Categorize GFP flags
[linux-2.6/mini2440.git] / mm / slub.c
blob19d3202ca2dcfc26ac2509bbd2148623703c5435
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
102 #define FROZEN (1 << PG_active)
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
110 static inline int SlabFrozen(struct page *page)
112 return page->flags & FROZEN;
115 static inline void SetSlabFrozen(struct page *page)
117 page->flags |= FROZEN;
120 static inline void ClearSlabFrozen(struct page *page)
122 page->flags &= ~FROZEN;
125 static inline int SlabDebug(struct page *page)
127 return page->flags & SLABDEBUG;
130 static inline void SetSlabDebug(struct page *page)
132 page->flags |= SLABDEBUG;
135 static inline void ClearSlabDebug(struct page *page)
137 page->flags &= ~SLABDEBUG;
141 * Issues still to be resolved:
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 #if PAGE_SHIFT <= 12
159 * Small page size. Make sure that we do not fragment memory
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
164 #else
167 * Large page machines are customarily able to handle larger
168 * page orders.
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
173 #endif
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
179 #define MIN_PARTIAL 2
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
186 #define MAX_PARTIAL 10
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
192 * Set of flags that will prevent slab merging
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
209 * The page->inuse field is 16 bit thus we have this limitation
211 #define MAX_OBJECTS_PER_SLAB 65535
213 /* Internal SLUB flags */
214 #define __OBJECT_POISON 0x80000000 /* Poison object */
215 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
217 /* Not all arches define cache_line_size */
218 #ifndef cache_line_size
219 #define cache_line_size() L1_CACHE_BYTES
220 #endif
222 static int kmem_size = sizeof(struct kmem_cache);
224 #ifdef CONFIG_SMP
225 static struct notifier_block slab_notifier;
226 #endif
228 static enum {
229 DOWN, /* No slab functionality available */
230 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
231 UP, /* Everything works but does not show up in sysfs */
232 SYSFS /* Sysfs up */
233 } slab_state = DOWN;
235 /* A list of all slab caches on the system */
236 static DECLARE_RWSEM(slub_lock);
237 static LIST_HEAD(slab_caches);
240 * Tracking user of a slab.
242 struct track {
243 void *addr; /* Called from address */
244 int cpu; /* Was running on cpu */
245 int pid; /* Pid context */
246 unsigned long when; /* When did the operation occur */
249 enum track_item { TRACK_ALLOC, TRACK_FREE };
251 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
252 static int sysfs_slab_add(struct kmem_cache *);
253 static int sysfs_slab_alias(struct kmem_cache *, const char *);
254 static void sysfs_slab_remove(struct kmem_cache *);
255 #else
256 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
257 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
258 { return 0; }
259 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
260 #endif
262 /********************************************************************
263 * Core slab cache functions
264 *******************************************************************/
266 int slab_is_available(void)
268 return slab_state >= UP;
271 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
273 #ifdef CONFIG_NUMA
274 return s->node[node];
275 #else
276 return &s->local_node;
277 #endif
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
283 void *base;
285 if (!object)
286 return 1;
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
294 return 1;
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
306 return *(void **)(object + s->offset);
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 *(void **)(object + s->offset) = fp;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
326 return (p - addr) / s->size;
329 #ifdef CONFIG_SLUB_DEBUG
331 * Debug settings:
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
339 static char *slub_debug_slabs;
342 * Object debugging
344 static void print_section(char *text, u8 *addr, unsigned int length)
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
350 ascii[16] = 0;
352 for (i = 0; i < length; i++) {
353 if (newline) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 newline = 0;
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
372 printk(" %s\n", ascii);
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
379 struct track *p;
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
386 return p + alloc;
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
392 struct track *p;
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
409 static void init_tracking(struct kmem_cache *s, void *object)
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
418 static void print_track(const char *s, struct track *t)
420 if (!t->addr)
421 return;
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
428 static void print_tracking(struct kmem_cache *s, void *object)
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
437 static void print_page_info(struct page *page)
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
446 va_list args;
447 char buf[100];
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
461 va_list args;
462 char buf[100];
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
475 print_tracking(s, p);
477 print_page_info(page);
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
485 print_section("Object", p, min(s->objsize, 128));
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
503 dump_stack();
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
515 va_list args;
516 char buf[100];
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 slab_bug(s, fmt);
522 print_page_info(page);
523 dump_stack();
526 static void init_object(struct kmem_cache *s, void *object, int active)
528 u8 *p = object;
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
543 while (bytes) {
544 if (*start != (u8)value)
545 return start;
546 start++;
547 bytes--;
549 return NULL;
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
563 u8 *fault;
564 u8 *end;
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
579 restore_bytes(s, what, value, fault, end);
580 return 0;
584 * Object layout:
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
602 * object + s->inuse
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
613 * object + s->size
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
623 unsigned long off = s->inuse; /* The end of info */
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
633 if (s->size == off)
634 return 1;
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
648 if (!(s->flags & SLAB_POISON))
649 return 1;
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
655 if (!remainder)
656 return 1;
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
683 return 0;
684 } else {
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
696 return 0;
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s, page, p);
703 if (!s->offset && active)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
708 return 1;
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s, p, NULL);
719 return 0;
721 return 1;
724 static int check_slab(struct kmem_cache *s, struct page *page)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
730 return 0;
732 if (page->offset * sizeof(void *) != s->offset) {
733 slab_err(s, page, "Corrupted offset %lu",
734 (unsigned long)(page->offset * sizeof(void *)));
735 return 0;
737 if (page->inuse > s->objects) {
738 slab_err(s, page, "inuse %u > max %u",
739 s->name, page->inuse, s->objects);
740 return 0;
742 /* Slab_pad_check fixes things up after itself */
743 slab_pad_check(s, page);
744 return 1;
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
751 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
753 int nr = 0;
754 void *fp = page->freelist;
755 void *object = NULL;
757 while (fp && nr <= s->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
767 slab_err(s, page, "Freepointer corrupt");
768 page->freelist = NULL;
769 page->inuse = s->objects;
770 slab_fix(s, "Freelist cleared");
771 return 0;
773 break;
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
780 if (page->inuse != s->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, s->objects - nr);
783 page->inuse = s->objects - nr;
784 slab_fix(s, "Object count adjusted.");
786 return search == NULL;
789 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
801 dump_stack();
806 * Tracking of fully allocated slabs for debugging purposes.
808 static void add_full(struct kmem_cache_node *n, struct page *page)
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
815 static void remove_full(struct kmem_cache *s, struct page *page)
817 struct kmem_cache_node *n;
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
822 n = get_node(s, page_to_nid(page));
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
829 static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 void *object)
832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 return;
835 init_object(s, object, 0);
836 init_tracking(s, object);
839 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 void *object, void *addr)
842 if (!check_slab(s, page))
843 goto bad;
845 if (object && !on_freelist(s, page, object)) {
846 object_err(s, page, object, "Object already allocated");
847 goto bad;
850 if (!check_valid_pointer(s, page, object)) {
851 object_err(s, page, object, "Freelist Pointer check fails");
852 goto bad;
855 if (object && !check_object(s, page, object, 0))
856 goto bad;
858 /* Success perform special debug activities for allocs */
859 if (s->flags & SLAB_STORE_USER)
860 set_track(s, object, TRACK_ALLOC, addr);
861 trace(s, page, object, 1);
862 init_object(s, object, 1);
863 return 1;
865 bad:
866 if (PageSlab(page)) {
868 * If this is a slab page then lets do the best we can
869 * to avoid issues in the future. Marking all objects
870 * as used avoids touching the remaining objects.
872 slab_fix(s, "Marking all objects used");
873 page->inuse = s->objects;
874 page->freelist = NULL;
875 /* Fix up fields that may be corrupted */
876 page->offset = s->offset / sizeof(void *);
878 return 0;
881 static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 void *object, void *addr)
884 if (!check_slab(s, page))
885 goto fail;
887 if (!check_valid_pointer(s, page, object)) {
888 slab_err(s, page, "Invalid object pointer 0x%p", object);
889 goto fail;
892 if (on_freelist(s, page, object)) {
893 object_err(s, page, object, "Object already free");
894 goto fail;
897 if (!check_object(s, page, object, 1))
898 return 0;
900 if (unlikely(s != page->slab)) {
901 if (!PageSlab(page))
902 slab_err(s, page, "Attempt to free object(0x%p) "
903 "outside of slab", object);
904 else
905 if (!page->slab) {
906 printk(KERN_ERR
907 "SLUB <none>: no slab for object 0x%p.\n",
908 object);
909 dump_stack();
911 else
912 object_err(s, page, object,
913 "page slab pointer corrupt.");
914 goto fail;
917 /* Special debug activities for freeing objects */
918 if (!SlabFrozen(page) && !page->freelist)
919 remove_full(s, page);
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_FREE, addr);
922 trace(s, page, object, 0);
923 init_object(s, object, 0);
924 return 1;
926 fail:
927 slab_fix(s, "Object at 0x%p not freed", object);
928 return 0;
931 static int __init setup_slub_debug(char *str)
933 slub_debug = DEBUG_DEFAULT_FLAGS;
934 if (*str++ != '=' || !*str)
936 * No options specified. Switch on full debugging.
938 goto out;
940 if (*str == ',')
942 * No options but restriction on slabs. This means full
943 * debugging for slabs matching a pattern.
945 goto check_slabs;
947 slub_debug = 0;
948 if (*str == '-')
950 * Switch off all debugging measures.
952 goto out;
955 * Determine which debug features should be switched on
957 for ( ;*str && *str != ','; str++) {
958 switch (tolower(*str)) {
959 case 'f':
960 slub_debug |= SLAB_DEBUG_FREE;
961 break;
962 case 'z':
963 slub_debug |= SLAB_RED_ZONE;
964 break;
965 case 'p':
966 slub_debug |= SLAB_POISON;
967 break;
968 case 'u':
969 slub_debug |= SLAB_STORE_USER;
970 break;
971 case 't':
972 slub_debug |= SLAB_TRACE;
973 break;
974 default:
975 printk(KERN_ERR "slub_debug option '%c' "
976 "unknown. skipped\n",*str);
980 check_slabs:
981 if (*str == ',')
982 slub_debug_slabs = str + 1;
983 out:
984 return 1;
987 __setup("slub_debug", setup_slub_debug);
989 static unsigned long kmem_cache_flags(unsigned long objsize,
990 unsigned long flags, const char *name,
991 void (*ctor)(void *, struct kmem_cache *, unsigned long))
994 * The page->offset field is only 16 bit wide. This is an offset
995 * in units of words from the beginning of an object. If the slab
996 * size is bigger then we cannot move the free pointer behind the
997 * object anymore.
