2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
29 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
33 static int max_hstate
;
34 unsigned int default_hstate_idx
;
35 struct hstate hstates
[HUGE_MAX_HSTATE
];
37 __initdata
LIST_HEAD(huge_boot_pages
);
39 /* for command line parsing */
40 static struct hstate
* __initdata parsed_hstate
;
41 static unsigned long __initdata default_hstate_max_huge_pages
;
42 static unsigned long __initdata default_hstate_size
;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock
);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct list_head link
;
72 static long region_add(struct list_head
*head
, long f
, long t
)
74 struct file_region
*rg
, *nrg
, *trg
;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg
, head
, link
)
81 /* Round our left edge to the current segment if it encloses us. */
85 /* Check for and consume any regions we now overlap with. */
87 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
88 if (&rg
->link
== head
)
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
108 static long region_chg(struct list_head
*head
, long f
, long t
)
110 struct file_region
*rg
, *nrg
;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg
, head
, link
)
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg
->link
== head
|| t
< rg
->from
) {
122 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
127 INIT_LIST_HEAD(&nrg
->link
);
128 list_add(&nrg
->link
, rg
->link
.prev
);
133 /* Round our left edge to the current segment if it encloses us. */
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
140 if (&rg
->link
== head
)
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
152 chg
-= rg
->to
- rg
->from
;
157 static long region_truncate(struct list_head
*head
, long end
)
159 struct file_region
*rg
, *trg
;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
166 if (&rg
->link
== head
)
169 /* If we are in the middle of a region then adjust it. */
170 if (end
> rg
->from
) {
173 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
178 if (&rg
->link
== head
)
180 chg
+= rg
->to
- rg
->from
;
187 static long region_count(struct list_head
*head
, long f
, long t
)
189 struct file_region
*rg
;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg
, head
, link
) {
202 seg_from
= max(rg
->from
, f
);
203 seg_to
= min(rg
->to
, t
);
205 chg
+= seg_to
- seg_from
;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
216 struct vm_area_struct
*vma
, unsigned long address
)
218 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
219 (vma
->vm_pgoff
>> huge_page_order(h
));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
228 struct hstate
*hstate
;
230 if (!is_vm_hugetlb_page(vma
))
233 hstate
= hstate_vma(vma
);
235 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
244 #ifndef vma_mmu_pagesize
245 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
247 return vma_kernel_pagesize(vma
);
252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
256 #define HPAGE_RESV_OWNER (1UL << 0)
257 #define HPAGE_RESV_UNMAPPED (1UL << 1)
258 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping. A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated. A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
279 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
281 return (unsigned long)vma
->vm_private_data
;
284 static void set_vma_private_data(struct vm_area_struct
*vma
,
287 vma
->vm_private_data
= (void *)value
;
292 struct list_head regions
;
295 static struct resv_map
*resv_map_alloc(void)
297 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
301 kref_init(&resv_map
->refs
);
302 INIT_LIST_HEAD(&resv_map
->regions
);
307 static void resv_map_release(struct kref
*ref
)
309 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
311 /* Clear out any active regions before we release the map. */
312 region_truncate(&resv_map
->regions
, 0);
316 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
318 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
319 if (!(vma
->vm_flags
& VM_SHARED
))
320 return (struct resv_map
*)(get_vma_private_data(vma
) &
325 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
327 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
328 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
330 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
331 HPAGE_RESV_MASK
) | (unsigned long)map
);
334 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
336 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
337 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
339 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
342 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
344 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
346 return (get_vma_private_data(vma
) & flag
) != 0;
349 /* Decrement the reserved pages in the hugepage pool by one */
350 static void decrement_hugepage_resv_vma(struct hstate
*h
,
351 struct vm_area_struct
*vma
)
353 if (vma
->vm_flags
& VM_NORESERVE
)
356 if (vma
->vm_flags
& VM_SHARED
) {
357 /* Shared mappings always use reserves */
358 h
->resv_huge_pages
--;
359 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
361 * Only the process that called mmap() has reserves for
364 h
->resv_huge_pages
--;
368 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
371 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
372 if (!(vma
->vm_flags
& VM_SHARED
))
373 vma
->vm_private_data
= (void *)0;
376 /* Returns true if the VMA has associated reserve pages */
377 static int vma_has_reserves(struct vm_area_struct
*vma
)
379 if (vma
->vm_flags
& VM_SHARED
)
381 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
386 static void clear_gigantic_page(struct page
*page
,
387 unsigned long addr
, unsigned long sz
)
390 struct page
*p
= page
;
393 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
395 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
398 static void clear_huge_page(struct page
*page
,
399 unsigned long addr
, unsigned long sz
)
403 if (unlikely(sz
> MAX_ORDER_NR_PAGES
)) {
404 clear_gigantic_page(page
, addr
, sz
);
409 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
411 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
415 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
416 unsigned long addr
, struct vm_area_struct
*vma
)
419 struct hstate
*h
= hstate_vma(vma
);
420 struct page
*dst_base
= dst
;
421 struct page
*src_base
= src
;
423 for (i
= 0; i
< pages_per_huge_page(h
); ) {
425 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
428 dst
= mem_map_next(dst
, dst_base
, i
);
429 src
= mem_map_next(src
, src_base
, i
);
432 static void copy_huge_page(struct page
*dst
, struct page
*src
,
433 unsigned long addr
, struct vm_area_struct
*vma
)
436 struct hstate
*h
= hstate_vma(vma
);
438 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
439 copy_gigantic_page(dst
, src
, addr
, vma
);
444 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
446 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
450 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
452 int nid
= page_to_nid(page
);
453 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
454 h
->free_huge_pages
++;
455 h
->free_huge_pages_node
[nid
]++;
458 static struct page
*dequeue_huge_page(struct hstate
*h
)
461 struct page
*page
= NULL
;
463 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
464 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
465 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
467 list_del(&page
->lru
);
468 h
->free_huge_pages
--;
469 h
->free_huge_pages_node
[nid
]--;
476 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
477 struct vm_area_struct
*vma
,
478 unsigned long address
, int avoid_reserve
)
481 struct page
*page
= NULL
;
482 struct mempolicy
*mpol
;
483 nodemask_t
*nodemask
;
484 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
485 htlb_alloc_mask
, &mpol
, &nodemask
);
490 * A child process with MAP_PRIVATE mappings created by their parent
491 * have no page reserves. This check ensures that reservations are
492 * not "stolen". The child may still get SIGKILLed
494 if (!vma_has_reserves(vma
) &&
495 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
498 /* If reserves cannot be used, ensure enough pages are in the pool */
499 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
502 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
503 MAX_NR_ZONES
- 1, nodemask
) {
504 nid
= zone_to_nid(zone
);
505 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
506 !list_empty(&h
->hugepage_freelists
[nid
])) {
507 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
509 list_del(&page
->lru
);
510 h
->free_huge_pages
--;
511 h
->free_huge_pages_node
[nid
]--;
514 decrement_hugepage_resv_vma(h
, vma
);
523 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
527 VM_BUG_ON(h
->order
>= MAX_ORDER
);
530 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
531 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
532 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
533 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
534 1 << PG_private
| 1<< PG_writeback
);
536 set_compound_page_dtor(page
, NULL
);
537 set_page_refcounted(page
);
538 arch_release_hugepage(page
);
539 __free_pages(page
, huge_page_order(h
));
542 struct hstate
*size_to_hstate(unsigned long size
)
547 if (huge_page_size(h
) == size
)
553 static void free_huge_page(struct page
*page
)
556 * Can't pass hstate in here because it is called from the
557 * compound page destructor.
