[CPUFREQ] Fix the p4-clockmod N60 errata workaround.
[linux-2.6/mini2440.git] / drivers / mtd / mtdconcat.c
blobb1bf8c411de78e6c7685d7cd8928e642dd1afeb5
1 /*
2 * MTD device concatenation layer
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * NAND support by Christian Gan <cgan@iders.ca>
8 * This code is GPL
10 * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
23 * Our storage structure:
24 * Subdev points to an array of pointers to struct mtd_info objects
25 * which is allocated along with this structure
28 struct mtd_concat {
29 struct mtd_info mtd;
30 int num_subdev;
31 struct mtd_info **subdev;
35 * how to calculate the size required for the above structure,
36 * including the pointer array subdev points to:
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
39 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 * Given a pointer to the MTD object in the mtd_concat structure,
43 * we can retrieve the pointer to that structure with this macro.
45 #define CONCAT(x) ((struct mtd_concat *)(x))
48 * MTD methods which look up the relevant subdevice, translate the
49 * effective address and pass through to the subdevice.
52 static int
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54 size_t * retlen, u_char * buf)
56 struct mtd_concat *concat = CONCAT(mtd);
57 int err = -EINVAL;
58 int i;
60 *retlen = 0;
62 for (i = 0; i < concat->num_subdev; i++) {
63 struct mtd_info *subdev = concat->subdev[i];
64 size_t size, retsize;
66 if (from >= subdev->size) {
67 /* Not destined for this subdev */
68 size = 0;
69 from -= subdev->size;
70 continue;
72 if (from + len > subdev->size)
73 /* First part goes into this subdev */
74 size = subdev->size - from;
75 else
76 /* Entire transaction goes into this subdev */
77 size = len;
79 err = subdev->read(subdev, from, size, &retsize, buf);
81 if (err)
82 break;
84 *retlen += retsize;
85 len -= size;
86 if (len == 0)
87 break;
89 err = -EINVAL;
90 buf += size;
91 from = 0;
93 return err;
96 static int
97 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
98 size_t * retlen, const u_char * buf)
100 struct mtd_concat *concat = CONCAT(mtd);
101 int err = -EINVAL;
102 int i;
104 if (!(mtd->flags & MTD_WRITEABLE))
105 return -EROFS;
107 *retlen = 0;
109 for (i = 0; i < concat->num_subdev; i++) {
110 struct mtd_info *subdev = concat->subdev[i];
111 size_t size, retsize;
113 if (to >= subdev->size) {
114 size = 0;
115 to -= subdev->size;
116 continue;
118 if (to + len > subdev->size)
119 size = subdev->size - to;
120 else
121 size = len;
123 if (!(subdev->flags & MTD_WRITEABLE))
124 err = -EROFS;
125 else
126 err = subdev->write(subdev, to, size, &retsize, buf);
128 if (err)
129 break;
131 *retlen += retsize;
132 len -= size;
133 if (len == 0)
134 break;
136 err = -EINVAL;
137 buf += size;
138 to = 0;
140 return err;
143 static int
144 concat_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
145 size_t * retlen, u_char * buf, u_char * eccbuf,
146 struct nand_oobinfo *oobsel)
148 struct mtd_concat *concat = CONCAT(mtd);
149 int err = -EINVAL;
150 int i;
152 *retlen = 0;
154 for (i = 0; i < concat->num_subdev; i++) {
155 struct mtd_info *subdev = concat->subdev[i];
156 size_t size, retsize;
158 if (from >= subdev->size) {
159 /* Not destined for this subdev */
160 size = 0;
161 from -= subdev->size;
162 continue;
165 if (from + len > subdev->size)
166 /* First part goes into this subdev */
167 size = subdev->size - from;
168 else
169 /* Entire transaction goes into this subdev */
170 size = len;
172 if (subdev->read_ecc)
173 err = subdev->read_ecc(subdev, from, size,
174 &retsize, buf, eccbuf, oobsel);
175 else
176 err = -EINVAL;
178 if (err)
179 break;
181 *retlen += retsize;
