 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1809 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1810 ext4_update_i_disksize(inode
, new_i_size
);
1811 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1817 page_cache_release(page
);
1818 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1819 /* if we have allocated more blocks and copied
1820 * less. We will have blocks allocated outside
1821 * inode->i_size. So truncate them
1823 ext4_orphan_add(handle
, inode
);
1825 ret2
= ext4_journal_stop(handle
);
1828 if (pos
+ len
> inode
->i_size
) {
1829 ext4_truncate_failed_write(inode
);
1831 * If truncate failed early the inode might still be
1832 * on the orphan list; we need to make sure the inode
1833 * is removed from the orphan list in that case.
1836 ext4_orphan_del(NULL
, inode
);
1839 return ret
? ret
: copied
;
1842 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1845 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1846 unsigned long md_needed
, mdblocks
, total
= 0;
1849 * recalculate the amount of metadata blocks to reserve
1850 * in order to allocate nrblocks
1851 * worse case is one extent per block
1854 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1855 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1856 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1857 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1859 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1860 total
= md_needed
+ nrblocks
;
1863 * Make quota reservation here to prevent quota overflow
1864 * later. Real quota accounting is done at pages writeout
1867 if (vfs_dq_reserve_block(inode
, total
)) {
1868 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1872 if (ext4_claim_free_blocks(sbi
, total
)) {
1873 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1874 vfs_dq_release_reservation_block(inode
, total
);
1875 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1881 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1882 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1884 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1885 return 0; /* success */
1888 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1890 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1891 int total
, mdb
, mdb_free
, release
;
1894 return; /* Nothing to release, exit */
1896 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1898 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1900 * if there is no reserved blocks, but we try to free some
1901 * then the counter is messed up somewhere.
1902 * but since this function is called from invalidate
1903 * page, it's harmless to return without any action
1905 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1906 "blocks for inode %lu, but there is no reserved "
1907 "data blocks\n", to_free
, inode
->i_ino
);
1908 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1912 /* recalculate the number of metablocks still need to be reserved */
1913 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1914 mdb
= ext4_calc_metadata_amount(inode
, total
);
1916 /* figure out how many metablocks to release */
1917 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1918 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1920 release
= to_free
+ mdb_free
;
1922 /* update fs dirty blocks counter for truncate case */
1923 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1925 /* update per-inode reservations */
1926 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1927 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1929 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1930 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1931 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1933 vfs_dq_release_reservation_block(inode
, release
);
1936 static void ext4_da_page_release_reservation(struct page
*page
,
1937 unsigned long offset
)
1940 struct buffer_head
*head
, *bh
;
1941 unsigned int curr_off
= 0;
1943 head
= page_buffers(page
);
1946 unsigned int next_off
= curr_off
+ bh
->b_size
;
1948 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1950 clear_buffer_delay(bh
);
1952 curr_off
= next_off
;
1953 } while ((bh
= bh
->b_this_page
) != head
);
1954 ext4_da_release_space(page
->mapping
->host
, to_release
);
1958 * Delayed allocation stuff
1962 * mpage_da_submit_io - walks through extent of pages and try to write
1963 * them with writepage() call back
1965 * @mpd->inode: inode
1966 * @mpd->first_page: first page of the extent
1967 * @mpd->next_page: page after the last page of the extent
1969 * By the time mpage_da_submit_io() is called we expect all blocks
1970 * to be allocated. this may be wrong if allocation failed.
1972 * As pages are already locked by write_cache_pages(), we can't use it
1974 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1977 struct pagevec pvec
;
1978 unsigned long index
, end
;
1979 int ret
= 0, err
, nr_pages
, i
;
1980 struct inode
*inode
= mpd
->inode
;
1981 struct address_space
*mapping
= inode
->i_mapping
;
1983 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1985 * We need to start from the first_page to the next_page - 1
1986 * to make sure we also write the mapped dirty buffer_heads.
1987 * If we look at mpd->b_blocknr we would only be looking
1988 * at the currently mapped buffer_heads.
1990 index
= mpd
->first_page
;
1991 end
= mpd
->next_page
- 1;
1993 pagevec_init(&pvec
, 0);
1994 while (index
<= end
) {
1995 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1998 for (i
= 0; i
< nr_pages
; i
++) {
1999 struct page
*page
= pvec
.pages
[i
];
2001 index
= page
->index
;
2006 BUG_ON(!PageLocked(page
));
2007 BUG_ON(PageWriteback(page
));
2009 pages_skipped
= mpd
->wbc
->pages_skipped
;
2010 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2011 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2013 * have successfully written the page
2014 * without skipping the same
2016 mpd
->pages_written
++;
2018 * In error case, we have to continue because
2019 * remaining pages are still locked
2020 * XXX: unlock and re-dirty them?
2025 pagevec_release(&pvec
);
2031 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2033 * @mpd->inode - inode to walk through
2034 * @exbh->b_blocknr - first block on a disk
2035 * @exbh->b_size - amount of space in bytes
2036 * @logical - first logical block to start assignment with
2038 * the function goes through all passed space and put actual disk
2039 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2041 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2042 struct buffer_head
*exbh
)
2044 struct inode
*inode
= mpd
->inode
;
2045 struct address_space
*mapping
= inode
->i_mapping
;
2046 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2047 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2048 struct buffer_head
*head
, *bh
;
2050 struct pagevec pvec
;
2053 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2054 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2055 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2057 pagevec_init(&pvec
, 0);
2059 while (index
<= end
) {
2060 /* XXX: optimize tail */
2061 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2064 for (i
= 0; i
< nr_pages
; i
++) {
2065 struct page
*page
= pvec
.pages
[i
];
2067 index
= page
->index
;
2072 BUG_ON(!PageLocked(page
));
2073 BUG_ON(PageWriteback(page
));
2074 BUG_ON(!page_has_buffers(page
));
2076 bh
= page_buffers(page
);
2079 /* skip blocks out of the range */
2081 if (cur_logical
>= logical
)
2084 } while ((bh
= bh
->b_this_page
) != head
);
2087 if (cur_logical
>= logical
+ blocks
)
2090 if (buffer_delay(bh
) ||
2091 buffer_unwritten(bh
)) {
2093 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2095 if (buffer_delay(bh
)) {
2096 clear_buffer_delay(bh
);
2097 bh
->b_blocknr
= pblock
;
2100 * unwritten already should have
2101 * blocknr assigned. Verify that
2103 clear_buffer_unwritten(bh
);
2104 BUG_ON(bh
->b_blocknr
!= pblock
);
2107 } else if (buffer_mapped(bh
))
2108 BUG_ON(bh
->b_blocknr
!= pblock
);
2112 } while ((bh
= bh
->b_this_page
) != head
);
2114 pagevec_release(&pvec
);
2120 * __unmap_underlying_blocks - just a helper function to unmap
2121 * set of blocks described by @bh
2123 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2124 struct buffer_head
*bh
)
2126 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2129 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2130 for (i
= 0; i
< blocks
; i
++)
2131 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2134 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2135 sector_t logical
, long blk_cnt
)
2139 struct pagevec pvec
;
2140 struct inode
*inode
= mpd
->inode
;
2141 struct address_space
*mapping
= inode
->i_mapping
;
2143 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2144 end
= (logical
+ blk_cnt
- 1) >>
2145 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2146 while (index
<= end
) {
2147 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2150 for (i
= 0; i
< nr_pages
; i
++) {
2151 struct page
*page
= pvec
.pages
[i
];
2152 index
= page
->index
;
2157 BUG_ON(!PageLocked(page
));
2158 BUG_ON(PageWriteback(page
));
2159 block_invalidatepage(page
, 0);
2160 ClearPageUptodate(page
);
2167 static void ext4_print_free_blocks(struct inode
*inode
)
2169 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2170 printk(KERN_CRIT
"Total free blocks count %lld\n",
2171 ext4_count_free_blocks(inode
->i_sb
));
2172 printk(KERN_CRIT
"Free/Dirty block details\n");
2173 printk(KERN_CRIT
"free_blocks=%lld\n",
2174 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2175 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2176 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2177 printk(KERN_CRIT
"Block reservation details\n");
2178 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2179 EXT4_I(inode
)->i_reserved_data_blocks
);
2180 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2181 EXT4_I(inode
)->i_reserved_meta_blocks
);
2186 * mpage_da_map_blocks - go through given space
2188 * @mpd - bh describing space
2190 * The function skips space we know is already mapped to disk blocks.
2193 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2195 int err
, blks
, get_blocks_flags
;
2196 struct buffer_head
new;
2197 sector_t next
= mpd
->b_blocknr
;
2198 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2199 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2200 handle_t
*handle
= NULL
;
2203 * We consider only non-mapped and non-allocated blocks
2205 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2206 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2207 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2211 * If we didn't accumulate anything to write simply return
2216 handle
= ext4_journal_current_handle();
2220 * Call ext4_get_blocks() to allocate any delayed allocation
2221 * blocks, or to convert an uninitialized extent to be
2222 * initialized (in the case where we have written into
2223 * one or more preallocated blocks).
2225 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2226 * indicate that we are on the delayed allocation path. This
2227 * affects functions in many different parts of the allocation
2228 * call path. This flag exists primarily because we don't
2229 * want to change *many* call functions, so ext4_get_blocks()
2230 * will set the magic i_delalloc_reserved_flag once the
2231 * inode's allocation semaphore is taken.
2233 * If the blocks in questions were delalloc blocks, set
2234 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2235 * variables are updated after the blocks have been allocated.
2238 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2239 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2240 if (mpd
->b_state
& (1 << BH_Delay
))
2241 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2242 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2243 &new, get_blocks_flags
);
2247 * If get block returns with error we simply
2248 * return. Later writepage will redirty the page and
2249 * writepages will find the dirty page again
2254 if (err
== -ENOSPC
&&
2255 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2261 * get block failure will cause us to loop in
2262 * writepages, because a_ops->writepage won't be able
2263 * to make progress. The page will be redirtied by
2264 * writepage and writepages will again try to write
2267 ext4_msg(mpd
->inode
->i_sb
, KERN_CRIT
,
2268 "delayed block allocation failed for inode %lu at "
2269 "logical offset %llu with max blocks %zd with "
2270 "error %d\n", mpd
->inode
->i_ino
,
2271 (unsigned long long) next
,
2272 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2273 printk(KERN_CRIT
"This should not happen!! "
2274 "Data will be lost\n");
2275 if (err
== -ENOSPC
) {
2276 ext4_print_free_blocks(mpd
->inode
);
2278 /* invalidate all the pages */
2279 ext4_da_block_invalidatepages(mpd
, next
,
2280 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2285 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2287 if (buffer_new(&new))
2288 __unmap_underlying_blocks(mpd
->inode
, &new);
2291 * If blocks are delayed marked, we need to
2292 * put actual blocknr and drop delayed bit
2294 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2295 (mpd
->b_state
& (1 << BH_Unwritten
)))
2296 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2298 if (ext4_should_order_data(mpd
->inode
)) {
2299 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2305 * Update on-disk size along with block allocation.
2307 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2308 if (disksize
> i_size_read(mpd
->inode
))
2309 disksize
= i_size_read(mpd
->inode
);
2310 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2311 ext4_update_i_disksize(mpd
->inode
, disksize
);
2312 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2318 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2319 (1 << BH_Delay) | (1 << BH_Unwritten))
2322 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2324 * @mpd->lbh - extent of blocks
2325 * @logical - logical number of the block in the file
2326 * @bh - bh of the block (used to access block's state)
2328 * the function is used to collect contig. blocks in same state
2330 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2331 sector_t logical
, size_t b_size
,
2332 unsigned long b_state
)
2335 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2337 /* check if thereserved journal credits might overflow */
2338 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2339 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2341 * With non-extent format we are limited by the journal
2342 * credit available. Total credit needed to insert
2343 * nrblocks contiguous blocks is dependent on the
2344 * nrblocks. So limit nrblocks.
2347 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2348 EXT4_MAX_TRANS_DATA
) {
2350 * Adding the new buffer_head would make it cross the
2351 * allowed limit for which we have journal credit
2352 * reserved. So limit the new bh->b_size
2354 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2355 mpd
->inode
->i_blkbits
;
2356 /* we will do mpage_da_submit_io in the next loop */
2360 * First block in the extent
2362 if (mpd
->b_size
== 0) {
2363 mpd
->b_blocknr
= logical
;
2364 mpd
->b_size
= b_size
;
2365 mpd
->b_state
= b_state
& BH_FLAGS
;
2369 next
= mpd
->b_blocknr
+ nrblocks
;
2371 * Can we merge the block to our big extent?
