sched: use a 2-d bitmap for searching lowest-pri CPU
[linux-2.6/mini2440.git] / kernel / sched_rt.c
blob44b06d75416ea23f345e54fc682f2665e3be0040
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 cpu_set(rq->cpu, rq->rd->rto_mask);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
27 static inline void rt_clear_overload(struct rq *rq)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
34 static void update_rt_migration(struct rq *rq)
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
50 return container_of(rt_se, struct task_struct, rt);
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
55 return !list_empty(&rt_se->run_list);
58 #ifdef CONFIG_RT_GROUP_SCHED
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
62 if (!rt_rq->tg)
63 return RUNTIME_INF;
65 return rt_rq->rt_runtime;
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
78 return rt_rq->rq;
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
83 return rt_se->rt_rq;
86 #define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
91 return rt_se->my_q;
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
104 enqueue_rt_entity(rt_se);
105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
138 return cpu_rq(smp_processor_id())->rd->span;
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
143 return cpu_online_map;
145 #endif
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
155 return &rt_rq->tg->rt_bandwidth;
158 #else
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
162 return rt_rq->rt_runtime;
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
175 return container_of(rt_rq, struct rq, rt);
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
183 return &rq->rt;
186 #define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
191 return NULL;
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
204 return rt_rq->rt_throttled;
207 static inline cpumask_t sched_rt_period_mask(void)
209 return cpu_online_map;
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
215 return &cpu_rq(cpu)->rt;
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
220 return &def_rt_bandwidth;
223 #endif
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
227 int i, idle = 1;
228 cpumask_t span;
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
241 u64 runtime;
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
252 spin_unlock(&rt_rq->rt_runtime_lock);
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
260 return idle;
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
271 weight = cpus_weight(rd->span);
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
279 if (iter == rt_rq)
280 continue;
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
296 spin_unlock(&iter->rt_runtime_lock);
298 spin_unlock(&rt_b->rt_runtime_lock);
300 return more;
302 #endif
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
306 #ifdef CONFIG_RT_GROUP_SCHED
307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
309 if (rt_rq)
310 return rt_rq->highest_prio;
311 #endif
313 return rt_task_of(rt_se)->prio;
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
318 u64 runtime = sched_rt_runtime(rt_rq);
320 if (runtime == RUNTIME_INF)
321 return 0;
323 if (rt_rq->rt_throttled)
324 return rt_rq_throttled(rt_rq);
326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
329 #ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
340 #endif
342 if (rt_rq->rt_time > runtime) {
343 rt_rq->rt_throttled = 1;
344 if (rt_rq_throttled(rt_rq)) {
345 sched_rt_rq_dequeue(rt_rq);
346 return 1;
350 return 0;
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
357 static void update_curr_rt(struct rq *rq)
359 struct task_struct *curr = rq->curr;
360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362 u64 delta_exec;
364 if (!task_has_rt_policy(curr))
365 return;
367 delta_exec = rq->clock - curr->se.exec_start;
368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
373 curr->se.sum_exec_runtime += delta_exec;
374 curr->se.exec_start = rq->clock;
375 cpuacct_charge(curr, delta_exec);
377 for_each_sched_rt_entity(rt_se) {
378 rt_rq = rt_rq_of_se(rt_se);
380 spin_lock(&rt_rq->rt_runtime_lock);
381 rt_rq->rt_time += delta_exec;
382 if (sched_rt_runtime_exceeded(rt_rq))