559 struct hstate
*h
= page_hstate(page
);
560 int nid
= page_to_nid(page
);
561 struct address_space
*mapping
;
563 mapping
= (struct address_space
*) page_private(page
);
564 set_page_private(page
, 0);
565 BUG_ON(page_count(page
));
566 INIT_LIST_HEAD(&page
->lru
);
568 spin_lock(&hugetlb_lock
);
569 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
570 update_and_free_page(h
, page
);
571 h
->surplus_huge_pages
--;
572 h
->surplus_huge_pages_node
[nid
]--;
574 enqueue_huge_page(h
, page
);
576 spin_unlock(&hugetlb_lock
);
578 hugetlb_put_quota(mapping
, 1);
582 * Increment or decrement surplus_huge_pages. Keep node-specific counters
583 * balanced by operating on them in a round-robin fashion.
584 * Returns 1 if an adjustment was made.
586 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
592 VM_BUG_ON(delta
!= -1 && delta
!= 1);
594 nid
= next_node(nid
, node_online_map
);
595 if (nid
== MAX_NUMNODES
)
596 nid
= first_node(node_online_map
);
598 /* To shrink on this node, there must be a surplus page */
599 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
601 /* Surplus cannot exceed the total number of pages */
602 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
603 h
->nr_huge_pages_node
[nid
])
606 h
->surplus_huge_pages
+= delta
;
607 h
->surplus_huge_pages_node
[nid
] += delta
;
610 } while (nid
!= prev_nid
);
616 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
618 set_compound_page_dtor(page
, free_huge_page
);
619 spin_lock(&hugetlb_lock
);
621 h
->nr_huge_pages_node
[nid
]++;
622 spin_unlock(&hugetlb_lock
);
623 put_page(page
); /* free it into the hugepage allocator */
626 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
630 if (h
->order
>= MAX_ORDER
)
633 page
= alloc_pages_node(nid
,
634 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
635 __GFP_REPEAT
|__GFP_NOWARN
,
638 if (arch_prepare_hugepage(page
)) {
639 __free_pages(page
, huge_page_order(h
));
642 prep_new_huge_page(h
, page
, nid
);
649 * Use a helper variable to find the next node and then
650 * copy it back to hugetlb_next_nid afterwards:
651 * otherwise there's a window in which a racer might
652 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653 * But we don't need to use a spin_lock here: it really
654 * doesn't matter if occasionally a racer chooses the
655 * same nid as we do. Move nid forward in the mask even
656 * if we just successfully allocated a hugepage so that
657 * the next caller gets hugepages on the next node.
659 static int hstate_next_node(struct hstate
*h
)
662 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
663 if (next_nid
== MAX_NUMNODES
)
664 next_nid
= first_node(node_online_map
);
665 h
->hugetlb_next_nid
= next_nid
;
669 static int alloc_fresh_huge_page(struct hstate
*h
)
676 start_nid
= h
->hugetlb_next_nid
;
679 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
682 next_nid
= hstate_next_node(h
);
683 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
686 count_vm_event(HTLB_BUDDY_PGALLOC
);
688 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
693 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
694 struct vm_area_struct
*vma
, unsigned long address
)
699 if (h
->order
>= MAX_ORDER
)
703 * Assume we will successfully allocate the surplus page to
704 * prevent racing processes from causing the surplus to exceed
707 * This however introduces a different race, where a process B
708 * tries to grow the static hugepage pool while alloc_pages() is
709 * called by process A. B will only examine the per-node
710 * counters in determining if surplus huge pages can be
711 * converted to normal huge pages in adjust_pool_surplus(). A
712 * won't be able to increment the per-node counter, until the
713 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714 * no more huge pages can be converted from surplus to normal
715 * state (and doesn't try to convert again). Thus, we have a
716 * case where a surplus huge page exists, the pool is grown, and
717 * the surplus huge page still exists after, even though it
718 * should just have been converted to a normal huge page. This
719 * does not leak memory, though, as the hugepage will be freed
720 * once it is out of use. It also does not allow the counters to
721 * go out of whack in adjust_pool_surplus() as we don't modify
722 * the node values until we've gotten the hugepage and only the
723 * per-node value is checked there.
725 spin_lock(&hugetlb_lock
);
726 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
727 spin_unlock(&hugetlb_lock
);
731 h
->surplus_huge_pages
++;
733 spin_unlock(&hugetlb_lock
);
735 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
736 __GFP_REPEAT
|__GFP_NOWARN
,
739 if (page
&& arch_prepare_hugepage(page
)) {
740 __free_pages(page
, huge_page_order(h
));
744 spin_lock(&hugetlb_lock
);
747 * This page is now managed by the hugetlb allocator and has
748 * no users -- drop the buddy allocator's reference.
