2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/random.h>
34 #include <linux/kthread.h>
35 #include <linux/parser.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
40 /* Slab cache for UBIFS inodes */
41 struct kmem_cache
*ubifs_inode_slab
;
43 /* UBIFS TNC shrinker description */
44 static struct shrinker ubifs_shrinker_info
= {
45 .shrink
= ubifs_shrinker
,
46 .seeks
= DEFAULT_SEEKS
,
50 * validate_inode - validate inode.
51 * @c: UBIFS file-system description object
52 * @inode: the inode to validate
54 * This is a helper function for 'ubifs_iget()' which validates various fields
55 * of a newly built inode to make sure they contain sane values and prevent
56 * possible vulnerabilities. Returns zero if the inode is all right and
57 * a non-zero error code if not.
59 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
62 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
64 if (inode
->i_size
> c
->max_inode_sz
) {
65 ubifs_err("inode is too large (%lld)",
66 (long long)inode
->i_size
);
70 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
71 ubifs_err("unknown compression type %d", ui
->compr_type
);
75 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
78 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
81 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
84 if (!ubifs_compr_present(ui
->compr_type
)) {
85 ubifs_warn("inode %lu uses '%s' compression, but it was not "
86 "compiled in", inode
->i_ino
,
87 ubifs_compr_name(ui
->compr_type
));
90 err
= dbg_check_dir_size(c
, inode
);
94 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
98 struct ubifs_ino_node
*ino
;
99 struct ubifs_info
*c
= sb
->s_fs_info
;
101 struct ubifs_inode
*ui
;
103 dbg_gen("inode %lu", inum
);
105 inode
= iget_locked(sb
, inum
);
107 return ERR_PTR(-ENOMEM
);
108 if (!(inode
->i_state
& I_NEW
))
110 ui
= ubifs_inode(inode
);
112 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
118 ino_key_init(c
, &key
, inode
->i_ino
);
120 err
= ubifs_tnc_lookup(c
, &key
, ino
);
124 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
125 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
126 inode
->i_uid
= le32_to_cpu(ino
->uid
);
127 inode
->i_gid
= le32_to_cpu(ino
->gid
);
128 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
129 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
130 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
131 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
132 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
133 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
134 inode
->i_mode
= le32_to_cpu(ino
->mode
);
135 inode
->i_size
= le64_to_cpu(ino
->size
);
137 ui
->data_len
= le32_to_cpu(ino
->data_len
);
138 ui
->flags
= le32_to_cpu(ino
->flags
);
139 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
140 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
141 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
142 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
143 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
144 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
146 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
148 err
= validate_inode(c
, inode
);
152 /* Disable readahead */
153 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
155 switch (inode
->i_mode
& S_IFMT
) {
157 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
158 inode
->i_op
= &ubifs_file_inode_operations
;
159 inode
->i_fop
= &ubifs_file_operations
;
161 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
166 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
167 ((char *)ui
->data
)[ui
->data_len
] = '\0';
168 } else if (ui
->data_len
!= 0) {
174 inode
->i_op
= &ubifs_dir_inode_operations
;
175 inode
->i_fop
= &ubifs_dir_operations
;
176 if (ui
->data_len
!= 0) {
182 inode
->i_op
= &ubifs_symlink_inode_operations
;
183 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
187 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
192 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
193 ((char *)ui
->data
)[ui
->data_len
] = '\0';
199 union ubifs_dev_desc
*dev
;
201 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
207 dev
= (union ubifs_dev_desc
*)ino
->data
;
208 if (ui
->data_len
== sizeof(dev
->new))
209 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
210 else if (ui
->data_len
== sizeof(dev
->huge
))
211 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
216 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
217 inode
->i_op
= &ubifs_file_inode_operations
;
218 init_special_inode(inode
, inode
->i_mode
, rdev
);
223 inode
->i_op
= &ubifs_file_inode_operations
;
224 init_special_inode(inode
, inode
->i_mode
, 0);
225 if (ui
->data_len
!= 0) {
236 ubifs_set_inode_flags(inode
);
237 unlock_new_inode(inode
);
241 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
242 dbg_dump_node(c
, ino
);
243 dbg_dump_inode(c
, inode
);
248 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
253 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
255 struct ubifs_inode
*ui
;
257 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
261 memset((void *)ui
+ sizeof(struct inode
), 0,
262 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
263 mutex_init(&ui
->ui_mutex
);
264 spin_lock_init(&ui
->ui_lock
);
265 return &ui
->vfs_inode
;
268 static void ubifs_destroy_inode(struct inode
*inode
)
270 struct ubifs_inode
*ui
= ubifs_inode(inode
);
273 kmem_cache_free(ubifs_inode_slab
, inode
);
277 * Note, Linux write-back code calls this without 'i_mutex'.
279 static int ubifs_write_inode(struct inode
*inode
, int wait
)
282 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
283 struct ubifs_inode
*ui
= ubifs_inode(inode
);
285 ubifs_assert(!ui
->xattr
);
286 if (is_bad_inode(inode
))
289 mutex_lock(&ui
->ui_mutex
);
291 * Due to races between write-back forced by budgeting
292 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
293 * have already been synchronized, do not do this again. This might
294 * also happen if it was synchronized in an VFS operation, e.g.