182 len -= size;
183 if (len == 0)
184 break;
186 err = -EINVAL;
187 buf += size;
188 if (eccbuf) {
189 eccbuf += subdev->oobsize;
190 /* in nand.c at least, eccbufs are
191 tagged with 2 (int)eccstatus'; we
192 must account for these */
193 eccbuf += 2 * (sizeof (int));
195 from = 0;
197 return err;
200 static int
201 concat_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
202 size_t * retlen, const u_char * buf, u_char * eccbuf,
203 struct nand_oobinfo *oobsel)
205 struct mtd_concat *concat = CONCAT(mtd);
206 int err = -EINVAL;
207 int i;
209 if (!(mtd->flags & MTD_WRITEABLE))
210 return -EROFS;
212 *retlen = 0;
214 for (i = 0; i < concat->num_subdev; i++) {
215 struct mtd_info *subdev = concat->subdev[i];
216 size_t size, retsize;
218 if (to >= subdev->size) {
219 size = 0;
220 to -= subdev->size;
221 continue;
223 if (to + len > subdev->size)
224 size = subdev->size - to;
225 else
226 size = len;
228 if (!(subdev->flags & MTD_WRITEABLE))
229 err = -EROFS;
230 else if (subdev->write_ecc)
231 err = subdev->write_ecc(subdev, to, size,
232 &retsize, buf, eccbuf, oobsel);
233 else
234 err = -EINVAL;
236 if (err)
237 break;
239 *retlen += retsize;
240 len -= size;
241 if (len == 0)
242 break;
244 err = -EINVAL;
245 buf += size;
246 if (eccbuf)
247 eccbuf += subdev->oobsize;
248 to = 0;
250 return err;
253 static int
254 concat_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
255 size_t * retlen, u_char * buf)
257 struct mtd_concat *concat = CONCAT(mtd);
258 int err = -EINVAL;
259 int i;
261 *retlen = 0;
263 for (i = 0; i < concat->num_subdev; i++) {
264 struct mtd_info *subdev = concat->subdev[i];
265 size_t size, retsize;
267 if (from >= subdev->size) {
268 /* Not destined for this subdev */
269 size = 0;
270 from -= subdev->size;
271 continue;
273 if (from + len > subdev->size)
274 /* First part goes into this subdev */
275 size = subdev->size - from;
276 else
277 /* Entire transaction goes into this subdev */
278 size = len;
280 if (subdev->read_oob)
281 err = subdev->read_oob(subdev, from, size,
282 &retsize, buf);
283 else
284 err = -EINVAL;
286 if (err)
287 break;
289 *retlen += retsize;
290 len -= size;
291 if (len == 0)
292 break;
294 err = -EINVAL;
295 buf += size;
296 from = 0;
298 return err;
301 static int
302 concat_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
303 size_t * retlen, const u_char * buf)
305 struct mtd_concat *concat = CONCAT(mtd);
306 int err = -EINVAL;
307 int i;
309 if (!(mtd->flags & MTD_WRITEABLE))
310 return -EROFS;
312 *retlen = 0;
314 for (i = 0; i < concat->num_subdev; i++) {
315 struct mtd_info *subdev = concat->subdev[i];
316 size_t size, retsize;
318 if (to >= subdev->size) {
319 size = 0;
320 to -= subdev->size;
321 continue;
323 if (to + len > subdev->size)
324 size = subdev->size - to;
325 else
326 size = len;
328 if (!(subdev->flags & MTD_WRITEABLE))
329 err = -EROFS;
330 else if (subdev->write_oob)
331 err = subdev->write_oob(subdev, to, size, &retsize,
332 buf);
333 else
334 err = -EINVAL;
336 if (err)
337 break;
339 *retlen += retsize;
340 len -= size;
341 if (len == 0)
342 break;
344 err = -EINVAL;
345 buf += size;
346 to = 0;
348 return err;
351 static void concat_erase_callback(struct erase_info *instr)
353 wake_up((wait_queue_head_t *) instr->priv);
356 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
358 int err;
359 wait_queue_head_t waitq;
360 DECLARE_WAITQUEUE(wait, current);
363 * This code was stol^H^H^H^Hinspired by mtdchar.c
365 init_waitqueue_head(&waitq);
367 erase->mtd = mtd;
368 erase->callback = concat_erase_callback;
369 erase->priv = (unsigned long) &waitq;
372 * FIXME: Allow INTERRUPTIBLE. Which means
373 * not having the wait_queue head on the stack.
