2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similarto the mechanism is used by JFFS2.
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
53 #include <linux/crc32.h>
57 * ubifs_check_node - check node.
58 * @c: UBIFS file-system description object
60 * @lnum: logical eraseblock number
61 * @offs: offset within the logical eraseblock
62 * @quiet: print no messages
64 * This function checks node magic number and CRC checksum. This function also
65 * validates node length to prevent UBIFS from becoming crazy when an attacker
66 * feeds it a file-system image with incorrect nodes. For example, too large
67 * node length in the common header could cause UBIFS to read memory outside of
68 * allocated buffer when checking the CRC checksum.
70 * This function returns zero in case of success %-EUCLEAN in case of bad CRC
73 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
76 int err
= -EINVAL
, type
, node_len
;
77 uint32_t crc
, node_crc
, magic
;
78 const struct ubifs_ch
*ch
= buf
;
80 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
81 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
83 magic
= le32_to_cpu(ch
->magic
);
84 if (magic
!= UBIFS_NODE_MAGIC
) {
86 ubifs_err("bad magic %#08x, expected %#08x",
87 magic
, UBIFS_NODE_MAGIC
);
93 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
95 ubifs_err("bad node type %d", type
);
99 node_len
= le32_to_cpu(ch
->len
);
100 if (node_len
+ offs
> c
->leb_size
)
103 if (c
->ranges
[type
].max_len
== 0) {
104 if (node_len
!= c
->ranges
[type
].len
)
106 } else if (node_len
< c
->ranges
[type
].min_len
||
107 node_len
> c
->ranges
[type
].max_len
)
110 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
111 node_crc
= le32_to_cpu(ch
->crc
);
112 if (crc
!= node_crc
) {
114 ubifs_err("bad CRC: calculated %#08x, read %#08x",
124 ubifs_err("bad node length %d", node_len
);
127 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
128 dbg_dump_node(c
, buf
);
135 * ubifs_pad - pad flash space.
136 * @c: UBIFS file-system description object
137 * @buf: buffer to put padding to
138 * @pad: how many bytes to pad
140 * The flash media obliges us to write only in chunks of %c->min_io_size and
141 * when we have to write less data we add padding node to the write-buffer and
142 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
143 * media is being scanned. If the amount of wasted space is not enough to fit a
144 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
145 * pattern (%UBIFS_PADDING_BYTE).
147 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
150 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
154 ubifs_assert(pad
>= 0 && !(pad
& 7));
156 if (pad
>= UBIFS_PAD_NODE_SZ
) {
157 struct ubifs_ch
*ch
= buf
;
158 struct ubifs_pad_node
*pad_node
= buf
;
160 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
161 ch
->node_type
= UBIFS_PAD_NODE
;
162 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
163 ch
->padding
[0] = ch
->padding
[1] = 0;
165 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
166 pad
-= UBIFS_PAD_NODE_SZ
;
167 pad_node
->pad_len
= cpu_to_le32(pad
);
168 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
169 ch
->crc
= cpu_to_le32(crc
);
170 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
172 /* Too little space, padding node won't fit */
173 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
177 * next_sqnum - get next sequence number.
178 * @c: UBIFS file-system description object
180 static unsigned long long next_sqnum(struct ubifs_info
*c
)
182 unsigned long long sqnum
;
184 spin_lock(&c
->cnt_lock
);
185 sqnum
= ++c
->max_sqnum
;
186 spin_unlock(&c
->cnt_lock
);
188 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
189 if (sqnum
>= SQNUM_WATERMARK
) {
190 ubifs_err("sequence number overflow %llu, end of life",
192 ubifs_ro_mode(c
, -EINVAL
);
194 ubifs_warn("running out of sequence numbers, end of life soon");
201 * ubifs_prepare_node - prepare node to be written to flash.
202 * @c: UBIFS file-system description object
203 * @node: the node to pad
205 * @pad: if the buffer has to be padded
207 * This function prepares node at @node to be written to the media - it
208 * calculates node CRC, fills the common header, and adds proper padding up to
209 * the next minimum I/O unit if @pad is not zero.
211 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
214 struct ubifs_ch
*ch
= node
;
215 unsigned long long sqnum
= next_sqnum(c
);
217 ubifs_assert(len
>= UBIFS_CH_SZ
);
219 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
220 ch
->len
= cpu_to_le32(len
);
221 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
222 ch
->sqnum
= cpu_to_le64(sqnum
);
223 ch
->padding
[0] = ch
->padding
[1] = 0;
224 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
225 ch
->crc
= cpu_to_le32(crc
);
229 pad
= ALIGN(len
, c
->min_io_size
) - len
;
230 ubifs_pad(c
, node
+ len
, pad
);
235 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
236 * @c: UBIFS file-system description object
237 * @node: the node to pad
239 * @last: indicates the last node of the group
241 * This function prepares node at @node to be written to the media - it
242 * calculates node CRC and fills the common header.