383 resched_task(curr);
384 spin_unlock(&rt_rq->rt_runtime_lock);
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392 rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
395 struct rq *rq = rq_of_rt_rq(rt_rq);
396 rt_rq->highest_prio = rt_se_prio(rt_se);
397 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se));
399 #endif
400 #ifdef CONFIG_SMP
401 if (rt_se->nr_cpus_allowed > 1) {
402 struct rq *rq = rq_of_rt_rq(rt_rq);
403 rq->rt.rt_nr_migratory++;
406 update_rt_migration(rq_of_rt_rq(rt_rq));
407 #endif
408 #ifdef CONFIG_RT_GROUP_SCHED
409 if (rt_se_boosted(rt_se))
410 rt_rq->rt_nr_boosted++;
412 if (rt_rq->tg)
413 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
414 #else
415 start_rt_bandwidth(&def_rt_bandwidth);
416 #endif
419 static inline
420 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
422 #ifdef CONFIG_SMP
423 int highest_prio = rt_rq->highest_prio;
424 #endif
426 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
427 WARN_ON(!rt_rq->rt_nr_running);
428 rt_rq->rt_nr_running--;
429 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
430 if (rt_rq->rt_nr_running) {
431 struct rt_prio_array *array;
433 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
434 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
435 /* recalculate */
436 array = &rt_rq->active;
437 rt_rq->highest_prio =
438 sched_find_first_bit(array->bitmap);
439 } /* otherwise leave rq->highest prio alone */
440 } else
441 rt_rq->highest_prio = MAX_RT_PRIO;
442 #endif
443 #ifdef CONFIG_SMP
444 if (rt_se->nr_cpus_allowed > 1) {
445 struct rq *rq = rq_of_rt_rq(rt_rq);
446 rq->rt.rt_nr_migratory--;
449 if (rt_rq->highest_prio != highest_prio) {
450 struct rq *rq = rq_of_rt_rq(rt_rq);
451 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio);
454 update_rt_migration(rq_of_rt_rq(rt_rq));
455 #endif /* CONFIG_SMP */
456 #ifdef CONFIG_RT_GROUP_SCHED
457 if (rt_se_boosted(rt_se))
458 rt_rq->rt_nr_boosted--;
460 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
461 #endif
464 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
466 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
467 struct rt_prio_array *array = &rt_rq->active;
468 struct rt_rq *group_rq = group_rt_rq(rt_se);
470 if (group_rq && rt_rq_throttled(group_rq))
471 return;
473 if (rt_se->nr_cpus_allowed == 1)
474 list_add_tail(&rt_se->run_list,
475 array->xqueue + rt_se_prio(rt_se));
476 else
477 list_add_tail(&rt_se->run_list,
478 array->squeue + rt_se_prio(rt_se));
480 __set_bit(rt_se_prio(rt_se), array->bitmap);
482 inc_rt_tasks(rt_se, rt_rq);
485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
487 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
488 struct rt_prio_array *array = &rt_rq->active;
490 list_del_init(&rt_se->run_list);
491 if (list_empty(array->squeue + rt_se_prio(rt_se))
492 && list_empty(array->xqueue + rt_se_prio(rt_se)))
493 __clear_bit(rt_se_prio(rt_se), array->bitmap);
495 dec_rt_tasks(rt_se, rt_rq);
499 * Because the prio of an upper entry depends on the lower
500 * entries, we must remove entries top - down.
502 static void dequeue_rt_stack(struct task_struct *p)
504 struct sched_rt_entity *rt_se, *back = NULL;
506 rt_se = &p->rt;
507 for_each_sched_rt_entity(rt_se) {
508 rt_se->back = back;
509 back = rt_se;
512 for (rt_se = back; rt_se; rt_se = rt_se->back) {
513 if (on_rt_rq(rt_se))
514 dequeue_rt_entity(rt_se);
519 * Adding/removing a task to/from a priority array:
521 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
523 struct sched_rt_entity *rt_se = &p->rt;
525 if (wakeup)
526 rt_se->timeout = 0;
528 dequeue_rt_stack(p);
531 * enqueue everybody, bottom - up.
533 for_each_sched_rt_entity(rt_se)
534 enqueue_rt_entity(rt_se);
537 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
539 struct sched_rt_entity *rt_se = &p->rt;
540 struct rt_rq *rt_rq;
542 update_curr_rt(rq);
544 dequeue_rt_stack(p);
547 * re-enqueue all non-empty rt_rq entities.
549 for_each_sched_rt_entity(rt_se) {
550 rt_rq = group_rt_rq(rt_se);
551 if (rt_rq && rt_rq->rt_nr_running)
552 enqueue_rt_entity(rt_se);
557 * Put task to the end of the run list without the overhead of dequeue
558 * followed by enqueue.