298 mutex_unlock(&ui
->ui_mutex
);
302 dbg_gen("inode %lu", inode
->i_ino
);
303 err
= ubifs_jnl_write_inode(c
, inode
, 0);
305 ubifs_err("can't write inode %lu, error %d", inode
->i_ino
, err
);
308 mutex_unlock(&ui
->ui_mutex
);
309 ubifs_release_dirty_inode_budget(c
, ui
);
313 static void ubifs_delete_inode(struct inode
*inode
)
316 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
318 if (ubifs_inode(inode
)->xattr
)
320 * Extended attribute inode deletions are fully handled in
321 * 'ubifs_removexattr()'. These inodes are special and have
322 * limited usage, so there is nothing to do here.
326 dbg_gen("inode %lu", inode
->i_ino
);
327 ubifs_assert(!atomic_read(&inode
->i_count
));
328 ubifs_assert(inode
->i_nlink
== 0);
330 truncate_inode_pages(&inode
->i_data
, 0);
331 if (is_bad_inode(inode
))
334 ubifs_inode(inode
)->ui_size
= inode
->i_size
= 0;
335 err
= ubifs_jnl_write_inode(c
, inode
, 1);
338 * Worst case we have a lost orphan inode wasting space, so a
339 * simple error message is ok here.
341 ubifs_err("can't write inode %lu, error %d", inode
->i_ino
, err
);
346 static void ubifs_dirty_inode(struct inode
*inode
)
348 struct ubifs_inode
*ui
= ubifs_inode(inode
);
350 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
353 dbg_gen("inode %lu", inode
->i_ino
);
357 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
359 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
360 unsigned long long free
;
362 free
= ubifs_budg_get_free_space(c
);
363 dbg_gen("free space %lld bytes (%lld blocks)",
364 free
, free
>> UBIFS_BLOCK_SHIFT
);
366 buf
->f_type
= UBIFS_SUPER_MAGIC
;
367 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
368 buf
->f_blocks
= c
->block_cnt
;
369 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
370 if (free
> c
->report_rp_size
)
371 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
376 buf
->f_namelen
= UBIFS_MAX_NLEN
;
381 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
383 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
385 if (c
->mount_opts
.unmount_mode
== 2)
386 seq_printf(s
, ",fast_unmount");
387 else if (c
->mount_opts
.unmount_mode
== 1)
388 seq_printf(s
, ",norm_unmount");
393 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
395 struct ubifs_info
*c
= sb
->s_fs_info
;
399 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
400 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
405 * We ought to call sync for c->ubi but it does not have one. If it had
406 * it would in turn call mtd->sync, however mtd operations are
407 * synchronous anyway, so we don't lose any sleep here.
413 * init_constants_early - initialize UBIFS constants.
414 * @c: UBIFS file-system description object
416 * This function initialize UBIFS constants which do not need the superblock to
417 * be read. It also checks that the UBI volume satisfies basic UBIFS
418 * requirements. Returns zero in case of success and a negative error code in
421 static int init_constants_early(struct ubifs_info
*c
)
423 if (c
->vi
.corrupted
) {
424 ubifs_warn("UBI volume is corrupted - read-only mode");
429 ubifs_msg("read-only UBI device");
433 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
434 ubifs_msg("static UBI volume - read-only mode");
438 c
->leb_cnt
= c
->vi
.size
;
439 c
->leb_size
= c
->vi
.usable_leb_size
;
440 c
->half_leb_size
= c
->leb_size
/ 2;
441 c
->min_io_size
= c
->di
.min_io_size
;
442 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
444 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
445 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
446 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
450 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
451 ubifs_err("too few LEBs (%d), min. is %d",
452 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
456 if (!is_power_of_2(c
->min_io_size
)) {
457 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
462 * UBIFS aligns all node to 8-byte boundary, so to make function in
463 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
466 if (c
->min_io_size
< 8) {
471 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
472 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
475 * Initialize node length ranges which are mostly needed for node
478 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
479 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
480 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
481 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
482 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
483 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
485 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
486 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
487 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
488 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
489 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
490 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
491 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
492 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
493 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
494 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
495 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
497 * Minimum indexing node size is amended later when superblock is
498 * read and the key length is known.
500 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
502 * Maximum indexing node size is amended later when superblock is
503 * read and the fanout is known.
505 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
508 * Initialize dead and dark LEB space watermarks.
510 * Dead space is the space which cannot be used. Its watermark is
511 * equivalent to min. I/O unit or minimum node size if it is greater
512 * then min. I/O unit.
514 * Dark space is the space which might be used, or might not, depending
515 * on which node should be written to the LEB. Its watermark is
516 * equivalent to maximum UBIFS node size.
518 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
519 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
525 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
526 * @c: UBIFS file-system description object
527 * @lnum: LEB the write-buffer was synchronized to
528 * @free: how many free bytes left in this LEB
529 * @pad: how many bytes were padded
531 * This is a callback function which is called by the I/O unit when the
532 * write-buffer is synchronized. We need this to correctly maintain space
533 * accounting in bud logical eraseblocks. This function returns zero in case of
534 * success and a negative error code in case of failure.