750 put_page_testzero(page
);
751 VM_BUG_ON(page_count(page
));
752 nid
= page_to_nid(page
);
753 set_compound_page_dtor(page
, free_huge_page
);
755 * We incremented the global counters already
757 h
->nr_huge_pages_node
[nid
]++;
758 h
->surplus_huge_pages_node
[nid
]++;
759 __count_vm_event(HTLB_BUDDY_PGALLOC
);
762 h
->surplus_huge_pages
--;
763 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
765 spin_unlock(&hugetlb_lock
);
771 * Increase the hugetlb pool such that it can accomodate a reservation
774 static int gather_surplus_pages(struct hstate
*h
, int delta
)
776 struct list_head surplus_list
;
777 struct page
*page
, *tmp
;
779 int needed
, allocated
;
781 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
783 h
->resv_huge_pages
+= delta
;
788 INIT_LIST_HEAD(&surplus_list
);
792 spin_unlock(&hugetlb_lock
);
793 for (i
= 0; i
< needed
; i
++) {
794 page
= alloc_buddy_huge_page(h
, NULL
, 0);
797 * We were not able to allocate enough pages to
798 * satisfy the entire reservation so we free what
799 * we've allocated so far.
801 spin_lock(&hugetlb_lock
);
806 list_add(&page
->lru
, &surplus_list
);
811 * After retaking hugetlb_lock, we need to recalculate 'needed'
812 * because either resv_huge_pages or free_huge_pages may have changed.
814 spin_lock(&hugetlb_lock
);
815 needed
= (h
->resv_huge_pages
+ delta
) -
816 (h
->free_huge_pages
+ allocated
);
821 * The surplus_list now contains _at_least_ the number of extra pages
822 * needed to accomodate the reservation. Add the appropriate number
823 * of pages to the hugetlb pool and free the extras back to the buddy
824 * allocator. Commit the entire reservation here to prevent another
825 * process from stealing the pages as they are added to the pool but
826 * before they are reserved.
829 h
->resv_huge_pages
+= delta
;
832 /* Free the needed pages to the hugetlb pool */
833 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
836 list_del(&page
->lru
);
837 enqueue_huge_page(h
, page
);
840 /* Free unnecessary surplus pages to the buddy allocator */
841 if (!list_empty(&surplus_list
)) {
842 spin_unlock(&hugetlb_lock
);
843 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
844 list_del(&page
->lru
);
846 * The page has a reference count of zero already, so
847 * call free_huge_page directly instead of using
848 * put_page. This must be done with hugetlb_lock
849 * unlocked which is safe because free_huge_page takes
850 * hugetlb_lock before deciding how to free the page.
852 free_huge_page(page
);
854 spin_lock(&hugetlb_lock
);
861 * When releasing a hugetlb pool reservation, any surplus pages that were
862 * allocated to satisfy the reservation must be explicitly freed if they were
865 static void return_unused_surplus_pages(struct hstate
*h
,
866 unsigned long unused_resv_pages
)
870 unsigned long nr_pages
;
873 * We want to release as many surplus pages as possible, spread
874 * evenly across all nodes. Iterate across all nodes until we
875 * can no longer free unreserved surplus pages. This occurs when
876 * the nodes with surplus pages have no free pages.
878 unsigned long remaining_iterations
= num_online_nodes();
880 /* Uncommit the reservation */
881 h
->resv_huge_pages
-= unused_resv_pages
;
883 /* Cannot return gigantic pages currently */
884 if (h
->order
>= MAX_ORDER
)
887 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
889 while (remaining_iterations
-- && nr_pages
) {
890 nid
= next_node(nid
, node_online_map
);
891 if (nid
== MAX_NUMNODES
)
892 nid
= first_node(node_online_map
);
894 if (!h
->surplus_huge_pages_node
[nid
])
897 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
898 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
900 list_del(&page
->lru
);
901 update_and_free_page(h
, page
);
902 h
->free_huge_pages
--;
903 h
->free_huge_pages_node
[nid
]--;
904 h
->surplus_huge_pages
--;
905 h
->surplus_huge_pages_node
[nid
]--;
907 remaining_iterations
= num_online_nodes();
913 * Determine if the huge page at addr within the vma has an associated
914 * reservation. Where it does not we will need to logically increase
915 * reservation and actually increase quota before an allocation can occur.
916 * Where any new reservation would be required the reservation change is
917 * prepared, but not committed. Once the page has been quota'd allocated
918 * an instantiated the change should be committed via vma_commit_reservation.
919 * No action is required on failure.
921 static long vma_needs_reservation(struct hstate
*h
,
922 struct vm_area_struct
*vma
, unsigned long addr
)
924 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
925 struct inode
*inode
= mapping
->host
;
927 if (vma
->vm_flags
& VM_SHARED
) {
928 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
929 return region_chg(&inode
->i_mapping
->private_list
,
932 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
937 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
938 struct resv_map
*reservations
= vma_resv_map(vma
);
940 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
946 static void vma_commit_reservation(struct hstate
*h
,
947 struct vm_area_struct
*vma
, unsigned long addr
)
949 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
950 struct inode
*inode
= mapping
->host
;
952 if (vma
->vm_flags
& VM_SHARED
) {
953 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
954 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
956 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
957 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
958 struct resv_map
*reservations
= vma_resv_map(vma
);
960 /* Mark this page used in the map. */
961 region_add(&reservations
->regions
, idx
, idx
+ 1);
965 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
966 unsigned long addr
, int avoid_reserve
)
968 struct hstate
*h
= hstate_vma(vma
);
970 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
971 struct inode
*inode
= mapping
->host
;
975 * Processes that did not create the mapping will have no reserves and
976 * will not have accounted against quota. Check that the quota can be
977 * made before satisfying the allocation
978 * MAP_NORESERVE mappings may also need pages and quota allocated
979 * if no reserve mapping overlaps.