999 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000 * the limit is 512k.
1002 * Debugging or ctor may create a need to move the free
1003 * pointer. Fail if this happens.
1005 if (objsize >= 65535 * sizeof(void *)) {
1006 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008 BUG_ON(ctor);
1009 } else {
1011 * Enable debugging if selected on the kernel commandline.
1013 if (slub_debug && (!slub_debug_slabs ||
1014 strncmp(slub_debug_slabs, name,
1015 strlen(slub_debug_slabs)) == 0))
1016 flags |= slub_debug;
1019 return flags;
1021 #else
1022 static inline void setup_object_debug(struct kmem_cache *s,
1023 struct page *page, void *object) {}
1025 static inline int alloc_debug_processing(struct kmem_cache *s,
1026 struct page *page, void *object, void *addr) { return 0; }
1028 static inline int free_debug_processing(struct kmem_cache *s,
1029 struct page *page, void *object, void *addr) { return 0; }
1031 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032 { return 1; }
1033 static inline int check_object(struct kmem_cache *s, struct page *page,
1034 void *object, int active) { return 1; }
1035 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037 unsigned long flags, const char *name,
1038 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1040 return flags;
1042 #define slub_debug 0
1043 #endif
1045 * Slab allocation and freeing
1047 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1049 struct page * page;
1050 int pages = 1 << s->order;
1052 if (s->order)
1053 flags |= __GFP_COMP;
1055 if (s->flags & SLAB_CACHE_DMA)
1056 flags |= SLUB_DMA;
1058 if (node == -1)
1059 page = alloc_pages(flags, s->order);
1060 else
1061 page = alloc_pages_node(node, flags, s->order);
1063 if (!page)
1064 return NULL;
1066 mod_zone_page_state(page_zone(page),
1067 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1068 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1069 pages);
1071 return page;
1074 static void setup_object(struct kmem_cache *s, struct page *page,
1075 void *object)
1077 setup_object_debug(s, page, object);
1078 if (unlikely(s->ctor))
1079 s->ctor(object, s, 0);
1082 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1084 struct page *page;
1085 struct kmem_cache_node *n;
1086 void *start;
1087 void *end;
1088 void *last;
1089 void *p;
1091 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1093 if (flags & __GFP_WAIT)
1094 local_irq_enable();
1096 page = allocate_slab(s,
1097 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1098 if (!page)
1099 goto out;
1101 n = get_node(s, page_to_nid(page));
1102 if (n)
1103 atomic_long_inc(&n->nr_slabs);
1104 page->offset = s->offset / sizeof(void *);
1105 page->slab = s;
1106 page->flags |= 1 << PG_slab;
1107 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1108 SLAB_STORE_USER | SLAB_TRACE))
1109 SetSlabDebug(page);
1111 start = page_address(page);
1112 end = start + s->objects * s->size;
1114 if (unlikely(s->flags & SLAB_POISON))
1115 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1117 last = start;
1118 for_each_object(p, s, start) {
1119 setup_object(s, page, last);
1120 set_freepointer(s, last, p);
1121 last = p;
1123 setup_object(s, page, last);
1124 set_freepointer(s, last, NULL);
1126 page->freelist = start;
1127 page->lockless_freelist = NULL;
1128 page->inuse = 0;
1129 out:
1130 if (flags & __GFP_WAIT)
1131 local_irq_disable();
1132 return page;
1135 static void __free_slab(struct kmem_cache *s, struct page *page)
1137 int pages = 1 << s->order;
1139 if (unlikely(SlabDebug(page))) {
1140 void *p;
1142 slab_pad_check(s, page);
1143 for_each_object(p, s, page_address(page))
1144 check_object(s, page, p, 0);
1145 ClearSlabDebug(page);
1148 mod_zone_page_state(page_zone(page),
1149 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1150 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1151 - pages);
1153 page->mapping = NULL;
1154 __free_pages(page, s->order);
1157 static void rcu_free_slab(struct rcu_head *h)
1159 struct page *page;
1161 page = container_of((struct list_head *)h, struct page, lru);
1162 __free_slab(page->slab, page);
1165 static void free_slab(struct kmem_cache *s, struct page *page)
1167 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1169 * RCU free overloads the RCU head over the LRU
1171 struct rcu_head *head = (void *)&page->lru;
1173 call_rcu(head, rcu_free_slab);
1174 } else
1175 __free_slab(s, page);
1178 static void discard_slab(struct kmem_cache *s, struct page *page)
1180 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 atomic_long_dec(&n->nr_slabs);
1183 reset_page_mapcount(page);
1184 __ClearPageSlab(page);
1185 free_slab(s, page);
1189 * Per slab locking using the pagelock
1191 static __always_inline void slab_lock(struct page *page)
1193 bit_spin_lock(PG_locked, &page->flags);
1196 static __always_inline void slab_unlock(struct page *page)
1198 bit_spin_unlock(PG_locked, &page->flags);
1201 static __always_inline int slab_trylock(struct page *page)
1203 int rc = 1;
1205 rc = bit_spin_trylock(PG_locked, &page->flags);
1206 return rc;
1210 * Management of partially allocated slabs
1212 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1214 spin_lock(&n->list_lock);
1215 n->nr_partial++;
1216 list_add_tail(&page->lru, &n->partial);
1217 spin_unlock(&n->list_lock);
1220 static void add_partial(struct kmem_cache_node *n, struct page *page)
1222 spin_lock(&n->list_lock);
1223 n->nr_partial++;
1224 list_add(&page->lru, &n->partial);
1225 spin_unlock(&n->list_lock);
1228 static void remove_partial(struct kmem_cache *s,
1229 struct page *page)
1231 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1233 spin_lock(&n->list_lock);
1234 list_del(&page->lru);
1235 n->nr_partial--;
1236 spin_unlock(&n->list_lock);
1240 * Lock slab and remove from the partial list.
1242 * Must hold list_lock.
1244 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1246 if (slab_trylock(page)) {
1247 list_del(&page->lru);
1248 n->nr_partial--;
1249 SetSlabFrozen(page);
1250 return 1;
1252 return 0;
1256 * Try to allocate a partial slab from a specific node.
1258 static struct page *get_partial_node(struct kmem_cache_node *n)
1260 struct page *page;
1263 * Racy check. If we mistakenly see no partial slabs then we
1264 * just allocate an empty slab. If we mistakenly try to get a
1265 * partial slab and there is none available then get_partials()
1266 * will return NULL.
1268 if (!n || !n->nr_partial)
1269 return NULL;
1271 spin_lock(&n->list_lock);
1272 list_for_each_entry(page, &n->partial, lru)
1273 if (lock_and_freeze_slab(n, page))
1274 goto out;
1275 page = NULL;
1276 out:
1277 spin_unlock(&n->list_lock);
1278 return page;
1282 * Get a page from somewhere. Search in increasing NUMA distances.
1284 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1286 #ifdef CONFIG_NUMA
1287 struct zonelist *zonelist;
1288 struct zone **z;
1289 struct page *page;
1292 * The defrag ratio allows a configuration of the tradeoffs between
1293 * inter node defragmentation and node local allocations. A lower
1294 * defrag_ratio increases the tendency to do local allocations
1295 * instead of attempting to obtain partial slabs from other nodes.
1297 * If the defrag_ratio is set to 0 then kmalloc() always
1298 * returns node local objects. If the ratio is higher then kmalloc()
1299 * may return off node objects because partial slabs are obtained
1300 * from other nodes and filled up.
1302 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1303 * defrag_ratio = 1000) then every (well almost) allocation will
1304 * first attempt to defrag slab caches on other nodes. This means
1305 * scanning over all nodes to look for partial slabs which may be
1306 * expensive if we do it every time we are trying to find a slab
1307 * with available objects.
1309 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1310 return NULL;
1312 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1313 ->node_zonelists[gfp_zone(flags)];
1314 for (z = zonelist->zones; *z; z++) {
1315 struct kmem_cache_node *n;
1317 n = get_node(s, zone_to_nid(*z));
1319 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1320 n->nr_partial > MIN_PARTIAL) {
1321 page = get_partial_node(n);
1322 if (page)
1323 return page;
1326 #endif
1327 return NULL;
1331 * Get a partial page, lock it and return it.
1333 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1335 struct page *page;
1336 int searchnode = (node == -1) ? numa_node_id() : node;
1338 page = get_partial_node(get_node(s, searchnode));
1339 if (page || (flags & __GFP_THISNODE))
1340 return page;
1342 return get_any_partial(s, flags);
1346 * Move a page back to the lists.
1348 * Must be called with the slab lock held.
1350 * On exit the slab lock will have been dropped.
1352 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1354 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1356 ClearSlabFrozen(page);
1357 if (page->inuse) {
1359 if (page->freelist)
1360 add_partial(n, page);
1361 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1362 add_full(n, page);
1363 slab_unlock(page);
1365 } else {
1366 if (n->nr_partial < MIN_PARTIAL) {
1368 * Adding an empty slab to the partial slabs in order
1369 * to avoid page allocator overhead. This slab needs
1370 * to come after the other slabs with objects in
1371 * order to fill them up. That way the size of the
1372 * partial list stays small. kmem_cache_shrink can
1373 * reclaim empty slabs from the partial list.
1375 add_partial_tail(n, page);
1376 slab_unlock(page);
1377 } else {
1378 slab_unlock(page);
1379 discard_slab(s, page);
1385 * Remove the cpu slab
1387 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1390 * Merge cpu freelist into freelist. Typically we get here
1391 * because both freelists are empty. So this is unlikely
1392 * to occur.
1394 while (unlikely(page->lockless_freelist)) {
1395 void **object;
1397 /* Retrieve object from cpu_freelist */
1398 object = page->lockless_freelist;
1399 page->lockless_freelist = page->lockless_freelist[page->offset];
1401 /* And put onto the regular freelist */
1402 object[page->offset] = page->freelist;
1403 page->freelist = object;
1404 page->inuse--;
1406 s->cpu_slab[cpu] = NULL;
1407 unfreeze_slab(s, page);
1410 static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1412 slab_lock(page);
1413 deactivate_slab(s, page, cpu);
1417 * Flush cpu slab.
1418 * Called from IPI handler with interrupts disabled.