536 * This function actually belongs to the journal, but we keep it here because
537 * we want to keep it static.
539 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
541 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
545 * init_constants_late - initialize UBIFS constants.
546 * @c: UBIFS file-system description object
548 * This is a helper function which initializes various UBIFS constants after
549 * the superblock has been read. It also checks various UBIFS parameters and
550 * makes sure they are all right. Returns zero in case of success and a
551 * negative error code in case of failure.
553 static int init_constants_late(struct ubifs_info
*c
)
558 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
559 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
560 c
->fanout
* sizeof(struct ubifs_zbranch
);
562 tmp
= ubifs_idx_node_sz(c
, 1);
563 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
564 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
566 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
567 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
568 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
570 /* Make sure LEB size is large enough to fit full commit */
571 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
572 tmp
= ALIGN(tmp
, c
->min_io_size
);
573 if (tmp
> c
->leb_size
) {
574 dbg_err("too small LEB size %d, at least %d needed",
580 * Make sure that the log is large enough to fit reference nodes for
581 * all buds plus one reserved LEB.
583 tmp64
= c
->max_bud_bytes
;
584 tmp
= do_div(tmp64
, c
->leb_size
);
585 c
->max_bud_cnt
= tmp64
+ !!tmp
;
586 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
589 if (c
->log_lebs
< tmp
) {
590 dbg_err("too small log %d LEBs, required min. %d LEBs",
596 * When budgeting we assume worst-case scenarios when the pages are not
597 * be compressed and direntries are of the maximum size.
599 * Note, data, which may be stored in inodes is budgeted separately, so
600 * it is not included into 'c->inode_budget'.
602 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
603 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
604 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
607 * When the amount of flash space used by buds becomes
608 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
609 * The writers are unblocked when the commit is finished. To avoid
610 * writers to be blocked UBIFS initiates background commit in advance,
611 * when number of bud bytes becomes above the limit defined below.
613 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
616 * Ensure minimum journal size. All the bytes in the journal heads are
617 * considered to be used, when calculating the current journal usage.
618 * Consequently, if the journal is too small, UBIFS will treat it as
621 tmp64
= (uint64_t)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
622 if (c
->bg_bud_bytes
< tmp64
)
623 c
->bg_bud_bytes
= tmp64
;
624 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
625 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
627 err
= ubifs_calc_lpt_geom(c
);
631 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
634 * Calculate total amount of FS blocks. This number is not used
635 * internally because it does not make much sense for UBIFS, but it is
636 * necessary to report something for the 'statfs()' call.
638 * Subtract the LEB reserved for GC and the LEB which is reserved for
641 * Review 'ubifs_calc_available()' if changing this calculation.
643 tmp64
= c
->main_lebs
- 2;
644 tmp64
*= (uint64_t)c
->leb_size
- c
->dark_wm
;
645 tmp64
= ubifs_reported_space(c
, tmp64
);
646 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
652 * take_gc_lnum - reserve GC LEB.
653 * @c: UBIFS file-system description object
655 * This function ensures that the LEB reserved for garbage collection is
656 * unmapped and is marked as "taken" in lprops. We also have to set free space
657 * to LEB size and dirty space to zero, because lprops may contain out-of-date
658 * information if the file-system was un-mounted before it has been committed.
659 * This function returns zero in case of success and a negative error code in
662 static int take_gc_lnum(struct ubifs_info
*c
)
666 if (c
->gc_lnum
== -1) {
667 ubifs_err("no LEB for GC");
671 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
675 /* And we have to tell lprops that this LEB is taken */
676 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
682 * alloc_wbufs - allocate write-buffers.
683 * @c: UBIFS file-system description object
685 * This helper function allocates and initializes UBIFS write-buffers. Returns
686 * zero in case of success and %-ENOMEM in case of failure.
688 static int alloc_wbufs(struct ubifs_info
*c
)
692 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
697 /* Initialize journal heads */
698 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
699 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
700 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
704 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
705 c
->jheads
[i
].wbuf
.jhead
= i
;
708 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
710 * Garbage Collector head likely contains long-term data and
711 * does not need to be synchronized by timer.
713 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
714 c
->jheads
[GCHD
].wbuf
.timeout
= 0;
720 * free_wbufs - free write-buffers.
721 * @c: UBIFS file-system description object
723 static void free_wbufs(struct ubifs_info
*c
)
728 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
729 kfree(c
->jheads
[i
].wbuf
.buf
);
730 kfree(c
->jheads
[i
].wbuf
.inodes
);
738 * free_orphans - free orphans.
739 * @c: UBIFS file-system description object
741 static void free_orphans(struct ubifs_info
*c
)
743 struct ubifs_orphan
*orph
;
745 while (c
->orph_dnext
) {
746 orph
= c
->orph_dnext
;
747 c
->orph_dnext
= orph
->dnext
;
748 list_del(&orph
->list
);
752 while (!list_empty(&c
->orph_list
)) {
753 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
754 list_del(&orph
->list
);
756 dbg_err("orphan list not empty at unmount");
764 * free_buds - free per-bud objects.