981 chg
= vma_needs_reservation(h
, vma
, addr
);
985 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
986 return ERR_PTR(-ENOSPC
);
988 spin_lock(&hugetlb_lock
);
989 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
990 spin_unlock(&hugetlb_lock
);
993 page
= alloc_buddy_huge_page(h
, vma
, addr
);
995 hugetlb_put_quota(inode
->i_mapping
, chg
);
996 return ERR_PTR(-VM_FAULT_OOM
);
1000 set_page_refcounted(page
);
1001 set_page_private(page
, (unsigned long) mapping
);
1003 vma_commit_reservation(h
, vma
, addr
);
1008 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1010 struct huge_bootmem_page
*m
;
1011 int nr_nodes
= nodes_weight(node_online_map
);
1016 addr
= __alloc_bootmem_node_nopanic(
1017 NODE_DATA(h
->hugetlb_next_nid
),
1018 huge_page_size(h
), huge_page_size(h
), 0);
1022 * Use the beginning of the huge page to store the
1023 * huge_bootmem_page struct (until gather_bootmem
1024 * puts them into the mem_map).
1029 hstate_next_node(h
);
1035 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1036 /* Put them into a private list first because mem_map is not up yet */
1037 list_add(&m
->list
, &huge_boot_pages
);
1042 static void prep_compound_huge_page(struct page
*page
, int order
)
1044 if (unlikely(order
> (MAX_ORDER
- 1)))
1045 prep_compound_gigantic_page(page
, order
);
1047 prep_compound_page(page
, order
);
1050 /* Put bootmem huge pages into the standard lists after mem_map is up */
1051 static void __init
gather_bootmem_prealloc(void)
1053 struct huge_bootmem_page
*m
;
1055 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1056 struct page
*page
= virt_to_page(m
);
1057 struct hstate
*h
= m
->hstate
;
1058 __ClearPageReserved(page
);
1059 WARN_ON(page_count(page
) != 1);
1060 prep_compound_huge_page(page
, h
->order
);
1061 prep_new_huge_page(h
, page
, page_to_nid(page
));
1065 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1069 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1070 if (h
->order
>= MAX_ORDER
) {
1071 if (!alloc_bootmem_huge_page(h
))
1073 } else if (!alloc_fresh_huge_page(h
))
1076 h
->max_huge_pages
= i
;
1079 static void __init
hugetlb_init_hstates(void)
1083 for_each_hstate(h
) {
1084 /* oversize hugepages were init'ed in early boot */
1085 if (h
->order
< MAX_ORDER
)
1086 hugetlb_hstate_alloc_pages(h
);
1090 static char * __init
memfmt(char *buf
, unsigned long n
)
1092 if (n
>= (1UL << 30))
1093 sprintf(buf
, "%lu GB", n
>> 30);
1094 else if (n
>= (1UL << 20))
1095 sprintf(buf
, "%lu MB", n
>> 20);
1097 sprintf(buf
, "%lu KB", n
>> 10);
1101 static void __init
report_hugepages(void)
1105 for_each_hstate(h
) {
1107 printk(KERN_INFO
"HugeTLB registered %s page size, "
1108 "pre-allocated %ld pages\n",
1109 memfmt(buf
, huge_page_size(h
)),
1110 h
->free_huge_pages
);
1114 #ifdef CONFIG_HIGHMEM
1115 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1119 if (h
->order
>= MAX_ORDER
)
1122 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1123 struct page
*page
, *next
;
1124 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1125 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1126 if (count
>= h
->nr_huge_pages
)
1128 if (PageHighMem(page
))
1130 list_del(&page
->lru
);
1131 update_and_free_page(h
, page
);
1132 h
->free_huge_pages
--;
1133 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1138 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1143 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1144 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1146 unsigned long min_count
, ret
;
1148 if (h
->order
>= MAX_ORDER
)
1149 return h
->max_huge_pages
;
1152 * Increase the pool size
1153 * First take pages out of surplus state. Then make up the
1154 * remaining difference by allocating fresh huge pages.
1156 * We might race with alloc_buddy_huge_page() here and be unable
1157 * to convert a surplus huge page to a normal huge page. That is
1158 * not critical, though, it just means the overall size of the
1159 * pool might be one hugepage larger than it needs to be, but
1160 * within all the constraints specified by the sysctls.
1162 spin_lock(&hugetlb_lock
);
1163 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1164 if (!adjust_pool_surplus(h
, -1))
1168 while (count
> persistent_huge_pages(h
)) {
1170 * If this allocation races such that we no longer need the
1171 * page, free_huge_page will handle it by freeing the page
1172 * and reducing the surplus.
1174 spin_unlock(&hugetlb_lock
);
1175 ret
= alloc_fresh_huge_page(h
);
1176 spin_lock(&hugetlb_lock
);
1183 * Decrease the pool size
1184 * First return free pages to the buddy allocator (being careful
1185 * to keep enough around to satisfy reservations). Then place
1186 * pages into surplus state as needed so the pool will shrink
1187 * to the desired size as pages become free.
1189 * By placing pages into the surplus state independent of the
1190 * overcommit value, we are allowing the surplus pool size to
1191 * exceed overcommit. There are few sane options here. Since
1192 * alloc_buddy_huge_page() is checking the global counter,
1193 * though, we'll note that we're not allowed to exceed surplus
1194 * and won't grow the pool anywhere else. Not until one of the
1195 * sysctls are changed, or the surplus pages go out of use.