1420 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1422 struct page *page = s->cpu_slab[cpu];
1424 if (likely(page))
1425 flush_slab(s, page, cpu);
1428 static void flush_cpu_slab(void *d)
1430 struct kmem_cache *s = d;
1431 int cpu = smp_processor_id();
1433 __flush_cpu_slab(s, cpu);
1436 static void flush_all(struct kmem_cache *s)
1438 #ifdef CONFIG_SMP
1439 on_each_cpu(flush_cpu_slab, s, 1, 1);
1440 #else
1441 unsigned long flags;
1443 local_irq_save(flags);
1444 flush_cpu_slab(s);
1445 local_irq_restore(flags);
1446 #endif
1450 * Slow path. The lockless freelist is empty or we need to perform
1451 * debugging duties.
1453 * Interrupts are disabled.
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
1463 * And if we were unable to get a new slab from the partial slab lists then
1464 * we need to allocate a new slab. This is slowest path since we may sleep.
1466 static void *__slab_alloc(struct kmem_cache *s,
1467 gfp_t gfpflags, int node, void *addr, struct page *page)
1469 void **object;
1470 int cpu = smp_processor_id();
1472 if (!page)
1473 goto new_slab;
1475 slab_lock(page);
1476 if (unlikely(node != -1 && page_to_nid(page) != node))
1477 goto another_slab;
1478 load_freelist:
1479 object = page->freelist;
1480 if (unlikely(!object))
1481 goto another_slab;
1482 if (unlikely(SlabDebug(page)))
1483 goto debug;
1485 object = page->freelist;
1486 page->lockless_freelist = object[page->offset];
1487 page->inuse = s->objects;
1488 page->freelist = NULL;
1489 slab_unlock(page);
1490 return object;
1492 another_slab:
1493 deactivate_slab(s, page, cpu);
1495 new_slab:
1496 page = get_partial(s, gfpflags, node);
1497 if (page) {
1498 s->cpu_slab[cpu] = page;
1499 goto load_freelist;
1502 page = new_slab(s, gfpflags, node);
1503 if (page) {
1504 cpu = smp_processor_id();
1505 if (s->cpu_slab[cpu]) {
1507 * Someone else populated the cpu_slab while we
1508 * enabled interrupts, or we have gotten scheduled
1509 * on another cpu. The page may not be on the
1510 * requested node even if __GFP_THISNODE was
1511 * specified. So we need to recheck.
1513 if (node == -1 ||
1514 page_to_nid(s->cpu_slab[cpu]) == node) {
1516 * Current cpuslab is acceptable and we
1517 * want the current one since its cache hot
1519 discard_slab(s, page);
1520 page = s->cpu_slab[cpu];
1521 slab_lock(page);
1522 goto load_freelist;
1524 /* New slab does not fit our expectations */
1525 flush_slab(s, s->cpu_slab[cpu], cpu);
1527 slab_lock(page);
1528 SetSlabFrozen(page);
1529 s->cpu_slab[cpu] = page;
1530 goto load_freelist;
1532 return NULL;
1533 debug:
1534 object = page->freelist;
1535 if (!alloc_debug_processing(s, page, object, addr))
1536 goto another_slab;
1538 page->inuse++;
1539 page->freelist = object[page->offset];
1540 slab_unlock(page);
1541 return object;
1545 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1546 * have the fastpath folded into their functions. So no function call
1547 * overhead for requests that can be satisfied on the fastpath.
1549 * The fastpath works by first checking if the lockless freelist can be used.
1550 * If not then __slab_alloc is called for slow processing.
1552 * Otherwise we can simply pick the next object from the lockless free list.
1554 static void __always_inline *slab_alloc(struct kmem_cache *s,
1555 gfp_t gfpflags, int node, void *addr)
1557 struct page *page;
1558 void **object;
1559 unsigned long flags;
1561 local_irq_save(flags);
1562 page = s->cpu_slab[smp_processor_id()];
1563 if (unlikely(!page || !page->lockless_freelist ||
1564 (node != -1 && page_to_nid(page) != node)))
1566 object = __slab_alloc(s, gfpflags, node, addr, page);
1568 else {
1569 object = page->lockless_freelist;
1570 page->lockless_freelist = object[page->offset];
1572 local_irq_restore(flags);
1574 if (unlikely((gfpflags & __GFP_ZERO) && object))
1575 memset(object, 0, s->objsize);
1577 return object;
1580 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1582 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1584 EXPORT_SYMBOL(kmem_cache_alloc);
1586 #ifdef CONFIG_NUMA
1587 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1589 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1591 EXPORT_SYMBOL(kmem_cache_alloc_node);
1592 #endif
1595 * Slow patch handling. This may still be called frequently since objects
1596 * have a longer lifetime than the cpu slabs in most processing loads.
1598 * So we still attempt to reduce cache line usage. Just take the slab
1599 * lock and free the item. If there is no additional partial page
1600 * handling required then we can return immediately.
1602 static void __slab_free(struct kmem_cache *s, struct page *page,
1603 void *x, void *addr)
1605 void *prior;
1606 void **object = (void *)x;
1608 slab_lock(page);
1610 if (unlikely(SlabDebug(page)))
1611 goto debug;
1612 checks_ok:
1613 prior = object[page->offset] = page->freelist;
1614 page->freelist = object;
1615 page->inuse--;
1617 if (unlikely(SlabFrozen(page)))
1618 goto out_unlock;
1620 if (unlikely(!page->inuse))
1621 goto slab_empty;
1624 * Objects left in the slab. If it
1625 * was not on the partial list before
1626 * then add it.
1628 if (unlikely(!prior))
1629 add_partial(get_node(s, page_to_nid(page)), page);
1631 out_unlock:
1632 slab_unlock(page);
1633 return;
1635 slab_empty:
1636 if (prior)
1638 * Slab still on the partial list.
1640 remove_partial(s, page);
1642 slab_unlock(page);
1643 discard_slab(s, page);
1644 return;
1646 debug:
1647 if (!free_debug_processing(s, page, x, addr))
1648 goto out_unlock;
1649 goto checks_ok;
1653 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1654 * can perform fastpath freeing without additional function calls.
1656 * The fastpath is only possible if we are freeing to the current cpu slab
1657 * of this processor. This typically the case if we have just allocated
1658 * the item before.
1660 * If fastpath is not possible then fall back to __slab_free where we deal
1661 * with all sorts of special processing.
1663 static void __always_inline slab_free(struct kmem_cache *s,
1664 struct page *page, void *x, void *addr)
1666 void **object = (void *)x;
1667 unsigned long flags;
1669 local_irq_save(flags);
1670 debug_check_no_locks_freed(object, s->objsize);
1671 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1672 !SlabDebug(page))) {
1673 object[page->offset] = page->lockless_freelist;
1674 page->lockless_freelist = object;
1675 } else
1676 __slab_free(s, page, x, addr);
1678 local_irq_restore(flags);
1681 void kmem_cache_free(struct kmem_cache *s, void *x)
1683 struct page *page;
1685 page = virt_to_head_page(x);
1687 slab_free(s, page, x, __builtin_return_address(0));
1689 EXPORT_SYMBOL(kmem_cache_free);
1691 /* Figure out on which slab object the object resides */
1692 static struct page *get_object_page(const void *x)
1694 struct page *page = virt_to_head_page(x);
1696 if (!PageSlab(page))
1697 return NULL;
1699 return page;
1703 * Object placement in a slab is made very easy because we always start at
1704 * offset 0. If we tune the size of the object to the alignment then we can
1705 * get the required alignment by putting one properly sized object after
1706 * another.
1708 * Notice that the allocation order determines the sizes of the per cpu
1709 * caches. Each processor has always one slab available for allocations.
1710 * Increasing the allocation order reduces the number of times that slabs
1711 * must be moved on and off the partial lists and is therefore a factor in
1712 * locking overhead.
1716 * Mininum / Maximum order of slab pages. This influences locking overhead
1717 * and slab fragmentation. A higher order reduces the number of partial slabs
1718 * and increases the number of allocations possible without having to
1719 * take the list_lock.
1721 static int slub_min_order;
1722 static int slub_max_order = DEFAULT_MAX_ORDER;
1723 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1726 * Merge control. If this is set then no merging of slab caches will occur.
1727 * (Could be removed. This was introduced to pacify the merge skeptics.)
1729 static int slub_nomerge;
1732 * Calculate the order of allocation given an slab object size.
1734 * The order of allocation has significant impact on performance and other
1735 * system components. Generally order 0 allocations should be preferred since
1736 * order 0 does not cause fragmentation in the page allocator. Larger objects
1737 * be problematic to put into order 0 slabs because there may be too much
1738 * unused space left. We go to a higher order if more than 1/8th of the slab
1739 * would be wasted.
1741 * In order to reach satisfactory performance we must ensure that a minimum
1742 * number of objects is in one slab. Otherwise we may generate too much
1743 * activity on the partial lists which requires taking the list_lock. This is
1744 * less a concern for large slabs though which are rarely used.
1746 * slub_max_order specifies the order where we begin to stop considering the
1747 * number of objects in a slab as critical. If we reach slub_max_order then
1748 * we try to keep the page order as low as possible. So we accept more waste
1749 * of space in favor of a small page order.
1751 * Higher order allocations also allow the placement of more objects in a
1752 * slab and thereby reduce object handling overhead. If the user has
1753 * requested a higher mininum order then we start with that one instead of
1754 * the smallest order which will fit the object.
1756 static inline int slab_order(int size, int min_objects,
1757 int max_order, int fract_leftover)
1759 int order;
1760 int rem;
1761 int min_order = slub_min_order;
1764 * If we would create too many object per slab then reduce
1765 * the slab order even if it goes below slub_min_order.
1767 while (min_order > 0 &&
1768 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1769 min_order--;
1771 for (order = max(min_order,
1772 fls(min_objects * size - 1) - PAGE_SHIFT);
1773 order <= max_order; order++) {
1775 unsigned long slab_size = PAGE_SIZE << order;
1777 if (slab_size < min_objects * size)
1778 continue;
1780 rem = slab_size % size;
1782 if (rem <= slab_size / fract_leftover)
1783 break;
1785 /* If the next size is too high then exit now */
1786 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1787 break;
1790 return order;
1793 static inline int calculate_order(int size)
1795 int order;
1796 int min_objects;
1797 int fraction;
1800 * Attempt to find best configuration for a slab. This
1801 * works by first attempting to generate a layout with
1802 * the best configuration and backing off gradually.