765 * @c: UBIFS file-system description object
767 static void free_buds(struct ubifs_info
*c
)
769 struct rb_node
*this = c
->buds
.rb_node
;
770 struct ubifs_bud
*bud
;
774 this = this->rb_left
;
775 else if (this->rb_right
)
776 this = this->rb_right
;
778 bud
= rb_entry(this, struct ubifs_bud
, rb
);
779 this = rb_parent(this);
781 if (this->rb_left
== &bud
->rb
)
782 this->rb_left
= NULL
;
784 this->rb_right
= NULL
;
792 * check_volume_empty - check if the UBI volume is empty.
793 * @c: UBIFS file-system description object
795 * This function checks if the UBIFS volume is empty by looking if its LEBs are
796 * mapped or not. The result of checking is stored in the @c->empty variable.
797 * Returns zero in case of success and a negative error code in case of
800 static int check_volume_empty(struct ubifs_info
*c
)
805 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
806 err
= ubi_is_mapped(c
->ubi
, lnum
);
807 if (unlikely(err
< 0))
821 * UBIFS mount options.
823 * Opt_fast_unmount: do not run a journal commit before un-mounting
824 * Opt_norm_unmount: run a journal commit before un-mounting
825 * Opt_err: just end of array marker
833 static match_table_t tokens
= {
834 {Opt_fast_unmount
, "fast_unmount"},
835 {Opt_norm_unmount
, "norm_unmount"},
840 * ubifs_parse_options - parse mount parameters.
841 * @c: UBIFS file-system description object
842 * @options: parameters to parse
843 * @is_remount: non-zero if this is FS re-mount
845 * This function parses UBIFS mount options and returns zero in case success
846 * and a negative error code in case of failure.
848 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
852 substring_t args
[MAX_OPT_ARGS
];
857 while ((p
= strsep(&options
, ","))) {
863 token
= match_token(p
, tokens
, args
);
865 case Opt_fast_unmount
:
866 c
->mount_opts
.unmount_mode
= 2;
869 case Opt_norm_unmount
:
870 c
->mount_opts
.unmount_mode
= 1;
874 ubifs_err("unrecognized mount option \"%s\" "
875 "or missing value", p
);
884 * destroy_journal - destroy journal data structures.
885 * @c: UBIFS file-system description object
887 * This function destroys journal data structures including those that may have
888 * been created by recovery functions.
890 static void destroy_journal(struct ubifs_info
*c
)
892 while (!list_empty(&c
->unclean_leb_list
)) {
893 struct ubifs_unclean_leb
*ucleb
;
895 ucleb
= list_entry(c
->unclean_leb_list
.next
,
896 struct ubifs_unclean_leb
, list
);
897 list_del(&ucleb
->list
);
900 while (!list_empty(&c
->old_buds
)) {
901 struct ubifs_bud
*bud
;
903 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
904 list_del(&bud
->list
);
907 ubifs_destroy_idx_gc(c
);
908 ubifs_destroy_size_tree(c
);
914 * mount_ubifs - mount UBIFS file-system.
915 * @c: UBIFS file-system description object
917 * This function mounts UBIFS file system. Returns zero in case of success and
918 * a negative error code in case of failure.
920 * Note, the function does not de-allocate resources it it fails half way
921 * through, and the caller has to do this instead.
923 static int mount_ubifs(struct ubifs_info
*c
)
925 struct super_block
*sb
= c
->vfs_sb
;
926 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
930 err
= init_constants_early(c
);
934 #ifdef CONFIG_UBIFS_FS_DEBUG
935 c
->dbg_buf
= vmalloc(c
->leb_size
);
940 err
= check_volume_empty(c
);
944 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
946 * This UBI volume is empty, and read-only, or the file system
947 * is mounted read-only - we cannot format it.
949 ubifs_err("can't format empty UBI volume: read-only %s",
950 c
->ro_media
? "UBI volume" : "mount");
955 if (c
->ro_media
&& !mounted_read_only
) {
956 ubifs_err("cannot mount read-write - read-only media");
962 * The requirement for the buffer is that it should fit indexing B-tree
963 * height amount of integers. We assume the height if the TNC tree will
967 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
968 if (!c
->bottom_up_buf
)
971 c
->sbuf
= vmalloc(c
->leb_size
);
975 if (!mounted_read_only
) {
976 c
->ileb_buf
= vmalloc(c
->leb_size
);
981 err
= ubifs_read_superblock(c
);
986 * Make sure the compressor which is set as the default on in the
987 * superblock was actually compiled in.
989 if (!ubifs_compr_present(c
->default_compr
)) {
990 ubifs_warn("'%s' compressor is set by superblock, but not "
991 "compiled in", ubifs_compr_name(c
->default_compr
));
992 c
->default_compr
= UBIFS_COMPR_NONE
;
995 dbg_failure_mode_registration(c
);
997 err
= init_constants_late(c
);
1001 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1002 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1003 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1009 if (!mounted_read_only
) {
1010 err
= alloc_wbufs(c
);
1014 /* Create background thread */
1015 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
,
1017 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1019 c
->bgt
= ERR_PTR(-EINVAL
);
1020 if (IS_ERR(c
->bgt
)) {
1021 err
= PTR_ERR(c
->bgt
);
1023 ubifs_err("cannot spawn \"%s\", error %d",
1027 wake_up_process(c
->bgt
);
1030 err
= ubifs_read_master(c
);
1034 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1035 ubifs_msg("recovery needed");
1036 c
->need_recovery
= 1;
1037 if (!mounted_read_only
) {
1038 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1042 } else if (!mounted_read_only
) {
1044 * Set the "dirty" flag so that if we reboot uncleanly we
1045 * will notice this immediately on the next mount.