1197 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1198 min_count
= max(count
, min_count
);
1199 try_to_free_low(h
, min_count
);
1200 while (min_count
< persistent_huge_pages(h
)) {
1201 struct page
*page
= dequeue_huge_page(h
);
1204 update_and_free_page(h
, page
);
1206 while (count
< persistent_huge_pages(h
)) {
1207 if (!adjust_pool_surplus(h
, 1))
1211 ret
= persistent_huge_pages(h
);
1212 spin_unlock(&hugetlb_lock
);
1216 #define HSTATE_ATTR_RO(_name) \
1217 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1219 #define HSTATE_ATTR(_name) \
1220 static struct kobj_attribute _name##_attr = \
1221 __ATTR(_name, 0644, _name##_show, _name##_store)
1223 static struct kobject
*hugepages_kobj
;
1224 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1226 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1229 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1230 if (hstate_kobjs
[i
] == kobj
)
1236 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1237 struct kobj_attribute
*attr
, char *buf
)
1239 struct hstate
*h
= kobj_to_hstate(kobj
);
1240 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1242 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1243 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1246 unsigned long input
;
1247 struct hstate
*h
= kobj_to_hstate(kobj
);
1249 err
= strict_strtoul(buf
, 10, &input
);
1253 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1257 HSTATE_ATTR(nr_hugepages
);
1259 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1260 struct kobj_attribute
*attr
, char *buf
)
1262 struct hstate
*h
= kobj_to_hstate(kobj
);
1263 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1265 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1266 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1269 unsigned long input
;
1270 struct hstate
*h
= kobj_to_hstate(kobj
);
1272 err
= strict_strtoul(buf
, 10, &input
);
1276 spin_lock(&hugetlb_lock
);
1277 h
->nr_overcommit_huge_pages
= input
;
1278 spin_unlock(&hugetlb_lock
);
1282 HSTATE_ATTR(nr_overcommit_hugepages
);
1284 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1285 struct kobj_attribute
*attr
, char *buf
)
1287 struct hstate
*h
= kobj_to_hstate(kobj
);
1288 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1290 HSTATE_ATTR_RO(free_hugepages
);
1292 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1293 struct kobj_attribute
*attr
, char *buf
)
1295 struct hstate
*h
= kobj_to_hstate(kobj
);
1296 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1298 HSTATE_ATTR_RO(resv_hugepages
);
1300 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1301 struct kobj_attribute
*attr
, char *buf
)
1303 struct hstate
*h
= kobj_to_hstate(kobj
);
1304 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1306 HSTATE_ATTR_RO(surplus_hugepages
);
1308 static struct attribute
*hstate_attrs
[] = {
1309 &nr_hugepages_attr
.attr
,
1310 &nr_overcommit_hugepages_attr
.attr
,
1311 &free_hugepages_attr
.attr
,
1312 &resv_hugepages_attr
.attr
,
1313 &surplus_hugepages_attr
.attr
,
1317 static struct attribute_group hstate_attr_group
= {
1318 .attrs
= hstate_attrs
,
1321 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1325 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1327 if (!hstate_kobjs
[h
- hstates
])
1330 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1331 &hstate_attr_group
);
1333 kobject_put(hstate_kobjs
[h
- hstates
]);
1338 static void __init
hugetlb_sysfs_init(void)
1343 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1344 if (!hugepages_kobj
)
1347 for_each_hstate(h
) {
1348 err
= hugetlb_sysfs_add_hstate(h
);
1350 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1355 static void __exit
hugetlb_exit(void)
1359 for_each_hstate(h
) {
1360 kobject_put(hstate_kobjs
[h
- hstates
]);
1363 kobject_put(hugepages_kobj
);
1365 module_exit(hugetlb_exit
);
1367 static int __init
hugetlb_init(void)
1369 /* Some platform decide whether they support huge pages at boot
1370 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1371 * there is no such support
1373 if (HPAGE_SHIFT
== 0)
1376 if (!size_to_hstate(default_hstate_size
)) {
1377 default_hstate_size
= HPAGE_SIZE
;
1378 if (!size_to_hstate(default_hstate_size
))
1379 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1381 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1382 if (default_hstate_max_huge_pages
)
1383 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1385 hugetlb_init_hstates();
1387 gather_bootmem_prealloc();
1391 hugetlb_sysfs_init();
1395 module_init(hugetlb_init
);
1397 /* Should be called on processing a hugepagesz=... option */
1398 void __init
hugetlb_add_hstate(unsigned order
)
1403 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1404 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1407 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1409 h
= &hstates
[max_hstate
++];
1411 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1412 h
->nr_huge_pages
= 0;
1413 h
->free_huge_pages
= 0;
1414 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1415 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1416 h
->hugetlb_next_nid
= first_node(node_online_map
);
1417 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1418 huge_page_size(h
)/1024);
1423 static int __init
hugetlb_nrpages_setup(char *s
)
1426 static unsigned long *last_mhp
;
1429 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1430 * so this hugepages= parameter goes to the "default hstate".
1433 mhp
= &default_hstate_max_huge_pages
;
1435 mhp
= &parsed_hstate
->max_huge_pages
;
1437 if (mhp
== last_mhp
) {
1438 printk(KERN_WARNING
"hugepages= specified twice without "
1439 "interleaving hugepagesz=, ignoring\n");
1443 if (sscanf(s
, "%lu", mhp
) <= 0)
1447 * Global state is always initialized later in hugetlb_init.
1448 * But we need to allocate >= MAX_ORDER hstates here early to still
1449 * use the bootmem allocator.
1451 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1452 hugetlb_hstate_alloc_pages(parsed_hstate
);
1458 __setup("hugepages=", hugetlb_nrpages_setup
);
1460 static int __init
hugetlb_default_setup(char *s
)
1462 default_hstate_size
= memparse(s
, &s
);
1465 __setup("default_hugepagesz=", hugetlb_default_setup
);
1467 static unsigned int cpuset_mems_nr(unsigned int *array
)
1470 unsigned int nr
= 0;
1472 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1478 #ifdef CONFIG_SYSCTL
1479 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1480 struct file
*file
, void __user
*buffer
,
1481 size_t *length
, loff_t
*ppos
)
1483 struct hstate
*h
= &default_hstate
;
1487 tmp
= h
->max_huge_pages
;
1490 table
->maxlen
= sizeof(unsigned long);
1491 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1494 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1499 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1500 struct file
*file
, void __user
*buffer
,
1501 size_t *length
, loff_t
*ppos
)
1503 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1504 if (hugepages_treat_as_movable
)
1505 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1507 htlb_alloc_mask
= GFP_HIGHUSER
;
1511 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1512 struct file
*file
, void __user
*buffer
,
1513 size_t *length
, loff_t
*ppos
)
1515 struct hstate
*h
= &default_hstate
;
1519 tmp
= h
->nr_overcommit_huge_pages
;
1522 table
->maxlen
= sizeof(unsigned long);
1523 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1526 spin_lock(&hugetlb_lock
);
1527 h
->nr_overcommit_huge_pages
= tmp
;
1528 spin_unlock(&hugetlb_lock
);
1534 #endif /* CONFIG_SYSCTL */
1536 void hugetlb_report_meminfo(struct seq_file
*m
)
1538 struct hstate
*h
= &default_hstate
;
1540 "HugePages_Total: %5lu\n"
1541 "HugePages_Free: %5lu\n"
1542 "HugePages_Rsvd: %5lu\n"
1543 "HugePages_Surp: %5lu\n"
1544 "Hugepagesize: %8lu kB\n",
1548 h
->surplus_huge_pages
,
1549 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1552 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1554 struct hstate
*h
= &default_hstate
;
1556 "Node %d HugePages_Total: %5u\n"
1557 "Node %d HugePages_Free: %5u\n"
1558 "Node %d HugePages_Surp: %5u\n",
1559 nid
, h
->nr_huge_pages_node
[nid
],
1560 nid
, h
->free_huge_pages_node
[nid
],
1561 nid
, h
->surplus_huge_pages_node
[nid
]);
1564 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1565 unsigned long hugetlb_total_pages(void)
1567 struct hstate
*h
= &default_hstate
;
1568 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1571 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1575 spin_lock(&hugetlb_lock
);
1577 * When cpuset is configured, it breaks the strict hugetlb page
1578 * reservation as the accounting is done on a global variable. Such
1579 * reservation is completely rubbish in the presence of cpuset because
1580 * the reservation is not checked against page availability for the
1581 * current cpuset. Application can still potentially OOM'ed by kernel
1582 * with lack of free htlb page in cpuset that the task is in.