244 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
247 struct ubifs_ch
*ch
= node
;
248 unsigned long long sqnum
= next_sqnum(c
);
250 ubifs_assert(len
>= UBIFS_CH_SZ
);
252 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
253 ch
->len
= cpu_to_le32(len
);
255 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
257 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
258 ch
->sqnum
= cpu_to_le64(sqnum
);
259 ch
->padding
[0] = ch
->padding
[1] = 0;
260 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
261 ch
->crc
= cpu_to_le32(crc
);
265 * wbuf_timer_callback - write-buffer timer callback function.
266 * @data: timer data (write-buffer descriptor)
268 * This function is called when the write-buffer timer expires.
270 static void wbuf_timer_callback_nolock(unsigned long data
)
272 struct ubifs_wbuf
*wbuf
= (struct ubifs_wbuf
*)data
;
275 wbuf
->c
->need_wbuf_sync
= 1;
276 ubifs_wake_up_bgt(wbuf
->c
);
280 * new_wbuf_timer - start new write-buffer timer.
281 * @wbuf: write-buffer descriptor
283 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
285 ubifs_assert(!timer_pending(&wbuf
->timer
));
290 wbuf
->timer
.expires
= jiffies
+ wbuf
->timeout
;
291 add_timer(&wbuf
->timer
);
295 * cancel_wbuf_timer - cancel write-buffer timer.
296 * @wbuf: write-buffer descriptor
298 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
301 * If the syncer is waiting for the lock (from the background thread's
302 * context) and another task is changing write-buffer then the syncing
303 * should be canceled.
306 del_timer(&wbuf
->timer
);
310 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
311 * @wbuf: write-buffer to synchronize
313 * This function synchronizes write-buffer @buf and returns zero in case of
314 * success or a negative error code in case of failure.
316 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
318 struct ubifs_info
*c
= wbuf
->c
;
321 cancel_wbuf_timer_nolock(wbuf
);
322 if (!wbuf
->used
|| wbuf
->lnum
== -1)
323 /* Write-buffer is empty or not seeked */
326 dbg_io("LEB %d:%d, %d bytes",
327 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
);
328 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
329 ubifs_assert(!(wbuf
->avail
& 7));
330 ubifs_assert(wbuf
->offs
+ c
->min_io_size
<= c
->leb_size
);
335 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, wbuf
->avail
);
336 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
337 c
->min_io_size
, wbuf
->dtype
);
339 ubifs_err("cannot write %d bytes to LEB %d:%d",
340 c
->min_io_size
, wbuf
->lnum
, wbuf
->offs
);
347 spin_lock(&wbuf
->lock
);
348 wbuf
->offs
+= c
->min_io_size
;
349 wbuf
->avail
= c
->min_io_size
;
352 spin_unlock(&wbuf
->lock
);
354 if (wbuf
->sync_callback
)
355 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
356 c
->leb_size
- wbuf
->offs
, dirt
);
361 * ubifs_wbuf_seek_nolock - seek write-buffer.
362 * @wbuf: write-buffer
363 * @lnum: logical eraseblock number to seek to
364 * @offs: logical eraseblock offset to seek to
367 * This function targets the write buffer to logical eraseblock @lnum:@offs.
368 * The write-buffer is synchronized if it is not empty. Returns zero in case of
369 * success and a negative error code in case of failure.
371 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
,
374 const struct ubifs_info
*c
= wbuf
->c
;
376 dbg_io("LEB %d:%d", lnum
, offs
);
377 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
378 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
379 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
380 ubifs_assert(lnum
!= wbuf
->lnum
);
382 if (wbuf
->used
> 0) {
383 int err
= ubifs_wbuf_sync_nolock(wbuf
);
389 spin_lock(&wbuf
->lock
);
392 wbuf
->avail
= c
->min_io_size
;
394 spin_unlock(&wbuf
->lock
);
401 * ubifs_bg_wbufs_sync - synchronize write-buffers.
402 * @c: UBIFS file-system description object
404 * This function is called by background thread to synchronize write-buffers.
405 * Returns zero in case of success and a negative error code in case of
408 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
412 if (!c
->need_wbuf_sync
)
414 c
->need_wbuf_sync
= 0;
421 dbg_io("synchronize");
422 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
423 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
428 * If the mutex is locked then wbuf is being changed, so
429 * synchronization is not necessary.
