[NET]: uninline skb_pull, de-bloats a lot
[linux-2.6/mini2440.git] / net / core / skbuff.c
blobcf489b6329e853dae5f07abb41eb68ac288b6e95
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
70 #include "kmap_skb.h"
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
78 struct sk_buff *skb = (struct sk_buff *) buf->private;
80 kfree_skb(skb);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 struct sk_buff *skb = (struct sk_buff *) buf->private;
88 skb_get(skb);
91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
94 return 1;
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops = {
100 .can_merge = 0,
101 .map = generic_pipe_buf_map,
102 .unmap = generic_pipe_buf_unmap,
103 .confirm = generic_pipe_buf_confirm,
104 .release = sock_pipe_buf_release,
105 .steal = sock_pipe_buf_steal,
106 .get = sock_pipe_buf_get,
110 * Keep out-of-line to prevent kernel bloat.
111 * __builtin_return_address is not used because it is not always
112 * reliable.
116 * skb_over_panic - private function
117 * @skb: buffer
118 * @sz: size
119 * @here: address
121 * Out of line support code for skb_put(). Not user callable.
123 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
126 "data:%p tail:%#lx end:%#lx dev:%s\n",
127 here, skb->len, sz, skb->head, skb->data,
128 (unsigned long)skb->tail, (unsigned long)skb->end,
129 skb->dev ? skb->dev->name : "<NULL>");
130 BUG();
134 * skb_under_panic - private function
135 * @skb: buffer
136 * @sz: size
137 * @here: address
139 * Out of line support code for skb_push(). Not user callable.
142 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
145 "data:%p tail:%#lx end:%#lx dev:%s\n",
146 here, skb->len, sz, skb->head, skb->data,
147 (unsigned long)skb->tail, (unsigned long)skb->end,
148 skb->dev ? skb->dev->name : "<NULL>");
149 BUG();
152 void skb_truesize_bug(struct sk_buff *skb)
154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
155 "len=%u, sizeof(sk_buff)=%Zd\n",
156 skb->truesize, skb->len, sizeof(struct sk_buff));
158 EXPORT_SYMBOL(skb_truesize_bug);
160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
161 * 'private' fields and also do memory statistics to find all the
162 * [BEEP] leaks.
167 * __alloc_skb - allocate a network buffer
168 * @size: size to allocate
169 * @gfp_mask: allocation mask
170 * @fclone: allocate from fclone cache instead of head cache
171 * and allocate a cloned (child) skb
172 * @node: numa node to allocate memory on
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of size bytes. The object has a reference count of one.
176 * The return is the buffer. On a failure the return is %NULL.
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
179 * %GFP_ATOMIC.
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 int fclone, int node)
184 struct kmem_cache *cache;
185 struct skb_shared_info *shinfo;
186 struct sk_buff *skb;
187 u8 *data;
189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
191 /* Get the HEAD */
192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
193 if (!skb)
194 goto out;
196 size = SKB_DATA_ALIGN(size);
197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
198 gfp_mask, node);
199 if (!data)
200 goto nodata;
203 * See comment in sk_buff definition, just before the 'tail' member
205 memset(skb, 0, offsetof(struct sk_buff, tail));
206 skb->truesize = size + sizeof(struct sk_buff);
207 atomic_set(&skb->users, 1);
208 skb->head = data;
209 skb->data = data;
210 skb_reset_tail_pointer(skb);
211 skb->end = skb->tail + size;
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 atomic_set(&shinfo->dataref, 1);
215 shinfo->nr_frags = 0;
216 shinfo->gso_size = 0;
217 shinfo->gso_segs = 0;
218 shinfo->gso_type = 0;
219 shinfo->ip6_frag_id = 0;
220 shinfo->frag_list = NULL;
222 if (fclone) {
223 struct sk_buff *child = skb + 1;
224 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 skb->fclone = SKB_FCLONE_ORIG;
227 atomic_set(fclone_ref, 1);
229 child->fclone = SKB_FCLONE_UNAVAILABLE;
231 out:
232 return skb;
233 nodata:
234 kmem_cache_free(cache, skb);
235 skb = NULL;
236 goto out;
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 unsigned int length, gfp_t gfp_mask)
255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 struct sk_buff *skb;
258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 if (likely(skb)) {
260 skb_reserve(skb, NET_SKB_PAD);
261 skb->dev = dev;
263 return skb;
266 static void skb_drop_list(struct sk_buff **listp)
268 struct sk_buff *list = *listp;
270 *listp = NULL;
272 do {
273 struct sk_buff *this = list;
274 list = list->next;
275 kfree_skb(this);
276 } while (list);
279 static inline void skb_drop_fraglist(struct sk_buff *skb)
281 skb_drop_list(&skb_shinfo(skb)->frag_list);
284 static void skb_clone_fraglist(struct sk_buff *skb)
286 struct sk_buff *list;
288 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
289 skb_get(list);
292 static void skb_release_data(struct sk_buff *skb)
294 if (!skb->cloned ||
295 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
296 &skb_shinfo(skb)->dataref)) {
297 if (skb_shinfo(skb)->nr_frags) {
298 int i;
299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
300 put_page(skb_shinfo(skb)->frags[i].page);
303 if (skb_shinfo(skb)->frag_list)
304 skb_drop_fraglist(skb);
306 kfree(skb->head);
311 * Free an skbuff by memory without cleaning the state.
313 static void kfree_skbmem(struct sk_buff *skb)
315 struct sk_buff *other;
316 atomic_t *fclone_ref;
318 switch (skb->fclone) {
319 case SKB_FCLONE_UNAVAILABLE:
320 kmem_cache_free(skbuff_head_cache, skb);
321 break;
323 case SKB_FCLONE_ORIG:
324 fclone_ref = (atomic_t *) (skb + 2);
325 if (atomic_dec_and_test(fclone_ref))
326 kmem_cache_free(skbuff_fclone_cache, skb);
327 break;
329 case SKB_FCLONE_CLONE:
330 fclone_ref = (atomic_t *) (skb + 1);
331 other = skb - 1;
333 /* The clone portion is available for
334 * fast-cloning again.
336 skb->fclone = SKB_FCLONE_UNAVAILABLE;
338 if (atomic_dec_and_test(fclone_ref))
339 kmem_cache_free(skbuff_fclone_cache, other);
340 break;
344 /* Free everything but the sk_buff shell. */
345 static void skb_release_all(struct sk_buff *skb)
347 dst_release(skb->dst);
348 #ifdef CONFIG_XFRM
349 secpath_put(skb->sp);
350 #endif
351 if (skb->destructor) {
352 WARN_ON(in_irq());
353 skb->destructor(skb);
355 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
356 nf_conntrack_put(skb->nfct);
357 nf_conntrack_put_reasm(skb->nfct_reasm);
358 #endif
359 #ifdef CONFIG_BRIDGE_NETFILTER
360 nf_bridge_put(skb->nf_bridge);
361 #endif
362 /* XXX: IS this still necessary? - JHS */
363 #ifdef CONFIG_NET_SCHED
364 skb->tc_index = 0;
365 #ifdef CONFIG_NET_CLS_ACT
366 skb->tc_verd = 0;
367 #endif
368 #endif
369 skb_release_data(skb);
373 * __kfree_skb - private function
374 * @skb: buffer
376 * Free an sk_buff. Release anything attached to the buffer.
377 * Clean the state. This is an internal helper function. Users should
378 * always call kfree_skb
381 void __kfree_skb(struct sk_buff *skb)
383 skb_release_all(skb);
384 kfree_skbmem(skb);
388 * kfree_skb - free an sk_buff
389 * @skb: buffer to free
391 * Drop a reference to the buffer and free it if the usage count has
392 * hit zero.