1583 * Attempt to enforce strict accounting with cpuset is almost
1584 * impossible (or too ugly) because cpuset is too fluid that
1585 * task or memory node can be dynamically moved between cpusets.
1587 * The change of semantics for shared hugetlb mapping with cpuset is
1588 * undesirable. However, in order to preserve some of the semantics,
1589 * we fall back to check against current free page availability as
1590 * a best attempt and hopefully to minimize the impact of changing
1591 * semantics that cpuset has.
1594 if (gather_surplus_pages(h
, delta
) < 0)
1597 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1598 return_unused_surplus_pages(h
, delta
);
1605 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1608 spin_unlock(&hugetlb_lock
);
1612 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1614 struct resv_map
*reservations
= vma_resv_map(vma
);
1617 * This new VMA should share its siblings reservation map if present.
1618 * The VMA will only ever have a valid reservation map pointer where
1619 * it is being copied for another still existing VMA. As that VMA
1620 * has a reference to the reservation map it cannot dissappear until
1621 * after this open call completes. It is therefore safe to take a
1622 * new reference here without additional locking.
1625 kref_get(&reservations
->refs
);
1628 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1630 struct hstate
*h
= hstate_vma(vma
);
1631 struct resv_map
*reservations
= vma_resv_map(vma
);
1632 unsigned long reserve
;
1633 unsigned long start
;
1637 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1638 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1640 reserve
= (end
- start
) -
1641 region_count(&reservations
->regions
, start
, end
);
1643 kref_put(&reservations
->refs
, resv_map_release
);
1646 hugetlb_acct_memory(h
, -reserve
);
1647 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1653 * We cannot handle pagefaults against hugetlb pages at all. They cause
1654 * handle_mm_fault() to try to instantiate regular-sized pages in the
1655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1658 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1664 struct vm_operations_struct hugetlb_vm_ops
= {
1665 .fault
= hugetlb_vm_op_fault
,
1666 .open
= hugetlb_vm_op_open
,
1667 .close
= hugetlb_vm_op_close
,
1670 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1677 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1679 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1681 entry
= pte_mkyoung(entry
);
1682 entry
= pte_mkhuge(entry
);
1687 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1688 unsigned long address
, pte_t
*ptep
)
1692 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1693 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1694 update_mmu_cache(vma
, address
, entry
);
1699 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1700 struct vm_area_struct
*vma
)
1702 pte_t
*src_pte
, *dst_pte
, entry
;
1703 struct page
*ptepage
;
1706 struct hstate
*h
= hstate_vma(vma
);
1707 unsigned long sz
= huge_page_size(h
);
1709 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1711 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1712 src_pte
= huge_pte_offset(src
, addr
);
1715 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1719 /* If the pagetables are shared don't copy or take references */
1720 if (dst_pte
== src_pte
)
1723 spin_lock(&dst
->page_table_lock
);
1724 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1725 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1727 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1728 entry
= huge_ptep_get(src_pte
);
1729 ptepage
= pte_page(entry
);
1731 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1733 spin_unlock(&src
->page_table_lock
);
1734 spin_unlock(&dst
->page_table_lock
);
1742 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1743 unsigned long end
, struct page
*ref_page
)
1745 struct mm_struct
*mm
= vma
->vm_mm
;
1746 unsigned long address
;
1751 struct hstate
*h
= hstate_vma(vma
);
1752 unsigned long sz
= huge_page_size(h
);
1755 * A page gathering list, protected by per file i_mmap_lock. The
1756 * lock is used to avoid list corruption from multiple unmapping
1757 * of the same page since we are using page->lru.
1759 LIST_HEAD(page_list
);
1761 WARN_ON(!is_vm_hugetlb_page(vma
));
1762 BUG_ON(start
& ~huge_page_mask(h
));
1763 BUG_ON(end
& ~huge_page_mask(h
));
1765 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1766 spin_lock(&mm
->page_table_lock
);
1767 for (address
= start
; address
< end
; address
+= sz
) {
1768 ptep
= huge_pte_offset(mm
, address
);
1772 if (huge_pmd_unshare(mm
, &address
, ptep
))
1776 * If a reference page is supplied, it is because a specific
1777 * page is being unmapped, not a range. Ensure the page we
1778 * are about to unmap is the actual page of interest.
1781 pte
= huge_ptep_get(ptep
);
1782 if (huge_pte_none(pte
))
1784 page
= pte_page(pte
);
1785 if (page
!= ref_page
)
1789 * Mark the VMA as having unmapped its page so that
1790 * future faults in this VMA will fail rather than
1791 * looking like data was lost
1793 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1796 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1797 if (huge_pte_none(pte
))
1800 page
= pte_page(pte
);
1802 set_page_dirty(page
);
1803 list_add(&page
->lru
, &page_list
);
1805 spin_unlock(&mm
->page_table_lock
);
1806 flush_tlb_range(vma
, start
, end
);
1807 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1808 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1809 list_del(&page
->lru
);
1814 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1815 unsigned long end
, struct page
*ref_page
)
1817 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1818 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1819 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1823 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1824 * mappping it owns the reserve page for. The intention is to unmap the page
1825 * from other VMAs and let the children be SIGKILLed if they are faulting the
1828 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1829 struct page
*page
, unsigned long address
)
1831 struct hstate
*h
= hstate_vma(vma
);
1832 struct vm_area_struct
*iter_vma
;
1833 struct address_space
*mapping
;
1834 struct prio_tree_iter iter
;
1838 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1839 * from page cache lookup which is in HPAGE_SIZE units.