1804 * First we reduce the acceptable waste in a slab. Then
1805 * we reduce the minimum objects required in a slab.
1807 min_objects = slub_min_objects;
1808 while (min_objects > 1) {
1809 fraction = 8;
1810 while (fraction >= 4) {
1811 order = slab_order(size, min_objects,
1812 slub_max_order, fraction);
1813 if (order <= slub_max_order)
1814 return order;
1815 fraction /= 2;
1817 min_objects /= 2;
1821 * We were unable to place multiple objects in a slab. Now
1822 * lets see if we can place a single object there.
1824 order = slab_order(size, 1, slub_max_order, 1);
1825 if (order <= slub_max_order)
1826 return order;
1829 * Doh this slab cannot be placed using slub_max_order.
1831 order = slab_order(size, 1, MAX_ORDER, 1);
1832 if (order <= MAX_ORDER)
1833 return order;
1834 return -ENOSYS;
1838 * Figure out what the alignment of the objects will be.
1840 static unsigned long calculate_alignment(unsigned long flags,
1841 unsigned long align, unsigned long size)
1844 * If the user wants hardware cache aligned objects then
1845 * follow that suggestion if the object is sufficiently
1846 * large.
1848 * The hardware cache alignment cannot override the
1849 * specified alignment though. If that is greater
1850 * then use it.
1852 if ((flags & SLAB_HWCACHE_ALIGN) &&
1853 size > cache_line_size() / 2)
1854 return max_t(unsigned long, align, cache_line_size());
1856 if (align < ARCH_SLAB_MINALIGN)
1857 return ARCH_SLAB_MINALIGN;
1859 return ALIGN(align, sizeof(void *));
1862 static void init_kmem_cache_node(struct kmem_cache_node *n)
1864 n->nr_partial = 0;
1865 atomic_long_set(&n->nr_slabs, 0);
1866 spin_lock_init(&n->list_lock);
1867 INIT_LIST_HEAD(&n->partial);
1868 #ifdef CONFIG_SLUB_DEBUG
1869 INIT_LIST_HEAD(&n->full);
1870 #endif
1873 #ifdef CONFIG_NUMA
1875 * No kmalloc_node yet so do it by hand. We know that this is the first
1876 * slab on the node for this slabcache. There are no concurrent accesses
1877 * possible.
1879 * Note that this function only works on the kmalloc_node_cache
1880 * when allocating for the kmalloc_node_cache.
1882 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1883 int node)
1885 struct page *page;
1886 struct kmem_cache_node *n;
1888 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1890 page = new_slab(kmalloc_caches, gfpflags, node);
1892 BUG_ON(!page);
1893 if (page_to_nid(page) != node) {
1894 printk(KERN_ERR "SLUB: Unable to allocate memory from "
1895 "node %d\n", node);
1896 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1897 "in order to be able to continue\n");
1900 n = page->freelist;
1901 BUG_ON(!n);
1902 page->freelist = get_freepointer(kmalloc_caches, n);
1903 page->inuse++;
1904 kmalloc_caches->node[node] = n;
1905 #ifdef CONFIG_SLUB_DEBUG
1906 init_object(kmalloc_caches, n, 1);
1907 init_tracking(kmalloc_caches, n);
1908 #endif
1909 init_kmem_cache_node(n);
1910 atomic_long_inc(&n->nr_slabs);
1911 add_partial(n, page);
1914 * new_slab() disables interupts. If we do not reenable interrupts here
1915 * then bootup would continue with interrupts disabled.
1917 local_irq_enable();
1918 return n;
1921 static void free_kmem_cache_nodes(struct kmem_cache *s)
1923 int node;
1925 for_each_node_state(node, N_NORMAL_MEMORY) {
1926 struct kmem_cache_node *n = s->node[node];
1927 if (n && n != &s->local_node)
1928 kmem_cache_free(kmalloc_caches, n);
1929 s->node[node] = NULL;
1933 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1935 int node;
1936 int local_node;
1938 if (slab_state >= UP)
1939 local_node = page_to_nid(virt_to_page(s));
1940 else
1941 local_node = 0;
1943 for_each_node_state(node, N_NORMAL_MEMORY) {
1944 struct kmem_cache_node *n;
1946 if (local_node == node)
1947 n = &s->local_node;
1948 else {
1949 if (slab_state == DOWN) {
1950 n = early_kmem_cache_node_alloc(gfpflags,
1951 node);
1952 continue;
1954 n = kmem_cache_alloc_node(kmalloc_caches,
1955 gfpflags, node);
1957 if (!n) {
1958 free_kmem_cache_nodes(s);
1959 return 0;
1963 s->node[node] = n;
1964 init_kmem_cache_node(n);
1966 return 1;
1968 #else
1969 static void free_kmem_cache_nodes(struct kmem_cache *s)
1973 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1975 init_kmem_cache_node(&s->local_node);
1976 return 1;
1978 #endif
1981 * calculate_sizes() determines the order and the distribution of data within
1982 * a slab object.
1984 static int calculate_sizes(struct kmem_cache *s)
1986 unsigned long flags = s->flags;
1987 unsigned long size = s->objsize;
1988 unsigned long align = s->align;
1991 * Determine if we can poison the object itself. If the user of
1992 * the slab may touch the object after free or before allocation
1993 * then we should never poison the object itself.
1995 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1996 !s->ctor)
1997 s->flags |= __OBJECT_POISON;
1998 else
1999 s->flags &= ~__OBJECT_POISON;
2002 * Round up object size to the next word boundary. We can only
2003 * place the free pointer at word boundaries and this determines
2004 * the possible location of the free pointer.
2006 size = ALIGN(size, sizeof(void *));
2008 #ifdef CONFIG_SLUB_DEBUG
2010 * If we are Redzoning then check if there is some space between the
2011 * end of the object and the free pointer. If not then add an
2012 * additional word to have some bytes to store Redzone information.
2014 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2015 size += sizeof(void *);
2016 #endif
2019 * With that we have determined the number of bytes in actual use
2020 * by the object. This is the potential offset to the free pointer.
2022 s->inuse = size;
2024 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2025 s->ctor)) {
2027 * Relocate free pointer after the object if it is not
2028 * permitted to overwrite the first word of the object on
2029 * kmem_cache_free.
2031 * This is the case if we do RCU, have a constructor or
2032 * destructor or are poisoning the objects.
2034 s->offset = size;
2035 size += sizeof(void *);
2038 #ifdef CONFIG_SLUB_DEBUG
2039 if (flags & SLAB_STORE_USER)
2041 * Need to store information about allocs and frees after
2042 * the object.
2044 size += 2 * sizeof(struct track);
2046 if (flags & SLAB_RED_ZONE)
2048 * Add some empty padding so that we can catch
2049 * overwrites from earlier objects rather than let
2050 * tracking information or the free pointer be
2051 * corrupted if an user writes before the start
2052 * of the object.
2054 size += sizeof(void *);
2055 #endif
2058 * Determine the alignment based on various parameters that the
2059 * user specified and the dynamic determination of cache line size
2060 * on bootup.
2062 align = calculate_alignment(flags, align, s->objsize);
2065 * SLUB stores one object immediately after another beginning from
2066 * offset 0. In order to align the objects we have to simply size
2067 * each object to conform to the alignment.
2069 size = ALIGN(size, align);
2070 s->size = size;
2072 s->order = calculate_order(size);
2073 if (s->order < 0)
2074 return 0;
2077 * Determine the number of objects per slab
2079 s->objects = (PAGE_SIZE << s->order) / size;
2082 * Verify that the number of objects is within permitted limits.
2083 * The page->inuse field is only 16 bit wide! So we cannot have
2084 * more than 64k objects per slab.
2086 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2087 return 0;
2088 return 1;
2092 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2093 const char *name, size_t size,
2094 size_t align, unsigned long flags,
2095 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2097 memset(s, 0, kmem_size);
2098 s->name = name;
2099 s->ctor = ctor;
2100 s->objsize = size;
2101 s->align = align;
2102 s->flags = kmem_cache_flags(size, flags, name, ctor);
2104 if (!calculate_sizes(s))
2105 goto error;
2107 s->refcount = 1;
2108 #ifdef CONFIG_NUMA
2109 s->defrag_ratio = 100;
2110 #endif
2112 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2113 return 1;
2114 error:
2115 if (flags & SLAB_PANIC)
2116 panic("Cannot create slab %s size=%lu realsize=%u "
2117 "order=%u offset=%u flags=%lx\n",
2118 s->name, (unsigned long)size, s->size, s->order,
2119 s->offset, flags);
2120 return 0;
2124 * Check if a given pointer is valid
2126 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2128 struct page * page;
2130 page = get_object_page(object);
2132 if (!page || s != page->slab)
2133 /* No slab or wrong slab */
2134 return 0;
2136 if (!check_valid_pointer(s, page, object))
2137 return 0;
2140 * We could also check if the object is on the slabs freelist.
2141 * But this would be too expensive and it seems that the main
2142 * purpose of kmem_ptr_valid is to check if the object belongs
2143 * to a certain slab.
2145 return 1;
2147 EXPORT_SYMBOL(kmem_ptr_validate);
2150 * Determine the size of a slab object
2152 unsigned int kmem_cache_size(struct kmem_cache *s)
2154 return s->objsize;
2156 EXPORT_SYMBOL(kmem_cache_size);
2158 const char *kmem_cache_name(struct kmem_cache *s)
2160 return s->name;
2162 EXPORT_SYMBOL(kmem_cache_name);
2165 * Attempt to free all slabs on a node. Return the number of slabs we
2166 * were unable to free.
2168 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2169 struct list_head *list)
2171 int slabs_inuse = 0;
2172 unsigned long flags;
2173 struct page *page, *h;
2175 spin_lock_irqsave(&n->list_lock, flags);
2176 list_for_each_entry_safe(page, h, list, lru)
2177 if (!page->inuse) {
2178 list_del(&page->lru);
2179 discard_slab(s, page);
2180 } else
2181 slabs_inuse++;
2182 spin_unlock_irqrestore(&n->list_lock, flags);
2183 return slabs_inuse;
2187 * Release all resources used by a slab cache.