1047 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1048 err
= ubifs_write_master(c
);
1053 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1057 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1061 err
= ubifs_replay_journal(c
);
1065 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1069 if (!mounted_read_only
) {
1072 /* Check for enough free space */
1073 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1074 ubifs_err("insufficient available space");
1079 /* Check for enough log space */
1080 lnum
= c
->lhead_lnum
+ 1;
1081 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1082 lnum
= UBIFS_LOG_LNUM
;
1083 if (lnum
== c
->ltail_lnum
) {
1084 err
= ubifs_consolidate_log(c
);
1089 if (c
->need_recovery
) {
1090 err
= ubifs_recover_size(c
);
1093 err
= ubifs_rcvry_gc_commit(c
);
1095 err
= take_gc_lnum(c
);
1099 err
= dbg_check_lprops(c
);
1102 } else if (c
->need_recovery
) {
1103 err
= ubifs_recover_size(c
);
1108 spin_lock(&ubifs_infos_lock
);
1109 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1110 spin_unlock(&ubifs_infos_lock
);
1112 if (c
->need_recovery
) {
1113 if (mounted_read_only
)
1114 ubifs_msg("recovery deferred");
1116 c
->need_recovery
= 0;
1117 ubifs_msg("recovery completed");
1121 err
= dbg_check_filesystem(c
);
1125 ubifs_msg("mounted UBI device %d, volume %d", c
->vi
.ubi_num
,
1127 if (mounted_read_only
)
1128 ubifs_msg("mounted read-only");
1129 x
= (long long)c
->main_lebs
* c
->leb_size
;
1130 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1131 x
, x
>> 10, x
>> 20, c
->main_lebs
);
1132 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1133 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1134 x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1135 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1136 ubifs_msg("media format %d, latest format %d",
1137 c
->fmt_version
, UBIFS_FORMAT_VERSION
);
1139 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1140 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1141 dbg_msg("LEB size: %d bytes (%d KiB)",
1142 c
->leb_size
, c
->leb_size
/ 1024);
1143 dbg_msg("data journal heads: %d",
1144 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1145 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1146 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1147 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1148 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1149 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1150 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1151 dbg_msg("fast unmount: %d", c
->fast_unmount
);
1152 dbg_msg("big_lpt %d", c
->big_lpt
);
1153 dbg_msg("log LEBs: %d (%d - %d)",
1154 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1155 dbg_msg("LPT area LEBs: %d (%d - %d)",
1156 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1157 dbg_msg("orphan area LEBs: %d (%d - %d)",
1158 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1159 dbg_msg("main area LEBs: %d (%d - %d)",
1160 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1161 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1162 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1163 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1164 dbg_msg("key hash type: %d", c
->key_hash_type
);
1165 dbg_msg("tree fanout: %d", c
->fanout
);
1166 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1167 dbg_msg("first main LEB: %d", c
->main_first
);
1168 dbg_msg("dead watermark: %d", c
->dead_wm
);
1169 dbg_msg("dark watermark: %d", c
->dark_wm
);
1170 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1171 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1172 x
, x
>> 10, x
>> 20);
1173 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1174 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1175 c
->max_bud_bytes
>> 20);
1176 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1177 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1178 c
->bg_bud_bytes
>> 20);
1179 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1180 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1181 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1182 dbg_msg("commit number: %llu", c
->cmt_no
);
1187 spin_lock(&ubifs_infos_lock
);
1188 list_del(&c
->infos_list
);
1189 spin_unlock(&ubifs_infos_lock
);
1195 ubifs_lpt_free(c
, 0);
1198 kfree(c
->rcvrd_mst_node
);
1200 kthread_stop(c
->bgt
);
1206 dbg_failure_mode_deregistration(c
);
1210 kfree(c
->bottom_up_buf
);
1211 UBIFS_DBG(vfree(c
->dbg_buf
));
1216 * ubifs_umount - un-mount UBIFS file-system.
1217 * @c: UBIFS file-system description object
1219 * Note, this function is called to free allocated resourced when un-mounting,
1220 * as well as free resources when an error occurred while we were half way
1221 * through mounting (error path cleanup function). So it has to make sure the
1222 * resource was actually allocated before freeing it.
1224 static void ubifs_umount(struct ubifs_info
*c
)
1226 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1229 spin_lock(&ubifs_infos_lock
);
1230 list_del(&c
->infos_list
);
1231 spin_unlock(&ubifs_infos_lock
);
1234 kthread_stop(c
->bgt
);
1239 ubifs_lpt_free(c
, 0);
1242 kfree(c
->rcvrd_mst_node
);
1245 kfree(c
->bottom_up_buf
);
1246 UBIFS_DBG(vfree(c
->dbg_buf
));
1248 dbg_failure_mode_deregistration(c
);
1252 * ubifs_remount_rw - re-mount in read-write mode.