1841 address
= address
& huge_page_mask(h
);
1842 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1843 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1844 mapping
= (struct address_space
*)page_private(page
);
1846 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1847 /* Do not unmap the current VMA */
1848 if (iter_vma
== vma
)
1852 * Unmap the page from other VMAs without their own reserves.
1853 * They get marked to be SIGKILLed if they fault in these
1854 * areas. This is because a future no-page fault on this VMA
1855 * could insert a zeroed page instead of the data existing
1856 * from the time of fork. This would look like data corruption
1858 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1859 unmap_hugepage_range(iter_vma
,
1860 address
, address
+ huge_page_size(h
),
1867 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1868 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1869 struct page
*pagecache_page
)
1871 struct hstate
*h
= hstate_vma(vma
);
1872 struct page
*old_page
, *new_page
;
1874 int outside_reserve
= 0;
1876 old_page
= pte_page(pte
);
1879 /* If no-one else is actually using this page, avoid the copy
1880 * and just make the page writable */
1881 avoidcopy
= (page_count(old_page
) == 1);
1883 set_huge_ptep_writable(vma
, address
, ptep
);
1888 * If the process that created a MAP_PRIVATE mapping is about to
1889 * perform a COW due to a shared page count, attempt to satisfy
1890 * the allocation without using the existing reserves. The pagecache
1891 * page is used to determine if the reserve at this address was
1892 * consumed or not. If reserves were used, a partial faulted mapping
1893 * at the time of fork() could consume its reserves on COW instead
1894 * of the full address range.
1896 if (!(vma
->vm_flags
& VM_SHARED
) &&
1897 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1898 old_page
!= pagecache_page
)
1899 outside_reserve
= 1;
1901 page_cache_get(old_page
);
1902 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1904 if (IS_ERR(new_page
)) {
1905 page_cache_release(old_page
);
1908 * If a process owning a MAP_PRIVATE mapping fails to COW,
1909 * it is due to references held by a child and an insufficient
1910 * huge page pool. To guarantee the original mappers
1911 * reliability, unmap the page from child processes. The child
1912 * may get SIGKILLed if it later faults.
1914 if (outside_reserve
) {
1915 BUG_ON(huge_pte_none(pte
));
1916 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1917 BUG_ON(page_count(old_page
) != 1);
1918 BUG_ON(huge_pte_none(pte
));
1919 goto retry_avoidcopy
;
1924 return -PTR_ERR(new_page
);
1927 spin_unlock(&mm
->page_table_lock
);
1928 copy_huge_page(new_page
, old_page
, address
, vma
);
1929 __SetPageUptodate(new_page
);
1930 spin_lock(&mm
->page_table_lock
);
1932 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1933 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1935 huge_ptep_clear_flush(vma
, address
, ptep
);
1936 set_huge_pte_at(mm
, address
, ptep
,
1937 make_huge_pte(vma
, new_page
, 1));
1938 /* Make the old page be freed below */
1939 new_page
= old_page
;
1941 page_cache_release(new_page
);
1942 page_cache_release(old_page
);
1946 /* Return the pagecache page at a given address within a VMA */
1947 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1948 struct vm_area_struct
*vma
, unsigned long address
)
1950 struct address_space
*mapping
;
1953 mapping
= vma
->vm_file
->f_mapping
;
1954 idx
= vma_hugecache_offset(h
, vma
, address
);
1956 return find_lock_page(mapping
, idx
);
1959 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1960 unsigned long address
, pte_t
*ptep
, int write_access
)
1962 struct hstate
*h
= hstate_vma(vma
);
1963 int ret
= VM_FAULT_SIGBUS
;
1967 struct address_space
*mapping
;
1971 * Currently, we are forced to kill the process in the event the
1972 * original mapper has unmapped pages from the child due to a failed
1973 * COW. Warn that such a situation has occured as it may not be obvious
1975 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1977 "PID %d killed due to inadequate hugepage pool\n",
1982 mapping
= vma
->vm_file
->f_mapping
;
1983 idx
= vma_hugecache_offset(h
, vma
, address
);
1986 * Use page lock to guard against racing truncation
1987 * before we get page_table_lock.
1990 page
= find_lock_page(mapping
, idx
);
1992 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1995 page
= alloc_huge_page(vma
, address
, 0);
1997 ret
= -PTR_ERR(page
);
2000 clear_huge_page(page
, address
, huge_page_size(h
));
2001 __SetPageUptodate(page
);
2003 if (vma
->vm_flags
& VM_SHARED
) {
2005 struct inode
*inode
= mapping
->host
;
2007 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2015 spin_lock(&inode
->i_lock
);
2016 inode
->i_blocks
+= blocks_per_huge_page(h
);
2017 spin_unlock(&inode
->i_lock
);
2023 * If we are going to COW a private mapping later, we examine the
2024 * pending reservations for this page now. This will ensure that
2025 * any allocations necessary to record that reservation occur outside
2028 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
))
2029 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2031 goto backout_unlocked
;
2034 spin_lock(&mm
->page_table_lock
);
2035 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2040 if (!huge_pte_none(huge_ptep_get(ptep
)))
2043 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2044 && (vma
->vm_flags
& VM_SHARED
)));
2045 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2047 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
2048 /* Optimization, do the COW without a second fault */
2049 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2052 spin_unlock(&mm
->page_table_lock
);
2058 spin_unlock(&mm
->page_table_lock
);
2065 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2066 unsigned long address
, int write_access
)
2071 struct page
*pagecache_page
= NULL
;
2072 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2073 struct hstate
*h
= hstate_vma(vma
);
2075 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2077 return VM_FAULT_OOM
;
2080 * Serialize hugepage allocation and instantiation, so that we don't
2081 * get spurious allocation failures if two CPUs race to instantiate
2082 * the same page in the page cache.