2189 static inline int kmem_cache_close(struct kmem_cache *s)
2191 int node;
2193 flush_all(s);
2195 /* Attempt to free all objects */
2196 for_each_node_state(node, N_NORMAL_MEMORY) {
2197 struct kmem_cache_node *n = get_node(s, node);
2199 n->nr_partial -= free_list(s, n, &n->partial);
2200 if (atomic_long_read(&n->nr_slabs))
2201 return 1;
2203 free_kmem_cache_nodes(s);
2204 return 0;
2208 * Close a cache and release the kmem_cache structure
2209 * (must be used for caches created using kmem_cache_create)
2211 void kmem_cache_destroy(struct kmem_cache *s)
2213 down_write(&slub_lock);
2214 s->refcount--;
2215 if (!s->refcount) {
2216 list_del(&s->list);
2217 up_write(&slub_lock);
2218 if (kmem_cache_close(s))
2219 WARN_ON(1);
2220 sysfs_slab_remove(s);
2221 kfree(s);
2222 } else
2223 up_write(&slub_lock);
2225 EXPORT_SYMBOL(kmem_cache_destroy);
2227 /********************************************************************
2228 * Kmalloc subsystem
2229 *******************************************************************/
2231 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2232 EXPORT_SYMBOL(kmalloc_caches);
2234 #ifdef CONFIG_ZONE_DMA
2235 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2236 #endif
2238 static int __init setup_slub_min_order(char *str)
2240 get_option (&str, &slub_min_order);
2242 return 1;
2245 __setup("slub_min_order=", setup_slub_min_order);
2247 static int __init setup_slub_max_order(char *str)
2249 get_option (&str, &slub_max_order);
2251 return 1;
2254 __setup("slub_max_order=", setup_slub_max_order);
2256 static int __init setup_slub_min_objects(char *str)
2258 get_option (&str, &slub_min_objects);
2260 return 1;
2263 __setup("slub_min_objects=", setup_slub_min_objects);
2265 static int __init setup_slub_nomerge(char *str)
2267 slub_nomerge = 1;
2268 return 1;
2271 __setup("slub_nomerge", setup_slub_nomerge);
2273 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2274 const char *name, int size, gfp_t gfp_flags)
2276 unsigned int flags = 0;
2278 if (gfp_flags & SLUB_DMA)
2279 flags = SLAB_CACHE_DMA;
2281 down_write(&slub_lock);
2282 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2283 flags, NULL))
2284 goto panic;
2286 list_add(&s->list, &slab_caches);
2287 up_write(&slub_lock);
2288 if (sysfs_slab_add(s))
2289 goto panic;
2290 return s;
2292 panic:
2293 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2296 #ifdef CONFIG_ZONE_DMA
2298 static void sysfs_add_func(struct work_struct *w)
2300 struct kmem_cache *s;
2302 down_write(&slub_lock);
2303 list_for_each_entry(s, &slab_caches, list) {
2304 if (s->flags & __SYSFS_ADD_DEFERRED) {
2305 s->flags &= ~__SYSFS_ADD_DEFERRED;
2306 sysfs_slab_add(s);
2309 up_write(&slub_lock);
2312 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2314 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2316 struct kmem_cache *s;
2317 char *text;
2318 size_t realsize;
2320 s = kmalloc_caches_dma[index];
2321 if (s)
2322 return s;
2324 /* Dynamically create dma cache */
2325 if (flags & __GFP_WAIT)
2326 down_write(&slub_lock);
2327 else {
2328 if (!down_write_trylock(&slub_lock))
2329 goto out;
2332 if (kmalloc_caches_dma[index])
2333 goto unlock_out;
2335 realsize = kmalloc_caches[index].objsize;
2336 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2337 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2339 if (!s || !text || !kmem_cache_open(s, flags, text,
2340 realsize, ARCH_KMALLOC_MINALIGN,
2341 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2342 kfree(s);
2343 kfree(text);
2344 goto unlock_out;
2347 list_add(&s->list, &slab_caches);
2348 kmalloc_caches_dma[index] = s;
2350 schedule_work(&sysfs_add_work);
2352 unlock_out:
2353 up_write(&slub_lock);
2354 out:
2355 return kmalloc_caches_dma[index];
2357 #endif
2360 * Conversion table for small slabs sizes / 8 to the index in the
2361 * kmalloc array. This is necessary for slabs < 192 since we have non power
2362 * of two cache sizes there. The size of larger slabs can be determined using
2363 * fls.
2365 static s8 size_index[24] = {
2366 3, /* 8 */
2367 4, /* 16 */
2368 5, /* 24 */
2369 5, /* 32 */
2370 6, /* 40 */
2371 6, /* 48 */
2372 6, /* 56 */
2373 6, /* 64 */
2374 1, /* 72 */
2375 1, /* 80 */
2376 1, /* 88 */
2377 1, /* 96 */
2378 7, /* 104 */
2379 7, /* 112 */
2380 7, /* 120 */
2381 7, /* 128 */
2382 2, /* 136 */
2383 2, /* 144 */
2384 2, /* 152 */
2385 2, /* 160 */
2386 2, /* 168 */
2387 2, /* 176 */
2388 2, /* 184 */
2389 2 /* 192 */
2392 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2394 int index;
2396 if (size <= 192) {
2397 if (!size)
2398 return ZERO_SIZE_PTR;
2400 index = size_index[(size - 1) / 8];
2401 } else
2402 index = fls(size - 1);
2404 #ifdef CONFIG_ZONE_DMA
2405 if (unlikely((flags & SLUB_DMA)))
2406 return dma_kmalloc_cache(index, flags);
2408 #endif
2409 return &kmalloc_caches[index];
2412 void *__kmalloc(size_t size, gfp_t flags)
2414 struct kmem_cache *s;
2416 if (unlikely(size > PAGE_SIZE / 2))
2417 return (void *)__get_free_pages(flags | __GFP_COMP,
2418 get_order(size));
2420 s = get_slab(size, flags);
2422 if (unlikely(ZERO_OR_NULL_PTR(s)))
2423 return s;
2425 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2427 EXPORT_SYMBOL(__kmalloc);
2429 #ifdef CONFIG_NUMA
2430 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2432 struct kmem_cache *s;
2434 if (unlikely(size > PAGE_SIZE / 2))
2435 return (void *)__get_free_pages(flags | __GFP_COMP,
2436 get_order(size));
2438 s = get_slab(size, flags);
2440 if (unlikely(ZERO_OR_NULL_PTR(s)))
2441 return s;
2443 return slab_alloc(s, flags, node, __builtin_return_address(0));
2445 EXPORT_SYMBOL(__kmalloc_node);
2446 #endif
2448 size_t ksize(const void *object)
2450 struct page *page;
2451 struct kmem_cache *s;
2453 BUG_ON(!object);
2454 if (unlikely(object == ZERO_SIZE_PTR))
2455 return 0;
2457 page = get_object_page(object);
2458 BUG_ON(!page);
2459 s = page->slab;
2460 BUG_ON(!s);
2463 * Debugging requires use of the padding between object
2464 * and whatever may come after it.
2466 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2467 return s->objsize;
2470 * If we have the need to store the freelist pointer
2471 * back there or track user information then we can
2472 * only use the space before that information.
2474 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2475 return s->inuse;
2478 * Else we can use all the padding etc for the allocation
2480 return s->size;
2482 EXPORT_SYMBOL(ksize);
2484 void kfree(const void *x)
2486 struct page *page;
2488 if (unlikely(ZERO_OR_NULL_PTR(x)))
2489 return;
2491 page = virt_to_head_page(x);
2492 if (unlikely(!PageSlab(page))) {
2493 put_page(page);
2494 return;
2496 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2498 EXPORT_SYMBOL(kfree);
2501 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2502 * the remaining slabs by the number of items in use. The slabs with the
2503 * most items in use come first. New allocations will then fill those up
2504 * and thus they can be removed from the partial lists.
2506 * The slabs with the least items are placed last. This results in them
2507 * being allocated from last increasing the chance that the last objects
2508 * are freed in them.
2510 int kmem_cache_shrink(struct kmem_cache *s)
2512 int node;
2513 int i;
2514 struct kmem_cache_node *n;
2515 struct page *page;
2516 struct page *t;
2517 struct list_head *slabs_by_inuse =
2518 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2519 unsigned long flags;
2521 if (!slabs_by_inuse)
2522 return -ENOMEM;
2524 flush_all(s);
2525 for_each_node_state(node, N_NORMAL_MEMORY) {
2526 n = get_node(s, node);
2528 if (!n->nr_partial)
2529 continue;
2531 for (i = 0; i < s->objects; i++)
2532 INIT_LIST_HEAD(slabs_by_inuse + i);
2534 spin_lock_irqsave(&n->list_lock, flags);
2537 * Build lists indexed by the items in use in each slab.
2539 * Note that concurrent frees may occur while we hold the
2540 * list_lock. page->inuse here is the upper limit.
2542 list_for_each_entry_safe(page, t, &n->partial, lru) {
2543 if (!page->inuse && slab_trylock(page)) {
2545 * Must hold slab lock here because slab_free
2546 * may have freed the last object and be
2547 * waiting to release the slab.
2549 list_del(&page->lru);
2550 n->nr_partial--;
2551 slab_unlock(page);
2552 discard_slab(s, page);
2553 } else {
2554 list_move(&page->lru,
2555 slabs_by_inuse + page->inuse);
2560 * Rebuild the partial list with the slabs filled up most
2561 * first and the least used slabs at the end.
2563 for (i = s->objects - 1; i >= 0; i--)
2564 list_splice(slabs_by_inuse + i, n->partial.prev);
2566 spin_unlock_irqrestore(&n->list_lock, flags);
2569 kfree(slabs_by_inuse);
2570 return 0;
2572 EXPORT_SYMBOL(kmem_cache_shrink);
2574 /********************************************************************
2575 * Basic setup of slabs
2576 *******************************************************************/
2578 void __init kmem_cache_init(void)
2580 int i;
2581 int caches = 0;
2583 #ifdef CONFIG_NUMA
2585 * Must first have the slab cache available for the allocations of the
2586 * struct kmem_cache_node's. There is special bootstrap code in
2587 * kmem_cache_open for slab_state == DOWN.
2589 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2590 sizeof(struct kmem_cache_node), GFP_KERNEL);
2591 kmalloc_caches[0].refcount = -1;
2592 caches++;
2593 #endif
2595 /* Able to allocate the per node structures */
2596 slab_state = PARTIAL;
2598 /* Caches that are not of the two-to-the-power-of size */
2599 if (KMALLOC_MIN_SIZE <= 64) {
2600 create_kmalloc_cache(&kmalloc_caches[1],
2601 "kmalloc-96", 96, GFP_KERNEL);
2602 caches++;
2604 if (KMALLOC_MIN_SIZE <= 128) {
2605 create_kmalloc_cache(&kmalloc_caches[2],
2606 "kmalloc-192", 192, GFP_KERNEL);
2607 caches++;
2610 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2611 create_kmalloc_cache(&kmalloc_caches[i],
2612 "kmalloc", 1 << i, GFP_KERNEL);
2613 caches++;
2618 * Patch up the size_index table if we have strange large alignment
2619 * requirements for the kmalloc array. This is only the case for
2620 * mips it seems. The standard arches will not generate any code here.
