[PATCH] swiotlb: move from arch/ia64/lib/ to lib/
[linux-2.6/mini2440.git] / lib / swiotlb.c
blob875b0c16250cdea9e03b7a2ed7f334392af83d5e
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is for IA-64 platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
17 #include <linux/cache.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ctype.h>
26 #include <asm/io.h>
27 #include <asm/pci.h>
28 #include <asm/dma.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
33 #define OFFSET(val,align) ((unsigned long) \
34 ( (val) & ( (align) - 1)))
36 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
37 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
40 * Maximum allowable number of contiguous slabs to map,
41 * must be a power of 2. What is the appropriate value ?
42 * The complexity of {map,unmap}_single is linearly dependent on this value.
44 #define IO_TLB_SEGSIZE 128
47 * log of the size of each IO TLB slab. The number of slabs is command line
48 * controllable.
50 #define IO_TLB_SHIFT 11
52 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 * Minimum IO TLB size to bother booting with. Systems with mainly
56 * 64bit capable cards will only lightly use the swiotlb. If we can't
57 * allocate a contiguous 1MB, we're probably in trouble anyway.
59 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
61 int swiotlb_force;
64 * Used to do a quick range check in swiotlb_unmap_single and
65 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
66 * API.
68 static char *io_tlb_start, *io_tlb_end;
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 static unsigned long io_tlb_nslabs;
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
79 static unsigned long io_tlb_overflow = 32*1024;
81 void *io_tlb_overflow_buffer;
84 * This is a free list describing the number of free entries available from
85 * each index
87 static unsigned int *io_tlb_list;
88 static unsigned int io_tlb_index;
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
94 static unsigned char **io_tlb_orig_addr;
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock);
101 static int __init
102 setup_io_tlb_npages(char *str)
104 if (isdigit(*str)) {
105 io_tlb_nslabs = simple_strtoul(str, &str, 0);
106 /* avoid tail segment of size < IO_TLB_SEGSIZE */
107 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
109 if (*str == ',')
110 ++str;
111 if (!strcmp(str, "force"))
112 swiotlb_force = 1;
113 return 1;
115 __setup("swiotlb=", setup_io_tlb_npages);
116 /* make io_tlb_overflow tunable too? */
119 * Statically reserve bounce buffer space and initialize bounce buffer data
120 * structures for the software IO TLB used to implement the PCI DMA API.
122 void
123 swiotlb_init_with_default_size (size_t default_size)
125 unsigned long i;
127 if (!io_tlb_nslabs) {
128 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
129 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
133 * Get IO TLB memory from the low pages
135 io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs *
136 (1 << IO_TLB_SHIFT));
137 if (!io_tlb_start)
138 panic("Cannot allocate SWIOTLB buffer");
139 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
142 * Allocate and initialize the free list array. This array is used
143 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
144 * between io_tlb_start and io_tlb_end.
146 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
147 for (i = 0; i < io_tlb_nslabs; i++)
148 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
149 io_tlb_index = 0;
150 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
153 * Get the overflow emergency buffer
155 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
156 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
157 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
160 void
161 swiotlb_init (void)
163 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
167 * Systems with larger DMA zones (those that don't support ISA) can
168 * initialize the swiotlb later using the slab allocator if needed.
169 * This should be just like above, but with some error catching.
172 swiotlb_late_init_with_default_size (size_t default_size)
174 unsigned long i, req_nslabs = io_tlb_nslabs;
175 unsigned int order;
177 if (!io_tlb_nslabs) {
178 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
179 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
183 * Get IO TLB memory from the low pages
185 order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
186 io_tlb_nslabs = SLABS_PER_PAGE << order;
188 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
189 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
190 order);
191 if (io_tlb_start)
192 break;
193 order--;
196 if (!io_tlb_start)
197 goto cleanup1;
199 if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
200 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
201 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
202 io_tlb_nslabs = SLABS_PER_PAGE << order;
204 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
205 memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
208 * Allocate and initialize the free list array. This array is used
209 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
210 * between io_tlb_start and io_tlb_end.