375 err = mtd->erase(mtd, erase);
376 if (!err) {
377 set_current_state(TASK_UNINTERRUPTIBLE);
378 add_wait_queue(&waitq, &wait);
379 if (erase->state != MTD_ERASE_DONE
380 && erase->state != MTD_ERASE_FAILED)
381 schedule();
382 remove_wait_queue(&waitq, &wait);
383 set_current_state(TASK_RUNNING);
385 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
387 return err;
390 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
392 struct mtd_concat *concat = CONCAT(mtd);
393 struct mtd_info *subdev;
394 int i, err;
395 u_int32_t length, offset = 0;
396 struct erase_info *erase;
398 if (!(mtd->flags & MTD_WRITEABLE))
399 return -EROFS;
401 if (instr->addr > concat->mtd.size)
402 return -EINVAL;
404 if (instr->len + instr->addr > concat->mtd.size)
405 return -EINVAL;
408 * Check for proper erase block alignment of the to-be-erased area.
409 * It is easier to do this based on the super device's erase
410 * region info rather than looking at each particular sub-device
411 * in turn.
413 if (!concat->mtd.numeraseregions) {
414 /* the easy case: device has uniform erase block size */
415 if (instr->addr & (concat->mtd.erasesize - 1))
416 return -EINVAL;
417 if (instr->len & (concat->mtd.erasesize - 1))
418 return -EINVAL;
419 } else {
420 /* device has variable erase size */
421 struct mtd_erase_region_info *erase_regions =
422 concat->mtd.eraseregions;
425 * Find the erase region where the to-be-erased area begins:
427 for (i = 0; i < concat->mtd.numeraseregions &&
428 instr->addr >= erase_regions[i].offset; i++) ;
429 --i;
432 * Now erase_regions[i] is the region in which the
433 * to-be-erased area begins. Verify that the starting
434 * offset is aligned to this region's erase size:
436 if (instr->addr & (erase_regions[i].erasesize - 1))
437 return -EINVAL;
440 * now find the erase region where the to-be-erased area ends:
442 for (; i < concat->mtd.numeraseregions &&
443 (instr->addr + instr->len) >= erase_regions[i].offset;
444 ++i) ;
445 --i;
447 * check if the ending offset is aligned to this region's erase size
449 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
451 return -EINVAL;
454 instr->fail_addr = 0xffffffff;
456 /* make a local copy of instr to avoid modifying the caller's struct */
457 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
459 if (!erase)
460 return -ENOMEM;
462 *erase = *instr;
463 length = instr->len;
466 * find the subdevice where the to-be-erased area begins, adjust
467 * starting offset to be relative to the subdevice start
469 for (i = 0; i < concat->num_subdev; i++) {
470 subdev = concat->subdev[i];
471 if (subdev->size <= erase->addr) {
472 erase->addr -= subdev->size;
473 offset += subdev->size;
474 } else {
475 break;
479 /* must never happen since size limit has been verified above */
480 if (i >= concat->num_subdev)
481 BUG();
483 /* now do the erase: */
484 err = 0;
485 for (; length > 0; i++) {
486 /* loop for all subdevices affected by this request */
487 subdev = concat->subdev[i]; /* get current subdevice */
489 /* limit length to subdevice's size: */
490 if (erase->addr + length > subdev->size)
491 erase->len = subdev->size - erase->addr;
492 else
493 erase->len = length;
495 if (!(subdev->flags & MTD_WRITEABLE)) {
496 err = -EROFS;
497 break;
499 length -= erase->len;
500 if ((err = concat_dev_erase(subdev, erase))) {
501 /* sanity check: should never happen since
502 * block alignment has been checked above */
503 if (err == -EINVAL)
504 BUG();
505 if (erase->fail_addr != 0xffffffff)
506 instr->fail_addr = erase->fail_addr + offset;
507 break;
510 * erase->addr specifies the offset of the area to be
511 * erased *within the current subdevice*. It can be
512 * non-zero only the first time through this loop, i.e.