2373 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2374 mpd
->b_size
+= b_size
;
2380 * We couldn't merge the block to our extent, so we
2381 * need to flush current extent and start new one
2383 if (mpage_da_map_blocks(mpd
) == 0)
2384 mpage_da_submit_io(mpd
);
2389 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2391 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2395 * __mpage_da_writepage - finds extent of pages and blocks
2397 * @page: page to consider
2398 * @wbc: not used, we just follow rules
2401 * The function finds extents of pages and scan them for all blocks.
2403 static int __mpage_da_writepage(struct page
*page
,
2404 struct writeback_control
*wbc
, void *data
)
2406 struct mpage_da_data
*mpd
= data
;
2407 struct inode
*inode
= mpd
->inode
;
2408 struct buffer_head
*bh
, *head
;
2413 * Rest of the page in the page_vec
2414 * redirty then and skip then. We will
2415 * try to write them again after
2416 * starting a new transaction
2418 redirty_page_for_writepage(wbc
, page
);
2420 return MPAGE_DA_EXTENT_TAIL
;
2423 * Can we merge this page to current extent?
2425 if (mpd
->next_page
!= page
->index
) {
2427 * Nope, we can't. So, we map non-allocated blocks
2428 * and start IO on them using writepage()
2430 if (mpd
->next_page
!= mpd
->first_page
) {
2431 if (mpage_da_map_blocks(mpd
) == 0)
2432 mpage_da_submit_io(mpd
);
2434 * skip rest of the page in the page_vec
2437 redirty_page_for_writepage(wbc
, page
);
2439 return MPAGE_DA_EXTENT_TAIL
;
2443 * Start next extent of pages ...
2445 mpd
->first_page
= page
->index
;
2455 mpd
->next_page
= page
->index
+ 1;
2456 logical
= (sector_t
) page
->index
<<
2457 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2459 if (!page_has_buffers(page
)) {
2460 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2461 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2463 return MPAGE_DA_EXTENT_TAIL
;
2466 * Page with regular buffer heads, just add all dirty ones
2468 head
= page_buffers(page
);
2471 BUG_ON(buffer_locked(bh
));
2473 * We need to try to allocate
2474 * unmapped blocks in the same page.
2475 * Otherwise we won't make progress
2476 * with the page in ext4_writepage
2478 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2479 mpage_add_bh_to_extent(mpd
, logical
,
2483 return MPAGE_DA_EXTENT_TAIL
;
2484 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2486 * mapped dirty buffer. We need to update
2487 * the b_state because we look at
2488 * b_state in mpage_da_map_blocks. We don't
2489 * update b_size because if we find an
2490 * unmapped buffer_head later we need to
2491 * use the b_state flag of that buffer_head.
2493 if (mpd
->b_size
== 0)
2494 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2497 } while ((bh
= bh
->b_this_page
) != head
);
2504 * This is a special get_blocks_t callback which is used by
2505 * ext4_da_write_begin(). It will either return mapped block or
2506 * reserve space for a single block.
2508 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2509 * We also have b_blocknr = -1 and b_bdev initialized properly
2511 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2512 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2513 * initialized properly.
2515 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2516 struct buffer_head
*bh_result
, int create
)
2519 sector_t invalid_block
= ~((sector_t
) 0xffff);
2521 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2524 BUG_ON(create
== 0);
2525 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2528 * first, we need to know whether the block is allocated already
2529 * preallocated blocks are unmapped but should treated
2530 * the same as allocated blocks.
2532 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2533 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2534 /* the block isn't (pre)allocated yet, let's reserve space */
2536 * XXX: __block_prepare_write() unmaps passed block,
2539 ret
= ext4_da_reserve_space(inode
, 1);
2541 /* not enough space to reserve */
2544 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2545 set_buffer_new(bh_result
);
2546 set_buffer_delay(bh_result
);
2547 } else if (ret
> 0) {
2548 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2549 if (buffer_unwritten(bh_result
)) {
2550 /* A delayed write to unwritten bh should
2551 * be marked new and mapped. Mapped ensures
2552 * that we don't do get_block multiple times
2553 * when we write to the same offset and new
2554 * ensures that we do proper zero out for
2557 set_buffer_new(bh_result
);
2558 set_buffer_mapped(bh_result
);
2567 * This function is used as a standard get_block_t calback function
2568 * when there is no desire to allocate any blocks. It is used as a
2569 * callback function for block_prepare_write(), nobh_writepage(), and
2570 * block_write_full_page(). These functions should only try to map a
2571 * single block at a time.
2573 * Since this function doesn't do block allocations even if the caller
2574 * requests it by passing in create=1, it is critically important that
2575 * any caller checks to make sure that any buffer heads are returned
2576 * by this function are either all already mapped or marked for
2577 * delayed allocation before calling nobh_writepage() or
2578 * block_write_full_page(). Otherwise, b_blocknr could be left
2579 * unitialized, and the page write functions will be taken by
2582 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2583 struct buffer_head
*bh_result
, int create
)
2586 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2588 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2591 * we don't want to do block allocation in writepage
2592 * so call get_block_wrap with create = 0
2594 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2596 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2602 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2608 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2614 static int __ext4_journalled_writepage(struct page
*page
,
2615 struct writeback_control
*wbc
,
2618 struct address_space
*mapping
= page
->mapping
;
2619 struct inode
*inode
= mapping
->host
;
2620 struct buffer_head
*page_bufs
;
2621 handle_t
*handle
= NULL
;
2625 page_bufs
= page_buffers(page
);
2627 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2628 /* As soon as we unlock the page, it can go away, but we have
2629 * references to buffers so we are safe */
2632 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2633 if (IS_ERR(handle
)) {
2634 ret
= PTR_ERR(handle
);
2638 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2639 do_journal_get_write_access
);
2641 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2645 err
= ext4_journal_stop(handle
);
2649 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2650 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2656 * Note that we don't need to start a transaction unless we're journaling data
2657 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2658 * need to file the inode to the transaction's list in ordered mode because if
2659 * we are writing back data added by write(), the inode is already there and if
2660 * we are writing back data modified via mmap(), noone guarantees in which
2661 * transaction the data will hit the disk. In case we are journaling data, we
2662 * cannot start transaction directly because transaction start ranks above page
2663 * lock so we have to do some magic.
2665 * This function can get called via...
2666 * - ext4_da_writepages after taking page lock (have journal handle)
2667 * - journal_submit_inode_data_buffers (no journal handle)
2668 * - shrink_page_list via pdflush (no journal handle)
2669 * - grab_page_cache when doing write_begin (have journal handle)
2671 * We don't do any block allocation in this function. If we have page with
2672 * multiple blocks we need to write those buffer_heads that are mapped. This
2673 * is important for mmaped based write. So if we do with blocksize 1K
2674 * truncate(f, 1024);
2675 * a = mmap(f, 0, 4096);
2677 * truncate(f, 4096);
2678 * we have in the page first buffer_head mapped via page_mkwrite call back
2679 * but other bufer_heads would be unmapped but dirty(dirty done via the
2680 * do_wp_page). So writepage should write the first block. If we modify
2681 * the mmap area beyond 1024 we will again get a page_fault and the
2682 * page_mkwrite callback will do the block allocation and mark the
2683 * buffer_heads mapped.
2685 * We redirty the page if we have any buffer_heads that is either delay or
2686 * unwritten in the page.
2688 * We can get recursively called as show below.
2690 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2693 * But since we don't do any block allocation we should not deadlock.
2694 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2696 static int ext4_writepage(struct page
*page
,
2697 struct writeback_control
*wbc
)
2702 struct buffer_head
*page_bufs
;
2703 struct inode
*inode
= page
->mapping
->host
;
2705 trace_ext4_writepage(inode
, page
);
2706 size
= i_size_read(inode
);
2707 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2708 len
= size
& ~PAGE_CACHE_MASK
;
2710 len
= PAGE_CACHE_SIZE
;
2712 if (page_has_buffers(page
)) {
2713 page_bufs
= page_buffers(page
);
2714 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2715 ext4_bh_delay_or_unwritten
)) {
2717 * We don't want to do block allocation
2718 * So redirty the page and return
2719 * We may reach here when we do a journal commit
2720 * via journal_submit_inode_data_buffers.
2721 * If we don't have mapping block we just ignore
2722 * them. We can also reach here via shrink_page_list
2724 redirty_page_for_writepage(wbc
, page
);
2730 * The test for page_has_buffers() is subtle:
2731 * We know the page is dirty but it lost buffers. That means
2732 * that at some moment in time after write_begin()/write_end()
2733 * has been called all buffers have been clean and thus they
2734 * must have been written at least once. So they are all
2735 * mapped and we can happily proceed with mapping them
2736 * and writing the page.
2738 * Try to initialize the buffer_heads and check whether
2739 * all are mapped and non delay. We don't want to
2740 * do block allocation here.
2742 ret
= block_prepare_write(page
, 0, len
,
2743 noalloc_get_block_write
);
2745 page_bufs
= page_buffers(page
);
2746 /* check whether all are mapped and non delay */
2747 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2748 ext4_bh_delay_or_unwritten
)) {
2749 redirty_page_for_writepage(wbc
, page
);
2755 * We can't do block allocation here
2756 * so just redity the page and unlock
2759 redirty_page_for_writepage(wbc
, page
);
2763 /* now mark the buffer_heads as dirty and uptodate */
2764 block_commit_write(page
, 0, len
);
2767 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2769 * It's mmapped pagecache. Add buffers and journal it. There
2770 * doesn't seem much point in redirtying the page here.
2772 ClearPageChecked(page
);
2773 return __ext4_journalled_writepage(page
, wbc
, len
);
2776 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2777 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2779 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2786 * This is called via ext4_da_writepages() to
2787 * calulate the total number of credits to reserve to fit
2788 * a single extent allocation into a single transaction,
2789 * ext4_da_writpeages() will loop calling this before
2790 * the block allocation.
2793 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2795 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2798 * With non-extent format the journal credit needed to
2799 * insert nrblocks contiguous block is dependent on
2800 * number of contiguous block. So we will limit
2801 * number of contiguous block to a sane value
2803 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
2804 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2805 max_blocks
= EXT4_MAX_TRANS_DATA
;
2807 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2810 static int ext4_da_writepages(struct address_space
*mapping
,
2811 struct writeback_control
*wbc
)
2814 int range_whole
= 0;
2815 handle_t
*handle
= NULL
;
2816 struct mpage_da_data mpd
;
2817 struct inode
*inode
= mapping
->host
;
2818 int no_nrwrite_index_update
;
2819 int pages_written
= 0;
2821 unsigned int max_pages
;
2822 int range_cyclic
, cycled
= 1, io_done
= 0;
2823 int needed_blocks
, ret
= 0;
2824 long desired_nr_to_write
, nr_to_writebump
= 0;
2825 loff_t range_start
= wbc
->range_start
;
2826 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2828 trace_ext4_da_writepages(inode
, wbc
);
2831 * No pages to write? This is mainly a kludge to avoid starting
2832 * a transaction for special inodes like journal inode on last iput()
2833 * because that could violate lock ordering on umount
2835 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2839 * If the filesystem has aborted, it is read-only, so return
2840 * right away instead of dumping stack traces later on that
2841 * will obscure the real source of the problem. We test
2842 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2843 * the latter could be true if the filesystem is mounted
2844 * read-only, and in that case, ext4_da_writepages should
2845 * *never* be called, so if that ever happens, we would want
2848 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2851 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2854 range_cyclic
= wbc
->range_cyclic
;
2855 if (wbc
->range_cyclic
) {
2856 index
= mapping
->writeback_index
;
2859 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2860 wbc
->range_end
= LLONG_MAX
;
2861 wbc
->range_cyclic
= 0;
2863 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2866 * This works around two forms of stupidity. The first is in
2867 * the writeback code, which caps the maximum number of pages
2868 * written to be 1024 pages. This is wrong on multiple
2869 * levels; different architectues have a different page size,
2870 * which changes the maximum amount of data which gets
2871 * written. Secondly, 4 megabytes is way too small. XFS
2872 * forces this value to be 16 megabytes by multiplying
2873 * nr_to_write parameter by four, and then relies on its
2874 * allocator to allocate larger extents to make them
2875 * contiguous. Unfortunately this brings us to the second
2876 * stupidity, which is that ext4's mballoc code only allocates
2877 * at most 2048 blocks. So we force contiguous writes up to
2878 * the number of dirty blocks in the inode, or
2879 * sbi->max_writeback_mb_bump whichever is smaller.