212 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
213 get_order(io_tlb_nslabs * sizeof(int)));
214 if (!io_tlb_list)
215 goto cleanup2;
217 for (i = 0; i < io_tlb_nslabs; i++)
218 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
219 io_tlb_index = 0;
221 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
222 get_order(io_tlb_nslabs * sizeof(char *)));
223 if (!io_tlb_orig_addr)
224 goto cleanup3;
226 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
229 * Get the overflow emergency buffer
231 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
232 get_order(io_tlb_overflow));
233 if (!io_tlb_overflow_buffer)
234 goto cleanup4;
236 printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
237 "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
238 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
240 return 0;
242 cleanup4:
243 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
244 sizeof(char *)));
245 io_tlb_orig_addr = NULL;
246 cleanup3:
247 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
248 sizeof(int)));
249 io_tlb_list = NULL;
250 io_tlb_end = NULL;
251 cleanup2:
252 free_pages((unsigned long)io_tlb_start, order);
253 io_tlb_start = NULL;
254 cleanup1:
255 io_tlb_nslabs = req_nslabs;
256 return -ENOMEM;
259 static inline int
260 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
262 dma_addr_t mask = 0xffffffff;
263 /* If the device has a mask, use it, otherwise default to 32 bits */
264 if (hwdev && hwdev->dma_mask)
265 mask = *hwdev->dma_mask;
266 return (addr & ~mask) != 0;
270 * Allocates bounce buffer and returns its kernel virtual address.
272 static void *
273 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
275 unsigned long flags;
276 char *dma_addr;
277 unsigned int nslots, stride, index, wrap;
278 int i;
281 * For mappings greater than a page, we limit the stride (and
282 * hence alignment) to a page size.
284 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
285 if (size > PAGE_SIZE)
286 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
287 else
288 stride = 1;
290 if (!nslots)
291 BUG();
294 * Find suitable number of IO TLB entries size that will fit this
295 * request and allocate a buffer from that IO TLB pool.
297 spin_lock_irqsave(&io_tlb_lock, flags);
299 wrap = index = ALIGN(io_tlb_index, stride);
301 if (index >= io_tlb_nslabs)
302 wrap = index = 0;
304 do {
306 * If we find a slot that indicates we have 'nslots'
307 * number of contiguous buffers, we allocate the
308 * buffers from that slot and mark the entries as '0'
309 * indicating unavailable.
311 if (io_tlb_list[index] >= nslots) {
312 int count = 0;
314 for (i = index; i < (int) (index + nslots); i++)
315 io_tlb_list[i] = 0;
316 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
317 io_tlb_list[i] = ++count;
318 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
321 * Update the indices to avoid searching in
322 * the next round.
324 io_tlb_index = ((index + nslots) < io_tlb_nslabs
325 ? (index + nslots) : 0);
327 goto found;
329 index += stride;
330 if (index >= io_tlb_nslabs)
331 index = 0;
332 } while (index != wrap);
334 spin_unlock_irqrestore(&io_tlb_lock, flags);
335 return NULL;
337 found:
338 spin_unlock_irqrestore(&io_tlb_lock, flags);
341 * Save away the mapping from the original address to the DMA address.
342 * This is needed when we sync the memory. Then we sync the buffer if
343 * needed.
345 io_tlb_orig_addr[index] = buffer;
346 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
347 memcpy(dma_addr, buffer, size);
349 return dma_addr;
353 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
355 static void
356 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
358 unsigned long flags;
359 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
360 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
361 char *buffer = io_tlb_orig_addr[index];
364 * First, sync the memory before unmapping the entry
366 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
368 * bounce... copy the data back into the original buffer * and
369 * delete the bounce buffer.
371 memcpy(buffer, dma_addr, size);
374 * Return the buffer to the free list by setting the corresponding
375 * entries to indicate the number of contigous entries available.
376 * While returning the entries to the free list, we merge the entries
377 * with slots below and above the pool being returned.
379 spin_lock_irqsave(&io_tlb_lock, flags);
381 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
382 io_tlb_list[index + nslots] : 0);
384 * Step 1: return the slots to the free list, merging the
385 * slots with superceeding slots
387 for (i = index + nslots - 1; i >= index; i--)
388 io_tlb_list[i] = ++count;
390 * Step 2: merge the returned slots with the preceding slots,
391 * if available (non zero)
393 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
394 io_tlb_list[i] = ++count;
396 spin_unlock_irqrestore(&io_tlb_lock, flags);
399 static void
400 sync_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
402 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
403 char *buffer = io_tlb_orig_addr[index];
406 * bounce... copy the data back into/from the original buffer
407 * XXX How do you handle DMA_BIDIRECTIONAL here ?