513 * for the first subdevice where blocks need to be erased.
514 * All the following erases must begin at the start of the
515 * current subdevice, i.e. at offset zero.
517 erase->addr = 0;
518 offset += subdev->size;
520 instr->state = erase->state;
521 kfree(erase);
522 if (err)
523 return err;
525 if (instr->callback)
526 instr->callback(instr);
527 return 0;
530 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
532 struct mtd_concat *concat = CONCAT(mtd);
533 int i, err = -EINVAL;
535 if ((len + ofs) > mtd->size)
536 return -EINVAL;
538 for (i = 0; i < concat->num_subdev; i++) {
539 struct mtd_info *subdev = concat->subdev[i];
540 size_t size;
542 if (ofs >= subdev->size) {
543 size = 0;
544 ofs -= subdev->size;
545 continue;
547 if (ofs + len > subdev->size)
548 size = subdev->size - ofs;
549 else
550 size = len;
552 err = subdev->lock(subdev, ofs, size);
554 if (err)
555 break;
557 len -= size;
558 if (len == 0)
559 break;
561 err = -EINVAL;
562 ofs = 0;
565 return err;
568 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
570 struct mtd_concat *concat = CONCAT(mtd);
571 int i, err = 0;
573 if ((len + ofs) > mtd->size)
574 return -EINVAL;
576 for (i = 0; i < concat->num_subdev; i++) {
577 struct mtd_info *subdev = concat->subdev[i];
578 size_t size;
580 if (ofs >= subdev->size) {
581 size = 0;
582 ofs -= subdev->size;
583 continue;
585 if (ofs + len > subdev->size)
586 size = subdev->size - ofs;
587 else
588 size = len;
590 err = subdev->unlock(subdev, ofs, size);
592 if (err)
593 break;
595 len -= size;
596 if (len == 0)
597 break;
599 err = -EINVAL;
600 ofs = 0;
603 return err;
606 static void concat_sync(struct mtd_info *mtd)
608 struct mtd_concat *concat = CONCAT(mtd);
609 int i;
611 for (i = 0; i < concat->num_subdev; i++) {
612 struct mtd_info *subdev = concat->subdev[i];
613 subdev->sync(subdev);
617 static int concat_suspend(struct mtd_info *mtd)
619 struct mtd_concat *concat = CONCAT(mtd);
620 int i, rc = 0;
622 for (i = 0; i < concat->num_subdev; i++) {
623 struct mtd_info *subdev = concat->subdev[i];
624 if ((rc = subdev->suspend(subdev)) < 0)
625 return rc;
627 return rc;
630 static void concat_resume(struct mtd_info *mtd)
632 struct mtd_concat *concat = CONCAT(mtd);
633 int i;
635 for (i = 0; i < concat->num_subdev; i++) {
636 struct mtd_info *subdev = concat->subdev[i];
637 subdev->resume(subdev);
642 * This function constructs a virtual MTD device by concatenating
643 * num_devs MTD devices. A pointer to the new device object is
644 * stored to *new_dev upon success. This function does _not_
645 * register any devices: this is the caller's responsibility.
647 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
648 int num_devs, /* number of subdevices */
649 char *name)
650 { /* name for the new device */
651 int i;
652 size_t size;
653 struct mtd_concat *concat;
654 u_int32_t max_erasesize, curr_erasesize;
655 int num_erase_region;
657 printk(KERN_NOTICE "Concatenating MTD devices:\n");
658 for (i = 0; i < num_devs; i++)
659 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
660 printk(KERN_NOTICE "into device \"%s\"\n", name);
662 /* allocate the device structure */
663 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
664 concat = kmalloc(size, GFP_KERNEL);
665 if (!concat) {
666 printk
667 ("memory allocation error while creating concatenated device \"%s\"\n",
668 name);
669 return NULL;
671 memset(concat, 0, size);
672 concat->subdev = (struct mtd_info **) (concat + 1);
675 * Set up the new "super" device's MTD object structure, check for
676 * incompatibilites between the subdevices.