2084 mutex_lock(&hugetlb_instantiation_mutex
);
2085 entry
= huge_ptep_get(ptep
);
2086 if (huge_pte_none(entry
)) {
2087 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
2094 * If we are going to COW the mapping later, we examine the pending
2095 * reservations for this page now. This will ensure that any
2096 * allocations necessary to record that reservation occur outside the
2097 * spinlock. For private mappings, we also lookup the pagecache
2098 * page now as it is used to determine if a reservation has been
2101 if (write_access
&& !pte_write(entry
)) {
2102 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2107 if (!(vma
->vm_flags
& VM_SHARED
))
2108 pagecache_page
= hugetlbfs_pagecache_page(h
,
2112 spin_lock(&mm
->page_table_lock
);
2113 /* Check for a racing update before calling hugetlb_cow */
2114 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2115 goto out_page_table_lock
;
2119 if (!pte_write(entry
)) {
2120 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2122 goto out_page_table_lock
;
2124 entry
= pte_mkdirty(entry
);
2126 entry
= pte_mkyoung(entry
);
2127 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, write_access
))
2128 update_mmu_cache(vma
, address
, entry
);
2130 out_page_table_lock
:
2131 spin_unlock(&mm
->page_table_lock
);
2133 if (pagecache_page
) {
2134 unlock_page(pagecache_page
);
2135 put_page(pagecache_page
);
2139 mutex_unlock(&hugetlb_instantiation_mutex
);
2144 /* Can be overriden by architectures */
2145 __attribute__((weak
)) struct page
*
2146 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2147 pud_t
*pud
, int write
)
2153 static int huge_zeropage_ok(pte_t
*ptep
, int write
, int shared
)
2155 if (!ptep
|| write
|| shared
)
2158 return huge_pte_none(huge_ptep_get(ptep
));
2161 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2162 struct page
**pages
, struct vm_area_struct
**vmas
,
2163 unsigned long *position
, int *length
, int i
,
2166 unsigned long pfn_offset
;
2167 unsigned long vaddr
= *position
;
2168 int remainder
= *length
;
2169 struct hstate
*h
= hstate_vma(vma
);
2170 int zeropage_ok
= 0;
2171 int shared
= vma
->vm_flags
& VM_SHARED
;
2173 spin_lock(&mm
->page_table_lock
);
2174 while (vaddr
< vma
->vm_end
&& remainder
) {
2179 * Some archs (sparc64, sh*) have multiple pte_ts to
2180 * each hugepage. We have to make * sure we get the
2181 * first, for the page indexing below to work.
2183 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2184 if (huge_zeropage_ok(pte
, write
, shared
))
2188 (huge_pte_none(huge_ptep_get(pte
)) && !zeropage_ok
) ||
2189 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2192 spin_unlock(&mm
->page_table_lock
);
2193 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2194 spin_lock(&mm
->page_table_lock
);
2195 if (!(ret
& VM_FAULT_ERROR
))
2204 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2205 page
= pte_page(huge_ptep_get(pte
));
2209 pages
[i
] = ZERO_PAGE(0);
2211 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2222 if (vaddr
< vma
->vm_end
&& remainder
&&
2223 pfn_offset
< pages_per_huge_page(h
)) {
2225 * We use pfn_offset to avoid touching the pageframes
2226 * of this compound page.
2231 spin_unlock(&mm
->page_table_lock
);
2232 *length
= remainder
;
2238 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2239 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2241 struct mm_struct
*mm
= vma
->vm_mm
;
2242 unsigned long start
= address
;
2245 struct hstate
*h
= hstate_vma(vma
);
2247 BUG_ON(address
>= end
);
2248 flush_cache_range(vma
, address
, end
);
2250 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2251 spin_lock(&mm
->page_table_lock
);
2252 for (; address
< end
; address
+= huge_page_size(h
)) {
2253 ptep
= huge_pte_offset(mm
, address
);
2256 if (huge_pmd_unshare(mm
, &address
, ptep
))
2258 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2259 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2260 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2261 set_huge_pte_at(mm
, address
, ptep
, pte
);
2264 spin_unlock(&mm
->page_table_lock
);
2265 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2267 flush_tlb_range(vma
, start
, end
);
2270 int hugetlb_reserve_pages(struct inode
*inode
,
2272 struct vm_area_struct
*vma
,
2276 struct hstate
*h
= hstate_inode(inode
);
2279 * Only apply hugepage reservation if asked. At fault time, an
2280 * attempt will be made for VM_NORESERVE to allocate a page
2281 * and filesystem quota without using reserves
2283 if (acctflag
& VM_NORESERVE
)
2287 * Shared mappings base their reservation on the number of pages that
2288 * are already allocated on behalf of the file. Private mappings need
2289 * to reserve the full area even if read-only as mprotect() may be
2290 * called to make the mapping read-write. Assume !vma is a shm mapping
2292 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2293 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2295 struct resv_map
*resv_map
= resv_map_alloc();
2301 set_vma_resv_map(vma
, resv_map
);
2302 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2308 /* There must be enough filesystem quota for the mapping */
2309 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2313 * Check enough hugepages are available for the reservation.
2314 * Hand back the quota if there are not
2316 ret
= hugetlb_acct_memory(h
, chg
);
2318 hugetlb_put_quota(inode
->i_mapping
, chg
);
2323 * Account for the reservations made. Shared mappings record regions
2324 * that have reservations as they are shared by multiple VMAs.
2325 * When the last VMA disappears, the region map says how much
2326 * the reservation was and the page cache tells how much of
2327 * the reservation was consumed. Private mappings are per-VMA and
2328 * only the consumed reservations are tracked. When the VMA
2329 * disappears, the original reservation is the VMA size and the
2330 * consumed reservations are stored in the map. Hence, nothing
2331 * else has to be done for private mappings here
2333 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2334 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2338 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2340 struct hstate
*h
= hstate_inode(inode
);
2341 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2343 spin_lock(&inode
->i_lock
);
2344 inode
->i_blocks
-= blocks_per_huge_page(h
);
2345 spin_unlock(&inode
->i_lock
);
2347 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2348 hugetlb_acct_memory(h
, -(chg
- freed
));