431 if (mutex_is_locked(&wbuf
->io_mutex
))
434 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
435 if (!wbuf
->need_sync
) {
436 mutex_unlock(&wbuf
->io_mutex
);
440 err
= ubifs_wbuf_sync_nolock(wbuf
);
441 mutex_unlock(&wbuf
->io_mutex
);
443 ubifs_err("cannot sync write-buffer, error %d", err
);
444 ubifs_ro_mode(c
, err
);
452 /* Cancel all timers to prevent repeated errors */
453 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
454 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
456 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
457 cancel_wbuf_timer_nolock(wbuf
);
458 mutex_unlock(&wbuf
->io_mutex
);
464 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
465 * @wbuf: write-buffer
466 * @buf: node to write
469 * This function writes data to flash via write-buffer @wbuf. This means that
470 * the last piece of the node won't reach the flash media immediately if it
471 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
472 * until the write-buffer is synchronized (e.g., by timer).
474 * This function returns zero in case of success and a negative error code in
475 * case of failure. If the node cannot be written because there is no more
476 * space in this logical eraseblock, %-ENOSPC is returned.
478 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
480 struct ubifs_info
*c
= wbuf
->c
;
481 int err
, written
, n
, aligned_len
= ALIGN(len
, 8), offs
;
483 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len
,
484 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), wbuf
->lnum
,
485 wbuf
->offs
+ wbuf
->used
);
486 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
487 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
488 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
489 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= c
->min_io_size
);
490 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
492 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
497 cancel_wbuf_timer_nolock(wbuf
);
502 if (aligned_len
<= wbuf
->avail
) {
504 * The node is not very large and fits entirely within
507 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
509 if (aligned_len
== wbuf
->avail
) {
510 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
,
512 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
,
513 wbuf
->offs
, c
->min_io_size
,
518 spin_lock(&wbuf
->lock
);
519 wbuf
->offs
+= c
->min_io_size
;
520 wbuf
->avail
= c
->min_io_size
;
523 spin_unlock(&wbuf
->lock
);
525 spin_lock(&wbuf
->lock
);
526 wbuf
->avail
-= aligned_len
;
527 wbuf
->used
+= aligned_len
;
528 spin_unlock(&wbuf
->lock
);
535 * The node is large enough and does not fit entirely within current
536 * minimal I/O unit. We have to fill and flush write-buffer and switch
537 * to the next min. I/O unit.
539 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
, wbuf
->offs
);
540 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
541 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
542 c
->min_io_size
, wbuf
->dtype
);
546 offs
= wbuf
->offs
+ c
->min_io_size
;
548 aligned_len
-= wbuf
->avail
;
549 written
= wbuf
->avail
;
552 * The remaining data may take more whole min. I/O units, so write the
553 * remains multiple to min. I/O unit size directly to the flash media.
554 * We align node length to 8-byte boundary because we anyway flash wbuf
555 * if the remaining space is less than 8 bytes.
557 n
= aligned_len
>> c
->min_io_shift
;
559 n
<<= c
->min_io_shift
;
560 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
, offs
);
561 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
+ written
, offs
, n
,
571 spin_lock(&wbuf
->lock
);
574 * And now we have what's left and what does not take whole
575 * min. I/O unit, so write it to the write-buffer and we are
578 memcpy(wbuf
->buf
, buf
+ written
, len
);
581 wbuf
->used
= aligned_len
;
582 wbuf
->avail
= c
->min_io_size
- aligned_len
;
584 spin_unlock(&wbuf
->lock
);
587 if (wbuf
->sync_callback
) {
588 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
590 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
596 new_wbuf_timer_nolock(wbuf
);
601 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
602 len
, wbuf
->lnum
, wbuf
->offs
, err
);
603 dbg_dump_node(c
, buf
);
605 dbg_dump_leb(c
, wbuf
->lnum
);
610 * ubifs_write_node - write node to the media.
611 * @c: UBIFS file-system description object
612 * @buf: the node to write
614 * @lnum: logical eraseblock number
615 * @offs: offset within the logical eraseblock
616 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
618 * This function automatically fills node magic number, assigns sequence
619 * number, and calculates node CRC checksum. The length of the @buf buffer has
620 * to be aligned to the minimal I/O unit size. This function automatically
621 * appends padding node and padding bytes if needed. Returns zero in case of
622 * success and a negative error code in case of failure.
624 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
627 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
629 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
630 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
632 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
633 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
638 ubifs_prepare_node(c
, buf
, len
, 1);
639 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, buf_len
, dtype
);
641 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
642 buf_len
, lnum
, offs
, err
);
643 dbg_dump_node(c
, buf
);
651 * ubifs_read_node_wbuf - read node from the media or write-buffer.
652 * @wbuf: wbuf to check for un-written data
653 * @buf: buffer to read to
656 * @lnum: logical eraseblock number
657 * @offs: offset within the logical eraseblock
659 * This function reads a node of known type and length, checks it and stores
660 * in @buf. If the node partially or fully sits in the write-buffer, this
661 * function takes data from the buffer, otherwise it reads the flash media.