678 concat->mtd.type = subdev[0]->type;
679 concat->mtd.flags = subdev[0]->flags;
680 concat->mtd.size = subdev[0]->size;
681 concat->mtd.erasesize = subdev[0]->erasesize;
682 concat->mtd.oobblock = subdev[0]->oobblock;
683 concat->mtd.oobsize = subdev[0]->oobsize;
684 concat->mtd.ecctype = subdev[0]->ecctype;
685 concat->mtd.eccsize = subdev[0]->eccsize;
686 if (subdev[0]->read_ecc)
687 concat->mtd.read_ecc = concat_read_ecc;
688 if (subdev[0]->write_ecc)
689 concat->mtd.write_ecc = concat_write_ecc;
690 if (subdev[0]->read_oob)
691 concat->mtd.read_oob = concat_read_oob;
692 if (subdev[0]->write_oob)
693 concat->mtd.write_oob = concat_write_oob;
695 concat->subdev[0] = subdev[0];
697 for (i = 1; i < num_devs; i++) {
698 if (concat->mtd.type != subdev[i]->type) {
699 kfree(concat);
700 printk("Incompatible device type on \"%s\"\n",
701 subdev[i]->name);
702 return NULL;
704 if (concat->mtd.flags != subdev[i]->flags) {
706 * Expect all flags except MTD_WRITEABLE to be
707 * equal on all subdevices.
709 if ((concat->mtd.flags ^ subdev[i]->
710 flags) & ~MTD_WRITEABLE) {
711 kfree(concat);
712 printk("Incompatible device flags on \"%s\"\n",
713 subdev[i]->name);
714 return NULL;
715 } else
716 /* if writeable attribute differs,
717 make super device writeable */
718 concat->mtd.flags |=
719 subdev[i]->flags & MTD_WRITEABLE;
721 concat->mtd.size += subdev[i]->size;
722 if (concat->mtd.oobblock != subdev[i]->oobblock ||
723 concat->mtd.oobsize != subdev[i]->oobsize ||
724 concat->mtd.ecctype != subdev[i]->ecctype ||
725 concat->mtd.eccsize != subdev[i]->eccsize ||
726 !concat->mtd.read_ecc != !subdev[i]->read_ecc ||
727 !concat->mtd.write_ecc != !subdev[i]->write_ecc ||
728 !concat->mtd.read_oob != !subdev[i]->read_oob ||
729 !concat->mtd.write_oob != !subdev[i]->write_oob) {
730 kfree(concat);
731 printk("Incompatible OOB or ECC data on \"%s\"\n",
732 subdev[i]->name);
733 return NULL;
735 concat->subdev[i] = subdev[i];
739 concat->num_subdev = num_devs;
740 concat->mtd.name = name;
743 * NOTE: for now, we do not provide any readv()/writev() methods
744 * because they are messy to implement and they are not
745 * used to a great extent anyway.