394 void kfree_skb(struct sk_buff *skb)
396 if (unlikely(!skb))
397 return;
398 if (likely(atomic_read(&skb->users) == 1))
399 smp_rmb();
400 else if (likely(!atomic_dec_and_test(&skb->users)))
401 return;
402 __kfree_skb(skb);
405 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
407 new->tstamp = old->tstamp;
408 new->dev = old->dev;
409 new->transport_header = old->transport_header;
410 new->network_header = old->network_header;
411 new->mac_header = old->mac_header;
412 new->dst = dst_clone(old->dst);
413 #ifdef CONFIG_INET
414 new->sp = secpath_get(old->sp);
415 #endif
416 memcpy(new->cb, old->cb, sizeof(old->cb));
417 new->csum_start = old->csum_start;
418 new->csum_offset = old->csum_offset;
419 new->local_df = old->local_df;
420 new->pkt_type = old->pkt_type;
421 new->ip_summed = old->ip_summed;
422 skb_copy_queue_mapping(new, old);
423 new->priority = old->priority;
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 new->ipvs_property = old->ipvs_property;
426 #endif
427 new->protocol = old->protocol;
428 new->mark = old->mark;
429 __nf_copy(new, old);
430 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
431 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
432 new->nf_trace = old->nf_trace;
433 #endif
434 #ifdef CONFIG_NET_SCHED
435 new->tc_index = old->tc_index;
436 #ifdef CONFIG_NET_CLS_ACT
437 new->tc_verd = old->tc_verd;
438 #endif
439 #endif
440 skb_copy_secmark(new, old);
443 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
445 #define C(x) n->x = skb->x
447 n->next = n->prev = NULL;
448 n->sk = NULL;
449 __copy_skb_header(n, skb);
451 C(len);
452 C(data_len);
453 C(mac_len);
454 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
455 n->cloned = 1;
456 n->nohdr = 0;
457 n->destructor = NULL;
458 C(iif);
459 C(tail);
460 C(end);
461 C(head);
462 C(data);
463 C(truesize);
464 atomic_set(&n->users, 1);
466 atomic_inc(&(skb_shinfo(skb)->dataref));
467 skb->cloned = 1;
469 return n;
470 #undef C
474 * skb_morph - morph one skb into another
475 * @dst: the skb to receive the contents
476 * @src: the skb to supply the contents
478 * This is identical to skb_clone except that the target skb is
479 * supplied by the user.
481 * The target skb is returned upon exit.
483 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
485 skb_release_all(dst);
486 return __skb_clone(dst, src);
488 EXPORT_SYMBOL_GPL(skb_morph);
491 * skb_clone - duplicate an sk_buff
492 * @skb: buffer to clone
493 * @gfp_mask: allocation priority
495 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
496 * copies share the same packet data but not structure. The new
497 * buffer has a reference count of 1. If the allocation fails the
498 * function returns %NULL otherwise the new buffer is returned.
500 * If this function is called from an interrupt gfp_mask() must be
501 * %GFP_ATOMIC.
504 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
506 struct sk_buff *n;
508 n = skb + 1;
509 if (skb->fclone == SKB_FCLONE_ORIG &&
510 n->fclone == SKB_FCLONE_UNAVAILABLE) {
511 atomic_t *fclone_ref = (atomic_t *) (n + 1);
512 n->fclone = SKB_FCLONE_CLONE;
513 atomic_inc(fclone_ref);
514 } else {
515 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
516 if (!n)
517 return NULL;
518 n->fclone = SKB_FCLONE_UNAVAILABLE;
521 return __skb_clone(n, skb);
524 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
526 #ifndef NET_SKBUFF_DATA_USES_OFFSET
528 * Shift between the two data areas in bytes
530 unsigned long offset = new->data - old->data;
531 #endif
533 __copy_skb_header(new, old);
535 #ifndef NET_SKBUFF_DATA_USES_OFFSET
536 /* {transport,network,mac}_header are relative to skb->head */
537 new->transport_header += offset;
538 new->network_header += offset;
539 new->mac_header += offset;
540 #endif
541 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
542 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
543 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
547 * skb_copy - create private copy of an sk_buff
548 * @skb: buffer to copy
549 * @gfp_mask: allocation priority
551 * Make a copy of both an &sk_buff and its data. This is used when the
552 * caller wishes to modify the data and needs a private copy of the
553 * data to alter. Returns %NULL on failure or the pointer to the buffer
554 * on success. The returned buffer has a reference count of 1.
556 * As by-product this function converts non-linear &sk_buff to linear
557 * one, so that &sk_buff becomes completely private and caller is allowed
558 * to modify all the data of returned buffer. This means that this
559 * function is not recommended for use in circumstances when only
560 * header is going to be modified. Use pskb_copy() instead.
563 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
565 int headerlen = skb->data - skb->head;
567 * Allocate the copy buffer
569 struct sk_buff *n;
570 #ifdef NET_SKBUFF_DATA_USES_OFFSET
571 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
572 #else
573 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
574 #endif
575 if (!n)
576 return NULL;
578 /* Set the data pointer */
579 skb_reserve(n, headerlen);
580 /* Set the tail pointer and length */
581 skb_put(n, skb->len);
583 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
584 BUG();
586 copy_skb_header(n, skb);
587 return n;
592 * pskb_copy - create copy of an sk_buff with private head.
593 * @skb: buffer to copy
594 * @gfp_mask: allocation priority
596 * Make a copy of both an &sk_buff and part of its data, located
597 * in header. Fragmented data remain shared. This is used when
598 * the caller wishes to modify only header of &sk_buff and needs
599 * private copy of the header to alter. Returns %NULL on failure
600 * or the pointer to the buffer on success.
601 * The returned buffer has a reference count of 1.
604 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
607 * Allocate the copy buffer
609 struct sk_buff *n;
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 n = alloc_skb(skb->end, gfp_mask);
612 #else
613 n = alloc_skb(skb->end - skb->head, gfp_mask);
614 #endif
615 if (!n)
616 goto out;
618 /* Set the data pointer */
619 skb_reserve(n, skb->data - skb->head);
620 /* Set the tail pointer and length */
621 skb_put(n, skb_headlen(skb));
622 /* Copy the bytes */
623 skb_copy_from_linear_data(skb, n->data, n->len);
625 n->truesize += skb->data_len;
626 n->data_len = skb->data_len;
627 n->len = skb->len;
629 if (skb_shinfo(skb)->nr_frags) {
630 int i;
632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
633 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
634 get_page(skb_shinfo(n)->frags[i].page);
636 skb_shinfo(n)->nr_frags = i;
639 if (skb_shinfo(skb)->frag_list) {
640 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
641 skb_clone_fraglist(n);
644 copy_skb_header(n, skb);
645 out:
646 return n;
650 * pskb_expand_head - reallocate header of &sk_buff
651 * @skb: buffer to reallocate
652 * @nhead: room to add at head
653 * @ntail: room to add at tail
654 * @gfp_mask: allocation priority
656 * Expands (or creates identical copy, if &nhead and &ntail are zero)
657 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
658 * reference count of 1. Returns zero in the case of success or error,
659 * if expansion failed. In the last case, &sk_buff is not changed.
661 * All the pointers pointing into skb header may change and must be
662 * reloaded after call to this function.
665 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
666 gfp_t gfp_mask)
668 int i;
669 u8 *data;
670 #ifdef NET_SKBUFF_DATA_USES_OFFSET
671 int size = nhead + skb->end + ntail;
672 #else
673 int size = nhead + (skb->end - skb->head) + ntail;
674 #endif
675 long off;
677 if (skb_shared(skb))
678 BUG();
680 size = SKB_DATA_ALIGN(size);
682 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
683 if (!data)
684 goto nodata;
686 /* Copy only real data... and, alas, header. This should be
687 * optimized for the cases when header is void. */
688 #ifdef NET_SKBUFF_DATA_USES_OFFSET
689 memcpy(data + nhead, skb->head, skb->tail);
690 #else
691 memcpy(data + nhead, skb->head, skb->tail - skb->head);
692 #endif
693 memcpy(data + size, skb_end_pointer(skb),
694 sizeof(struct skb_shared_info));
696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
697 get_page(skb_shinfo(skb)->frags[i].page);
699 if (skb_shinfo(skb)->frag_list)
700 skb_clone_fraglist(skb);
702 skb_release_data(skb);
704 off = (data + nhead) - skb->head;
706 skb->head = data;
707 skb->data += off;
708 #ifdef NET_SKBUFF_DATA_USES_OFFSET
709 skb->end = size;
710 off = nhead;
711 #else
712 skb->end = skb->head + size;
713 #endif
714 /* {transport,network,mac}_header and tail are relative to skb->head */
715 skb->tail += off;
716 skb->transport_header += off;
717 skb->network_header += off;
718 skb->mac_header += off;
719 skb->csum_start += nhead;
720 skb->cloned = 0;
721 skb->hdr_len = 0;
722 skb->nohdr = 0;
723 atomic_set(&skb_shinfo(skb)->dataref, 1);
724 return 0;
726 nodata:
727 return -ENOMEM;
730 /* Make private copy of skb with writable head and some headroom */
732 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
734 struct sk_buff *skb2;
735 int delta = headroom - skb_headroom(skb);
737 if (delta <= 0)
738 skb2 = pskb_copy(skb, GFP_ATOMIC);
739 else {
740 skb2 = skb_clone(skb, GFP_ATOMIC);
741 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
742 GFP_ATOMIC)) {
743 kfree_skb(skb2);
744 skb2 = NULL;
747 return skb2;
752 * skb_copy_expand - copy and expand sk_buff
753 * @skb: buffer to copy
754 * @newheadroom: new free bytes at head
755 * @newtailroom: new free bytes at tail
756 * @gfp_mask: allocation priority
758 * Make a copy of both an &sk_buff and its data and while doing so
759 * allocate additional space.