409 if (dir == DMA_FROM_DEVICE)
410 memcpy(buffer, dma_addr, size);
411 else if (dir == DMA_TO_DEVICE)
412 memcpy(dma_addr, buffer, size);
413 else
414 BUG();
417 void *
418 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
419 dma_addr_t *dma_handle, int flags)
421 unsigned long dev_addr;
422 void *ret;
423 int order = get_order(size);
426 * XXX fix me: the DMA API should pass us an explicit DMA mask
427 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
428 * bit range instead of a 16MB one).
430 flags |= GFP_DMA;
432 ret = (void *)__get_free_pages(flags, order);
433 if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
435 * The allocated memory isn't reachable by the device.
436 * Fall back on swiotlb_map_single().
438 free_pages((unsigned long) ret, order);
439 ret = NULL;
441 if (!ret) {
443 * We are either out of memory or the device can't DMA
444 * to GFP_DMA memory; fall back on
445 * swiotlb_map_single(), which will grab memory from
446 * the lowest available address range.
448 dma_addr_t handle;
449 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
450 if (dma_mapping_error(handle))
451 return NULL;
453 ret = phys_to_virt(handle);
456 memset(ret, 0, size);
457 dev_addr = virt_to_phys(ret);
459 /* Confirm address can be DMA'd by device */
460 if (address_needs_mapping(hwdev, dev_addr)) {
461 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
462 (unsigned long long)*hwdev->dma_mask, dev_addr);
463 panic("swiotlb_alloc_coherent: allocated memory is out of "
464 "range for device");
466 *dma_handle = dev_addr;
467 return ret;
470 void
471 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
472 dma_addr_t dma_handle)
474 if (!(vaddr >= (void *)io_tlb_start
475 && vaddr < (void *)io_tlb_end))
476 free_pages((unsigned long) vaddr, get_order(size));
477 else
478 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
479 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
482 static void
483 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
486 * Ran out of IOMMU space for this operation. This is very bad.
487 * Unfortunately the drivers cannot handle this operation properly.
488 * unless they check for pci_dma_mapping_error (most don't)
489 * When the mapping is small enough return a static buffer to limit
490 * the damage, or panic when the transfer is too big.
492 printk(KERN_ERR "PCI-DMA: Out of SW-IOMMU space for %lu bytes at "
493 "device %s\n", size, dev ? dev->bus_id : "?");
495 if (size > io_tlb_overflow && do_panic) {
496 if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
497 panic("PCI-DMA: Memory would be corrupted\n");
498 if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
499 panic("PCI-DMA: Random memory would be DMAed\n");
504 * Map a single buffer of the indicated size for DMA in streaming mode. The
505 * PCI address to use is returned.
507 * Once the device is given the dma address, the device owns this memory until
508 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
510 dma_addr_t
511 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
513 unsigned long dev_addr = virt_to_phys(ptr);
514 void *map;
516 if (dir == DMA_NONE)
517 BUG();
519 * If the pointer passed in happens to be in the device's DMA window,
520 * we can safely return the device addr and not worry about bounce
521 * buffering it.
523 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
524 return dev_addr;
527 * Oh well, have to allocate and map a bounce buffer.
529 map = map_single(hwdev, ptr, size, dir);
530 if (!map) {
531 swiotlb_full(hwdev, size, dir, 1);
532 map = io_tlb_overflow_buffer;
535 dev_addr = virt_to_phys(map);
538 * Ensure that the address returned is DMA'ble
540 if (address_needs_mapping(hwdev, dev_addr))
541 panic("map_single: bounce buffer is not DMA'ble");
543 return dev_addr;
547 * Since DMA is i-cache coherent, any (complete) pages that were written via
548 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
549 * flush them when they get mapped into an executable vm-area.
551 static void
552 mark_clean(void *addr, size_t size)
554 unsigned long pg_addr, end;
556 pg_addr = PAGE_ALIGN((unsigned long) addr);
557 end = (unsigned long) addr + size;
558 while (pg_addr + PAGE_SIZE <= end) {
559 struct page *page = virt_to_page(pg_addr);
560 set_bit(PG_arch_1, &page->flags);
561 pg_addr += PAGE_SIZE;
566 * Unmap a single streaming mode DMA translation. The dma_addr and size must
567 * match what was provided for in a previous swiotlb_map_single call. All
568 * other usages are undefined.
570 * After this call, reads by the cpu to the buffer are guaranteed to see
571 * whatever the device wrote there.