1253 * @c: UBIFS file-system description object
1255 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1256 * mode. This function allocates the needed resources and re-mounts UBIFS in
1259 static int ubifs_remount_rw(struct ubifs_info
*c
)
1266 mutex_lock(&c
->umount_mutex
);
1267 c
->remounting_rw
= 1;
1269 /* Check for enough free space */
1270 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1271 ubifs_err("insufficient available space");
1276 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1277 struct ubifs_sb_node
*sup
;
1279 sup
= ubifs_read_sb_node(c
);
1284 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1285 err
= ubifs_write_sb_node(c
, sup
);
1290 if (c
->need_recovery
) {
1291 ubifs_msg("completing deferred recovery");
1292 err
= ubifs_write_rcvrd_mst_node(c
);
1295 err
= ubifs_recover_size(c
);
1298 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1301 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1306 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1307 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1308 err
= ubifs_write_master(c
);
1313 c
->ileb_buf
= vmalloc(c
->leb_size
);
1319 err
= ubifs_lpt_init(c
, 0, 1);
1323 err
= alloc_wbufs(c
);
1327 ubifs_create_buds_lists(c
);
1329 /* Create background thread */
1330 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1332 c
->bgt
= ERR_PTR(-EINVAL
);
1333 if (IS_ERR(c
->bgt
)) {
1334 err
= PTR_ERR(c
->bgt
);
1336 ubifs_err("cannot spawn \"%s\", error %d",
1340 wake_up_process(c
->bgt
);
1342 c
->orph_buf
= vmalloc(c
->leb_size
);
1346 /* Check for enough log space */
1347 lnum
= c
->lhead_lnum
+ 1;
1348 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1349 lnum
= UBIFS_LOG_LNUM
;
1350 if (lnum
== c
->ltail_lnum
) {
1351 err
= ubifs_consolidate_log(c
);
1356 if (c
->need_recovery
)
1357 err
= ubifs_rcvry_gc_commit(c
);
1359 err
= take_gc_lnum(c
);
1363 if (c
->need_recovery
) {
1364 c
->need_recovery
= 0;
1365 ubifs_msg("deferred recovery completed");
1368 dbg_gen("re-mounted read-write");
1369 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1370 c
->remounting_rw
= 0;
1371 mutex_unlock(&c
->umount_mutex
);
1378 kthread_stop(c
->bgt
);
1384 ubifs_lpt_free(c
, 1);
1385 c
->remounting_rw
= 0;
1386 mutex_unlock(&c
->umount_mutex
);
1391 * commit_on_unmount - commit the journal when un-mounting.
1392 * @c: UBIFS file-system description object
1394 * This function is called during un-mounting and it commits the journal unless
1395 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1396 * it contains too few data.
1398 * Sometimes recovery requires the journal to be committed at least once, and
1399 * this function takes care about this.
1401 static void commit_on_unmount(struct ubifs_info
*c
)
1403 if (!c
->fast_unmount
) {
1404 long long bud_bytes
;
1406 spin_lock(&c
->buds_lock
);
1407 bud_bytes
= c
->bud_bytes
;
1408 spin_unlock(&c
->buds_lock
);
1409 if (bud_bytes
> c
->leb_size
)
1410 ubifs_run_commit(c
);
1415 * ubifs_remount_ro - re-mount in read-only mode.
1416 * @c: UBIFS file-system description object
1418 * We rely on VFS to have stopped writing. Possibly the background thread could
1419 * be running a commit, however kthread_stop will wait in that case.
1421 static void ubifs_remount_ro(struct ubifs_info
*c
)
1425 ubifs_assert(!c
->need_recovery
);
1426 commit_on_unmount(c
);
1428 mutex_lock(&c
->umount_mutex
);
1430 kthread_stop(c
->bgt
);
1434 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1435 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1436 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1440 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1441 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1442 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1443 err
= ubifs_write_master(c
);
1445 ubifs_ro_mode(c
, err
);
1448 ubifs_destroy_idx_gc(c
);
1454 ubifs_lpt_free(c
, 1);
1455 mutex_unlock(&c
->umount_mutex
);
1458 static void ubifs_put_super(struct super_block
*sb
)
1461 struct ubifs_info
*c
= sb
->s_fs_info
;
1463 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1466 * The following asserts are only valid if there has not been a failure
1467 * of the media. For example, there will be dirty inodes if we failed
1468 * to write them back because of I/O errors.
1470 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1471 ubifs_assert(c
->budg_idx_growth
== 0);
1472 ubifs_assert(c
->budg_data_growth
== 0);
1475 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1476 * and file system un-mount. Namely, it prevents the shrinker from
1477 * picking this superblock for shrinking - it will be just skipped if
1478 * the mutex is locked.
1480 mutex_lock(&c
->umount_mutex
);
1481 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1483 * First of all kill the background thread to make sure it does
1484 * not interfere with un-mounting and freeing resources.
1487 kthread_stop(c
->bgt
);
1491 /* Synchronize write-buffers */
1493 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1494 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1495 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1499 * On fatal errors c->ro_media is set to 1, in which case we do
1500 * not write the master node.
1504 * We are being cleanly unmounted which means the
1505 * orphans were killed - indicate this in the master
1506 * node. Also save the reserved GC LEB number.