761 * This is used when the caller wishes to modify the data and needs a
762 * private copy of the data to alter as well as more space for new fields.
763 * Returns %NULL on failure or the pointer to the buffer
764 * on success. The returned buffer has a reference count of 1.
766 * You must pass %GFP_ATOMIC as the allocation priority if this function
767 * is called from an interrupt.
769 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
770 int newheadroom, int newtailroom,
771 gfp_t gfp_mask)
774 * Allocate the copy buffer
776 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
777 gfp_mask);
778 int oldheadroom = skb_headroom(skb);
779 int head_copy_len, head_copy_off;
780 int off;
782 if (!n)
783 return NULL;
785 skb_reserve(n, newheadroom);
787 /* Set the tail pointer and length */
788 skb_put(n, skb->len);
790 head_copy_len = oldheadroom;
791 head_copy_off = 0;
792 if (newheadroom <= head_copy_len)
793 head_copy_len = newheadroom;
794 else
795 head_copy_off = newheadroom - head_copy_len;
797 /* Copy the linear header and data. */
798 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
799 skb->len + head_copy_len))
800 BUG();
802 copy_skb_header(n, skb);
804 off = newheadroom - oldheadroom;
805 n->csum_start += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 n->transport_header += off;
808 n->network_header += off;
809 n->mac_header += off;
810 #endif
812 return n;
816 * skb_pad - zero pad the tail of an skb
817 * @skb: buffer to pad
818 * @pad: space to pad
820 * Ensure that a buffer is followed by a padding area that is zero
821 * filled. Used by network drivers which may DMA or transfer data
822 * beyond the buffer end onto the wire.
824 * May return error in out of memory cases. The skb is freed on error.
827 int skb_pad(struct sk_buff *skb, int pad)
829 int err;
830 int ntail;
832 /* If the skbuff is non linear tailroom is always zero.. */
833 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
834 memset(skb->data+skb->len, 0, pad);
835 return 0;
838 ntail = skb->data_len + pad - (skb->end - skb->tail);
839 if (likely(skb_cloned(skb) || ntail > 0)) {
840 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
841 if (unlikely(err))
842 goto free_skb;
845 /* FIXME: The use of this function with non-linear skb's really needs
846 * to be audited.
848 err = skb_linearize(skb);
849 if (unlikely(err))
850 goto free_skb;
852 memset(skb->data + skb->len, 0, pad);
853 return 0;
855 free_skb:
856 kfree_skb(skb);
857 return err;
861 * skb_put - add data to a buffer
862 * @skb: buffer to use
863 * @len: amount of data to add
865 * This function extends the used data area of the buffer. If this would
866 * exceed the total buffer size the kernel will panic. A pointer to the
867 * first byte of the extra data is returned.
869 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
871 unsigned char *tmp = skb_tail_pointer(skb);
872 SKB_LINEAR_ASSERT(skb);
873 skb->tail += len;
874 skb->len += len;
875 if (unlikely(skb->tail > skb->end))
876 skb_over_panic(skb, len, __builtin_return_address(0));
877 return tmp;
879 EXPORT_SYMBOL(skb_put);
882 * skb_pull - remove data from the start of a buffer
883 * @skb: buffer to use
884 * @len: amount of data to remove
886 * This function removes data from the start of a buffer, returning
887 * the memory to the headroom. A pointer to the next data in the buffer
888 * is returned. Once the data has been pulled future pushes will overwrite
889 * the old data.
891 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
893 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
895 EXPORT_SYMBOL(skb_pull);
897 /* Trims skb to length len. It can change skb pointers.
900 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
902 struct sk_buff **fragp;
903 struct sk_buff *frag;
904 int offset = skb_headlen(skb);
905 int nfrags = skb_shinfo(skb)->nr_frags;
906 int i;
907 int err;
909 if (skb_cloned(skb) &&
910 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
911 return err;
913 i = 0;
914 if (offset >= len)
915 goto drop_pages;
917 for (; i < nfrags; i++) {
918 int end = offset + skb_shinfo(skb)->frags[i].size;
920 if (end < len) {
921 offset = end;
922 continue;
925 skb_shinfo(skb)->frags[i++].size = len - offset;
927 drop_pages:
928 skb_shinfo(skb)->nr_frags = i;
930 for (; i < nfrags; i++)
931 put_page(skb_shinfo(skb)->frags[i].page);
933 if (skb_shinfo(skb)->frag_list)
934 skb_drop_fraglist(skb);
935 goto done;
938 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
939 fragp = &frag->next) {
940 int end = offset + frag->len;
942 if (skb_shared(frag)) {
943 struct sk_buff *nfrag;
945 nfrag = skb_clone(frag, GFP_ATOMIC);
946 if (unlikely(!nfrag))
947 return -ENOMEM;
949 nfrag->next = frag->next;
950 kfree_skb(frag);
951 frag = nfrag;
952 *fragp = frag;
955 if (end < len) {
956 offset = end;
957 continue;
960 if (end > len &&
961 unlikely((err = pskb_trim(frag, len - offset))))
962 return err;
964 if (frag->next)
965 skb_drop_list(&frag->next);
966 break;
969 done:
970 if (len > skb_headlen(skb)) {
971 skb->data_len -= skb->len - len;
972 skb->len = len;
973 } else {
974 skb->len = len;
975 skb->data_len = 0;
976 skb_set_tail_pointer(skb, len);
979 return 0;
983 * __pskb_pull_tail - advance tail of skb header
984 * @skb: buffer to reallocate
985 * @delta: number of bytes to advance tail
987 * The function makes a sense only on a fragmented &sk_buff,
988 * it expands header moving its tail forward and copying necessary
989 * data from fragmented part.
991 * &sk_buff MUST have reference count of 1.
993 * Returns %NULL (and &sk_buff does not change) if pull failed
994 * or value of new tail of skb in the case of success.
996 * All the pointers pointing into skb header may change and must be
997 * reloaded after call to this function.
1000 /* Moves tail of skb head forward, copying data from fragmented part,
1001 * when it is necessary.
1002 * 1. It may fail due to malloc failure.
1003 * 2. It may change skb pointers.
1005 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1007 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1009 /* If skb has not enough free space at tail, get new one
1010 * plus 128 bytes for future expansions. If we have enough
1011 * room at tail, reallocate without expansion only if skb is cloned.
1013 int i, k, eat = (skb->tail + delta) - skb->end;
1015 if (eat > 0 || skb_cloned(skb)) {
1016 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1017 GFP_ATOMIC))
1018 return NULL;
1021 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1022 BUG();
1024 /* Optimization: no fragments, no reasons to preestimate
1025 * size of pulled pages. Superb.
1027 if (!skb_shinfo(skb)->frag_list)
1028 goto pull_pages;
1030 /* Estimate size of pulled pages. */
1031 eat = delta;
1032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1033 if (skb_shinfo(skb)->frags[i].size >= eat)
1034 goto pull_pages;
1035 eat -= skb_shinfo(skb)->frags[i].size;
1038 /* If we need update frag list, we are in troubles.