2881 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2882 if (!range_cyclic
&& range_whole
)
2883 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2885 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2887 if (desired_nr_to_write
> max_pages
)
2888 desired_nr_to_write
= max_pages
;
2890 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2891 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2892 wbc
->nr_to_write
= desired_nr_to_write
;
2896 mpd
.inode
= mapping
->host
;
2899 * we don't want write_cache_pages to update
2900 * nr_to_write and writeback_index
2902 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2903 wbc
->no_nrwrite_index_update
= 1;
2904 pages_skipped
= wbc
->pages_skipped
;
2907 while (!ret
&& wbc
->nr_to_write
> 0) {
2910 * we insert one extent at a time. So we need
2911 * credit needed for single extent allocation.
2912 * journalled mode is currently not supported
2915 BUG_ON(ext4_should_journal_data(inode
));
2916 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2918 /* start a new transaction*/
2919 handle
= ext4_journal_start(inode
, needed_blocks
);
2920 if (IS_ERR(handle
)) {
2921 ret
= PTR_ERR(handle
);
2922 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2923 "%ld pages, ino %lu; err %d\n", __func__
,
2924 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2925 goto out_writepages
;
2929 * Now call __mpage_da_writepage to find the next
2930 * contiguous region of logical blocks that need
2931 * blocks to be allocated by ext4. We don't actually
2932 * submit the blocks for I/O here, even though
2933 * write_cache_pages thinks it will, and will set the
2934 * pages as clean for write before calling
2935 * __mpage_da_writepage().
2943 mpd
.pages_written
= 0;
2945 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2948 * If we have a contigous extent of pages and we
2949 * haven't done the I/O yet, map the blocks and submit
2952 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2953 if (mpage_da_map_blocks(&mpd
) == 0)
2954 mpage_da_submit_io(&mpd
);
2956 ret
= MPAGE_DA_EXTENT_TAIL
;
2958 trace_ext4_da_write_pages(inode
, &mpd
);
2959 wbc
->nr_to_write
-= mpd
.pages_written
;
2961 ext4_journal_stop(handle
);
2963 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2964 /* commit the transaction which would
2965 * free blocks released in the transaction
2968 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2969 wbc
->pages_skipped
= pages_skipped
;
2971 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2973 * got one extent now try with
2976 pages_written
+= mpd
.pages_written
;
2977 wbc
->pages_skipped
= pages_skipped
;
2980 } else if (wbc
->nr_to_write
)
2982 * There is no more writeout needed
2983 * or we requested for a noblocking writeout
2984 * and we found the device congested
2988 if (!io_done
&& !cycled
) {
2991 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2992 wbc
->range_end
= mapping
->writeback_index
- 1;
2995 if (pages_skipped
!= wbc
->pages_skipped
)
2996 ext4_msg(inode
->i_sb
, KERN_CRIT
,
2997 "This should not happen leaving %s "
2998 "with nr_to_write = %ld ret = %d\n",
2999 __func__
, wbc
->nr_to_write
, ret
);
3002 index
+= pages_written
;
3003 wbc
->range_cyclic
= range_cyclic
;
3004 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3006 * set the writeback_index so that range_cyclic
3007 * mode will write it back later
3009 mapping
->writeback_index
= index
;
3012 if (!no_nrwrite_index_update
)
3013 wbc
->no_nrwrite_index_update
= 0;
3014 if (wbc
->nr_to_write
> nr_to_writebump
)
3015 wbc
->nr_to_write
-= nr_to_writebump
;
3016 wbc
->range_start
= range_start
;
3017 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3021 #define FALL_BACK_TO_NONDELALLOC 1
3022 static int ext4_nonda_switch(struct super_block
*sb
)
3024 s64 free_blocks
, dirty_blocks
;
3025 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3028 * switch to non delalloc mode if we are running low
3029 * on free block. The free block accounting via percpu
3030 * counters can get slightly wrong with percpu_counter_batch getting
3031 * accumulated on each CPU without updating global counters
3032 * Delalloc need an accurate free block accounting. So switch
3033 * to non delalloc when we are near to error range.
3035 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3036 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3037 if (2 * free_blocks
< 3 * dirty_blocks
||
3038 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3040 * free block count is less that 150% of dirty blocks
3041 * or free blocks is less that watermark
3048 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3049 loff_t pos
, unsigned len
, unsigned flags
,
3050 struct page
**pagep
, void **fsdata
)
3052 int ret
, retries
= 0;
3056 struct inode
*inode
= mapping
->host
;
3059 index
= pos
>> PAGE_CACHE_SHIFT
;
3060 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3063 if (ext4_nonda_switch(inode
->i_sb
)) {
3064 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3065 return ext4_write_begin(file
, mapping
, pos
,
3066 len
, flags
, pagep
, fsdata
);
3068 *fsdata
= (void *)0;
3069 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3072 * With delayed allocation, we don't log the i_disksize update
3073 * if there is delayed block allocation. But we still need
3074 * to journalling the i_disksize update if writes to the end
3075 * of file which has an already mapped buffer.
3077 handle
= ext4_journal_start(inode
, 1);
3078 if (IS_ERR(handle
)) {
3079 ret
= PTR_ERR(handle
);
3082 /* We cannot recurse into the filesystem as the transaction is already
3084 flags
|= AOP_FLAG_NOFS
;
3086 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3088 ext4_journal_stop(handle
);
3094 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3095 ext4_da_get_block_prep
);
3098 ext4_journal_stop(handle
);
3099 page_cache_release(page
);
3101 * block_write_begin may have instantiated a few blocks
3102 * outside i_size. Trim these off again. Don't need
3103 * i_size_read because we hold i_mutex.
3105 if (pos
+ len
> inode
->i_size
)
3106 ext4_truncate_failed_write(inode
);
3109 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3116 * Check if we should update i_disksize
3117 * when write to the end of file but not require block allocation
3119 static int ext4_da_should_update_i_disksize(struct page
*page
,
3120 unsigned long offset
)
3122 struct buffer_head
*bh
;
3123 struct inode
*inode
= page
->mapping
->host
;
3127 bh
= page_buffers(page
);
3128 idx
= offset
>> inode
->i_blkbits
;
3130 for (i
= 0; i
< idx
; i
++)
3131 bh
= bh
->b_this_page
;
3133 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3138 static int ext4_da_write_end(struct file
*file
,
3139 struct address_space
*mapping
,
3140 loff_t pos
, unsigned len
, unsigned copied
,
3141 struct page
*page
, void *fsdata
)
3143 struct inode
*inode
= mapping
->host
;
3145 handle_t
*handle
= ext4_journal_current_handle();
3147 unsigned long start
, end
;
3148 int write_mode
= (int)(unsigned long)fsdata
;
3150 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3151 if (ext4_should_order_data(inode
)) {
3152 return ext4_ordered_write_end(file
, mapping
, pos
,
3153 len
, copied
, page
, fsdata
);
3154 } else if (ext4_should_writeback_data(inode
)) {
3155 return ext4_writeback_write_end(file
, mapping
, pos
,
3156 len
, copied
, page
, fsdata
);
3162 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3163 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3164 end
= start
+ copied
- 1;
3167 * generic_write_end() will run mark_inode_dirty() if i_size
3168 * changes. So let's piggyback the i_disksize mark_inode_dirty
3172 new_i_size
= pos
+ copied
;
3173 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3174 if (ext4_da_should_update_i_disksize(page
, end
)) {
3175 down_write(&EXT4_I(inode
)->i_data_sem
);
3176 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3178 * Updating i_disksize when extending file
3179 * without needing block allocation
3181 if (ext4_should_order_data(inode
))
3182 ret
= ext4_jbd2_file_inode(handle
,
3185 EXT4_I(inode
)->i_disksize
= new_i_size
;
3187 up_write(&EXT4_I(inode
)->i_data_sem
);
3188 /* We need to mark inode dirty even if
3189 * new_i_size is less that inode->i_size
3190 * bu greater than i_disksize.(hint delalloc)
3192 ext4_mark_inode_dirty(handle
, inode
);
3195 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3200 ret2
= ext4_journal_stop(handle
);
3204 return ret
? ret
: copied
;
3207 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3210 * Drop reserved blocks
3212 BUG_ON(!PageLocked(page
));
3213 if (!page_has_buffers(page
))
3216 ext4_da_page_release_reservation(page
, offset
);
3219 ext4_invalidatepage(page
, offset
);
3225 * Force all delayed allocation blocks to be allocated for a given inode.
3227 int ext4_alloc_da_blocks(struct inode
*inode
)
3229 trace_ext4_alloc_da_blocks(inode
);
3231 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3232 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3236 * We do something simple for now. The filemap_flush() will
3237 * also start triggering a write of the data blocks, which is
3238 * not strictly speaking necessary (and for users of
3239 * laptop_mode, not even desirable). However, to do otherwise
3240 * would require replicating code paths in:
3242 * ext4_da_writepages() ->
3243 * write_cache_pages() ---> (via passed in callback function)
3244 * __mpage_da_writepage() -->
3245 * mpage_add_bh_to_extent()
3246 * mpage_da_map_blocks()
3248 * The problem is that write_cache_pages(), located in
3249 * mm/page-writeback.c, marks pages clean in preparation for
3250 * doing I/O, which is not desirable if we're not planning on
3253 * We could call write_cache_pages(), and then redirty all of
3254 * the pages by calling redirty_page_for_writeback() but that
3255 * would be ugly in the extreme. So instead we would need to
3256 * replicate parts of the code in the above functions,
3257 * simplifying them becuase we wouldn't actually intend to
3258 * write out the pages, but rather only collect contiguous
3259 * logical block extents, call the multi-block allocator, and
3260 * then update the buffer heads with the block allocations.
3262 * For now, though, we'll cheat by calling filemap_flush(),
3263 * which will map the blocks, and start the I/O, but not
3264 * actually wait for the I/O to complete.
3266 return filemap_flush(inode
->i_mapping
);
3270 * bmap() is special. It gets used by applications such as lilo and by
3271 * the swapper to find the on-disk block of a specific piece of data.
3273 * Naturally, this is dangerous if the block concerned is still in the
3274 * journal. If somebody makes a swapfile on an ext4 data-journaling
3275 * filesystem and enables swap, then they may get a nasty shock when the
3276 * data getting swapped to that swapfile suddenly gets overwritten by
3277 * the original zero's written out previously to the journal and
3278 * awaiting writeback in the kernel's buffer cache.
3280 * So, if we see any bmap calls here on a modified, data-journaled file,
3281 * take extra steps to flush any blocks which might be in the cache.
3283 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3285 struct inode
*inode
= mapping
->host
;
3289 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3290 test_opt(inode
->i_sb
, DELALLOC
)) {
3292 * With delalloc we want to sync the file
3293 * so that we can make sure we allocate
3296 filemap_write_and_wait(mapping
);
3299 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3301 * This is a REALLY heavyweight approach, but the use of
3302 * bmap on dirty files is expected to be extremely rare:
3303 * only if we run lilo or swapon on a freshly made file
3304 * do we expect this to happen.
3306 * (bmap requires CAP_SYS_RAWIO so this does not
3307 * represent an unprivileged user DOS attack --- we'd be
3308 * in trouble if mortal users could trigger this path at
3311 * NB. EXT4_STATE_JDATA is not set on files other than
3312 * regular files. If somebody wants to bmap a directory
3313 * or symlink and gets confused because the buffer
3314 * hasn't yet been flushed to disk, they deserve
3315 * everything they get.
3318 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3319 journal
= EXT4_JOURNAL(inode
);
3320 jbd2_journal_lock_updates(journal
);
3321 err
= jbd2_journal_flush(journal
);
3322 jbd2_journal_unlock_updates(journal
);
3328 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3331 static int ext4_readpage(struct file
*file
, struct page
*page
)
3333 return mpage_readpage(page
, ext4_get_block
);
3337 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3338 struct list_head
*pages
, unsigned nr_pages
)
3340 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3343 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3345 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3348 * If it's a full truncate we just forget about the pending dirtying
3351 ClearPageChecked(page
);
3354 jbd2_journal_invalidatepage(journal
, page
, offset
);
3356 block_invalidatepage(page
, offset
);
3359 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3361 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3363 WARN_ON(PageChecked(page
));
3364 if (!page_has_buffers(page
))
3367 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3369 return try_to_free_buffers(page
);
3373 * O_DIRECT for ext3 (or indirect map) based files
3375 * If the O_DIRECT write will extend the file then add this inode to the
3376 * orphan list. So recovery will truncate it back to the original size
3377 * if the machine crashes during the write.