1510 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1511 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1512 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1513 err
= ubifs_write_master(c
);
1516 * Recovery will attempt to fix the master area
1517 * next mount, so we just print a message and
1518 * continue to unmount normally.
1520 ubifs_err("failed to write master node, "
1526 bdi_destroy(&c
->bdi
);
1527 ubi_close_volume(c
->ubi
);
1528 mutex_unlock(&c
->umount_mutex
);
1532 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1535 struct ubifs_info
*c
= sb
->s_fs_info
;
1537 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1539 err
= ubifs_parse_options(c
, data
, 1);
1541 ubifs_err("invalid or unknown remount parameter");
1544 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1545 err
= ubifs_remount_rw(c
);
1548 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
))
1549 ubifs_remount_ro(c
);
1554 struct super_operations ubifs_super_operations
= {
1555 .alloc_inode
= ubifs_alloc_inode
,
1556 .destroy_inode
= ubifs_destroy_inode
,
1557 .put_super
= ubifs_put_super
,
1558 .write_inode
= ubifs_write_inode
,
1559 .delete_inode
= ubifs_delete_inode
,
1560 .statfs
= ubifs_statfs
,
1561 .dirty_inode
= ubifs_dirty_inode
,
1562 .remount_fs
= ubifs_remount_fs
,
1563 .show_options
= ubifs_show_options
,
1564 .sync_fs
= ubifs_sync_fs
,
1568 * open_ubi - parse UBI device name string and open the UBI device.
1569 * @name: UBI volume name
1570 * @mode: UBI volume open mode
1572 * There are several ways to specify UBI volumes when mounting UBIFS:
1573 * o ubiX_Y - UBI device number X, volume Y;
1574 * o ubiY - UBI device number 0, volume Y;
1575 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1576 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1578 * Alternative '!' separator may be used instead of ':' (because some shells
1579 * like busybox may interpret ':' as an NFS host name separator). This function
1580 * returns ubi volume object in case of success and a negative error code in
1583 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1588 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1589 return ERR_PTR(-EINVAL
);
1591 /* ubi:NAME method */
1592 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1593 return ubi_open_volume_nm(0, name
+ 4, mode
);
1595 if (!isdigit(name
[3]))
1596 return ERR_PTR(-EINVAL
);
1598 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1601 if (*endptr
== '\0')
1602 return ubi_open_volume(0, dev
, mode
);
1605 if (*endptr
== '_' && isdigit(endptr
[1])) {
1606 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1607 if (*endptr
!= '\0')
1608 return ERR_PTR(-EINVAL
);
1609 return ubi_open_volume(dev
, vol
, mode
);
1612 /* ubiX:NAME method */
1613 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1614 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1616 return ERR_PTR(-EINVAL
);
1619 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1621 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1622 struct ubifs_info
*c
;
1626 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1630 spin_lock_init(&c
->cnt_lock
);
1631 spin_lock_init(&c
->cs_lock
);
1632 spin_lock_init(&c
->buds_lock
);
1633 spin_lock_init(&c
->space_lock
);
1634 spin_lock_init(&c
->orphan_lock
);
1635 init_rwsem(&c
->commit_sem
);
1636 mutex_init(&c
->lp_mutex
);
1637 mutex_init(&c
->tnc_mutex
);
1638 mutex_init(&c
->log_mutex
);
1639 mutex_init(&c
->mst_mutex
);
1640 mutex_init(&c
->umount_mutex
);
1641 init_waitqueue_head(&c
->cmt_wq
);
1643 c
->old_idx
= RB_ROOT
;
1644 c
->size_tree
= RB_ROOT
;
1645 c
->orph_tree
= RB_ROOT
;
1646 INIT_LIST_HEAD(&c
->infos_list
);
1647 INIT_LIST_HEAD(&c
->idx_gc
);
1648 INIT_LIST_HEAD(&c
->replay_list
);
1649 INIT_LIST_HEAD(&c
->replay_buds
);
1650 INIT_LIST_HEAD(&c
->uncat_list
);
1651 INIT_LIST_HEAD(&c
->empty_list
);
1652 INIT_LIST_HEAD(&c
->freeable_list
);
1653 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1654 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1655 INIT_LIST_HEAD(&c
->old_buds
);
1656 INIT_LIST_HEAD(&c
->orph_list
);
1657 INIT_LIST_HEAD(&c
->orph_new
);
1659 c
->highest_inum
= UBIFS_FIRST_INO
;
1660 get_random_bytes(&c
->vfs_gen
, sizeof(int));
1661 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1663 ubi_get_volume_info(ubi
, &c
->vi
);
1664 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1666 /* Re-open the UBI device in read-write mode */
1667 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1668 if (IS_ERR(c
->ubi
)) {
1669 err
= PTR_ERR(c
->ubi
);
1674 * UBIFS provids 'backing_dev_info' in order to disable readahead. For
1675 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1676 * which means the user would have to wait not just for their own I/O
1677 * but the readahead I/O as well i.e. completely pointless.