1039 * Certainly, it possible to add an offset to skb data,
1040 * but taking into account that pulling is expected to
1041 * be very rare operation, it is worth to fight against
1042 * further bloating skb head and crucify ourselves here instead.
1043 * Pure masohism, indeed. 8)8)
1045 if (eat) {
1046 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1047 struct sk_buff *clone = NULL;
1048 struct sk_buff *insp = NULL;
1050 do {
1051 BUG_ON(!list);
1053 if (list->len <= eat) {
1054 /* Eaten as whole. */
1055 eat -= list->len;
1056 list = list->next;
1057 insp = list;
1058 } else {
1059 /* Eaten partially. */
1061 if (skb_shared(list)) {
1062 /* Sucks! We need to fork list. :-( */
1063 clone = skb_clone(list, GFP_ATOMIC);
1064 if (!clone)
1065 return NULL;
1066 insp = list->next;
1067 list = clone;
1068 } else {
1069 /* This may be pulled without
1070 * problems. */
1071 insp = list;
1073 if (!pskb_pull(list, eat)) {
1074 if (clone)
1075 kfree_skb(clone);
1076 return NULL;
1078 break;
1080 } while (eat);
1082 /* Free pulled out fragments. */
1083 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1084 skb_shinfo(skb)->frag_list = list->next;
1085 kfree_skb(list);
1087 /* And insert new clone at head. */
1088 if (clone) {
1089 clone->next = list;
1090 skb_shinfo(skb)->frag_list = clone;
1093 /* Success! Now we may commit changes to skb data. */
1095 pull_pages:
1096 eat = delta;
1097 k = 0;
1098 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1099 if (skb_shinfo(skb)->frags[i].size <= eat) {
1100 put_page(skb_shinfo(skb)->frags[i].page);
1101 eat -= skb_shinfo(skb)->frags[i].size;
1102 } else {
1103 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1104 if (eat) {
1105 skb_shinfo(skb)->frags[k].page_offset += eat;
1106 skb_shinfo(skb)->frags[k].size -= eat;
1107 eat = 0;
1109 k++;
1112 skb_shinfo(skb)->nr_frags = k;
1114 skb->tail += delta;
1115 skb->data_len -= delta;
1117 return skb_tail_pointer(skb);
1120 /* Copy some data bits from skb to kernel buffer. */
1122 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1124 int i, copy;
1125 int start = skb_headlen(skb);
1127 if (offset > (int)skb->len - len)
1128 goto fault;
1130 /* Copy header. */
1131 if ((copy = start - offset) > 0) {
1132 if (copy > len)
1133 copy = len;
1134 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1135 if ((len -= copy) == 0)
1136 return 0;
1137 offset += copy;
1138 to += copy;
1141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1142 int end;
1144 BUG_TRAP(start <= offset + len);
1146 end = start + skb_shinfo(skb)->frags[i].size;
1147 if ((copy = end - offset) > 0) {
1148 u8 *vaddr;
1150 if (copy > len)
1151 copy = len;
1153 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1154 memcpy(to,
1155 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1156 offset - start, copy);
1157 kunmap_skb_frag(vaddr);
1159 if ((len -= copy) == 0)
1160 return 0;
1161 offset += copy;
1162 to += copy;
1164 start = end;
1167 if (skb_shinfo(skb)->frag_list) {
1168 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1170 for (; list; list = list->next) {
1171 int end;
1173 BUG_TRAP(start <= offset + len);
1175 end = start + list->len;
1176 if ((copy = end - offset) > 0) {
1177 if (copy > len)
1178 copy = len;
1179 if (skb_copy_bits(list, offset - start,
1180 to, copy))
1181 goto fault;
1182 if ((len -= copy) == 0)
1183 return 0;
1184 offset += copy;
1185 to += copy;
1187 start = end;
1190 if (!len)
1191 return 0;
1193 fault:
1194 return -EFAULT;
1198 * Callback from splice_to_pipe(), if we need to release some pages
1199 * at the end of the spd in case we error'ed out in filling the pipe.
1201 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1203 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1205 kfree_skb(skb);
1209 * Fill page/offset/length into spd, if it can hold more pages.
1211 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1212 unsigned int len, unsigned int offset,
1213 struct sk_buff *skb)
1215 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1216 return 1;
1218 spd->pages[spd->nr_pages] = page;
1219 spd->partial[spd->nr_pages].len = len;
1220 spd->partial[spd->nr_pages].offset = offset;
1221 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1222 spd->nr_pages++;
1223 return 0;
1227 * Map linear and fragment data from the skb to spd. Returns number of
1228 * pages mapped.
1230 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1231 unsigned int *total_len,
1232 struct splice_pipe_desc *spd)
1234 unsigned int nr_pages = spd->nr_pages;
1235 unsigned int poff, plen, len, toff, tlen;
1236 int headlen, seg;
1238 toff = *offset;
1239 tlen = *total_len;
1240 if (!tlen)
1241 goto err;
1244 * if the offset is greater than the linear part, go directly to
1245 * the fragments.
1247 headlen = skb_headlen(skb);
1248 if (toff >= headlen) {
1249 toff -= headlen;
1250 goto map_frag;
1254 * first map the linear region into the pages/partial map, skipping
1255 * any potential initial offset.
1257 len = 0;
1258 while (len < headlen) {
1259 void *p = skb->data + len;
1261 poff = (unsigned long) p & (PAGE_SIZE - 1);
1262 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff);
1263 len += plen;
1265 if (toff) {
1266 if (plen <= toff) {
1267 toff -= plen;
1268 continue;
1270 plen -= toff;
1271 poff += toff;
1272 toff = 0;
1275 plen = min(plen, tlen);
1276 if (!plen)
1277 break;
1280 * just jump directly to update and return, no point
1281 * in going over fragments when the output is full.
1283 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb))
1284 goto done;
1286 tlen -= plen;
1290 * then map the fragments
1292 map_frag:
1293 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1294 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1296 plen = f->size;
1297 poff = f->page_offset;
1299 if (toff) {
1300 if (plen <= toff) {
1301 toff -= plen;
1302 continue;
1304 plen -= toff;
1305 poff += toff;
1306 toff = 0;
1309 plen = min(plen, tlen);
1310 if (!plen)
1311 break;
1313 if (spd_fill_page(spd, f->page, plen, poff, skb))
1314 break;
1316 tlen -= plen;
1319 done:
1320 if (spd->nr_pages - nr_pages) {
1321 *offset = 0;
1322 *total_len = tlen;
1323 return 0;
1325 err:
1326 return 1;
1330 * Map data from the skb to a pipe. Should handle both the linear part,
1331 * the fragments, and the frag list. It does NOT handle frag lists within
1332 * the frag list, if such a thing exists. We'd probably need to recurse to
1333 * handle that cleanly.
1335 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1336 struct pipe_inode_info *pipe, unsigned int tlen,
1337 unsigned int flags)
1339 struct partial_page partial[PIPE_BUFFERS];
1340 struct page *pages[PIPE_BUFFERS];
1341 struct splice_pipe_desc spd = {
1342 .pages = pages,
1343 .partial = partial,
1344 .flags = flags,
1345 .ops = &sock_pipe_buf_ops,
1346 .spd_release = sock_spd_release,
1348 struct sk_buff *skb;
1351 * I'd love to avoid the clone here, but tcp_read_sock()
1352 * ignores reference counts and unconditonally kills the sk_buff
1353 * on return from the actor.
1355 skb = skb_clone(__skb, GFP_KERNEL);
1356 if (unlikely(!skb))
1357 return -ENOMEM;
1360 * __skb_splice_bits() only fails if the output has no room left,
1361 * so no point in going over the frag_list for the error case.
1363 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1364 goto done;
1365 else if (!tlen)
1366 goto done;
1369 * now see if we have a frag_list to map
1371 if (skb_shinfo(skb)->frag_list) {
1372 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1374 for (; list && tlen; list = list->next) {
1375 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1376 break;
1380 done:
1382 * drop our reference to the clone, the pipe consumption will
1383 * drop the rest.
1385 kfree_skb(skb);
1387 if (spd.nr_pages) {
1388 int ret;
1391 * Drop the socket lock, otherwise we have reverse
1392 * locking dependencies between sk_lock and i_mutex
1393 * here as compared to sendfile(). We enter here
1394 * with the socket lock held, and splice_to_pipe() will
1395 * grab the pipe inode lock. For sendfile() emulation,
1396 * we call into ->sendpage() with the i_mutex lock held
1397 * and networking will grab the socket lock.