3379 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3380 * crashes then stale disk data _may_ be exposed inside the file. But current
3381 * VFS code falls back into buffered path in that case so we are safe.
3383 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3384 const struct iovec
*iov
, loff_t offset
,
3385 unsigned long nr_segs
)
3387 struct file
*file
= iocb
->ki_filp
;
3388 struct inode
*inode
= file
->f_mapping
->host
;
3389 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3393 size_t count
= iov_length(iov
, nr_segs
);
3397 loff_t final_size
= offset
+ count
;
3399 if (final_size
> inode
->i_size
) {
3400 /* Credits for sb + inode write */
3401 handle
= ext4_journal_start(inode
, 2);
3402 if (IS_ERR(handle
)) {
3403 ret
= PTR_ERR(handle
);
3406 ret
= ext4_orphan_add(handle
, inode
);
3408 ext4_journal_stop(handle
);
3412 ei
->i_disksize
= inode
->i_size
;
3413 ext4_journal_stop(handle
);
3418 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3420 ext4_get_block
, NULL
);
3421 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3427 /* Credits for sb + inode write */
3428 handle
= ext4_journal_start(inode
, 2);
3429 if (IS_ERR(handle
)) {
3430 /* This is really bad luck. We've written the data
3431 * but cannot extend i_size. Bail out and pretend
3432 * the write failed... */
3433 ret
= PTR_ERR(handle
);
3437 ext4_orphan_del(handle
, inode
);
3439 loff_t end
= offset
+ ret
;
3440 if (end
> inode
->i_size
) {
3441 ei
->i_disksize
= end
;
3442 i_size_write(inode
, end
);
3444 * We're going to return a positive `ret'
3445 * here due to non-zero-length I/O, so there's
3446 * no way of reporting error returns from
3447 * ext4_mark_inode_dirty() to userspace. So
3450 ext4_mark_inode_dirty(handle
, inode
);
3453 err
= ext4_journal_stop(handle
);
3461 static int ext4_get_block_dio_write(struct inode
*inode
, sector_t iblock
,
3462 struct buffer_head
*bh_result
, int create
)
3464 handle_t
*handle
= NULL
;
3466 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3469 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3470 inode
->i_ino
, create
);
3472 * DIO VFS code passes create = 0 flag for write to
3473 * the middle of file. It does this to avoid block
3474 * allocation for holes, to prevent expose stale data
3475 * out when there is parallel buffered read (which does
3476 * not hold the i_mutex lock) while direct IO write has
3477 * not completed. DIO request on holes finally falls back
3478 * to buffered IO for this reason.
3480 * For ext4 extent based file, since we support fallocate,
3481 * new allocated extent as uninitialized, for holes, we
3482 * could fallocate blocks for holes, thus parallel
3483 * buffered IO read will zero out the page when read on
3484 * a hole while parallel DIO write to the hole has not completed.
3486 * when we come here, we know it's a direct IO write to
3487 * to the middle of file (<i_size)
3488 * so it's safe to override the create flag from VFS.
3490 create
= EXT4_GET_BLOCKS_DIO_CREATE_EXT
;
3492 if (max_blocks
> DIO_MAX_BLOCKS
)
3493 max_blocks
= DIO_MAX_BLOCKS
;
3494 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3495 handle
= ext4_journal_start(inode
, dio_credits
);
3496 if (IS_ERR(handle
)) {
3497 ret
= PTR_ERR(handle
);
3500 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3503 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3506 ext4_journal_stop(handle
);
3511 static void ext4_free_io_end(ext4_io_end_t
*io
)
3517 static void dump_aio_dio_list(struct inode
* inode
)
3520 struct list_head
*cur
, *before
, *after
;
3521 ext4_io_end_t
*io
, *io0
, *io1
;
3523 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3524 ext4_debug("inode %lu aio dio list is empty\n", inode
->i_ino
);
3528 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode
->i_ino
);
3529 list_for_each_entry(io
, &EXT4_I(inode
)->i_aio_dio_complete_list
, list
){
3532 io0
= container_of(before
, ext4_io_end_t
, list
);
3534 io1
= container_of(after
, ext4_io_end_t
, list
);
3536 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3537 io
, inode
->i_ino
, io0
, io1
);
3543 * check a range of space and convert unwritten extents to written.
3545 static int ext4_end_aio_dio_nolock(ext4_io_end_t
*io
)
3547 struct inode
*inode
= io
->inode
;
3548 loff_t offset
= io
->offset
;
3549 size_t size
= io
->size
;
3552 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3553 "list->prev 0x%p\n",
3554 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3556 if (list_empty(&io
->list
))
3559 if (io
->flag
!= DIO_AIO_UNWRITTEN
)
3562 if (offset
+ size
<= i_size_read(inode
))
3563 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3566 printk(KERN_EMERG
"%s: failed to convert unwritten"
3567 "extents to written extents, error is %d"
3568 " io is still on inode %lu aio dio list\n",
3569 __func__
, ret
, inode
->i_ino
);
3573 /* clear the DIO AIO unwritten flag */
3578 * work on completed aio dio IO, to convert unwritten extents to extents
3580 static void ext4_end_aio_dio_work(struct work_struct
*work
)
3582 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3583 struct inode
*inode
= io
->inode
;
3586 mutex_lock(&inode
->i_mutex
);
3587 ret
= ext4_end_aio_dio_nolock(io
);
3589 if (!list_empty(&io
->list
))
3590 list_del_init(&io
->list
);
3591 ext4_free_io_end(io
);
3593 mutex_unlock(&inode
->i_mutex
);
3596 * This function is called from ext4_sync_file().
3598 * When AIO DIO IO is completed, the work to convert unwritten
3599 * extents to written is queued on workqueue but may not get immediately
3600 * scheduled. When fsync is called, we need to ensure the
3601 * conversion is complete before fsync returns.
3602 * The inode keeps track of a list of completed AIO from DIO path
3603 * that might needs to do the conversion. This function walks through
3604 * the list and convert the related unwritten extents to written.
3606 int flush_aio_dio_completed_IO(struct inode
*inode
)
3612 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
))
3615 dump_aio_dio_list(inode
);
3616 while (!list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3617 io
= list_entry(EXT4_I(inode
)->i_aio_dio_complete_list
.next
,
3618 ext4_io_end_t
, list
);
3620 * Calling ext4_end_aio_dio_nolock() to convert completed
3623 * When ext4_sync_file() is called, run_queue() may already
3624 * about to flush the work corresponding to this io structure.
3625 * It will be upset if it founds the io structure related
3626 * to the work-to-be schedule is freed.
3628 * Thus we need to keep the io structure still valid here after
3629 * convertion finished. The io structure has a flag to
3630 * avoid double converting from both fsync and background work
3633 ret
= ext4_end_aio_dio_nolock(io
);
3637 list_del_init(&io
->list
);
3639 return (ret2
< 0) ? ret2
: 0;
3642 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
)
3644 ext4_io_end_t
*io
= NULL
;
3646 io
= kmalloc(sizeof(*io
), GFP_NOFS
);
3655 INIT_WORK(&io
->work
, ext4_end_aio_dio_work
);
3656 INIT_LIST_HEAD(&io
->list
);
3662 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3663 ssize_t size
, void *private)
3665 ext4_io_end_t
*io_end
= iocb
->private;
3666 struct workqueue_struct
*wq
;
3668 /* if not async direct IO or dio with 0 bytes write, just return */
3669 if (!io_end
|| !size
)
3672 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3673 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3674 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3677 /* if not aio dio with unwritten extents, just free io and return */
3678 if (io_end
->flag
!= DIO_AIO_UNWRITTEN
){
3679 ext4_free_io_end(io_end
);
3680 iocb
->private = NULL
;
3684 io_end
->offset
= offset
;
3685 io_end
->size
= size
;
3686 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3688 /* queue the work to convert unwritten extents to written */
3689 queue_work(wq
, &io_end
->work
);
3691 /* Add the io_end to per-inode completed aio dio list*/
3692 list_add_tail(&io_end
->list
,
3693 &EXT4_I(io_end
->inode
)->i_aio_dio_complete_list
);
3694 iocb
->private = NULL
;
3697 * For ext4 extent files, ext4 will do direct-io write to holes,
3698 * preallocated extents, and those write extend the file, no need to
3699 * fall back to buffered IO.
3701 * For holes, we fallocate those blocks, mark them as unintialized
3702 * If those blocks were preallocated, we mark sure they are splited, but
3703 * still keep the range to write as unintialized.
3705 * The unwrritten extents will be converted to written when DIO is completed.
3706 * For async direct IO, since the IO may still pending when return, we
3707 * set up an end_io call back function, which will do the convertion
3708 * when async direct IO completed.
3710 * If the O_DIRECT write will extend the file then add this inode to the
3711 * orphan list. So recovery will truncate it back to the original size
3712 * if the machine crashes during the write.
3715 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3716 const struct iovec
*iov
, loff_t offset
,
3717 unsigned long nr_segs
)
3719 struct file
*file
= iocb
->ki_filp
;
3720 struct inode
*inode
= file
->f_mapping
->host
;
3722 size_t count
= iov_length(iov
, nr_segs
);
3724 loff_t final_size
= offset
+ count
;
3725 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3727 * We could direct write to holes and fallocate.
3729 * Allocated blocks to fill the hole are marked as uninitialized
3730 * to prevent paralel buffered read to expose the stale data
3731 * before DIO complete the data IO.
3733 * As to previously fallocated extents, ext4 get_block
3734 * will just simply mark the buffer mapped but still
3735 * keep the extents uninitialized.
3737 * for non AIO case, we will convert those unwritten extents
3738 * to written after return back from blockdev_direct_IO.
3740 * for async DIO, the conversion needs to be defered when
3741 * the IO is completed. The ext4 end_io callback function
3742 * will be called to take care of the conversion work.
3743 * Here for async case, we allocate an io_end structure to
3746 iocb
->private = NULL
;
3747 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3748 if (!is_sync_kiocb(iocb
)) {
3749 iocb
->private = ext4_init_io_end(inode
);
3753 * we save the io structure for current async
3754 * direct IO, so that later ext4_get_blocks()
3755 * could flag the io structure whether there
3756 * is a unwritten extents needs to be converted
3757 * when IO is completed.
3759 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3762 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3763 inode
->i_sb
->s_bdev
, iov
,
3765 ext4_get_block_dio_write
,
3768 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3770 * The io_end structure takes a reference to the inode,
3771 * that structure needs to be destroyed and the
3772 * reference to the inode need to be dropped, when IO is
3773 * complete, even with 0 byte write, or failed.
3775 * In the successful AIO DIO case, the io_end structure will be
3776 * desctroyed and the reference to the inode will be dropped
3777 * after the end_io call back function is called.
3779 * In the case there is 0 byte write, or error case, since
3780 * VFS direct IO won't invoke the end_io call back function,
3781 * we need to free the end_io structure here.
3783 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3784 ext4_free_io_end(iocb
->private);
3785 iocb
->private = NULL
;
3786 } else if (ret
> 0 && (EXT4_I(inode
)->i_state
&
3787 EXT4_STATE_DIO_UNWRITTEN
)) {
3790 * for non AIO case, since the IO is already
3791 * completed, we could do the convertion right here
3793 err
= ext4_convert_unwritten_extents(inode
,
3797 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_DIO_UNWRITTEN
;
3802 /* for write the the end of file case, we fall back to old way */
3803 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3806 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3807 const struct iovec
*iov
, loff_t offset
,
3808 unsigned long nr_segs
)
3810 struct file
*file
= iocb
->ki_filp
;
3811 struct inode
*inode
= file
->f_mapping
->host
;
3813 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3814 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3816 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3820 * Pages can be marked dirty completely asynchronously from ext4's journalling
3821 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3822 * much here because ->set_page_dirty is called under VFS locks. The page is
3823 * not necessarily locked.
3825 * We cannot just dirty the page and leave attached buffers clean, because the
3826 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3827 * or jbddirty because all the journalling code will explode.
3829 * So what we do is to mark the page "pending dirty" and next time writepage
3830 * is called, propagate that into the buffers appropriately.