560 * Note: We always enqueue the task to the shared-queue, regardless of its
561 * previous position w.r.t. exclusive vs shared. This is so that exclusive RR
562 * tasks fairly round-robin with all tasks on the runqueue, not just other
563 * exclusive tasks.
565 static
566 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
568 struct rt_prio_array *array = &rt_rq->active;
570 list_del_init(&rt_se->run_list);
571 list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
574 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
576 struct sched_rt_entity *rt_se = &p->rt;
577 struct rt_rq *rt_rq;
579 for_each_sched_rt_entity(rt_se) {
580 rt_rq = rt_rq_of_se(rt_se);
581 requeue_rt_entity(rt_rq, rt_se);
585 static void yield_task_rt(struct rq *rq)
587 requeue_task_rt(rq, rq->curr);
590 #ifdef CONFIG_SMP
591 static int find_lowest_rq(struct task_struct *task);
593 static int select_task_rq_rt(struct task_struct *p, int sync)
595 struct rq *rq = task_rq(p);
598 * If the current task is an RT task, then
599 * try to see if we can wake this RT task up on another
600 * runqueue. Otherwise simply start this RT task
601 * on its current runqueue.
603 * We want to avoid overloading runqueues. Even if
604 * the RT task is of higher priority than the current RT task.
605 * RT tasks behave differently than other tasks. If
606 * one gets preempted, we try to push it off to another queue.
607 * So trying to keep a preempting RT task on the same
608 * cache hot CPU will force the running RT task to
609 * a cold CPU. So we waste all the cache for the lower
610 * RT task in hopes of saving some of a RT task
611 * that is just being woken and probably will have
612 * cold cache anyway.
614 if (unlikely(rt_task(rq->curr)) &&
615 (p->rt.nr_cpus_allowed > 1)) {
616 int cpu = find_lowest_rq(p);
618 return (cpu == -1) ? task_cpu(p) : cpu;
622 * Otherwise, just let it ride on the affined RQ and the
623 * post-schedule router will push the preempted task away
625 return task_cpu(p);
627 #endif /* CONFIG_SMP */
629 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
630 struct rt_rq *rt_rq);
633 * Preempt the current task with a newly woken task if needed:
635 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
637 if (p->prio < rq->curr->prio) {
638 resched_task(rq->curr);
639 return;
642 #ifdef CONFIG_SMP
644 * If:
646 * - the newly woken task is of equal priority to the current task
647 * - the newly woken task is non-migratable while current is migratable
648 * - current will be preempted on the next reschedule
650 * we should check to see if current can readily move to a different
651 * cpu. If so, we will reschedule to allow the push logic to try
652 * to move current somewhere else, making room for our non-migratable
653 * task.
655 if((p->prio == rq->curr->prio)
656 && p->rt.nr_cpus_allowed == 1
657 && rq->curr->rt.nr_cpus_allowed != 1
658 && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
659 cpumask_t mask;
661 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
663 * There appears to be other cpus that can accept
664 * current, so lets reschedule to try and push it away
666 resched_task(rq->curr);
668 #endif
671 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
672 struct rt_rq *rt_rq)
674 struct rt_prio_array *array = &rt_rq->active;
675 struct sched_rt_entity *next = NULL;
676 struct list_head *queue;
677 int idx;
679 idx = sched_find_first_bit(array->bitmap);
680 BUG_ON(idx >= MAX_RT_PRIO);
682 queue = array->xqueue + idx;
683 if (!list_empty(queue))
684 next = list_entry(queue->next, struct sched_rt_entity,
685 run_list);
686 else {
687 queue = array->squeue + idx;
688 next = list_entry(queue->next, struct sched_rt_entity,
689 run_list);
692 return next;
695 static struct task_struct *pick_next_task_rt(struct rq *rq)
697 struct sched_rt_entity *rt_se;
698 struct task_struct *p;
699 struct rt_rq *rt_rq;
701 rt_rq = &rq->rt;
703 if (unlikely(!rt_rq->rt_nr_running))
704 return NULL;
706 if (rt_rq_throttled(rt_rq))
707 return NULL;
709 do {
710 rt_se = pick_next_rt_entity(rq, rt_rq);
711 BUG_ON(!rt_se);
712 rt_rq = group_rt_rq(rt_se);
713 } while (rt_rq);
715 p = rt_task_of(rt_se);
716 p->se.exec_start = rq->clock;
717 return p;
720 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