573 void
574 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
575 int dir)
577 char *dma_addr = phys_to_virt(dev_addr);
579 if (dir == DMA_NONE)
580 BUG();
581 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
582 unmap_single(hwdev, dma_addr, size, dir);
583 else if (dir == DMA_FROM_DEVICE)
584 mark_clean(dma_addr, size);
588 * Make physical memory consistent for a single streaming mode DMA translation
589 * after a transfer.
591 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
592 * using the cpu, yet do not wish to teardown the PCI dma mapping, you must
593 * call this function before doing so. At the next point you give the PCI dma
594 * address back to the card, you must first perform a
595 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
597 void
598 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
599 size_t size, int dir)
601 char *dma_addr = phys_to_virt(dev_addr);
603 if (dir == DMA_NONE)
604 BUG();
605 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
606 sync_single(hwdev, dma_addr, size, dir);
607 else if (dir == DMA_FROM_DEVICE)
608 mark_clean(dma_addr, size);
611 void
612 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
613 size_t size, int dir)
615 char *dma_addr = phys_to_virt(dev_addr);
617 if (dir == DMA_NONE)
618 BUG();
619 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
620 sync_single(hwdev, dma_addr, size, dir);
621 else if (dir == DMA_FROM_DEVICE)
622 mark_clean(dma_addr, size);
626 * Map a set of buffers described by scatterlist in streaming mode for DMA.
627 * This is the scatter-gather version of the above swiotlb_map_single
628 * interface. Here the scatter gather list elements are each tagged with the
629 * appropriate dma address and length. They are obtained via
630 * sg_dma_{address,length}(SG).
632 * NOTE: An implementation may be able to use a smaller number of
633 * DMA address/length pairs than there are SG table elements.
634 * (for example via virtual mapping capabilities)
635 * The routine returns the number of addr/length pairs actually
636 * used, at most nents.
638 * Device ownership issues as mentioned above for swiotlb_map_single are the
639 * same here.
642 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
643 int dir)
645 void *addr;
646 unsigned long dev_addr;
647 int i;
649 if (dir == DMA_NONE)
650 BUG();
652 for (i = 0; i < nelems; i++, sg++) {
653 addr = SG_ENT_VIRT_ADDRESS(sg);
654 dev_addr = virt_to_phys(addr);
655 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
656 sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir));
657 if (!sg->dma_address) {
658 /* Don't panic here, we expect map_sg users
659 to do proper error handling. */
660 swiotlb_full(hwdev, sg->length, dir, 0);
661 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
662 sg[0].dma_length = 0;
663 return 0;
665 } else
666 sg->dma_address = dev_addr;
667 sg->dma_length = sg->length;
669 return nelems;
673 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
674 * concerning calls here are the same as for swiotlb_unmap_single() above.
676 void
677 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
678 int dir)
680 int i;
682 if (dir == DMA_NONE)
683 BUG();
685 for (i = 0; i < nelems; i++, sg++)
686 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
687 unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
688 else if (dir == DMA_FROM_DEVICE)
689 mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
693 * Make physical memory consistent for a set of streaming mode DMA translations
694 * after a transfer.
696 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
697 * and usage.
699 void
700 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
701 int nelems, int dir)
703 int i;
705 if (dir == DMA_NONE)
706 BUG();
708 for (i = 0; i < nelems; i++, sg++)
709 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
710 sync_single(hwdev, (void *) sg->dma_address,
711 sg->dma_length, dir);
714 void
715 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
716 int nelems, int dir)
718 int i;
720 if (dir == DMA_NONE)
721 BUG();
723 for (i = 0; i < nelems; i++, sg++)
724 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
725 sync_single(hwdev, (void *) sg->dma_address,
726 sg->dma_length, dir);
730 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
732 return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
736 * Return whether the given PCI device DMA address mask can be supported
737 * properly. For example, if your device can only drive the low 24-bits
738 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
739 * this function.
742 swiotlb_dma_supported (struct device *hwdev, u64 mask)
744 return (virt_to_phys (io_tlb_end) - 1) <= mask;
747 EXPORT_SYMBOL(swiotlb_init);
748 EXPORT_SYMBOL(swiotlb_map_single);
749 EXPORT_SYMBOL(swiotlb_unmap_single);
750 EXPORT_SYMBOL(swiotlb_map_sg);
751 EXPORT_SYMBOL(swiotlb_unmap_sg);
752 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
753 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
754 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
755 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
756 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
757 EXPORT_SYMBOL(swiotlb_alloc_coherent);
758 EXPORT_SYMBOL(swiotlb_free_coherent);
759 EXPORT_SYMBOL(swiotlb_dma_supported);