1399 release_sock(__skb->sk);
1400 ret = splice_to_pipe(pipe, &spd);
1401 lock_sock(__skb->sk);
1402 return ret;
1405 return 0;
1409 * skb_store_bits - store bits from kernel buffer to skb
1410 * @skb: destination buffer
1411 * @offset: offset in destination
1412 * @from: source buffer
1413 * @len: number of bytes to copy
1415 * Copy the specified number of bytes from the source buffer to the
1416 * destination skb. This function handles all the messy bits of
1417 * traversing fragment lists and such.
1420 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1422 int i, copy;
1423 int start = skb_headlen(skb);
1425 if (offset > (int)skb->len - len)
1426 goto fault;
1428 if ((copy = start - offset) > 0) {
1429 if (copy > len)
1430 copy = len;
1431 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1432 if ((len -= copy) == 0)
1433 return 0;
1434 offset += copy;
1435 from += copy;
1438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1440 int end;
1442 BUG_TRAP(start <= offset + len);
1444 end = start + frag->size;
1445 if ((copy = end - offset) > 0) {
1446 u8 *vaddr;
1448 if (copy > len)
1449 copy = len;
1451 vaddr = kmap_skb_frag(frag);
1452 memcpy(vaddr + frag->page_offset + offset - start,
1453 from, copy);
1454 kunmap_skb_frag(vaddr);
1456 if ((len -= copy) == 0)
1457 return 0;
1458 offset += copy;
1459 from += copy;
1461 start = end;
1464 if (skb_shinfo(skb)->frag_list) {
1465 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1467 for (; list; list = list->next) {
1468 int end;
1470 BUG_TRAP(start <= offset + len);
1472 end = start + list->len;
1473 if ((copy = end - offset) > 0) {
1474 if (copy > len)
1475 copy = len;
1476 if (skb_store_bits(list, offset - start,
1477 from, copy))
1478 goto fault;
1479 if ((len -= copy) == 0)
1480 return 0;
1481 offset += copy;
1482 from += copy;
1484 start = end;
1487 if (!len)
1488 return 0;
1490 fault:
1491 return -EFAULT;
1494 EXPORT_SYMBOL(skb_store_bits);
1496 /* Checksum skb data. */
1498 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1499 int len, __wsum csum)
1501 int start = skb_headlen(skb);
1502 int i, copy = start - offset;
1503 int pos = 0;
1505 /* Checksum header. */
1506 if (copy > 0) {
1507 if (copy > len)
1508 copy = len;
1509 csum = csum_partial(skb->data + offset, copy, csum);
1510 if ((len -= copy) == 0)
1511 return csum;
1512 offset += copy;
1513 pos = copy;
1516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1517 int end;
1519 BUG_TRAP(start <= offset + len);
1521 end = start + skb_shinfo(skb)->frags[i].size;
1522 if ((copy = end - offset) > 0) {
1523 __wsum csum2;
1524 u8 *vaddr;
1525 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1527 if (copy > len)
1528 copy = len;
1529 vaddr = kmap_skb_frag(frag);
1530 csum2 = csum_partial(vaddr + frag->page_offset +
1531 offset - start, copy, 0);
1532 kunmap_skb_frag(vaddr);
1533 csum = csum_block_add(csum, csum2, pos);
1534 if (!(len -= copy))
1535 return csum;
1536 offset += copy;
1537 pos += copy;
1539 start = end;
1542 if (skb_shinfo(skb)->frag_list) {
1543 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1545 for (; list; list = list->next) {
1546 int end;
1548 BUG_TRAP(start <= offset + len);
1550 end = start + list->len;
1551 if ((copy = end - offset) > 0) {
1552 __wsum csum2;
1553 if (copy > len)
1554 copy = len;
1555 csum2 = skb_checksum(list, offset - start,
1556 copy, 0);
1557 csum = csum_block_add(csum, csum2, pos);
1558 if ((len -= copy) == 0)
1559 return csum;
1560 offset += copy;
1561 pos += copy;
1563 start = end;
1566 BUG_ON(len);
1568 return csum;
1571 /* Both of above in one bottle. */
1573 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1574 u8 *to, int len, __wsum csum)
1576 int start = skb_headlen(skb);
1577 int i, copy = start - offset;
1578 int pos = 0;
1580 /* Copy header. */
1581 if (copy > 0) {
1582 if (copy > len)
1583 copy = len;
1584 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1585 copy, csum);
1586 if ((len -= copy) == 0)
1587 return csum;
1588 offset += copy;
1589 to += copy;
1590 pos = copy;
1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1594 int end;
1596 BUG_TRAP(start <= offset + len);
1598 end = start + skb_shinfo(skb)->frags[i].size;
1599 if ((copy = end - offset) > 0) {
1600 __wsum csum2;
1601 u8 *vaddr;
1602 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1604 if (copy > len)
1605 copy = len;
1606 vaddr = kmap_skb_frag(frag);
1607 csum2 = csum_partial_copy_nocheck(vaddr +
1608 frag->page_offset +
1609 offset - start, to,
1610 copy, 0);
1611 kunmap_skb_frag(vaddr);
1612 csum = csum_block_add(csum, csum2, pos);
1613 if (!(len -= copy))
1614 return csum;
1615 offset += copy;
1616 to += copy;
1617 pos += copy;
1619 start = end;
1622 if (skb_shinfo(skb)->frag_list) {
1623 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1625 for (; list; list = list->next) {
1626 __wsum csum2;
1627 int end;
1629 BUG_TRAP(start <= offset + len);
1631 end = start + list->len;
1632 if ((copy = end - offset) > 0) {
1633 if (copy > len)
1634 copy = len;
1635 csum2 = skb_copy_and_csum_bits(list,
1636 offset - start,
1637 to, copy, 0);
1638 csum = csum_block_add(csum, csum2, pos);
1639 if ((len -= copy) == 0)
1640 return csum;
1641 offset += copy;
1642 to += copy;
1643 pos += copy;
1645 start = end;
1648 BUG_ON(len);
1649 return csum;
1652 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1654 __wsum csum;
1655 long csstart;
1657 if (skb->ip_summed == CHECKSUM_PARTIAL)
1658 csstart = skb->csum_start - skb_headroom(skb);
1659 else
1660 csstart = skb_headlen(skb);
1662 BUG_ON(csstart > skb_headlen(skb));
1664 skb_copy_from_linear_data(skb, to, csstart);
1666 csum = 0;
1667 if (csstart != skb->len)
1668 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1669 skb->len - csstart, 0);
1671 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1672 long csstuff = csstart + skb->csum_offset;
1674 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1679 * skb_dequeue - remove from the head of the queue
1680 * @list: list to dequeue from
1682 * Remove the head of the list. The list lock is taken so the function
1683 * may be used safely with other locking list functions. The head item is
1684 * returned or %NULL if the list is empty.
1687 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1689 unsigned long flags;
1690 struct sk_buff *result;
1692 spin_lock_irqsave(&list->lock, flags);
1693 result = __skb_dequeue(list);
1694 spin_unlock_irqrestore(&list->lock, flags);
1695 return result;
1699 * skb_dequeue_tail - remove from the tail of the queue
1700 * @list: list to dequeue from
1702 * Remove the tail of the list. The list lock is taken so the function
1703 * may be used safely with other locking list functions. The tail item is
1704 * returned or %NULL if the list is empty.
1706 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1708 unsigned long flags;
1709 struct sk_buff *result;
1711 spin_lock_irqsave(&list->lock, flags);
1712 result = __skb_dequeue_tail(list);
1713 spin_unlock_irqrestore(&list->lock, flags);
1714 return result;
1718 * skb_queue_purge - empty a list
1719 * @list: list to empty
1721 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1722 * the list and one reference dropped. This function takes the list
1723 * lock and is atomic with respect to other list locking functions.