722 update_curr_rt(rq);
723 p->se.exec_start = 0;
726 #ifdef CONFIG_SMP
728 /* Only try algorithms three times */
729 #define RT_MAX_TRIES 3
731 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
732 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
734 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
736 if (!task_running(rq, p) &&
737 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
738 (p->rt.nr_cpus_allowed > 1))
739 return 1;
740 return 0;
743 /* Return the second highest RT task, NULL otherwise */
744 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
746 struct task_struct *next = NULL;
747 struct sched_rt_entity *rt_se;
748 struct rt_prio_array *array;
749 struct rt_rq *rt_rq;
750 int idx;
752 for_each_leaf_rt_rq(rt_rq, rq) {
753 array = &rt_rq->active;
754 idx = sched_find_first_bit(array->bitmap);
755 next_idx:
756 if (idx >= MAX_RT_PRIO)
757 continue;
758 if (next && next->prio < idx)
759 continue;
760 list_for_each_entry(rt_se, array->squeue + idx, run_list) {
761 struct task_struct *p = rt_task_of(rt_se);
762 if (pick_rt_task(rq, p, cpu)) {
763 next = p;
764 break;
767 if (!next) {
768 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
769 goto next_idx;
773 return next;
776 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
778 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
780 int first;
782 /* "this_cpu" is cheaper to preempt than a remote processor */
783 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
784 return this_cpu;
786 first = first_cpu(*mask);
787 if (first != NR_CPUS)
788 return first;
790 return -1;
793 static int find_lowest_rq(struct task_struct *task)
795 struct sched_domain *sd;
796 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
797 int this_cpu = smp_processor_id();
798 int cpu = task_cpu(task);
800 if (task->rt.nr_cpus_allowed == 1)
801 return -1; /* No other targets possible */
803 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
804 return -1; /* No targets found */
807 * At this point we have built a mask of cpus representing the
808 * lowest priority tasks in the system. Now we want to elect
809 * the best one based on our affinity and topology.
811 * We prioritize the last cpu that the task executed on since
812 * it is most likely cache-hot in that location.
814 if (cpu_isset(cpu, *lowest_mask))
815 return cpu;
818 * Otherwise, we consult the sched_domains span maps to figure
819 * out which cpu is logically closest to our hot cache data.
821 if (this_cpu == cpu)
822 this_cpu = -1; /* Skip this_cpu opt if the same */
824 for_each_domain(cpu, sd) {
825 if (sd->flags & SD_WAKE_AFFINE) {
826 cpumask_t domain_mask;
827 int best_cpu;
829 cpus_and(domain_mask, sd->span, *lowest_mask);
831 best_cpu = pick_optimal_cpu(this_cpu,
832 &domain_mask);
833 if (best_cpu != -1)
834 return best_cpu;
839 * And finally, if there were no matches within the domains
840 * just give the caller *something* to work with from the compatible
841 * locations.
843 return pick_optimal_cpu(this_cpu, lowest_mask);
846 /* Will lock the rq it finds */
847 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
849 struct rq *lowest_rq = NULL;
850 int tries;
851 int cpu;
853 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
854 cpu = find_lowest_rq(task);
856 if ((cpu == -1) || (cpu == rq->cpu))
857 break;
859 lowest_rq = cpu_rq(cpu);
861 /* if the prio of this runqueue changed, try again */
862 if (double_lock_balance(rq, lowest_rq)) {
864 * We had to unlock the run queue. In
865 * the mean time, task could have
866 * migrated already or had its affinity changed.
867 * Also make sure that it wasn't scheduled on its rq.
869 if (unlikely(task_rq(task) != rq ||
870 !cpu_isset(lowest_rq->cpu,
871 task->cpus_allowed) ||
872 task_running(rq, task) ||
873 !task->se.on_rq)) {
875 spin_unlock(&lowest_rq->lock);
876 lowest_rq = NULL;
877 break;
881 /* If this rq is still suitable use it. */
882 if (lowest_rq->rt.highest_prio > task->prio)
883 break;
885 /* try again */
886 spin_unlock(&lowest_rq->lock);
887 lowest_rq = NULL;
890 return lowest_rq;
894 * If the current CPU has more than one RT task, see if the non
895 * running task can migrate over to a CPU that is running a task
896 * of lesser priority.