3832 static int ext4_journalled_set_page_dirty(struct page
*page
)
3834 SetPageChecked(page
);
3835 return __set_page_dirty_nobuffers(page
);
3838 static const struct address_space_operations ext4_ordered_aops
= {
3839 .readpage
= ext4_readpage
,
3840 .readpages
= ext4_readpages
,
3841 .writepage
= ext4_writepage
,
3842 .sync_page
= block_sync_page
,
3843 .write_begin
= ext4_write_begin
,
3844 .write_end
= ext4_ordered_write_end
,
3846 .invalidatepage
= ext4_invalidatepage
,
3847 .releasepage
= ext4_releasepage
,
3848 .direct_IO
= ext4_direct_IO
,
3849 .migratepage
= buffer_migrate_page
,
3850 .is_partially_uptodate
= block_is_partially_uptodate
,
3851 .error_remove_page
= generic_error_remove_page
,
3854 static const struct address_space_operations ext4_writeback_aops
= {
3855 .readpage
= ext4_readpage
,
3856 .readpages
= ext4_readpages
,
3857 .writepage
= ext4_writepage
,
3858 .sync_page
= block_sync_page
,
3859 .write_begin
= ext4_write_begin
,
3860 .write_end
= ext4_writeback_write_end
,
3862 .invalidatepage
= ext4_invalidatepage
,
3863 .releasepage
= ext4_releasepage
,
3864 .direct_IO
= ext4_direct_IO
,
3865 .migratepage
= buffer_migrate_page
,
3866 .is_partially_uptodate
= block_is_partially_uptodate
,
3867 .error_remove_page
= generic_error_remove_page
,
3870 static const struct address_space_operations ext4_journalled_aops
= {
3871 .readpage
= ext4_readpage
,
3872 .readpages
= ext4_readpages
,
3873 .writepage
= ext4_writepage
,
3874 .sync_page
= block_sync_page
,
3875 .write_begin
= ext4_write_begin
,
3876 .write_end
= ext4_journalled_write_end
,
3877 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3879 .invalidatepage
= ext4_invalidatepage
,
3880 .releasepage
= ext4_releasepage
,
3881 .is_partially_uptodate
= block_is_partially_uptodate
,
3882 .error_remove_page
= generic_error_remove_page
,
3885 static const struct address_space_operations ext4_da_aops
= {
3886 .readpage
= ext4_readpage
,
3887 .readpages
= ext4_readpages
,
3888 .writepage
= ext4_writepage
,
3889 .writepages
= ext4_da_writepages
,
3890 .sync_page
= block_sync_page
,
3891 .write_begin
= ext4_da_write_begin
,
3892 .write_end
= ext4_da_write_end
,
3894 .invalidatepage
= ext4_da_invalidatepage
,
3895 .releasepage
= ext4_releasepage
,
3896 .direct_IO
= ext4_direct_IO
,
3897 .migratepage
= buffer_migrate_page
,
3898 .is_partially_uptodate
= block_is_partially_uptodate
,
3899 .error_remove_page
= generic_error_remove_page
,
3902 void ext4_set_aops(struct inode
*inode
)
3904 if (ext4_should_order_data(inode
) &&
3905 test_opt(inode
->i_sb
, DELALLOC
))
3906 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3907 else if (ext4_should_order_data(inode
))
3908 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3909 else if (ext4_should_writeback_data(inode
) &&
3910 test_opt(inode
->i_sb
, DELALLOC
))
3911 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3912 else if (ext4_should_writeback_data(inode
))
3913 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3915 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3919 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3920 * up to the end of the block which corresponds to `from'.
3921 * This required during truncate. We need to physically zero the tail end
3922 * of that block so it doesn't yield old data if the file is later grown.
3924 int ext4_block_truncate_page(handle_t
*handle
,
3925 struct address_space
*mapping
, loff_t from
)
3927 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3928 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3929 unsigned blocksize
, length
, pos
;
3931 struct inode
*inode
= mapping
->host
;
3932 struct buffer_head
*bh
;
3936 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3937 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3941 blocksize
= inode
->i_sb
->s_blocksize
;
3942 length
= blocksize
- (offset
& (blocksize
- 1));
3943 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3946 * For "nobh" option, we can only work if we don't need to
3947 * read-in the page - otherwise we create buffers to do the IO.
3949 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3950 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3951 zero_user(page
, offset
, length
);
3952 set_page_dirty(page
);
3956 if (!page_has_buffers(page
))
3957 create_empty_buffers(page
, blocksize
, 0);
3959 /* Find the buffer that contains "offset" */
3960 bh
= page_buffers(page
);
3962 while (offset
>= pos
) {
3963 bh
= bh
->b_this_page
;
3969 if (buffer_freed(bh
)) {
3970 BUFFER_TRACE(bh
, "freed: skip");
3974 if (!buffer_mapped(bh
)) {
3975 BUFFER_TRACE(bh
, "unmapped");
3976 ext4_get_block(inode
, iblock
, bh
, 0);
3977 /* unmapped? It's a hole - nothing to do */
3978 if (!buffer_mapped(bh
)) {
3979 BUFFER_TRACE(bh
, "still unmapped");
3984 /* Ok, it's mapped. Make sure it's up-to-date */
3985 if (PageUptodate(page
))
3986 set_buffer_uptodate(bh
);
3988 if (!buffer_uptodate(bh
)) {
3990 ll_rw_block(READ
, 1, &bh
);
3992 /* Uhhuh. Read error. Complain and punt. */
3993 if (!buffer_uptodate(bh
))
3997 if (ext4_should_journal_data(inode
)) {
3998 BUFFER_TRACE(bh
, "get write access");
3999 err
= ext4_journal_get_write_access(handle
, bh
);
4004 zero_user(page
, offset
, length
);
4006 BUFFER_TRACE(bh
, "zeroed end of block");
4009 if (ext4_should_journal_data(inode
)) {
4010 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4012 if (ext4_should_order_data(inode
))
4013 err
= ext4_jbd2_file_inode(handle
, inode
);
4014 mark_buffer_dirty(bh
);
4019 page_cache_release(page
);
4024 * Probably it should be a library function... search for first non-zero word
4025 * or memcmp with zero_page, whatever is better for particular architecture.
4028 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4037 * ext4_find_shared - find the indirect blocks for partial truncation.
4038 * @inode: inode in question
4039 * @depth: depth of the affected branch
4040 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4041 * @chain: place to store the pointers to partial indirect blocks
4042 * @top: place to the (detached) top of branch
4044 * This is a helper function used by ext4_truncate().
4046 * When we do truncate() we may have to clean the ends of several
4047 * indirect blocks but leave the blocks themselves alive. Block is
4048 * partially truncated if some data below the new i_size is refered
4049 * from it (and it is on the path to the first completely truncated
4050 * data block, indeed). We have to free the top of that path along
4051 * with everything to the right of the path. Since no allocation
4052 * past the truncation point is possible until ext4_truncate()
4053 * finishes, we may safely do the latter, but top of branch may
4054 * require special attention - pageout below the truncation point
4055 * might try to populate it.
4057 * We atomically detach the top of branch from the tree, store the
4058 * block number of its root in *@top, pointers to buffer_heads of
4059 * partially truncated blocks - in @chain[].bh and pointers to
4060 * their last elements that should not be removed - in
4061 * @chain[].p. Return value is the pointer to last filled element
4064 * The work left to caller to do the actual freeing of subtrees:
4065 * a) free the subtree starting from *@top
4066 * b) free the subtrees whose roots are stored in
4067 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4068 * c) free the subtrees growing from the inode past the @chain[0].
4069 * (no partially truncated stuff there). */
4071 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4072 ext4_lblk_t offsets
[4], Indirect chain
[4],
4075 Indirect
*partial
, *p
;
4079 /* Make k index the deepest non-null offest + 1 */
4080 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4082 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4083 /* Writer: pointers */
4085 partial
= chain
+ k
-1;
4087 * If the branch acquired continuation since we've looked at it -
4088 * fine, it should all survive and (new) top doesn't belong to us.
4090 if (!partial
->key
&& *partial
->p
)
4093 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4096 * OK, we've found the last block that must survive. The rest of our
4097 * branch should be detached before unlocking. However, if that rest
4098 * of branch is all ours and does not grow immediately from the inode
4099 * it's easier to cheat and just decrement partial->p.
4101 if (p
== chain
+ k
- 1 && p
> chain
) {
4105 /* Nope, don't do this in ext4. Must leave the tree intact */
4112 while (partial
> p
) {
4113 brelse(partial
->bh
);
4121 * Zero a number of block pointers in either an inode or an indirect block.
4122 * If we restart the transaction we must again get write access to the
4123 * indirect block for further modification.
4125 * We release `count' blocks on disk, but (last - first) may be greater
4126 * than `count' because there can be holes in there.
4128 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4129 struct buffer_head
*bh
,
4130 ext4_fsblk_t block_to_free
,
4131 unsigned long count
, __le32
*first
,
4135 int is_metadata
= S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
);
4137 if (try_to_extend_transaction(handle
, inode
)) {
4139 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4140 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4142 ext4_mark_inode_dirty(handle
, inode
);
4143 ext4_truncate_restart_trans(handle
, inode
,
4144 blocks_for_truncate(inode
));
4146 BUFFER_TRACE(bh
, "retaking write access");
4147 ext4_journal_get_write_access(handle
, bh
);
4152 * Any buffers which are on the journal will be in memory. We
4153 * find them on the hash table so jbd2_journal_revoke() will
4154 * run jbd2_journal_forget() on them. We've already detached
4155 * each block from the file, so bforget() in
4156 * jbd2_journal_forget() should be safe.
4158 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4160 for (p
= first
; p
< last
; p
++) {
4161 u32 nr
= le32_to_cpu(*p
);
4163 struct buffer_head
*tbh
;
4166 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
4167 ext4_forget(handle
, is_metadata
, inode
, tbh
, nr
);
4171 ext4_free_blocks(handle
, inode
, block_to_free
, count
, is_metadata
);
4175 * ext4_free_data - free a list of data blocks
4176 * @handle: handle for this transaction
4177 * @inode: inode we are dealing with
4178 * @this_bh: indirect buffer_head which contains *@first and *@last
4179 * @first: array of block numbers
4180 * @last: points immediately past the end of array
4182 * We are freeing all blocks refered from that array (numbers are stored as
4183 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4185 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4186 * blocks are contiguous then releasing them at one time will only affect one
4187 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4188 * actually use a lot of journal space.
4190 * @this_bh will be %NULL if @first and @last point into the inode's direct
4193 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4194 struct buffer_head
*this_bh
,
4195 __le32
*first
, __le32
*last
)
4197 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4198 unsigned long count
= 0; /* Number of blocks in the run */
4199 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4202 ext4_fsblk_t nr
; /* Current block # */
4203 __le32
*p
; /* Pointer into inode/ind
4204 for current block */
4207 if (this_bh
) { /* For indirect block */
4208 BUFFER_TRACE(this_bh
, "get_write_access");
4209 err
= ext4_journal_get_write_access(handle
, this_bh
);
4210 /* Important: if we can't update the indirect pointers
4211 * to the blocks, we can't free them. */
4216 for (p
= first
; p
< last
; p
++) {
4217 nr
= le32_to_cpu(*p
);
4219 /* accumulate blocks to free if they're contiguous */
4222 block_to_free_p
= p
;
4224 } else if (nr
== block_to_free
+ count
) {
4227 ext4_clear_blocks(handle
, inode
, this_bh
,
4229 count
, block_to_free_p
, p
);
4231 block_to_free_p
= p
;
4238 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4239 count
, block_to_free_p
, p
);
4242 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4245 * The buffer head should have an attached journal head at this
4246 * point. However, if the data is corrupted and an indirect
4247 * block pointed to itself, it would have been detached when
4248 * the block was cleared. Check for this instead of OOPSing.