1725 void skb_queue_purge(struct sk_buff_head *list)
1727 struct sk_buff *skb;
1728 while ((skb = skb_dequeue(list)) != NULL)
1729 kfree_skb(skb);
1733 * skb_queue_head - queue a buffer at the list head
1734 * @list: list to use
1735 * @newsk: buffer to queue
1737 * Queue a buffer at the start of the list. This function takes the
1738 * list lock and can be used safely with other locking &sk_buff functions
1739 * safely.
1741 * A buffer cannot be placed on two lists at the same time.
1743 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1745 unsigned long flags;
1747 spin_lock_irqsave(&list->lock, flags);
1748 __skb_queue_head(list, newsk);
1749 spin_unlock_irqrestore(&list->lock, flags);
1753 * skb_queue_tail - queue a buffer at the list tail
1754 * @list: list to use
1755 * @newsk: buffer to queue
1757 * Queue a buffer at the tail of the list. This function takes the
1758 * list lock and can be used safely with other locking &sk_buff functions
1759 * safely.
1761 * A buffer cannot be placed on two lists at the same time.
1763 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1765 unsigned long flags;
1767 spin_lock_irqsave(&list->lock, flags);
1768 __skb_queue_tail(list, newsk);
1769 spin_unlock_irqrestore(&list->lock, flags);
1773 * skb_unlink - remove a buffer from a list
1774 * @skb: buffer to remove
1775 * @list: list to use
1777 * Remove a packet from a list. The list locks are taken and this
1778 * function is atomic with respect to other list locked calls
1780 * You must know what list the SKB is on.
1782 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1784 unsigned long flags;
1786 spin_lock_irqsave(&list->lock, flags);
1787 __skb_unlink(skb, list);
1788 spin_unlock_irqrestore(&list->lock, flags);
1792 * skb_append - append a buffer
1793 * @old: buffer to insert after
1794 * @newsk: buffer to insert
1795 * @list: list to use
1797 * Place a packet after a given packet in a list. The list locks are taken
1798 * and this function is atomic with respect to other list locked calls.
1799 * A buffer cannot be placed on two lists at the same time.
1801 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1803 unsigned long flags;
1805 spin_lock_irqsave(&list->lock, flags);
1806 __skb_append(old, newsk, list);
1807 spin_unlock_irqrestore(&list->lock, flags);
1812 * skb_insert - insert a buffer
1813 * @old: buffer to insert before
1814 * @newsk: buffer to insert
1815 * @list: list to use
1817 * Place a packet before a given packet in a list. The list locks are
1818 * taken and this function is atomic with respect to other list locked
1819 * calls.
1821 * A buffer cannot be placed on two lists at the same time.
1823 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1825 unsigned long flags;
1827 spin_lock_irqsave(&list->lock, flags);
1828 __skb_insert(newsk, old->prev, old, list);
1829 spin_unlock_irqrestore(&list->lock, flags);
1832 static inline void skb_split_inside_header(struct sk_buff *skb,
1833 struct sk_buff* skb1,
1834 const u32 len, const int pos)
1836 int i;
1838 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1839 pos - len);
1840 /* And move data appendix as is. */
1841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1842 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1844 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1845 skb_shinfo(skb)->nr_frags = 0;
1846 skb1->data_len = skb->data_len;
1847 skb1->len += skb1->data_len;
1848 skb->data_len = 0;
1849 skb->len = len;
1850 skb_set_tail_pointer(skb, len);
1853 static inline void skb_split_no_header(struct sk_buff *skb,
1854 struct sk_buff* skb1,
1855 const u32 len, int pos)
1857 int i, k = 0;
1858 const int nfrags = skb_shinfo(skb)->nr_frags;
1860 skb_shinfo(skb)->nr_frags = 0;
1861 skb1->len = skb1->data_len = skb->len - len;
1862 skb->len = len;
1863 skb->data_len = len - pos;
1865 for (i = 0; i < nfrags; i++) {
1866 int size = skb_shinfo(skb)->frags[i].size;
1868 if (pos + size > len) {
1869 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1871 if (pos < len) {
1872 /* Split frag.
1873 * We have two variants in this case:
1874 * 1. Move all the frag to the second
1875 * part, if it is possible. F.e.
1876 * this approach is mandatory for TUX,
1877 * where splitting is expensive.
1878 * 2. Split is accurately. We make this.
1880 get_page(skb_shinfo(skb)->frags[i].page);
1881 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1882 skb_shinfo(skb1)->frags[0].size -= len - pos;
1883 skb_shinfo(skb)->frags[i].size = len - pos;
1884 skb_shinfo(skb)->nr_frags++;
1886 k++;
1887 } else
1888 skb_shinfo(skb)->nr_frags++;
1889 pos += size;
1891 skb_shinfo(skb1)->nr_frags = k;
1895 * skb_split - Split fragmented skb to two parts at length len.
1896 * @skb: the buffer to split
1897 * @skb1: the buffer to receive the second part
1898 * @len: new length for skb
1900 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1902 int pos = skb_headlen(skb);
1904 if (len < pos) /* Split line is inside header. */
1905 skb_split_inside_header(skb, skb1, len, pos);
1906 else /* Second chunk has no header, nothing to copy. */
1907 skb_split_no_header(skb, skb1, len, pos);
1911 * skb_prepare_seq_read - Prepare a sequential read of skb data
1912 * @skb: the buffer to read
1913 * @from: lower offset of data to be read
1914 * @to: upper offset of data to be read
1915 * @st: state variable
1917 * Initializes the specified state variable. Must be called before
1918 * invoking skb_seq_read() for the first time.
1920 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1921 unsigned int to, struct skb_seq_state *st)
1923 st->lower_offset = from;
1924 st->upper_offset = to;
1925 st->root_skb = st->cur_skb = skb;
1926 st->frag_idx = st->stepped_offset = 0;
1927 st->frag_data = NULL;
1931 * skb_seq_read - Sequentially read skb data
1932 * @consumed: number of bytes consumed by the caller so far
1933 * @data: destination pointer for data to be returned
1934 * @st: state variable
1936 * Reads a block of skb data at &consumed relative to the
1937 * lower offset specified to skb_prepare_seq_read(). Assigns
1938 * the head of the data block to &data and returns the length
1939 * of the block or 0 if the end of the skb data or the upper
1940 * offset has been reached.
1942 * The caller is not required to consume all of the data
1943 * returned, i.e. &consumed is typically set to the number
1944 * of bytes already consumed and the next call to
1945 * skb_seq_read() will return the remaining part of the block.
1947 * Note 1: The size of each block of data returned can be arbitary,
1948 * this limitation is the cost for zerocopy seqeuental
1949 * reads of potentially non linear data.
1951 * Note 2: Fragment lists within fragments are not implemented
1952 * at the moment, state->root_skb could be replaced with
1953 * a stack for this purpose.
1955 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1956 struct skb_seq_state *st)
1958 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1959 skb_frag_t *frag;
1961 if (unlikely(abs_offset >= st->upper_offset))
1962 return 0;
1964 next_skb:
1965 block_limit = skb_headlen(st->cur_skb);
1967 if (abs_offset < block_limit) {
1968 *data = st->cur_skb->data + abs_offset;
1969 return block_limit - abs_offset;
1972 if (st->frag_idx == 0 && !st->frag_data)
1973 st->stepped_offset += skb_headlen(st->cur_skb);
1975 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1976 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1977 block_limit = frag->size + st->stepped_offset;
1979 if (abs_offset < block_limit) {
1980 if (!st->frag_data)
1981 st->frag_data = kmap_skb_frag(frag);
1983 *data = (u8 *) st->frag_data + frag->page_offset +
1984 (abs_offset - st->stepped_offset);
1986 return block_limit - abs_offset;
1989 if (st->frag_data) {
1990 kunmap_skb_frag(st->frag_data);
1991 st->frag_data = NULL;
1994 st->frag_idx++;
1995 st->stepped_offset += frag->size;
1998 if (st->frag_data) {
1999 kunmap_skb_frag(st->frag_data);
2000 st->frag_data = NULL;
2003 if (st->cur_skb->next) {
2004 st->cur_skb = st->cur_skb->next;
2005 st->frag_idx = 0;
2006 goto next_skb;
2007 } else if (st->root_skb == st->cur_skb &&
2008 skb_shinfo(st->root_skb)->frag_list) {
2009 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2010 goto next_skb;
2013 return 0;
2017 * skb_abort_seq_read - Abort a sequential read of skb data
2018 * @st: state variable
2020 * Must be called if skb_seq_read() was not called until it
2021 * returned 0.