898 static int push_rt_task(struct rq *rq)
900 struct task_struct *next_task;
901 struct rq *lowest_rq;
902 int ret = 0;
903 int paranoid = RT_MAX_TRIES;
905 if (!rq->rt.overloaded)
906 return 0;
908 next_task = pick_next_highest_task_rt(rq, -1);
909 if (!next_task)
910 return 0;
912 retry:
913 if (unlikely(next_task == rq->curr)) {
914 WARN_ON(1);
915 return 0;
919 * It's possible that the next_task slipped in of
920 * higher priority than current. If that's the case
921 * just reschedule current.
923 if (unlikely(next_task->prio < rq->curr->prio)) {
924 resched_task(rq->curr);
925 return 0;
928 /* We might release rq lock */
929 get_task_struct(next_task);
931 /* find_lock_lowest_rq locks the rq if found */
932 lowest_rq = find_lock_lowest_rq(next_task, rq);
933 if (!lowest_rq) {
934 struct task_struct *task;
936 * find lock_lowest_rq releases rq->lock
937 * so it is possible that next_task has changed.
938 * If it has, then try again.
940 task = pick_next_highest_task_rt(rq, -1);
941 if (unlikely(task != next_task) && task && paranoid--) {
942 put_task_struct(next_task);
943 next_task = task;
944 goto retry;
946 goto out;
949 deactivate_task(rq, next_task, 0);
950 set_task_cpu(next_task, lowest_rq->cpu);
951 activate_task(lowest_rq, next_task, 0);
953 resched_task(lowest_rq->curr);
955 spin_unlock(&lowest_rq->lock);
957 ret = 1;
958 out:
959 put_task_struct(next_task);
961 return ret;
965 * TODO: Currently we just use the second highest prio task on
966 * the queue, and stop when it can't migrate (or there's
967 * no more RT tasks). There may be a case where a lower
968 * priority RT task has a different affinity than the
969 * higher RT task. In this case the lower RT task could
970 * possibly be able to migrate where as the higher priority
971 * RT task could not. We currently ignore this issue.
972 * Enhancements are welcome!
974 static void push_rt_tasks(struct rq *rq)
976 /* push_rt_task will return true if it moved an RT */
977 while (push_rt_task(rq))
981 static int pull_rt_task(struct rq *this_rq)
983 int this_cpu = this_rq->cpu, ret = 0, cpu;
984 struct task_struct *p, *next;
985 struct rq *src_rq;
987 if (likely(!rt_overloaded(this_rq)))
988 return 0;
990 next = pick_next_task_rt(this_rq);
992 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
993 if (this_cpu == cpu)
994 continue;
996 src_rq = cpu_rq(cpu);
998 * We can potentially drop this_rq's lock in
999 * double_lock_balance, and another CPU could
1000 * steal our next task - hence we must cause
1001 * the caller to recalculate the next task
1002 * in that case:
1004 if (double_lock_balance(this_rq, src_rq)) {
1005 struct task_struct *old_next = next;
1007 next = pick_next_task_rt(this_rq);
1008 if (next != old_next)
1009 ret = 1;
1013 * Are there still pullable RT tasks?
1015 if (src_rq->rt.rt_nr_running <= 1)
1016 goto skip;
1018 p = pick_next_highest_task_rt(src_rq, this_cpu);
1021 * Do we have an RT task that preempts
1022 * the to-be-scheduled task?
1024 if (p && (!next || (p->prio < next->prio))) {
1025 WARN_ON(p == src_rq->curr);
1026 WARN_ON(!p->se.on_rq);
1029 * There's a chance that p is higher in priority
1030 * than what's currently running on its cpu.
1031 * This is just that p is wakeing up and hasn't
1032 * had a chance to schedule. We only pull
1033 * p if it is lower in priority than the
1034 * current task on the run queue or
1035 * this_rq next task is lower in prio than
1036 * the current task on that rq.