4250 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4251 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4253 ext4_error(inode
->i_sb
, __func__
,
4254 "circular indirect block detected, "
4255 "inode=%lu, block=%llu",
4257 (unsigned long long) this_bh
->b_blocknr
);
4262 * ext4_free_branches - free an array of branches
4263 * @handle: JBD handle for this transaction
4264 * @inode: inode we are dealing with
4265 * @parent_bh: the buffer_head which contains *@first and *@last
4266 * @first: array of block numbers
4267 * @last: pointer immediately past the end of array
4268 * @depth: depth of the branches to free
4270 * We are freeing all blocks refered from these branches (numbers are
4271 * stored as little-endian 32-bit) and updating @inode->i_blocks
4274 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4275 struct buffer_head
*parent_bh
,
4276 __le32
*first
, __le32
*last
, int depth
)
4281 if (ext4_handle_is_aborted(handle
))
4285 struct buffer_head
*bh
;
4286 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4288 while (--p
>= first
) {
4289 nr
= le32_to_cpu(*p
);
4291 continue; /* A hole */
4293 /* Go read the buffer for the next level down */
4294 bh
= sb_bread(inode
->i_sb
, nr
);
4297 * A read failure? Report error and clear slot
4301 ext4_error(inode
->i_sb
, "ext4_free_branches",
4302 "Read failure, inode=%lu, block=%llu",
4307 /* This zaps the entire block. Bottom up. */
4308 BUFFER_TRACE(bh
, "free child branches");
4309 ext4_free_branches(handle
, inode
, bh
,
4310 (__le32
*) bh
->b_data
,
4311 (__le32
*) bh
->b_data
+ addr_per_block
,
4315 * We've probably journalled the indirect block several
4316 * times during the truncate. But it's no longer
4317 * needed and we now drop it from the transaction via
4318 * jbd2_journal_revoke().
4320 * That's easy if it's exclusively part of this
4321 * transaction. But if it's part of the committing
4322 * transaction then jbd2_journal_forget() will simply
4323 * brelse() it. That means that if the underlying
4324 * block is reallocated in ext4_get_block(),
4325 * unmap_underlying_metadata() will find this block
4326 * and will try to get rid of it. damn, damn.
4328 * If this block has already been committed to the
4329 * journal, a revoke record will be written. And
4330 * revoke records must be emitted *before* clearing
4331 * this block's bit in the bitmaps.
4333 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4336 * Everything below this this pointer has been
4337 * released. Now let this top-of-subtree go.
4339 * We want the freeing of this indirect block to be
4340 * atomic in the journal with the updating of the
4341 * bitmap block which owns it. So make some room in
4344 * We zero the parent pointer *after* freeing its
4345 * pointee in the bitmaps, so if extend_transaction()
4346 * for some reason fails to put the bitmap changes and
4347 * the release into the same transaction, recovery
4348 * will merely complain about releasing a free block,
4349 * rather than leaking blocks.
4351 if (ext4_handle_is_aborted(handle
))
4353 if (try_to_extend_transaction(handle
, inode
)) {
4354 ext4_mark_inode_dirty(handle
, inode
);
4355 ext4_truncate_restart_trans(handle
, inode
,
4356 blocks_for_truncate(inode
));
4359 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
4363 * The block which we have just freed is
4364 * pointed to by an indirect block: journal it
4366 BUFFER_TRACE(parent_bh
, "get_write_access");
4367 if (!ext4_journal_get_write_access(handle
,
4370 BUFFER_TRACE(parent_bh
,
4371 "call ext4_handle_dirty_metadata");
4372 ext4_handle_dirty_metadata(handle
,
4379 /* We have reached the bottom of the tree. */
4380 BUFFER_TRACE(parent_bh
, "free data blocks");
4381 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4385 int ext4_can_truncate(struct inode
*inode
)
4387 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4389 if (S_ISREG(inode
->i_mode
))
4391 if (S_ISDIR(inode
->i_mode
))
4393 if (S_ISLNK(inode
->i_mode
))
4394 return !ext4_inode_is_fast_symlink(inode
);
4401 * We block out ext4_get_block() block instantiations across the entire
4402 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4403 * simultaneously on behalf of the same inode.
4405 * As we work through the truncate and commmit bits of it to the journal there
4406 * is one core, guiding principle: the file's tree must always be consistent on
4407 * disk. We must be able to restart the truncate after a crash.
4409 * The file's tree may be transiently inconsistent in memory (although it
4410 * probably isn't), but whenever we close off and commit a journal transaction,
4411 * the contents of (the filesystem + the journal) must be consistent and
4412 * restartable. It's pretty simple, really: bottom up, right to left (although
4413 * left-to-right works OK too).
4415 * Note that at recovery time, journal replay occurs *before* the restart of
4416 * truncate against the orphan inode list.
4418 * The committed inode has the new, desired i_size (which is the same as
4419 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4420 * that this inode's truncate did not complete and it will again call
4421 * ext4_truncate() to have another go. So there will be instantiated blocks
4422 * to the right of the truncation point in a crashed ext4 filesystem. But
4423 * that's fine - as long as they are linked from the inode, the post-crash
4424 * ext4_truncate() run will find them and release them.
4426 void ext4_truncate(struct inode
*inode
)
4429 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4430 __le32
*i_data
= ei
->i_data
;
4431 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4432 struct address_space
*mapping
= inode
->i_mapping
;
4433 ext4_lblk_t offsets
[4];
4438 ext4_lblk_t last_block
;
4439 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4441 if (!ext4_can_truncate(inode
))
4444 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4445 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
4447 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4448 ext4_ext_truncate(inode
);
4452 handle
= start_transaction(inode
);
4454 return; /* AKPM: return what? */
4456 last_block
= (inode
->i_size
+ blocksize
-1)
4457 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4459 if (inode
->i_size
& (blocksize
- 1))
4460 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4463 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4465 goto out_stop
; /* error */
4468 * OK. This truncate is going to happen. We add the inode to the
4469 * orphan list, so that if this truncate spans multiple transactions,
4470 * and we crash, we will resume the truncate when the filesystem
4471 * recovers. It also marks the inode dirty, to catch the new size.
4473 * Implication: the file must always be in a sane, consistent
4474 * truncatable state while each transaction commits.
4476 if (ext4_orphan_add(handle
, inode
))
4480 * From here we block out all ext4_get_block() callers who want to
4481 * modify the block allocation tree.
4483 down_write(&ei
->i_data_sem
);
4485 ext4_discard_preallocations(inode
);
4488 * The orphan list entry will now protect us from any crash which
4489 * occurs before the truncate completes, so it is now safe to propagate
4490 * the new, shorter inode size (held for now in i_size) into the
4491 * on-disk inode. We do this via i_disksize, which is the value which
4492 * ext4 *really* writes onto the disk inode.
4494 ei
->i_disksize
= inode
->i_size
;
4496 if (n
== 1) { /* direct blocks */
4497 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4498 i_data
+ EXT4_NDIR_BLOCKS
);
4502 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4503 /* Kill the top of shared branch (not detached) */
4505 if (partial
== chain
) {
4506 /* Shared branch grows from the inode */
4507 ext4_free_branches(handle
, inode
, NULL
,
4508 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4511 * We mark the inode dirty prior to restart,
4512 * and prior to stop. No need for it here.
4515 /* Shared branch grows from an indirect block */
4516 BUFFER_TRACE(partial
->bh
, "get_write_access");
4517 ext4_free_branches(handle
, inode
, partial
->bh
,
4519 partial
->p
+1, (chain
+n
-1) - partial
);
4522 /* Clear the ends of indirect blocks on the shared branch */
4523 while (partial
> chain
) {
4524 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4525 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4526 (chain
+n
-1) - partial
);
4527 BUFFER_TRACE(partial
->bh
, "call brelse");
4528 brelse(partial
->bh
);
4532 /* Kill the remaining (whole) subtrees */
4533 switch (offsets
[0]) {
4535 nr
= i_data
[EXT4_IND_BLOCK
];
4537 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4538 i_data
[EXT4_IND_BLOCK
] = 0;
4540 case EXT4_IND_BLOCK
:
4541 nr
= i_data
[EXT4_DIND_BLOCK
];
4543 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4544 i_data
[EXT4_DIND_BLOCK
] = 0;
4546 case EXT4_DIND_BLOCK
:
4547 nr
= i_data
[EXT4_TIND_BLOCK
];
4549 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4550 i_data
[EXT4_TIND_BLOCK
] = 0;
4552 case EXT4_TIND_BLOCK
:
4556 up_write(&ei
->i_data_sem
);
4557 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4558 ext4_mark_inode_dirty(handle
, inode
);
4561 * In a multi-transaction truncate, we only make the final transaction
4565 ext4_handle_sync(handle
);
4568 * If this was a simple ftruncate(), and the file will remain alive
4569 * then we need to clear up the orphan record which we created above.
4570 * However, if this was a real unlink then we were called by
4571 * ext4_delete_inode(), and we allow that function to clean up the
4572 * orphan info for us.
4575 ext4_orphan_del(handle
, inode
);
4577 ext4_journal_stop(handle
);
4581 * ext4_get_inode_loc returns with an extra refcount against the inode's
4582 * underlying buffer_head on success. If 'in_mem' is true, we have all
4583 * data in memory that is needed to recreate the on-disk version of this
4586 static int __ext4_get_inode_loc(struct inode
*inode
,
4587 struct ext4_iloc
*iloc
, int in_mem
)
4589 struct ext4_group_desc
*gdp
;
4590 struct buffer_head
*bh
;
4591 struct super_block
*sb
= inode
->i_sb
;
4593 int inodes_per_block
, inode_offset
;
4596 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4599 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4600 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4605 * Figure out the offset within the block group inode table
4607 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4608 inode_offset
= ((inode
->i_ino
- 1) %
4609 EXT4_INODES_PER_GROUP(sb
));
4610 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4611 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4613 bh
= sb_getblk(sb
, block
);
4615 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4616 "inode block - inode=%lu, block=%llu",
4617 inode
->i_ino
, block
);
4620 if (!buffer_uptodate(bh
)) {
4624 * If the buffer has the write error flag, we have failed
4625 * to write out another inode in the same block. In this
4626 * case, we don't have to read the block because we may
4627 * read the old inode data successfully.
4629 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4630 set_buffer_uptodate(bh
);
4632 if (buffer_uptodate(bh
)) {
4633 /* someone brought it uptodate while we waited */
4639 * If we have all information of the inode in memory and this
4640 * is the only valid inode in the block, we need not read the
4644 struct buffer_head
*bitmap_bh
;
4647 start
= inode_offset
& ~(inodes_per_block
- 1);
4649 /* Is the inode bitmap in cache? */
4650 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4655 * If the inode bitmap isn't in cache then the
4656 * optimisation may end up performing two reads instead
4657 * of one, so skip it.
4659 if (!buffer_uptodate(bitmap_bh
)) {
4663 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4664 if (i
== inode_offset
)
4666 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4670 if (i
== start
+ inodes_per_block
) {
4671 /* all other inodes are free, so skip I/O */
4672 memset(bh
->b_data
, 0, bh
->b_size
);
4673 set_buffer_uptodate(bh
);
4681 * If we need to do any I/O, try to pre-readahead extra
4682 * blocks from the inode table.
4684 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4685 ext4_fsblk_t b
, end
, table
;
4688 table
= ext4_inode_table(sb
, gdp
);
4689 /* s_inode_readahead_blks is always a power of 2 */
4690 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4693 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4694 num
= EXT4_INODES_PER_GROUP(sb
);
4695 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4696 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4697 num
-= ext4_itable_unused_count(sb
, gdp
);
4698 table
+= num
/ inodes_per_block
;
4702 sb_breadahead(sb
, b
++);
4706 * There are other valid inodes in the buffer, this inode
4707 * has in-inode xattrs, or we don't have this inode in memory.
4708 * Read the block from disk.
4711 bh
->b_end_io
= end_buffer_read_sync
;
4712 submit_bh(READ_META
, bh
);
4714 if (!buffer_uptodate(bh
)) {
4715 ext4_error(sb
, __func__
,
4716 "unable to read inode block - inode=%lu, "
4717 "block=%llu", inode
->i_ino
, block
);
4727 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4729 /* We have all inode data except xattrs in memory here. */
4730 return __ext4_get_inode_loc(inode
, iloc
,
4731 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4734 void ext4_set_inode_flags(struct inode
*inode
)
4736 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4738 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4739 if (flags
& EXT4_SYNC_FL
)
4740 inode
->i_flags
|= S_SYNC
;
4741 if (flags
& EXT4_APPEND_FL
)
4742 inode
->i_flags
|= S_APPEND
;
4743 if (flags
& EXT4_IMMUTABLE_FL
)
4744 inode
->i_flags
|= S_IMMUTABLE
;
4745 if (flags
& EXT4_NOATIME_FL
)
4746 inode
->i_flags
|= S_NOATIME
;
4747 if (flags
& EXT4_DIRSYNC_FL
)
4748 inode
->i_flags
|= S_DIRSYNC
;
4751 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4752 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4754 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4756 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4757 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4759 ei
->i_flags
|= EXT4_SYNC_FL
;
4760 if (flags
& S_APPEND
)
4761 ei
->i_flags
|= EXT4_APPEND_FL
;
4762 if (flags
& S_IMMUTABLE
)
4763 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4764 if (flags
& S_NOATIME
)
4765 ei
->i_flags
|= EXT4_NOATIME_FL
;
4766 if (flags
& S_DIRSYNC
)
4767 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4770 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4771 struct ext4_inode_info
*ei
)
4774 struct inode
*inode
= &(ei
->vfs_inode
);
4775 struct super_block
*sb
= inode
->i_sb
;
4777 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4778 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4779 /* we are using combined 48 bit field */
4780 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4781 le32_to_cpu(raw_inode
->i_blocks_lo
);
4782 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4783 /* i_blocks represent file system block size */
4784 return i_blocks
<< (inode
->i_blkbits
- 9);
4789 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4793 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4795 struct ext4_iloc iloc
;
4796 struct ext4_inode
*raw_inode
;
4797 struct ext4_inode_info
*ei
;
4798 struct inode
*inode
;
4799 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4803 inode
= iget_locked(sb
, ino
);
4805 return ERR_PTR(-ENOMEM
);
4806 if (!(inode
->i_state
& I_NEW
))
4812 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4815 raw_inode
= ext4_raw_inode(&iloc
);
4816 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4817 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4818 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4819 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4820 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4821 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4823 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4826 ei
->i_dir_start_lookup
= 0;
4827 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4828 /* We now have enough fields to check if the inode was active or not.