2622 * Largest permitted alignment is 256 bytes due to the way we
2623 * handle the index determination for the smaller caches.
2625 * Make sure that nothing crazy happens if someone starts tinkering
2626 * around with ARCH_KMALLOC_MINALIGN
2628 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2629 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2631 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2632 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2634 slab_state = UP;
2636 /* Provide the correct kmalloc names now that the caches are up */
2637 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2638 kmalloc_caches[i]. name =
2639 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2641 #ifdef CONFIG_SMP
2642 register_cpu_notifier(&slab_notifier);
2643 #endif
2645 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2646 nr_cpu_ids * sizeof(struct page *);
2648 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2649 " CPUs=%d, Nodes=%d\n",
2650 caches, cache_line_size(),
2651 slub_min_order, slub_max_order, slub_min_objects,
2652 nr_cpu_ids, nr_node_ids);
2656 * Find a mergeable slab cache
2658 static int slab_unmergeable(struct kmem_cache *s)
2660 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2661 return 1;
2663 if (s->ctor)
2664 return 1;
2667 * We may have set a slab to be unmergeable during bootstrap.
2669 if (s->refcount < 0)
2670 return 1;
2672 return 0;
2675 static struct kmem_cache *find_mergeable(size_t size,
2676 size_t align, unsigned long flags, const char *name,
2677 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2679 struct kmem_cache *s;
2681 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2682 return NULL;
2684 if (ctor)
2685 return NULL;
2687 size = ALIGN(size, sizeof(void *));
2688 align = calculate_alignment(flags, align, size);
2689 size = ALIGN(size, align);
2690 flags = kmem_cache_flags(size, flags, name, NULL);
2692 list_for_each_entry(s, &slab_caches, list) {
2693 if (slab_unmergeable(s))
2694 continue;
2696 if (size > s->size)
2697 continue;
2699 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2700 continue;
2702 * Check if alignment is compatible.
2703 * Courtesy of Adrian Drzewiecki
2705 if ((s->size & ~(align -1)) != s->size)
2706 continue;
2708 if (s->size - size >= sizeof(void *))
2709 continue;
2711 return s;
2713 return NULL;
2716 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2717 size_t align, unsigned long flags,
2718 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2720 struct kmem_cache *s;
2722 down_write(&slub_lock);
2723 s = find_mergeable(size, align, flags, name, ctor);
2724 if (s) {
2725 s->refcount++;
2727 * Adjust the object sizes so that we clear
2728 * the complete object on kzalloc.
2730 s->objsize = max(s->objsize, (int)size);
2731 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2732 up_write(&slub_lock);
2733 if (sysfs_slab_alias(s, name))
2734 goto err;
2735 return s;
2737 s = kmalloc(kmem_size, GFP_KERNEL);
2738 if (s) {
2739 if (kmem_cache_open(s, GFP_KERNEL, name,
2740 size, align, flags, ctor)) {
2741 list_add(&s->list, &slab_caches);
2742 up_write(&slub_lock);
2743 if (sysfs_slab_add(s))
2744 goto err;
2745 return s;
2747 kfree(s);
2749 up_write(&slub_lock);
2751 err:
2752 if (flags & SLAB_PANIC)
2753 panic("Cannot create slabcache %s\n", name);
2754 else
2755 s = NULL;
2756 return s;
2758 EXPORT_SYMBOL(kmem_cache_create);
2760 #ifdef CONFIG_SMP
2762 * Use the cpu notifier to insure that the cpu slabs are flushed when
2763 * necessary.
2765 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2766 unsigned long action, void *hcpu)
2768 long cpu = (long)hcpu;
2769 struct kmem_cache *s;
2770 unsigned long flags;
2772 switch (action) {
2773 case CPU_UP_CANCELED:
2774 case CPU_UP_CANCELED_FROZEN:
2775 case CPU_DEAD:
2776 case CPU_DEAD_FROZEN:
2777 down_read(&slub_lock);
2778 list_for_each_entry(s, &slab_caches, list) {
2779 local_irq_save(flags);
2780 __flush_cpu_slab(s, cpu);
2781 local_irq_restore(flags);
2783 up_read(&slub_lock);
2784 break;
2785 default:
2786 break;
2788 return NOTIFY_OK;
2791 static struct notifier_block __cpuinitdata slab_notifier =
2792 { &slab_cpuup_callback, NULL, 0 };
2794 #endif
2796 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2798 struct kmem_cache *s;
2800 if (unlikely(size > PAGE_SIZE / 2))
2801 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2802 get_order(size));
2803 s = get_slab(size, gfpflags);
2805 if (unlikely(ZERO_OR_NULL_PTR(s)))
2806 return s;
2808 return slab_alloc(s, gfpflags, -1, caller);
2811 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2812 int node, void *caller)
2814 struct kmem_cache *s;
2816 if (unlikely(size > PAGE_SIZE / 2))
2817 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2818 get_order(size));
2819 s = get_slab(size, gfpflags);
2821 if (unlikely(ZERO_OR_NULL_PTR(s)))
2822 return s;
2824 return slab_alloc(s, gfpflags, node, caller);
2827 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2828 static int validate_slab(struct kmem_cache *s, struct page *page,
2829 unsigned long *map)
2831 void *p;
2832 void *addr = page_address(page);
2834 if (!check_slab(s, page) ||
2835 !on_freelist(s, page, NULL))
2836 return 0;
2838 /* Now we know that a valid freelist exists */
2839 bitmap_zero(map, s->objects);
2841 for_each_free_object(p, s, page->freelist) {
2842 set_bit(slab_index(p, s, addr), map);
2843 if (!check_object(s, page, p, 0))
2844 return 0;
2847 for_each_object(p, s, addr)
2848 if (!test_bit(slab_index(p, s, addr), map))
2849 if (!check_object(s, page, p, 1))
2850 return 0;
2851 return 1;
2854 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2855 unsigned long *map)
2857 if (slab_trylock(page)) {
2858 validate_slab(s, page, map);
2859 slab_unlock(page);
2860 } else
2861 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2862 s->name, page);
2864 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2865 if (!SlabDebug(page))
2866 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2867 "on slab 0x%p\n", s->name, page);
2868 } else {
2869 if (SlabDebug(page))
2870 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2871 "slab 0x%p\n", s->name, page);
2875 static int validate_slab_node(struct kmem_cache *s,
2876 struct kmem_cache_node *n, unsigned long *map)
2878 unsigned long count = 0;
2879 struct page *page;
2880 unsigned long flags;
2882 spin_lock_irqsave(&n->list_lock, flags);
2884 list_for_each_entry(page, &n->partial, lru) {
2885 validate_slab_slab(s, page, map);
2886 count++;
2888 if (count != n->nr_partial)
2889 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2890 "counter=%ld\n", s->name, count, n->nr_partial);
2892 if (!(s->flags & SLAB_STORE_USER))
2893 goto out;
2895 list_for_each_entry(page, &n->full, lru) {
2896 validate_slab_slab(s, page, map);
2897 count++;
2899 if (count != atomic_long_read(&n->nr_slabs))
2900 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2901 "counter=%ld\n", s->name, count,
2902 atomic_long_read(&n->nr_slabs));
2904 out:
2905 spin_unlock_irqrestore(&n->list_lock, flags);
2906 return count;
2909 static long validate_slab_cache(struct kmem_cache *s)
2911 int node;
2912 unsigned long count = 0;
2913 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2914 sizeof(unsigned long), GFP_KERNEL);
2916 if (!map)
2917 return -ENOMEM;
2919 flush_all(s);
2920 for_each_node_state(node, N_NORMAL_MEMORY) {
2921 struct kmem_cache_node *n = get_node(s, node);
2923 count += validate_slab_node(s, n, map);
2925 kfree(map);
2926 return count;
2929 #ifdef SLUB_RESILIENCY_TEST
2930 static void resiliency_test(void)
2932 u8 *p;
2934 printk(KERN_ERR "SLUB resiliency testing\n");
2935 printk(KERN_ERR "-----------------------\n");
2936 printk(KERN_ERR "A. Corruption after allocation\n");
2938 p = kzalloc(16, GFP_KERNEL);
2939 p[16] = 0x12;
2940 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2941 " 0x12->0x%p\n\n", p + 16);
2943 validate_slab_cache(kmalloc_caches + 4);
2945 /* Hmmm... The next two are dangerous */
2946 p = kzalloc(32, GFP_KERNEL);
2947 p[32 + sizeof(void *)] = 0x34;
2948 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2949 " 0x34 -> -0x%p\n", p);
2950 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2952 validate_slab_cache(kmalloc_caches + 5);
2953 p = kzalloc(64, GFP_KERNEL);
2954 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2955 *p = 0x56;
2956 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2958 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2959 validate_slab_cache(kmalloc_caches + 6);
2961 printk(KERN_ERR "\nB. Corruption after free\n");
2962 p = kzalloc(128, GFP_KERNEL);
2963 kfree(p);
2964 *p = 0x78;
2965 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2966 validate_slab_cache(kmalloc_caches + 7);
2968 p = kzalloc(256, GFP_KERNEL);
2969 kfree(p);
2970 p[50] = 0x9a;
2971 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2972 validate_slab_cache(kmalloc_caches + 8);
2974 p = kzalloc(512, GFP_KERNEL);
2975 kfree(p);
2976 p[512] = 0xab;
2977 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2978 validate_slab_cache(kmalloc_caches + 9);
2980 #else
2981 static void resiliency_test(void) {};
2982 #endif
2985 * Generate lists of code addresses where slabcache objects are allocated
2986 * and freed.