1038 if (p->prio < src_rq->curr->prio ||
1039 (next && next->prio < src_rq->curr->prio))
1040 goto skip;
1042 ret = 1;
1044 deactivate_task(src_rq, p, 0);
1045 set_task_cpu(p, this_cpu);
1046 activate_task(this_rq, p, 0);
1048 * We continue with the search, just in
1049 * case there's an even higher prio task
1050 * in another runqueue. (low likelyhood
1051 * but possible)
1053 * Update next so that we won't pick a task
1054 * on another cpu with a priority lower (or equal)
1055 * than the one we just picked.
1057 next = p;
1060 skip:
1061 spin_unlock(&src_rq->lock);
1064 return ret;
1067 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1069 /* Try to pull RT tasks here if we lower this rq's prio */
1070 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1071 pull_rt_task(rq);
1074 static void post_schedule_rt(struct rq *rq)
1077 * If we have more than one rt_task queued, then
1078 * see if we can push the other rt_tasks off to other CPUS.
1079 * Note we may release the rq lock, and since
1080 * the lock was owned by prev, we need to release it
1081 * first via finish_lock_switch and then reaquire it here.
1083 if (unlikely(rq->rt.overloaded)) {
1084 spin_lock_irq(&rq->lock);
1085 push_rt_tasks(rq);
1086 spin_unlock_irq(&rq->lock);
1091 * If we are not running and we are not going to reschedule soon, we should
1092 * try to push tasks away now
1094 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1096 if (!task_running(rq, p) &&
1097 !test_tsk_need_resched(rq->curr) &&
1098 rq->rt.overloaded)
1099 push_rt_tasks(rq);
1102 static unsigned long
1103 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1104 unsigned long max_load_move,
1105 struct sched_domain *sd, enum cpu_idle_type idle,
1106 int *all_pinned, int *this_best_prio)
1108 /* don't touch RT tasks */
1109 return 0;
1112 static int
1113 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1114 struct sched_domain *sd, enum cpu_idle_type idle)
1116 /* don't touch RT tasks */
1117 return 0;
1120 static void set_cpus_allowed_rt(struct task_struct *p,
1121 const cpumask_t *new_mask)
1123 int weight = cpus_weight(*new_mask);
1125 BUG_ON(!rt_task(p));
1128 * Update the migration status of the RQ if we have an RT task
1129 * which is running AND changing its weight value.
1131 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1132 struct rq *rq = task_rq(p);
1134 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1135 rq->rt.rt_nr_migratory++;
1136 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1137 BUG_ON(!rq->rt.rt_nr_migratory);
1138 rq->rt.rt_nr_migratory--;
1141 update_rt_migration(rq);
1143 if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
1145 * If either the new or old weight is a "1", we need
1146 * to requeue to properly move between shared and
1147 * exclusive queues.
1149 requeue_task_rt(rq, p);
1152 p->cpus_allowed = *new_mask;
1153 p->rt.nr_cpus_allowed = weight;
1156 /* Assumes rq->lock is held */
1157 static void join_domain_rt(struct rq *rq)
1159 if (rq->rt.overloaded)
1160 rt_set_overload(rq);
1162 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1165 /* Assumes rq->lock is held */
1166 static void leave_domain_rt(struct rq *rq)
1168 if (rq->rt.overloaded)
1169 rt_clear_overload(rq);
1171 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1175 * When switch from the rt queue, we bring ourselves to a position
1176 * that we might want to pull RT tasks from other runqueues.
1178 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1179 int running)
1182 * If there are other RT tasks then we will reschedule
1183 * and the scheduling of the other RT tasks will handle
1184 * the balancing. But if we are the last RT task
1185 * we may need to handle the pulling of RT tasks
1186 * now.
1188 if (!rq->rt.rt_nr_running)
1189 pull_rt_task(rq);
1191 #endif /* CONFIG_SMP */
1194 * When switching a task to RT, we may overload the runqueue
1195 * with RT tasks. In this case we try to push them off to
1196 * other runqueues.