4829 * This is needed because nfsd might try to access dead inodes
4830 * the test is that same one that e2fsck uses
4831 * NeilBrown 1999oct15
4833 if (inode
->i_nlink
== 0) {
4834 if (inode
->i_mode
== 0 ||
4835 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4836 /* this inode is deleted */
4840 /* The only unlinked inodes we let through here have
4841 * valid i_mode and are being read by the orphan
4842 * recovery code: that's fine, we're about to complete
4843 * the process of deleting those. */
4845 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4846 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4847 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4848 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4850 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4851 inode
->i_size
= ext4_isize(raw_inode
);
4852 ei
->i_disksize
= inode
->i_size
;
4853 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4854 ei
->i_block_group
= iloc
.block_group
;
4855 ei
->i_last_alloc_group
= ~0;
4857 * NOTE! The in-memory inode i_data array is in little-endian order
4858 * even on big-endian machines: we do NOT byteswap the block numbers!
4860 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4861 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4862 INIT_LIST_HEAD(&ei
->i_orphan
);
4865 * Set transaction id's of transactions that have to be committed
4866 * to finish f[data]sync. We set them to currently running transaction
4867 * as we cannot be sure that the inode or some of its metadata isn't
4868 * part of the transaction - the inode could have been reclaimed and
4869 * now it is reread from disk.
4872 transaction_t
*transaction
;
4875 spin_lock(&journal
->j_state_lock
);
4876 if (journal
->j_running_transaction
)
4877 transaction
= journal
->j_running_transaction
;
4879 transaction
= journal
->j_committing_transaction
;
4881 tid
= transaction
->t_tid
;
4883 tid
= journal
->j_commit_sequence
;
4884 spin_unlock(&journal
->j_state_lock
);
4885 ei
->i_sync_tid
= tid
;
4886 ei
->i_datasync_tid
= tid
;
4889 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4890 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4891 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4892 EXT4_INODE_SIZE(inode
->i_sb
)) {
4896 if (ei
->i_extra_isize
== 0) {
4897 /* The extra space is currently unused. Use it. */
4898 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4899 EXT4_GOOD_OLD_INODE_SIZE
;
4901 __le32
*magic
= (void *)raw_inode
+
4902 EXT4_GOOD_OLD_INODE_SIZE
+
4904 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4905 ei
->i_state
|= EXT4_STATE_XATTR
;
4908 ei
->i_extra_isize
= 0;
4910 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4911 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4912 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4913 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4915 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4916 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4917 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4919 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4923 if (ei
->i_file_acl
&&
4924 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4925 ext4_error(sb
, __func__
,
4926 "bad extended attribute block %llu in inode #%lu",
4927 ei
->i_file_acl
, inode
->i_ino
);
4930 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4931 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4932 (S_ISLNK(inode
->i_mode
) &&
4933 !ext4_inode_is_fast_symlink(inode
)))
4934 /* Validate extent which is part of inode */
4935 ret
= ext4_ext_check_inode(inode
);
4936 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4937 (S_ISLNK(inode
->i_mode
) &&
4938 !ext4_inode_is_fast_symlink(inode
))) {
4939 /* Validate block references which are part of inode */
4940 ret
= ext4_check_inode_blockref(inode
);
4945 if (S_ISREG(inode
->i_mode
)) {
4946 inode
->i_op
= &ext4_file_inode_operations
;
4947 inode
->i_fop
= &ext4_file_operations
;
4948 ext4_set_aops(inode
);
4949 } else if (S_ISDIR(inode
->i_mode
)) {
4950 inode
->i_op
= &ext4_dir_inode_operations
;
4951 inode
->i_fop
= &ext4_dir_operations
;
4952 } else if (S_ISLNK(inode
->i_mode
)) {
4953 if (ext4_inode_is_fast_symlink(inode
)) {
4954 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4955 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4956 sizeof(ei
->i_data
) - 1);
4958 inode
->i_op
= &ext4_symlink_inode_operations
;
4959 ext4_set_aops(inode
);
4961 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4962 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4963 inode
->i_op
= &ext4_special_inode_operations
;
4964 if (raw_inode
->i_block
[0])
4965 init_special_inode(inode
, inode
->i_mode
,
4966 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4968 init_special_inode(inode
, inode
->i_mode
,
4969 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4972 ext4_error(inode
->i_sb
, __func__
,
4973 "bogus i_mode (%o) for inode=%lu",
4974 inode
->i_mode
, inode
->i_ino
);
4978 ext4_set_inode_flags(inode
);
4979 unlock_new_inode(inode
);
4985 return ERR_PTR(ret
);
4988 static int ext4_inode_blocks_set(handle_t
*handle
,
4989 struct ext4_inode
*raw_inode
,
4990 struct ext4_inode_info
*ei
)
4992 struct inode
*inode
= &(ei
->vfs_inode
);
4993 u64 i_blocks
= inode
->i_blocks
;
4994 struct super_block
*sb
= inode
->i_sb
;
4996 if (i_blocks
<= ~0U) {
4998 * i_blocks can be represnted in a 32 bit variable
4999 * as multiple of 512 bytes
5001 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5002 raw_inode
->i_blocks_high
= 0;
5003 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5006 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5009 if (i_blocks
<= 0xffffffffffffULL
) {
5011 * i_blocks can be represented in a 48 bit variable
5012 * as multiple of 512 bytes
5014 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5015 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5016 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5018 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
5019 /* i_block is stored in file system block size */
5020 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5021 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5022 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5028 * Post the struct inode info into an on-disk inode location in the
5029 * buffer-cache. This gobbles the caller's reference to the
5030 * buffer_head in the inode location struct.
5032 * The caller must have write access to iloc->bh.
5034 static int ext4_do_update_inode(handle_t
*handle
,
5035 struct inode
*inode
,
5036 struct ext4_iloc
*iloc
)
5038 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5039 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5040 struct buffer_head
*bh
= iloc
->bh
;
5041 int err
= 0, rc
, block
;
5043 /* For fields not not tracking in the in-memory inode,
5044 * initialise them to zero for new inodes. */
5045 if (ei
->i_state
& EXT4_STATE_NEW
)
5046 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5048 ext4_get_inode_flags(ei
);
5049 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5050 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5051 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5052 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5054 * Fix up interoperability with old kernels. Otherwise, old inodes get
5055 * re-used with the upper 16 bits of the uid/gid intact
5058 raw_inode
->i_uid_high
=
5059 cpu_to_le16(high_16_bits(inode
->i_uid
));
5060 raw_inode
->i_gid_high
=
5061 cpu_to_le16(high_16_bits(inode
->i_gid
));
5063 raw_inode
->i_uid_high
= 0;
5064 raw_inode
->i_gid_high
= 0;
5067 raw_inode
->i_uid_low
=
5068 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5069 raw_inode
->i_gid_low
=
5070 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5071 raw_inode
->i_uid_high
= 0;
5072 raw_inode
->i_gid_high
= 0;
5074 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5076 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5077 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5078 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5079 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5081 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5083 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5084 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5085 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5086 cpu_to_le32(EXT4_OS_HURD
))
5087 raw_inode
->i_file_acl_high
=
5088 cpu_to_le16(ei
->i_file_acl
>> 32);
5089 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5090 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5091 if (ei
->i_disksize
> 0x7fffffffULL
) {
5092 struct super_block
*sb
= inode
->i_sb
;
5093 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5094 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5095 EXT4_SB(sb
)->s_es
->s_rev_level
==
5096 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5097 /* If this is the first large file
5098 * created, add a flag to the superblock.
5100 err
= ext4_journal_get_write_access(handle
,
5101 EXT4_SB(sb
)->s_sbh
);
5104 ext4_update_dynamic_rev(sb
);
5105 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5106 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5108 ext4_handle_sync(handle
);
5109 err
= ext4_handle_dirty_metadata(handle
, inode
,
5110 EXT4_SB(sb
)->s_sbh
);
5113 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5114 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5115 if (old_valid_dev(inode
->i_rdev
)) {
5116 raw_inode
->i_block
[0] =
5117 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5118 raw_inode
->i_block
[1] = 0;
5120 raw_inode
->i_block
[0] = 0;
5121 raw_inode
->i_block
[1] =
5122 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5123 raw_inode
->i_block
[2] = 0;
5126 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5127 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5129 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5130 if (ei
->i_extra_isize
) {
5131 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5132 raw_inode
->i_version_hi
=
5133 cpu_to_le32(inode
->i_version
>> 32);
5134 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5137 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5138 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
5141 ei
->i_state
&= ~EXT4_STATE_NEW
;
5143 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5146 ext4_std_error(inode
->i_sb
, err
);
5151 * ext4_write_inode()
5153 * We are called from a few places:
5155 * - Within generic_file_write() for O_SYNC files.
5156 * Here, there will be no transaction running. We wait for any running
5157 * trasnaction to commit.
5159 * - Within sys_sync(), kupdate and such.
5160 * We wait on commit, if tol to.
5162 * - Within prune_icache() (PF_MEMALLOC == true)
5163 * Here we simply return. We can't afford to block kswapd on the
5166 * In all cases it is actually safe for us to return without doing anything,
5167 * because the inode has been copied into a raw inode buffer in
5168 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5171 * Note that we are absolutely dependent upon all inode dirtiers doing the
5172 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5173 * which we are interested.
5175 * It would be a bug for them to not do this. The code:
5177 * mark_inode_dirty(inode)
5179 * inode->i_size = expr;
5181 * is in error because a kswapd-driven write_inode() could occur while
5182 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5183 * will no longer be on the superblock's dirty inode list.
5185 int ext4_write_inode(struct inode
*inode
, int wait
)
5189 if (current
->flags
& PF_MEMALLOC
)
5192 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5193 if (ext4_journal_current_handle()) {
5194 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5202 err
= ext4_force_commit(inode
->i_sb
);
5204 struct ext4_iloc iloc
;
5206 err
= ext4_get_inode_loc(inode
, &iloc
);
5210 sync_dirty_buffer(iloc
.bh
);
5211 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5212 ext4_error(inode
->i_sb
, __func__
,
5213 "IO error syncing inode, "
5214 "inode=%lu, block=%llu",
5216 (unsigned long long)iloc
.bh
->b_blocknr
);
5226 * Called from notify_change.
5228 * We want to trap VFS attempts to truncate the file as soon as
5229 * possible. In particular, we want to make sure that when the VFS
5230 * shrinks i_size, we put the inode on the orphan list and modify
5231 * i_disksize immediately, so that during the subsequent flushing of
5232 * dirty pages and freeing of disk blocks, we can guarantee that any
5233 * commit will leave the blocks being flushed in an unused state on
5234 * disk. (On recovery, the inode will get truncated and the blocks will
5235 * be freed, so we have a strong guarantee that no future commit will
5236 * leave these blocks visible to the user.)
5238 * Another thing we have to assure is that if we are in ordered mode
5239 * and inode is still attached to the committing transaction, we must
5240 * we start writeout of all the dirty pages which are being truncated.
5241 * This way we are sure that all the data written in the previous
5242 * transaction are already on disk (truncate waits for pages under
5245 * Called with inode->i_mutex down.