2023 void skb_abort_seq_read(struct skb_seq_state *st)
2025 if (st->frag_data)
2026 kunmap_skb_frag(st->frag_data);
2029 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2031 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2032 struct ts_config *conf,
2033 struct ts_state *state)
2035 return skb_seq_read(offset, text, TS_SKB_CB(state));
2038 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2040 skb_abort_seq_read(TS_SKB_CB(state));
2044 * skb_find_text - Find a text pattern in skb data
2045 * @skb: the buffer to look in
2046 * @from: search offset
2047 * @to: search limit
2048 * @config: textsearch configuration
2049 * @state: uninitialized textsearch state variable
2051 * Finds a pattern in the skb data according to the specified
2052 * textsearch configuration. Use textsearch_next() to retrieve
2053 * subsequent occurrences of the pattern. Returns the offset
2054 * to the first occurrence or UINT_MAX if no match was found.
2056 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2057 unsigned int to, struct ts_config *config,
2058 struct ts_state *state)
2060 unsigned int ret;
2062 config->get_next_block = skb_ts_get_next_block;
2063 config->finish = skb_ts_finish;
2065 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2067 ret = textsearch_find(config, state);
2068 return (ret <= to - from ? ret : UINT_MAX);
2072 * skb_append_datato_frags: - append the user data to a skb
2073 * @sk: sock structure
2074 * @skb: skb structure to be appened with user data.
2075 * @getfrag: call back function to be used for getting the user data
2076 * @from: pointer to user message iov
2077 * @length: length of the iov message
2079 * Description: This procedure append the user data in the fragment part
2080 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2082 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2083 int (*getfrag)(void *from, char *to, int offset,
2084 int len, int odd, struct sk_buff *skb),
2085 void *from, int length)
2087 int frg_cnt = 0;
2088 skb_frag_t *frag = NULL;
2089 struct page *page = NULL;
2090 int copy, left;
2091 int offset = 0;
2092 int ret;
2094 do {
2095 /* Return error if we don't have space for new frag */
2096 frg_cnt = skb_shinfo(skb)->nr_frags;
2097 if (frg_cnt >= MAX_SKB_FRAGS)
2098 return -EFAULT;
2100 /* allocate a new page for next frag */
2101 page = alloc_pages(sk->sk_allocation, 0);
2103 /* If alloc_page fails just return failure and caller will
2104 * free previous allocated pages by doing kfree_skb()
2106 if (page == NULL)
2107 return -ENOMEM;
2109 /* initialize the next frag */
2110 sk->sk_sndmsg_page = page;
2111 sk->sk_sndmsg_off = 0;
2112 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2113 skb->truesize += PAGE_SIZE;
2114 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2116 /* get the new initialized frag */
2117 frg_cnt = skb_shinfo(skb)->nr_frags;
2118 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2120 /* copy the user data to page */
2121 left = PAGE_SIZE - frag->page_offset;
2122 copy = (length > left)? left : length;
2124 ret = getfrag(from, (page_address(frag->page) +
2125 frag->page_offset + frag->size),
2126 offset, copy, 0, skb);
2127 if (ret < 0)
2128 return -EFAULT;
2130 /* copy was successful so update the size parameters */
2131 sk->sk_sndmsg_off += copy;
2132 frag->size += copy;
2133 skb->len += copy;
2134 skb->data_len += copy;
2135 offset += copy;
2136 length -= copy;
2138 } while (length > 0);
2140 return 0;
2144 * skb_pull_rcsum - pull skb and update receive checksum
2145 * @skb: buffer to update
2146 * @len: length of data pulled
2148 * This function performs an skb_pull on the packet and updates
2149 * the CHECKSUM_COMPLETE checksum. It should be used on
2150 * receive path processing instead of skb_pull unless you know
2151 * that the checksum difference is zero (e.g., a valid IP header)
2152 * or you are setting ip_summed to CHECKSUM_NONE.
2154 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2156 BUG_ON(len > skb->len);
2157 skb->len -= len;
2158 BUG_ON(skb->len < skb->data_len);
2159 skb_postpull_rcsum(skb, skb->data, len);
2160 return skb->data += len;
2163 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2166 * skb_segment - Perform protocol segmentation on skb.
2167 * @skb: buffer to segment
2168 * @features: features for the output path (see dev->features)
2170 * This function performs segmentation on the given skb. It returns
2171 * the segment at the given position. It returns NULL if there are
2172 * no more segments to generate, or when an error is encountered.
2174 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2176 struct sk_buff *segs = NULL;
2177 struct sk_buff *tail = NULL;
2178 unsigned int mss = skb_shinfo(skb)->gso_size;
2179 unsigned int doffset = skb->data - skb_mac_header(skb);
2180 unsigned int offset = doffset;
2181 unsigned int headroom;
2182 unsigned int len;
2183 int sg = features & NETIF_F_SG;
2184 int nfrags = skb_shinfo(skb)->nr_frags;
2185 int err = -ENOMEM;
2186 int i = 0;
2187 int pos;
2189 __skb_push(skb, doffset);
2190 headroom = skb_headroom(skb);
2191 pos = skb_headlen(skb);
2193 do {
2194 struct sk_buff *nskb;
2195 skb_frag_t *frag;
2196 int hsize;
2197 int k;
2198 int size;
2200 len = skb->len - offset;
2201 if (len > mss)
2202 len = mss;
2204 hsize = skb_headlen(skb) - offset;
2205 if (hsize < 0)
2206 hsize = 0;
2207 if (hsize > len || !sg)
2208 hsize = len;
2210 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2211 if (unlikely(!nskb))
2212 goto err;
2214 if (segs)
2215 tail->next = nskb;
2216 else
2217 segs = nskb;
2218 tail = nskb;
2220 nskb->dev = skb->dev;
2221 skb_copy_queue_mapping(nskb, skb);
2222 nskb->priority = skb->priority;
2223 nskb->protocol = skb->protocol;
2224 nskb->dst = dst_clone(skb->dst);
2225 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2226 nskb->pkt_type = skb->pkt_type;
2227 nskb->mac_len = skb->mac_len;
2229 skb_reserve(nskb, headroom);
2230 skb_reset_mac_header(nskb);
2231 skb_set_network_header(nskb, skb->mac_len);
2232 nskb->transport_header = (nskb->network_header +
2233 skb_network_header_len(skb));
2234 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2235 doffset);
2236 if (!sg) {
2237 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2238 skb_put(nskb, len),
2239 len, 0);
2240 continue;
2243 frag = skb_shinfo(nskb)->frags;
2244 k = 0;
2246 nskb->ip_summed = CHECKSUM_PARTIAL;
2247 nskb->csum = skb->csum;
2248 skb_copy_from_linear_data_offset(skb, offset,
2249 skb_put(nskb, hsize), hsize);
2251 while (pos < offset + len) {
2252 BUG_ON(i >= nfrags);
2254 *frag = skb_shinfo(skb)->frags[i];
2255 get_page(frag->page);
2256 size = frag->size;
2258 if (pos < offset) {
2259 frag->page_offset += offset - pos;
2260 frag->size -= offset - pos;
2263 k++;
2265 if (pos + size <= offset + len) {
2266 i++;
2267 pos += size;
2268 } else {
2269 frag->size -= pos + size - (offset + len);
2270 break;
2273 frag++;
2276 skb_shinfo(nskb)->nr_frags = k;
2277 nskb->data_len = len - hsize;
2278 nskb->len += nskb->data_len;
2279 nskb->truesize += nskb->data_len;
2280 } while ((offset += len) < skb->len);
2282 return segs;
2284 err:
2285 while ((skb = segs)) {
2286 segs = skb->next;
2287 kfree_skb(skb);
2289 return ERR_PTR(err);
2292 EXPORT_SYMBOL_GPL(skb_segment);
2294 void __init skb_init(void)
2296 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2297 sizeof(struct sk_buff),
2299 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2300 NULL);
2301 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2302 (2*sizeof(struct sk_buff)) +
2303 sizeof(atomic_t),
2305 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2306 NULL);
2310 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2311 * @skb: Socket buffer containing the buffers to be mapped
2312 * @sg: The scatter-gather list to map into
2313 * @offset: The offset into the buffer's contents to start mapping
2314 * @len: Length of buffer space to be mapped
2316 * Fill the specified scatter-gather list with mappings/pointers into a
2317 * region of the buffer space attached to a socket buffer.