2989 struct location {
2990 unsigned long count;
2991 void *addr;
2992 long long sum_time;
2993 long min_time;
2994 long max_time;
2995 long min_pid;
2996 long max_pid;
2997 cpumask_t cpus;
2998 nodemask_t nodes;
3001 struct loc_track {
3002 unsigned long max;
3003 unsigned long count;
3004 struct location *loc;
3007 static void free_loc_track(struct loc_track *t)
3009 if (t->max)
3010 free_pages((unsigned long)t->loc,
3011 get_order(sizeof(struct location) * t->max));
3014 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3016 struct location *l;
3017 int order;
3019 order = get_order(sizeof(struct location) * max);
3021 l = (void *)__get_free_pages(flags, order);
3022 if (!l)
3023 return 0;
3025 if (t->count) {
3026 memcpy(l, t->loc, sizeof(struct location) * t->count);
3027 free_loc_track(t);
3029 t->max = max;
3030 t->loc = l;
3031 return 1;
3034 static int add_location(struct loc_track *t, struct kmem_cache *s,
3035 const struct track *track)
3037 long start, end, pos;
3038 struct location *l;
3039 void *caddr;
3040 unsigned long age = jiffies - track->when;
3042 start = -1;
3043 end = t->count;
3045 for ( ; ; ) {
3046 pos = start + (end - start + 1) / 2;
3049 * There is nothing at "end". If we end up there
3050 * we need to add something to before end.
3052 if (pos == end)
3053 break;
3055 caddr = t->loc[pos].addr;
3056 if (track->addr == caddr) {
3058 l = &t->loc[pos];
3059 l->count++;
3060 if (track->when) {
3061 l->sum_time += age;
3062 if (age < l->min_time)
3063 l->min_time = age;
3064 if (age > l->max_time)
3065 l->max_time = age;
3067 if (track->pid < l->min_pid)
3068 l->min_pid = track->pid;
3069 if (track->pid > l->max_pid)
3070 l->max_pid = track->pid;
3072 cpu_set(track->cpu, l->cpus);
3074 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3075 return 1;
3078 if (track->addr < caddr)
3079 end = pos;
3080 else
3081 start = pos;
3085 * Not found. Insert new tracking element.
3087 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3088 return 0;
3090 l = t->loc + pos;
3091 if (pos < t->count)
3092 memmove(l + 1, l,
3093 (t->count - pos) * sizeof(struct location));
3094 t->count++;
3095 l->count = 1;
3096 l->addr = track->addr;
3097 l->sum_time = age;
3098 l->min_time = age;
3099 l->max_time = age;
3100 l->min_pid = track->pid;
3101 l->max_pid = track->pid;
3102 cpus_clear(l->cpus);
3103 cpu_set(track->cpu, l->cpus);
3104 nodes_clear(l->nodes);
3105 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3106 return 1;
3109 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3110 struct page *page, enum track_item alloc)
3112 void *addr = page_address(page);
3113 DECLARE_BITMAP(map, s->objects);
3114 void *p;
3116 bitmap_zero(map, s->objects);
3117 for_each_free_object(p, s, page->freelist)
3118 set_bit(slab_index(p, s, addr), map);
3120 for_each_object(p, s, addr)
3121 if (!test_bit(slab_index(p, s, addr), map))
3122 add_location(t, s, get_track(s, p, alloc));
3125 static int list_locations(struct kmem_cache *s, char *buf,
3126 enum track_item alloc)
3128 int n = 0;
3129 unsigned long i;
3130 struct loc_track t = { 0, 0, NULL };
3131 int node;
3133 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3134 GFP_KERNEL))
3135 return sprintf(buf, "Out of memory\n");
3137 /* Push back cpu slabs */
3138 flush_all(s);
3140 for_each_node_state(node, N_NORMAL_MEMORY) {
3141 struct kmem_cache_node *n = get_node(s, node);
3142 unsigned long flags;
3143 struct page *page;
3145 if (!atomic_long_read(&n->nr_slabs))
3146 continue;
3148 spin_lock_irqsave(&n->list_lock, flags);
3149 list_for_each_entry(page, &n->partial, lru)
3150 process_slab(&t, s, page, alloc);
3151 list_for_each_entry(page, &n->full, lru)
3152 process_slab(&t, s, page, alloc);
3153 spin_unlock_irqrestore(&n->list_lock, flags);
3156 for (i = 0; i < t.count; i++) {
3157 struct location *l = &t.loc[i];
3159 if (n > PAGE_SIZE - 100)
3160 break;
3161 n += sprintf(buf + n, "%7ld ", l->count);
3163 if (l->addr)
3164 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3165 else
3166 n += sprintf(buf + n, "<not-available>");
3168 if (l->sum_time != l->min_time) {
3169 unsigned long remainder;
3171 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3172 l->min_time,
3173 div_long_long_rem(l->sum_time, l->count, &remainder),
3174 l->max_time);
3175 } else
3176 n += sprintf(buf + n, " age=%ld",
3177 l->min_time);
3179 if (l->min_pid != l->max_pid)
3180 n += sprintf(buf + n, " pid=%ld-%ld",
3181 l->min_pid, l->max_pid);
3182 else
3183 n += sprintf(buf + n, " pid=%ld",
3184 l->min_pid);
3186 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3187 n < PAGE_SIZE - 60) {
3188 n += sprintf(buf + n, " cpus=");
3189 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3190 l->cpus);
3193 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3194 n < PAGE_SIZE - 60) {
3195 n += sprintf(buf + n, " nodes=");
3196 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3197 l->nodes);
3200 n += sprintf(buf + n, "\n");
3203 free_loc_track(&t);
3204 if (!t.count)
3205 n += sprintf(buf, "No data\n");
3206 return n;
3209 static unsigned long count_partial(struct kmem_cache_node *n)
3211 unsigned long flags;
3212 unsigned long x = 0;
3213 struct page *page;
3215 spin_lock_irqsave(&n->list_lock, flags);
3216 list_for_each_entry(page, &n->partial, lru)
3217 x += page->inuse;
3218 spin_unlock_irqrestore(&n->list_lock, flags);
3219 return x;
3222 enum slab_stat_type {
3223 SL_FULL,
3224 SL_PARTIAL,
3225 SL_CPU,
3226 SL_OBJECTS
3229 #define SO_FULL (1 << SL_FULL)
3230 #define SO_PARTIAL (1 << SL_PARTIAL)
3231 #define SO_CPU (1 << SL_CPU)
3232 #define SO_OBJECTS (1 << SL_OBJECTS)
3234 static unsigned long slab_objects(struct kmem_cache *s,
3235 char *buf, unsigned long flags)
3237 unsigned long total = 0;
3238 int cpu;
3239 int node;
3240 int x;
3241 unsigned long *nodes;
3242 unsigned long *per_cpu;
3244 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3245 per_cpu = nodes + nr_node_ids;
3247 for_each_possible_cpu(cpu) {
3248 struct page *page = s->cpu_slab[cpu];
3249 int node;
3251 if (page) {
3252 node = page_to_nid(page);
3253 if (flags & SO_CPU) {
3254 int x = 0;
3256 if (flags & SO_OBJECTS)
3257 x = page->inuse;
3258 else
3259 x = 1;
3260 total += x;
3261 nodes[node] += x;
3263 per_cpu[node]++;
3267 for_each_node_state(node, N_NORMAL_MEMORY) {
3268 struct kmem_cache_node *n = get_node(s, node);
3270 if (flags & SO_PARTIAL) {
3271 if (flags & SO_OBJECTS)
3272 x = count_partial(n);
3273 else
3274 x = n->nr_partial;
3275 total += x;
3276 nodes[node] += x;
3279 if (flags & SO_FULL) {
3280 int full_slabs = atomic_long_read(&n->nr_slabs)
3281 - per_cpu[node]
3282 - n->nr_partial;
3284 if (flags & SO_OBJECTS)
3285 x = full_slabs * s->objects;
3286 else
3287 x = full_slabs;
3288 total += x;
3289 nodes[node] += x;
3293 x = sprintf(buf, "%lu", total);
3294 #ifdef CONFIG_NUMA
3295 for_each_node_state(node, N_NORMAL_MEMORY)
3296 if (nodes[node])
3297 x += sprintf(buf + x, " N%d=%lu",
3298 node, nodes[node]);
3299 #endif
3300 kfree(nodes);
3301 return x + sprintf(buf + x, "\n");
3304 static int any_slab_objects(struct kmem_cache *s)
3306 int node;
3307 int cpu;
3309 for_each_possible_cpu(cpu)
3310 if (s->cpu_slab[cpu])
3311 return 1;
3313 for_each_node(node) {
3314 struct kmem_cache_node *n = get_node(s, node);
3316 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3317 return 1;
3319 return 0;
3322 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3323 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3325 struct slab_attribute {
3326 struct attribute attr;
3327 ssize_t (*show)(struct kmem_cache *s, char *buf);
3328 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3331 #define SLAB_ATTR_RO(_name) \
3332 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3334 #define SLAB_ATTR(_name) \
3335 static struct slab_attribute _name##_attr = \
3336 __ATTR(_name, 0644, _name##_show, _name##_store)
3338 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3340 return sprintf(buf, "%d\n", s->size);
3342 SLAB_ATTR_RO(slab_size);
3344 static ssize_t align_show(struct kmem_cache *s, char *buf)
3346 return sprintf(buf, "%d\n", s->align);
3348 SLAB_ATTR_RO(align);
3350 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3352 return sprintf(buf, "%d\n", s->objsize);
3354 SLAB_ATTR_RO(object_size);
3356 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3358 return sprintf(buf, "%d\n", s->objects);
3360 SLAB_ATTR_RO(objs_per_slab);
3362 static ssize_t order_show(struct kmem_cache *s, char *buf)
3364 return sprintf(buf, "%d\n", s->order);
3366 SLAB_ATTR_RO(order);
3368 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3370 if (s->ctor) {
3371 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3373 return n + sprintf(buf + n, "\n");
3375 return 0;
3377 SLAB_ATTR_RO(ctor);
3379 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3381 return sprintf(buf, "%d\n", s->refcount - 1);
3383 SLAB_ATTR_RO(aliases);
3385 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3387 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3389 SLAB_ATTR_RO(slabs);
3391 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3393 return slab_objects(s, buf, SO_PARTIAL);
3395 SLAB_ATTR_RO(partial);
3397 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3399 return slab_objects(s, buf, SO_CPU);
3401 SLAB_ATTR_RO(cpu_slabs);
3403 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3405 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3407 SLAB_ATTR_RO(objects);
3409 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3411 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3414 static ssize_t sanity_checks_store(struct kmem_cache *s,
3415 const char *buf, size_t length)
3417 s->flags &= ~SLAB_DEBUG_FREE;
3418 if (buf[0] == '1')