5247 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5249 struct inode
*inode
= dentry
->d_inode
;
5251 const unsigned int ia_valid
= attr
->ia_valid
;
5253 error
= inode_change_ok(inode
, attr
);
5257 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5258 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5261 /* (user+group)*(old+new) structure, inode write (sb,
5262 * inode block, ? - but truncate inode update has it) */
5263 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5264 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5265 if (IS_ERR(handle
)) {
5266 error
= PTR_ERR(handle
);
5269 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
5271 ext4_journal_stop(handle
);
5274 /* Update corresponding info in inode so that everything is in
5275 * one transaction */
5276 if (attr
->ia_valid
& ATTR_UID
)
5277 inode
->i_uid
= attr
->ia_uid
;
5278 if (attr
->ia_valid
& ATTR_GID
)
5279 inode
->i_gid
= attr
->ia_gid
;
5280 error
= ext4_mark_inode_dirty(handle
, inode
);
5281 ext4_journal_stop(handle
);
5284 if (attr
->ia_valid
& ATTR_SIZE
) {
5285 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5286 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5288 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5295 if (S_ISREG(inode
->i_mode
) &&
5296 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
5299 handle
= ext4_journal_start(inode
, 3);
5300 if (IS_ERR(handle
)) {
5301 error
= PTR_ERR(handle
);
5305 error
= ext4_orphan_add(handle
, inode
);
5306 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5307 rc
= ext4_mark_inode_dirty(handle
, inode
);
5310 ext4_journal_stop(handle
);
5312 if (ext4_should_order_data(inode
)) {
5313 error
= ext4_begin_ordered_truncate(inode
,
5316 /* Do as much error cleanup as possible */
5317 handle
= ext4_journal_start(inode
, 3);
5318 if (IS_ERR(handle
)) {
5319 ext4_orphan_del(NULL
, inode
);
5322 ext4_orphan_del(handle
, inode
);
5323 ext4_journal_stop(handle
);
5329 rc
= inode_setattr(inode
, attr
);
5331 /* If inode_setattr's call to ext4_truncate failed to get a
5332 * transaction handle at all, we need to clean up the in-core
5333 * orphan list manually. */
5335 ext4_orphan_del(NULL
, inode
);
5337 if (!rc
&& (ia_valid
& ATTR_MODE
))
5338 rc
= ext4_acl_chmod(inode
);
5341 ext4_std_error(inode
->i_sb
, error
);
5347 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5350 struct inode
*inode
;
5351 unsigned long delalloc_blocks
;
5353 inode
= dentry
->d_inode
;
5354 generic_fillattr(inode
, stat
);
5357 * We can't update i_blocks if the block allocation is delayed
5358 * otherwise in the case of system crash before the real block
5359 * allocation is done, we will have i_blocks inconsistent with
5360 * on-disk file blocks.
5361 * We always keep i_blocks updated together with real
5362 * allocation. But to not confuse with user, stat
5363 * will return the blocks that include the delayed allocation
5364 * blocks for this file.
5366 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5367 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5368 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5370 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5374 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5379 /* if nrblocks are contiguous */
5382 * With N contiguous data blocks, it need at most
5383 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5384 * 2 dindirect blocks
5387 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5388 return indirects
+ 3;
5391 * if nrblocks are not contiguous, worse case, each block touch
5392 * a indirect block, and each indirect block touch a double indirect
5393 * block, plus a triple indirect block
5395 indirects
= nrblocks
* 2 + 1;
5399 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5401 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5402 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5403 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5407 * Account for index blocks, block groups bitmaps and block group
5408 * descriptor blocks if modify datablocks and index blocks
5409 * worse case, the indexs blocks spread over different block groups
5411 * If datablocks are discontiguous, they are possible to spread over
5412 * different block groups too. If they are contiugous, with flexbg,
5413 * they could still across block group boundary.
5415 * Also account for superblock, inode, quota and xattr blocks
5417 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5419 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5425 * How many index blocks need to touch to modify nrblocks?
5426 * The "Chunk" flag indicating whether the nrblocks is
5427 * physically contiguous on disk
5429 * For Direct IO and fallocate, they calls get_block to allocate
5430 * one single extent at a time, so they could set the "Chunk" flag
5432 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5437 * Now let's see how many group bitmaps and group descriptors need
5447 if (groups
> ngroups
)
5449 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5450 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5452 /* bitmaps and block group descriptor blocks */
5453 ret
+= groups
+ gdpblocks
;
5455 /* Blocks for super block, inode, quota and xattr blocks */
5456 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5462 * Calulate the total number of credits to reserve to fit
5463 * the modification of a single pages into a single transaction,
5464 * which may include multiple chunks of block allocations.
5466 * This could be called via ext4_write_begin()
5468 * We need to consider the worse case, when
5469 * one new block per extent.
5471 int ext4_writepage_trans_blocks(struct inode
*inode
)
5473 int bpp
= ext4_journal_blocks_per_page(inode
);
5476 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5478 /* Account for data blocks for journalled mode */
5479 if (ext4_should_journal_data(inode
))
5485 * Calculate the journal credits for a chunk of data modification.
5487 * This is called from DIO, fallocate or whoever calling
5488 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5490 * journal buffers for data blocks are not included here, as DIO
5491 * and fallocate do no need to journal data buffers.
5493 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5495 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5499 * The caller must have previously called ext4_reserve_inode_write().
5500 * Give this, we know that the caller already has write access to iloc->bh.
5502 int ext4_mark_iloc_dirty(handle_t
*handle
,
5503 struct inode
*inode
, struct ext4_iloc
*iloc
)
5507 if (test_opt(inode
->i_sb
, I_VERSION
))
5508 inode_inc_iversion(inode
);
5510 /* the do_update_inode consumes one bh->b_count */
5513 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5514 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5520 * On success, We end up with an outstanding reference count against
5521 * iloc->bh. This _must_ be cleaned up later.
5525 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5526 struct ext4_iloc
*iloc
)
5530 err
= ext4_get_inode_loc(inode
, iloc
);
5532 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5533 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5539 ext4_std_error(inode
->i_sb
, err
);
5544 * Expand an inode by new_extra_isize bytes.
5545 * Returns 0 on success or negative error number on failure.
5547 static int ext4_expand_extra_isize(struct inode
*inode
,
5548 unsigned int new_extra_isize
,
5549 struct ext4_iloc iloc
,
5552 struct ext4_inode
*raw_inode
;
5553 struct ext4_xattr_ibody_header
*header
;
5554 struct ext4_xattr_entry
*entry
;
5556 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5559 raw_inode
= ext4_raw_inode(&iloc
);
5561 header
= IHDR(inode
, raw_inode
);
5562 entry
= IFIRST(header
);
5564 /* No extended attributes present */
5565 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5566 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5567 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5569 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5573 /* try to expand with EAs present */
5574 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5579 * What we do here is to mark the in-core inode as clean with respect to inode
5580 * dirtiness (it may still be data-dirty).
5581 * This means that the in-core inode may be reaped by prune_icache
5582 * without having to perform any I/O. This is a very good thing,
5583 * because *any* task may call prune_icache - even ones which
5584 * have a transaction open against a different journal.
5586 * Is this cheating? Not really. Sure, we haven't written the
5587 * inode out, but prune_icache isn't a user-visible syncing function.
5588 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5589 * we start and wait on commits.
5591 * Is this efficient/effective? Well, we're being nice to the system
5592 * by cleaning up our inodes proactively so they can be reaped
5593 * without I/O. But we are potentially leaving up to five seconds'
5594 * worth of inodes floating about which prune_icache wants us to
5595 * write out. One way to fix that would be to get prune_icache()
5596 * to do a write_super() to free up some memory. It has the desired
5599 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5601 struct ext4_iloc iloc
;
5602 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5603 static unsigned int mnt_count
;
5607 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5608 if (ext4_handle_valid(handle
) &&
5609 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5610 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5612 * We need extra buffer credits since we may write into EA block
5613 * with this same handle. If journal_extend fails, then it will
5614 * only result in a minor loss of functionality for that inode.
5615 * If this is felt to be critical, then e2fsck should be run to
5616 * force a large enough s_min_extra_isize.
5618 if ((jbd2_journal_extend(handle
,
5619 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5620 ret
= ext4_expand_extra_isize(inode
,
5621 sbi
->s_want_extra_isize
,
5624 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5626 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5627 ext4_warning(inode
->i_sb
, __func__
,
5628 "Unable to expand inode %lu. Delete"
5629 " some EAs or run e2fsck.",
5632 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5638 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5643 * ext4_dirty_inode() is called from __mark_inode_dirty()
5645 * We're really interested in the case where a file is being extended.
5646 * i_size has been changed by generic_commit_write() and we thus need
5647 * to include the updated inode in the current transaction.
5649 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5650 * are allocated to the file.
5652 * If the inode is marked synchronous, we don't honour that here - doing
5653 * so would cause a commit on atime updates, which we don't bother doing.
5654 * We handle synchronous inodes at the highest possible level.
5656 void ext4_dirty_inode(struct inode
*inode
)
5660 handle
= ext4_journal_start(inode
, 2);
5664 ext4_mark_inode_dirty(handle
, inode
);
5666 ext4_journal_stop(handle
);
5673 * Bind an inode's backing buffer_head into this transaction, to prevent
5674 * it from being flushed to disk early. Unlike
5675 * ext4_reserve_inode_write, this leaves behind no bh reference and
5676 * returns no iloc structure, so the caller needs to repeat the iloc
5677 * lookup to mark the inode dirty later.
5679 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5681 struct ext4_iloc iloc
;
5685 err
= ext4_get_inode_loc(inode
, &iloc
);
5687 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5688 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5690 err
= ext4_handle_dirty_metadata(handle
,
5696 ext4_std_error(inode
->i_sb
, err
);
5701 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5708 * We have to be very careful here: changing a data block's
5709 * journaling status dynamically is dangerous. If we write a
5710 * data block to the journal, change the status and then delete
5711 * that block, we risk forgetting to revoke the old log record
5712 * from the journal and so a subsequent replay can corrupt data.
5713 * So, first we make sure that the journal is empty and that
5714 * nobody is changing anything.
5717 journal
= EXT4_JOURNAL(inode
);
5720 if (is_journal_aborted(journal
))
5723 jbd2_journal_lock_updates(journal
);
5724 jbd2_journal_flush(journal
);
5727 * OK, there are no updates running now, and all cached data is
5728 * synced to disk. We are now in a completely consistent state
5729 * which doesn't have anything in the journal, and we know that
5730 * no filesystem updates are running, so it is safe to modify
5731 * the inode's in-core data-journaling state flag now.
5735 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5737 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5738 ext4_set_aops(inode
);
5740 jbd2_journal_unlock_updates(journal
);
5742 /* Finally we can mark the inode as dirty. */
5744 handle
= ext4_journal_start(inode
, 1);
5746 return PTR_ERR(handle
);
5748 err
= ext4_mark_inode_dirty(handle
, inode
);
5749 ext4_handle_sync(handle
);
5750 ext4_journal_stop(handle
);
5751 ext4_std_error(inode
->i_sb
, err
);
5756 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5758 return !buffer_mapped(bh
);
5761 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5763 struct page
*page
= vmf
->page
;
5768 struct file
*file
= vma
->vm_file
;
5769 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5770 struct address_space
*mapping
= inode
->i_mapping
;
5773 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5774 * get i_mutex because we are already holding mmap_sem.
5776 down_read(&inode
->i_alloc_sem
);
5777 size
= i_size_read(inode
);
5778 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5779 || !PageUptodate(page
)) {
5780 /* page got truncated from under us? */
5784 if (PageMappedToDisk(page
))
5787 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5788 len
= size
& ~PAGE_CACHE_MASK
;
5790 len
= PAGE_CACHE_SIZE
;
5794 * return if we have all the buffers mapped. This avoid
5795 * the need to call write_begin/write_end which does a
5796 * journal_start/journal_stop which can block and take
5799 if (page_has_buffers(page
)) {
5800 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5801 ext4_bh_unmapped
)) {
5808 * OK, we need to fill the hole... Do write_begin write_end
5809 * to do block allocation/reservation.We are not holding
5810 * inode.i__mutex here. That allow * parallel write_begin,
5811 * write_end call. lock_page prevent this from happening
5812 * on the same page though
5814 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5815 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5818 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5819 len
, len
, page
, fsdata
);
5825 ret
= VM_FAULT_SIGBUS
;
5826 up_read(&inode
->i_alloc_sem
);