1198 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1199 int running)
1201 int check_resched = 1;
1204 * If we are already running, then there's nothing
1205 * that needs to be done. But if we are not running
1206 * we may need to preempt the current running task.
1207 * If that current running task is also an RT task
1208 * then see if we can move to another run queue.
1210 if (!running) {
1211 #ifdef CONFIG_SMP
1212 if (rq->rt.overloaded && push_rt_task(rq) &&
1213 /* Don't resched if we changed runqueues */
1214 rq != task_rq(p))
1215 check_resched = 0;
1216 #endif /* CONFIG_SMP */
1217 if (check_resched && p->prio < rq->curr->prio)
1218 resched_task(rq->curr);
1223 * Priority of the task has changed. This may cause
1224 * us to initiate a push or pull.
1226 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1227 int oldprio, int running)
1229 if (running) {
1230 #ifdef CONFIG_SMP
1232 * If our priority decreases while running, we
1233 * may need to pull tasks to this runqueue.
1235 if (oldprio < p->prio)
1236 pull_rt_task(rq);
1238 * If there's a higher priority task waiting to run
1239 * then reschedule. Note, the above pull_rt_task
1240 * can release the rq lock and p could migrate.
1241 * Only reschedule if p is still on the same runqueue.
1243 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1244 resched_task(p);
1245 #else
1246 /* For UP simply resched on drop of prio */
1247 if (oldprio < p->prio)
1248 resched_task(p);
1249 #endif /* CONFIG_SMP */
1250 } else {
1252 * This task is not running, but if it is
1253 * greater than the current running task
1254 * then reschedule.
1256 if (p->prio < rq->curr->prio)
1257 resched_task(rq->curr);
1261 static void watchdog(struct rq *rq, struct task_struct *p)
1263 unsigned long soft, hard;
1265 if (!p->signal)
1266 return;
1268 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1269 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1271 if (soft != RLIM_INFINITY) {
1272 unsigned long next;
1274 p->rt.timeout++;
1275 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1276 if (p->rt.timeout > next)
1277 p->it_sched_expires = p->se.sum_exec_runtime;
1281 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1283 update_curr_rt(rq);
1285 watchdog(rq, p);
1288 * RR tasks need a special form of timeslice management.
1289 * FIFO tasks have no timeslices.
1291 if (p->policy != SCHED_RR)
1292 return;
1294 if (--p->rt.time_slice)
1295 return;
1297 p->rt.time_slice = DEF_TIMESLICE;
1300 * Requeue to the end of queue if we are not the only element
1301 * on the queue:
1303 if (p->rt.run_list.prev != p->rt.run_list.next) {
1304 requeue_task_rt(rq, p);
1305 set_tsk_need_resched(p);
1309 static void set_curr_task_rt(struct rq *rq)
1311 struct task_struct *p = rq->curr;
1313 p->se.exec_start = rq->clock;
1316 static const struct sched_class rt_sched_class = {
1317 .next = &fair_sched_class,
1318 .enqueue_task = enqueue_task_rt,
1319 .dequeue_task = dequeue_task_rt,
1320 .yield_task = yield_task_rt,
1321 #ifdef CONFIG_SMP
1322 .select_task_rq = select_task_rq_rt,
1323 #endif /* CONFIG_SMP */
1325 .check_preempt_curr = check_preempt_curr_rt,
1327 .pick_next_task = pick_next_task_rt,
1328 .put_prev_task = put_prev_task_rt,
1330 #ifdef CONFIG_SMP
1331 .load_balance = load_balance_rt,
1332 .move_one_task = move_one_task_rt,
1333 .set_cpus_allowed = set_cpus_allowed_rt,
1334 .join_domain = join_domain_rt,
1335 .leave_domain = leave_domain_rt,
1336 .pre_schedule = pre_schedule_rt,
1337 .post_schedule = post_schedule_rt,
1338 .task_wake_up = task_wake_up_rt,
1339 .switched_from = switched_from_rt,
1340 #endif
1342 .set_curr_task = set_curr_task_rt,
1343 .task_tick = task_tick_rt,
1345 .prio_changed = prio_changed_rt,
1346 .switched_to = switched_to_rt,