2319 static int
2320 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2322 int start = skb_headlen(skb);
2323 int i, copy = start - offset;
2324 int elt = 0;
2326 if (copy > 0) {
2327 if (copy > len)
2328 copy = len;
2329 sg_set_buf(sg, skb->data + offset, copy);
2330 elt++;
2331 if ((len -= copy) == 0)
2332 return elt;
2333 offset += copy;
2336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2337 int end;
2339 BUG_TRAP(start <= offset + len);
2341 end = start + skb_shinfo(skb)->frags[i].size;
2342 if ((copy = end - offset) > 0) {
2343 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2345 if (copy > len)
2346 copy = len;
2347 sg_set_page(&sg[elt], frag->page, copy,
2348 frag->page_offset+offset-start);
2349 elt++;
2350 if (!(len -= copy))
2351 return elt;
2352 offset += copy;
2354 start = end;
2357 if (skb_shinfo(skb)->frag_list) {
2358 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2360 for (; list; list = list->next) {
2361 int end;
2363 BUG_TRAP(start <= offset + len);
2365 end = start + list->len;
2366 if ((copy = end - offset) > 0) {
2367 if (copy > len)
2368 copy = len;
2369 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2370 copy);
2371 if ((len -= copy) == 0)
2372 return elt;
2373 offset += copy;
2375 start = end;
2378 BUG_ON(len);
2379 return elt;
2382 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2384 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2386 sg_mark_end(&sg[nsg - 1]);
2388 return nsg;
2392 * skb_cow_data - Check that a socket buffer's data buffers are writable
2393 * @skb: The socket buffer to check.
2394 * @tailbits: Amount of trailing space to be added
2395 * @trailer: Returned pointer to the skb where the @tailbits space begins
2397 * Make sure that the data buffers attached to a socket buffer are
2398 * writable. If they are not, private copies are made of the data buffers
2399 * and the socket buffer is set to use these instead.
2401 * If @tailbits is given, make sure that there is space to write @tailbits
2402 * bytes of data beyond current end of socket buffer. @trailer will be
2403 * set to point to the skb in which this space begins.
2405 * The number of scatterlist elements required to completely map the
2406 * COW'd and extended socket buffer will be returned.
2408 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2410 int copyflag;
2411 int elt;
2412 struct sk_buff *skb1, **skb_p;
2414 /* If skb is cloned or its head is paged, reallocate
2415 * head pulling out all the pages (pages are considered not writable
2416 * at the moment even if they are anonymous).
2418 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2419 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2420 return -ENOMEM;
2422 /* Easy case. Most of packets will go this way. */
2423 if (!skb_shinfo(skb)->frag_list) {
2424 /* A little of trouble, not enough of space for trailer.
2425 * This should not happen, when stack is tuned to generate
2426 * good frames. OK, on miss we reallocate and reserve even more
2427 * space, 128 bytes is fair. */
2429 if (skb_tailroom(skb) < tailbits &&
2430 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2431 return -ENOMEM;
2433 /* Voila! */
2434 *trailer = skb;
2435 return 1;
2438 /* Misery. We are in troubles, going to mincer fragments... */
2440 elt = 1;
2441 skb_p = &skb_shinfo(skb)->frag_list;
2442 copyflag = 0;
2444 while ((skb1 = *skb_p) != NULL) {
2445 int ntail = 0;
2447 /* The fragment is partially pulled by someone,
2448 * this can happen on input. Copy it and everything
2449 * after it. */
2451 if (skb_shared(skb1))
2452 copyflag = 1;
2454 /* If the skb is the last, worry about trailer. */
2456 if (skb1->next == NULL && tailbits) {
2457 if (skb_shinfo(skb1)->nr_frags ||
2458 skb_shinfo(skb1)->frag_list ||
2459 skb_tailroom(skb1) < tailbits)
2460 ntail = tailbits + 128;
2463 if (copyflag ||
2464 skb_cloned(skb1) ||
2465 ntail ||
2466 skb_shinfo(skb1)->nr_frags ||
2467 skb_shinfo(skb1)->frag_list) {
2468 struct sk_buff *skb2;
2470 /* Fuck, we are miserable poor guys... */
2471 if (ntail == 0)
2472 skb2 = skb_copy(skb1, GFP_ATOMIC);
2473 else
2474 skb2 = skb_copy_expand(skb1,
2475 skb_headroom(skb1),
2476 ntail,
2477 GFP_ATOMIC);
2478 if (unlikely(skb2 == NULL))
2479 return -ENOMEM;
2481 if (skb1->sk)
2482 skb_set_owner_w(skb2, skb1->sk);
2484 /* Looking around. Are we still alive?
2485 * OK, link new skb, drop old one */
2487 skb2->next = skb1->next;
2488 *skb_p = skb2;
2489 kfree_skb(skb1);
2490 skb1 = skb2;
2492 elt++;
2493 *trailer = skb1;
2494 skb_p = &skb1->next;
2497 return elt;
2501 * skb_partial_csum_set - set up and verify partial csum values for packet
2502 * @skb: the skb to set
2503 * @start: the number of bytes after skb->data to start checksumming.
2504 * @off: the offset from start to place the checksum.
2506 * For untrusted partially-checksummed packets, we need to make sure the values
2507 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2509 * This function checks and sets those values and skb->ip_summed: if this
2510 * returns false you should drop the packet.
2512 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2514 if (unlikely(start > skb->len - 2) ||
2515 unlikely((int)start + off > skb->len - 2)) {
2516 if (net_ratelimit())
2517 printk(KERN_WARNING
2518 "bad partial csum: csum=%u/%u len=%u\n",
2519 start, off, skb->len);
2520 return false;
2522 skb->ip_summed = CHECKSUM_PARTIAL;
2523 skb->csum_start = skb_headroom(skb) + start;
2524 skb->csum_offset = off;
2525 return true;
2528 EXPORT_SYMBOL(___pskb_trim);
2529 EXPORT_SYMBOL(__kfree_skb);
2530 EXPORT_SYMBOL(kfree_skb);
2531 EXPORT_SYMBOL(__pskb_pull_tail);
2532 EXPORT_SYMBOL(__alloc_skb);
2533 EXPORT_SYMBOL(__netdev_alloc_skb);
2534 EXPORT_SYMBOL(pskb_copy);
2535 EXPORT_SYMBOL(pskb_expand_head);
2536 EXPORT_SYMBOL(skb_checksum);
2537 EXPORT_SYMBOL(skb_clone);
2538 EXPORT_SYMBOL(skb_copy);
2539 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2540 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2541 EXPORT_SYMBOL(skb_copy_bits);
2542 EXPORT_SYMBOL(skb_copy_expand);
2543 EXPORT_SYMBOL(skb_over_panic);
2544 EXPORT_SYMBOL(skb_pad);
2545 EXPORT_SYMBOL(skb_realloc_headroom);
2546 EXPORT_SYMBOL(skb_under_panic);
2547 EXPORT_SYMBOL(skb_dequeue);
2548 EXPORT_SYMBOL(skb_dequeue_tail);
2549 EXPORT_SYMBOL(skb_insert);
2550 EXPORT_SYMBOL(skb_queue_purge);
2551 EXPORT_SYMBOL(skb_queue_head);
2552 EXPORT_SYMBOL(skb_queue_tail);
2553 EXPORT_SYMBOL(skb_unlink);
2554 EXPORT_SYMBOL(skb_append);
2555 EXPORT_SYMBOL(skb_split);
2556 EXPORT_SYMBOL(skb_prepare_seq_read);
2557 EXPORT_SYMBOL(skb_seq_read);
2558 EXPORT_SYMBOL(skb_abort_seq_read);
2559 EXPORT_SYMBOL(skb_find_text);
2560 EXPORT_SYMBOL(skb_append_datato_frags);
2562 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2563 EXPORT_SYMBOL_GPL(skb_cow_data);
2564 EXPORT_SYMBOL_GPL(skb_partial_csum_set);