1679 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1681 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1682 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1683 err
= bdi_init(&c
->bdi
);
1687 err
= ubifs_parse_options(c
, data
, 0);
1694 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1695 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1696 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1697 sb
->s_dev
= c
->vi
.cdev
;
1698 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1699 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1700 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1701 sb
->s_op
= &ubifs_super_operations
;
1703 mutex_lock(&c
->umount_mutex
);
1704 err
= mount_ubifs(c
);
1706 ubifs_assert(err
< 0);
1710 /* Read the root inode */
1711 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
1713 err
= PTR_ERR(root
);
1717 sb
->s_root
= d_alloc_root(root
);
1721 mutex_unlock(&c
->umount_mutex
);
1730 mutex_unlock(&c
->umount_mutex
);
1732 bdi_destroy(&c
->bdi
);
1734 ubi_close_volume(c
->ubi
);
1740 static int sb_test(struct super_block
*sb
, void *data
)
1744 return sb
->s_dev
== *dev
;
1747 static int sb_set(struct super_block
*sb
, void *data
)
1755 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
1756 const char *name
, void *data
, struct vfsmount
*mnt
)
1758 struct ubi_volume_desc
*ubi
;
1759 struct ubi_volume_info vi
;
1760 struct super_block
*sb
;
1763 dbg_gen("name %s, flags %#x", name
, flags
);
1766 * Get UBI device number and volume ID. Mount it read-only so far
1767 * because this might be a new mount point, and UBI allows only one
1768 * read-write user at a time.
1770 ubi
= open_ubi(name
, UBI_READONLY
);
1772 ubifs_err("cannot open \"%s\", error %d",
1773 name
, (int)PTR_ERR(ubi
));
1774 return PTR_ERR(ubi
);
1776 ubi_get_volume_info(ubi
, &vi
);
1778 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
1780 sb
= sget(fs_type
, &sb_test
, &sb_set
, &vi
.cdev
);
1787 /* A new mount point for already mounted UBIFS */
1788 dbg_gen("this ubi volume is already mounted");
1789 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
1794 sb
->s_flags
= flags
;
1796 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1799 sb
->s_fs_info
= ubi
;
1800 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1803 /* We do not support atime */
1804 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
1807 /* 'fill_super()' opens ubi again so we must close it here */
1808 ubi_close_volume(ubi
);
1810 return simple_set_mnt(mnt
, sb
);
1813 up_write(&sb
->s_umount
);
1814 deactivate_super(sb
);
1816 ubi_close_volume(ubi
);
1820 static void ubifs_kill_sb(struct super_block
*sb
)
1822 struct ubifs_info
*c
= sb
->s_fs_info
;
1825 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1826 * in order to be outside BKL.
1828 if (sb
->s_root
&& !(sb
->s_flags
& MS_RDONLY
))
1829 commit_on_unmount(c
);
1830 /* The un-mount routine is actually done in put_super() */
1831 generic_shutdown_super(sb
);
1834 static struct file_system_type ubifs_fs_type
= {
1836 .owner
= THIS_MODULE
,
1837 .get_sb
= ubifs_get_sb
,
1838 .kill_sb
= ubifs_kill_sb
1842 * Inode slab cache constructor.
1844 static void inode_slab_ctor(struct kmem_cache
*cachep
, void *obj
)
1846 struct ubifs_inode
*ui
= obj
;
1847 inode_init_once(&ui
->vfs_inode
);
1850 static int __init
ubifs_init(void)
1854 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
1856 /* Make sure node sizes are 8-byte aligned */
1857 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
1858 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
1859 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
1860 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
1861 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
1862 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
1863 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
1864 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
1865 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
1866 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
1867 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
1869 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
1870 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
1871 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
1872 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
1873 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
1874 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
1876 /* Check min. node size */
1877 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
1878 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
1879 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
1880 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
1882 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1883 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1884 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1885 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1887 /* Defined node sizes */
1888 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
1889 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
1890 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
1891 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
1894 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1895 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1897 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
1898 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1899 " at least 4096 bytes",
1900 (unsigned int)PAGE_CACHE_SIZE
);
1904 err
= register_filesystem(&ubifs_fs_type
);
1906 ubifs_err("cannot register file system, error %d", err
);
1911 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
1912 sizeof(struct ubifs_inode
), 0,
1913 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
1915 if (!ubifs_inode_slab
)
1918 register_shrinker(&ubifs_shrinker_info
);
1920 err
= ubifs_compressors_init();
1927 unregister_shrinker(&ubifs_shrinker_info
);
1928 kmem_cache_destroy(ubifs_inode_slab
);
1930 unregister_filesystem(&ubifs_fs_type
);
1933 /* late_initcall to let compressors initialize first */
1934 late_initcall(ubifs_init
);
1936 static void __exit
ubifs_exit(void)
1938 ubifs_assert(list_empty(&ubifs_infos
));
1939 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
1941 ubifs_compressors_exit();
1942 unregister_shrinker(&ubifs_shrinker_info
);
1943 kmem_cache_destroy(ubifs_inode_slab
);
1944 unregister_filesystem(&ubifs_fs_type
);
1946 module_exit(ubifs_exit
);
1948 MODULE_LICENSE("GPL");
1949 MODULE_VERSION(__stringify(UBIFS_VERSION
));
1950 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1951 MODULE_DESCRIPTION("UBIFS - UBI File System");