3419 s->flags |= SLAB_DEBUG_FREE;
3420 return length;
3422 SLAB_ATTR(sanity_checks);
3424 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3426 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3429 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3430 size_t length)
3432 s->flags &= ~SLAB_TRACE;
3433 if (buf[0] == '1')
3434 s->flags |= SLAB_TRACE;
3435 return length;
3437 SLAB_ATTR(trace);
3439 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3441 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3444 static ssize_t reclaim_account_store(struct kmem_cache *s,
3445 const char *buf, size_t length)
3447 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3448 if (buf[0] == '1')
3449 s->flags |= SLAB_RECLAIM_ACCOUNT;
3450 return length;
3452 SLAB_ATTR(reclaim_account);
3454 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3456 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3458 SLAB_ATTR_RO(hwcache_align);
3460 #ifdef CONFIG_ZONE_DMA
3461 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3463 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3465 SLAB_ATTR_RO(cache_dma);
3466 #endif
3468 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3470 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3472 SLAB_ATTR_RO(destroy_by_rcu);
3474 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3476 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3479 static ssize_t red_zone_store(struct kmem_cache *s,
3480 const char *buf, size_t length)
3482 if (any_slab_objects(s))
3483 return -EBUSY;
3485 s->flags &= ~SLAB_RED_ZONE;
3486 if (buf[0] == '1')
3487 s->flags |= SLAB_RED_ZONE;
3488 calculate_sizes(s);
3489 return length;
3491 SLAB_ATTR(red_zone);
3493 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3495 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3498 static ssize_t poison_store(struct kmem_cache *s,
3499 const char *buf, size_t length)
3501 if (any_slab_objects(s))
3502 return -EBUSY;
3504 s->flags &= ~SLAB_POISON;
3505 if (buf[0] == '1')
3506 s->flags |= SLAB_POISON;
3507 calculate_sizes(s);
3508 return length;
3510 SLAB_ATTR(poison);
3512 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3514 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3517 static ssize_t store_user_store(struct kmem_cache *s,
3518 const char *buf, size_t length)
3520 if (any_slab_objects(s))
3521 return -EBUSY;
3523 s->flags &= ~SLAB_STORE_USER;
3524 if (buf[0] == '1')
3525 s->flags |= SLAB_STORE_USER;
3526 calculate_sizes(s);
3527 return length;
3529 SLAB_ATTR(store_user);
3531 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3533 return 0;
3536 static ssize_t validate_store(struct kmem_cache *s,
3537 const char *buf, size_t length)
3539 int ret = -EINVAL;
3541 if (buf[0] == '1') {
3542 ret = validate_slab_cache(s);
3543 if (ret >= 0)
3544 ret = length;
3546 return ret;
3548 SLAB_ATTR(validate);
3550 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3552 return 0;
3555 static ssize_t shrink_store(struct kmem_cache *s,
3556 const char *buf, size_t length)
3558 if (buf[0] == '1') {
3559 int rc = kmem_cache_shrink(s);
3561 if (rc)
3562 return rc;
3563 } else
3564 return -EINVAL;
3565 return length;
3567 SLAB_ATTR(shrink);
3569 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3571 if (!(s->flags & SLAB_STORE_USER))
3572 return -ENOSYS;
3573 return list_locations(s, buf, TRACK_ALLOC);
3575 SLAB_ATTR_RO(alloc_calls);
3577 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3579 if (!(s->flags & SLAB_STORE_USER))
3580 return -ENOSYS;
3581 return list_locations(s, buf, TRACK_FREE);
3583 SLAB_ATTR_RO(free_calls);
3585 #ifdef CONFIG_NUMA
3586 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3588 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3591 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3592 const char *buf, size_t length)
3594 int n = simple_strtoul(buf, NULL, 10);
3596 if (n < 100)
3597 s->defrag_ratio = n * 10;
3598 return length;
3600 SLAB_ATTR(defrag_ratio);
3601 #endif
3603 static struct attribute * slab_attrs[] = {
3604 &slab_size_attr.attr,
3605 &object_size_attr.attr,
3606 &objs_per_slab_attr.attr,
3607 &order_attr.attr,
3608 &objects_attr.attr,
3609 &slabs_attr.attr,
3610 &partial_attr.attr,
3611 &cpu_slabs_attr.attr,
3612 &ctor_attr.attr,
3613 &aliases_attr.attr,
3614 &align_attr.attr,
3615 &sanity_checks_attr.attr,
3616 &trace_attr.attr,
3617 &hwcache_align_attr.attr,
3618 &reclaim_account_attr.attr,
3619 &destroy_by_rcu_attr.attr,
3620 &red_zone_attr.attr,
3621 &poison_attr.attr,
3622 &store_user_attr.attr,
3623 &validate_attr.attr,
3624 &shrink_attr.attr,
3625 &alloc_calls_attr.attr,
3626 &free_calls_attr.attr,
3627 #ifdef CONFIG_ZONE_DMA
3628 &cache_dma_attr.attr,
3629 #endif
3630 #ifdef CONFIG_NUMA
3631 &defrag_ratio_attr.attr,
3632 #endif
3633 NULL
3636 static struct attribute_group slab_attr_group = {
3637 .attrs = slab_attrs,
3640 static ssize_t slab_attr_show(struct kobject *kobj,
3641 struct attribute *attr,
3642 char *buf)
3644 struct slab_attribute *attribute;
3645 struct kmem_cache *s;
3646 int err;
3648 attribute = to_slab_attr(attr);
3649 s = to_slab(kobj);
3651 if (!attribute->show)
3652 return -EIO;
3654 err = attribute->show(s, buf);
3656 return err;
3659 static ssize_t slab_attr_store(struct kobject *kobj,
3660 struct attribute *attr,
3661 const char *buf, size_t len)
3663 struct slab_attribute *attribute;
3664 struct kmem_cache *s;
3665 int err;
3667 attribute = to_slab_attr(attr);
3668 s = to_slab(kobj);
3670 if (!attribute->store)
3671 return -EIO;
3673 err = attribute->store(s, buf, len);
3675 return err;
3678 static struct sysfs_ops slab_sysfs_ops = {
3679 .show = slab_attr_show,
3680 .store = slab_attr_store,
3683 static struct kobj_type slab_ktype = {
3684 .sysfs_ops = &slab_sysfs_ops,
3687 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3689 struct kobj_type *ktype = get_ktype(kobj);
3691 if (ktype == &slab_ktype)
3692 return 1;
3693 return 0;
3696 static struct kset_uevent_ops slab_uevent_ops = {
3697 .filter = uevent_filter,
3700 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3702 #define ID_STR_LENGTH 64
3704 /* Create a unique string id for a slab cache:
3705 * format
3706 * :[flags-]size:[memory address of kmemcache]
3708 static char *create_unique_id(struct kmem_cache *s)
3710 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3711 char *p = name;
3713 BUG_ON(!name);
3715 *p++ = ':';
3717 * First flags affecting slabcache operations. We will only
3718 * get here for aliasable slabs so we do not need to support
3719 * too many flags. The flags here must cover all flags that
3720 * are matched during merging to guarantee that the id is
3721 * unique.
3723 if (s->flags & SLAB_CACHE_DMA)
3724 *p++ = 'd';
3725 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3726 *p++ = 'a';
3727 if (s->flags & SLAB_DEBUG_FREE)
3728 *p++ = 'F';
3729 if (p != name + 1)
3730 *p++ = '-';
3731 p += sprintf(p, "%07d", s->size);
3732 BUG_ON(p > name + ID_STR_LENGTH - 1);
3733 return name;
3736 static int sysfs_slab_add(struct kmem_cache *s)
3738 int err;
3739 const char *name;
3740 int unmergeable;
3742 if (slab_state < SYSFS)
3743 /* Defer until later */
3744 return 0;
3746 unmergeable = slab_unmergeable(s);
3747 if (unmergeable) {
3749 * Slabcache can never be merged so we can use the name proper.
3750 * This is typically the case for debug situations. In that
3751 * case we can catch duplicate names easily.
3753 sysfs_remove_link(&slab_subsys.kobj, s->name);
3754 name = s->name;
3755 } else {
3757 * Create a unique name for the slab as a target
3758 * for the symlinks.
3760 name = create_unique_id(s);
3763 kobj_set_kset_s(s, slab_subsys);
3764 kobject_set_name(&s->kobj, name);
3765 kobject_init(&s->kobj);
3766 err = kobject_add(&s->kobj);
3767 if (err)
3768 return err;
3770 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3771 if (err)
3772 return err;
3773 kobject_uevent(&s->kobj, KOBJ_ADD);
3774 if (!unmergeable) {
3775 /* Setup first alias */
3776 sysfs_slab_alias(s, s->name);
3777 kfree(name);
3779 return 0;
3782 static void sysfs_slab_remove(struct kmem_cache *s)
3784 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3785 kobject_del(&s->kobj);
3789 * Need to buffer aliases during bootup until sysfs becomes
3790 * available lest we loose that information.
3792 struct saved_alias {
3793 struct kmem_cache *s;
3794 const char *name;
3795 struct saved_alias *next;
3798 static struct saved_alias *alias_list;
3800 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3802 struct saved_alias *al;
3804 if (slab_state == SYSFS) {
3806 * If we have a leftover link then remove it.
3808 sysfs_remove_link(&slab_subsys.kobj, name);
3809 return sysfs_create_link(&slab_subsys.kobj,
3810 &s->kobj, name);
3813 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3814 if (!al)
3815 return -ENOMEM;
3817 al->s = s;
3818 al->name = name;
3819 al->next = alias_list;
3820 alias_list = al;
3821 return 0;
3824 static int __init slab_sysfs_init(void)
3826 struct kmem_cache *s;
3827 int err;
3829 err = subsystem_register(&slab_subsys);
3830 if (err) {
3831 printk(KERN_ERR "Cannot register slab subsystem.\n");
3832 return -ENOSYS;
3835 slab_state = SYSFS;
3837 list_for_each_entry(s, &slab_caches, list) {
3838 err = sysfs_slab_add(s);
3839 if (err)
3840 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3841 " to sysfs\n", s->name);
3844 while (alias_list) {
3845 struct saved_alias *al = alias_list;
3847 alias_list = alias_list->next;
3848 err = sysfs_slab_alias(al->s, al->name);
3849 if (err)
3850 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3851 " %s to sysfs\n", s->name);
3852 kfree(al);
3855 resiliency_test();
3856 return 0;
3859 __initcall(slab_sysfs_init);
3860 #endif