662 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
663 * error code in case of failure.
665 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
668 const struct ubifs_info
*c
= wbuf
->c
;
669 int err
, rlen
, overlap
;
670 struct ubifs_ch
*ch
= buf
;
672 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
673 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
674 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
675 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
677 spin_lock(&wbuf
->lock
);
678 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
680 /* We may safely unlock the write-buffer and read the data */
681 spin_unlock(&wbuf
->lock
);
682 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
685 /* Don't read under wbuf */
686 rlen
= wbuf
->offs
- offs
;
690 /* Copy the rest from the write-buffer */
691 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
692 spin_unlock(&wbuf
->lock
);
695 /* Read everything that goes before write-buffer */
696 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, rlen
);
697 if (err
&& err
!= -EBADMSG
) {
698 ubifs_err("failed to read node %d from LEB %d:%d, "
699 "error %d", type
, lnum
, offs
, err
);
705 if (type
!= ch
->node_type
) {
706 ubifs_err("bad node type (%d but expected %d)",
707 ch
->node_type
, type
);
711 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0);
713 ubifs_err("expected node type %d", type
);
717 rlen
= le32_to_cpu(ch
->len
);
719 ubifs_err("bad node length %d, expected %d", rlen
, len
);
726 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
727 dbg_dump_node(c
, buf
);
733 * ubifs_read_node - read node.
734 * @c: UBIFS file-system description object
735 * @buf: buffer to read to
737 * @len: node length (not aligned)
738 * @lnum: logical eraseblock number
739 * @offs: offset within the logical eraseblock
741 * This function reads a node of known type and and length, checks it and
742 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
743 * and a negative error code in case of failure.
745 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
749 struct ubifs_ch
*ch
= buf
;
751 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
752 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
753 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
754 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
755 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
757 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
758 if (err
&& err
!= -EBADMSG
) {
759 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
760 type
, lnum
, offs
, err
);
764 if (type
!= ch
->node_type
) {
765 ubifs_err("bad node type (%d but expected %d)",
766 ch
->node_type
, type
);
770 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0);
772 ubifs_err("expected node type %d", type
);
776 l
= le32_to_cpu(ch
->len
);
778 ubifs_err("bad node length %d, expected %d", l
, len
);
785 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
786 dbg_dump_node(c
, buf
);
792 * ubifs_wbuf_init - initialize write-buffer.
793 * @c: UBIFS file-system description object
794 * @wbuf: write-buffer to initialize
796 * This function initializes write buffer. Returns zero in case of success
797 * %-ENOMEM in case of failure.
799 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
803 wbuf
->buf
= kmalloc(c
->min_io_size
, GFP_KERNEL
);
807 size
= (c
->min_io_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
808 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
816 wbuf
->lnum
= wbuf
->offs
= -1;
817 wbuf
->avail
= c
->min_io_size
;
818 wbuf
->dtype
= UBI_UNKNOWN
;
819 wbuf
->sync_callback
= NULL
;
820 mutex_init(&wbuf
->io_mutex
);
821 spin_lock_init(&wbuf
->lock
);
824 init_timer(&wbuf
->timer
);
825 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
826 wbuf
->timer
.data
= (unsigned long)wbuf
;
827 wbuf
->timeout
= DEFAULT_WBUF_TIMEOUT
;
834 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
835 * @wbuf: the write-buffer whereto add
836 * @inum: the inode number
838 * This function adds an inode number to the inode array of the write-buffer.
840 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
843 /* NOR flash or something similar */
846 spin_lock(&wbuf
->lock
);
848 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
849 spin_unlock(&wbuf
->lock
);
853 * wbuf_has_ino - returns if the wbuf contains data from the inode.
854 * @wbuf: the write-buffer
855 * @inum: the inode number
857 * This function returns with %1 if the write-buffer contains some data from the
858 * given inode otherwise it returns with %0.
860 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
864 spin_lock(&wbuf
->lock
);
865 for (i
= 0; i
< wbuf
->next_ino
; i
++)
866 if (inum
== wbuf
->inodes
[i
]) {
870 spin_unlock(&wbuf
->lock
);
876 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
877 * @c: UBIFS file-system description object
878 * @inode: inode to synchronize
880 * This function synchronizes write-buffers which contain nodes belonging to
881 * @inode. Returns zero in case of success and a negative error code in case of
884 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
888 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
889 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
893 * GC head is special, do not look at it. Even if the
894 * head contains something related to this inode, it is
895 * a _copy_ of corresponding on-flash node which sits
900 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
903 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
904 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
905 err
= ubifs_wbuf_sync_nolock(wbuf
);
906 mutex_unlock(&wbuf
->io_mutex
);
909 ubifs_ro_mode(c
, err
);