747 concat->mtd.erase = concat_erase;
748 concat->mtd.read = concat_read;
749 concat->mtd.write = concat_write;
750 concat->mtd.sync = concat_sync;
751 concat->mtd.lock = concat_lock;
752 concat->mtd.unlock = concat_unlock;
753 concat->mtd.suspend = concat_suspend;
754 concat->mtd.resume = concat_resume;
757 * Combine the erase block size info of the subdevices:
759 * first, walk the map of the new device and see how
760 * many changes in erase size we have
762 max_erasesize = curr_erasesize = subdev[0]->erasesize;
763 num_erase_region = 1;
764 for (i = 0; i < num_devs; i++) {
765 if (subdev[i]->numeraseregions == 0) {
766 /* current subdevice has uniform erase size */
767 if (subdev[i]->erasesize != curr_erasesize) {
768 /* if it differs from the last subdevice's erase size, count it */
769 ++num_erase_region;
770 curr_erasesize = subdev[i]->erasesize;
771 if (curr_erasesize > max_erasesize)
772 max_erasesize = curr_erasesize;
774 } else {
775 /* current subdevice has variable erase size */
776 int j;
777 for (j = 0; j < subdev[i]->numeraseregions; j++) {
779 /* walk the list of erase regions, count any changes */
780 if (subdev[i]->eraseregions[j].erasesize !=
781 curr_erasesize) {
782 ++num_erase_region;
783 curr_erasesize =
784 subdev[i]->eraseregions[j].
785 erasesize;
786 if (curr_erasesize > max_erasesize)
787 max_erasesize = curr_erasesize;
793 if (num_erase_region == 1) {
795 * All subdevices have the same uniform erase size.
796 * This is easy:
798 concat->mtd.erasesize = curr_erasesize;
799 concat->mtd.numeraseregions = 0;
800 } else {
802 * erase block size varies across the subdevices: allocate
803 * space to store the data describing the variable erase regions
805 struct mtd_erase_region_info *erase_region_p;
806 u_int32_t begin, position;
808 concat->mtd.erasesize = max_erasesize;
809 concat->mtd.numeraseregions = num_erase_region;
810 concat->mtd.eraseregions = erase_region_p =
811 kmalloc(num_erase_region *
812 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
813 if (!erase_region_p) {
814 kfree(concat);
815 printk
816 ("memory allocation error while creating erase region list"
817 " for device \"%s\"\n", name);
818 return NULL;
822 * walk the map of the new device once more and fill in
823 * in erase region info:
825 curr_erasesize = subdev[0]->erasesize;
826 begin = position = 0;
827 for (i = 0; i < num_devs; i++) {
828 if (subdev[i]->numeraseregions == 0) {
829 /* current subdevice has uniform erase size */
830 if (subdev[i]->erasesize != curr_erasesize) {
832 * fill in an mtd_erase_region_info structure for the area
833 * we have walked so far:
835 erase_region_p->offset = begin;
836 erase_region_p->erasesize =
837 curr_erasesize;
838 erase_region_p->numblocks =
839 (position - begin) / curr_erasesize;
840 begin = position;
842 curr_erasesize = subdev[i]->erasesize;
843 ++erase_region_p;
845 position += subdev[i]->size;
846 } else {
847 /* current subdevice has variable erase size */
848 int j;
849 for (j = 0; j < subdev[i]->numeraseregions; j++) {
850 /* walk the list of erase regions, count any changes */
851 if (subdev[i]->eraseregions[j].
852 erasesize != curr_erasesize) {
853 erase_region_p->offset = begin;
854 erase_region_p->erasesize =
855 curr_erasesize;
856 erase_region_p->numblocks =
857 (position -
858 begin) / curr_erasesize;
859 begin = position;
861 curr_erasesize =
862 subdev[i]->eraseregions[j].
863 erasesize;
864 ++erase_region_p;
866 position +=
867 subdev[i]->eraseregions[j].
868 numblocks * curr_erasesize;
872 /* Now write the final entry */
873 erase_region_p->offset = begin;
874 erase_region_p->erasesize = curr_erasesize;
875 erase_region_p->numblocks = (position - begin) / curr_erasesize;
878 return &concat->mtd;
882 * This function destroys an MTD object obtained from concat_mtd_devs()
885 void mtd_concat_destroy(struct mtd_info *mtd)
887 struct mtd_concat *concat = CONCAT(mtd);
888 if (concat->mtd.numeraseregions)
889 kfree(concat->mtd.eraseregions);
890 kfree(concat);
893 EXPORT_SYMBOL(mtd_concat_create);
894 EXPORT_SYMBOL(mtd_concat_destroy);
896 MODULE_LICENSE("GPL");
897 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
898 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");