2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_busy_sleep (struct ata_port
*ap
,
65 unsigned long tmout_pat
,
67 static void ata_dev_reread_id(struct ata_port
*ap
, struct ata_device
*dev
);
68 static void ata_dev_init_params(struct ata_port
*ap
, struct ata_device
*dev
);
69 static void ata_set_mode(struct ata_port
*ap
);
70 static void ata_dev_set_xfermode(struct ata_port
*ap
, struct ata_device
*dev
);
71 static unsigned int ata_get_mode_mask(const struct ata_port
*ap
, int shift
);
72 static int fgb(u32 bitmap
);
73 static int ata_choose_xfer_mode(const struct ata_port
*ap
,
75 unsigned int *xfer_shift_out
);
76 static void __ata_qc_complete(struct ata_queued_cmd
*qc
);
78 static unsigned int ata_unique_id
= 1;
79 static struct workqueue_struct
*ata_wq
;
81 int atapi_enabled
= 0;
82 module_param(atapi_enabled
, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION
);
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
103 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
104 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
106 if (tf
->ctl
!= ap
->last_ctl
) {
107 outb(tf
->ctl
, ioaddr
->ctl_addr
);
108 ap
->last_ctl
= tf
->ctl
;
112 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
113 outb(tf
->hob_feature
, ioaddr
->feature_addr
);
114 outb(tf
->hob_nsect
, ioaddr
->nsect_addr
);
115 outb(tf
->hob_lbal
, ioaddr
->lbal_addr
);
116 outb(tf
->hob_lbam
, ioaddr
->lbam_addr
);
117 outb(tf
->hob_lbah
, ioaddr
->lbah_addr
);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
127 outb(tf
->feature
, ioaddr
->feature_addr
);
128 outb(tf
->nsect
, ioaddr
->nsect_addr
);
129 outb(tf
->lbal
, ioaddr
->lbal_addr
);
130 outb(tf
->lbam
, ioaddr
->lbam_addr
);
131 outb(tf
->lbah
, ioaddr
->lbah_addr
);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
140 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
141 outb(tf
->device
, ioaddr
->device_addr
);
142 VPRINTK("device 0x%X\n", tf
->device
);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
161 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
162 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
164 if (tf
->ctl
!= ap
->last_ctl
) {
165 writeb(tf
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
166 ap
->last_ctl
= tf
->ctl
;
170 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
171 writeb(tf
->hob_feature
, (void __iomem
*) ioaddr
->feature_addr
);
172 writeb(tf
->hob_nsect
, (void __iomem
*) ioaddr
->nsect_addr
);
173 writeb(tf
->hob_lbal
, (void __iomem
*) ioaddr
->lbal_addr
);
174 writeb(tf
->hob_lbam
, (void __iomem
*) ioaddr
->lbam_addr
);
175 writeb(tf
->hob_lbah
, (void __iomem
*) ioaddr
->lbah_addr
);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
185 writeb(tf
->feature
, (void __iomem
*) ioaddr
->feature_addr
);
186 writeb(tf
->nsect
, (void __iomem
*) ioaddr
->nsect_addr
);
187 writeb(tf
->lbal
, (void __iomem
*) ioaddr
->lbal_addr
);
188 writeb(tf
->lbam
, (void __iomem
*) ioaddr
->lbam_addr
);
189 writeb(tf
->lbah
, (void __iomem
*) ioaddr
->lbah_addr
);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
198 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
199 writeb(tf
->device
, (void __iomem
*) ioaddr
->device_addr
);
200 VPRINTK("device 0x%X\n", tf
->device
);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
230 if (ap
->flags
& ATA_FLAG_MMIO
)
231 ata_tf_load_mmio(ap
, tf
);
233 ata_tf_load_pio(ap
, tf
);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
250 DPRINTK("ata%u: cmd 0x%X\n", ap
->id
, tf
->command
);
252 outb(tf
->command
, ap
->ioaddr
.command_addr
);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
271 DPRINTK("ata%u: cmd 0x%X\n", ap
->id
, tf
->command
);
273 writeb(tf
->command
, (void __iomem
*) ap
->ioaddr
.command_addr
);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
291 if (ap
->flags
& ATA_FLAG_MMIO
)
292 ata_exec_command_mmio(ap
, tf
);
294 ata_exec_command_pio(ap
, tf
);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port
*ap
,
311 const struct ata_taskfile
*tf
)
313 ap
->ops
->tf_load(ap
, tf
);
314 ap
->ops
->exec_command(ap
, tf
);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port
*ap
, struct ata_taskfile
*tf
)
331 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
333 tf
->command
= ata_check_status(ap
);
334 tf
->feature
= inb(ioaddr
->error_addr
);
335 tf
->nsect
= inb(ioaddr
->nsect_addr
);
336 tf
->lbal
= inb(ioaddr
->lbal_addr
);
337 tf
->lbam
= inb(ioaddr
->lbam_addr
);
338 tf
->lbah
= inb(ioaddr
->lbah_addr
);
339 tf
->device
= inb(ioaddr
->device_addr
);
341 if (tf
->flags
& ATA_TFLAG_LBA48
) {
342 outb(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
343 tf
->hob_feature
= inb(ioaddr
->error_addr
);
344 tf
->hob_nsect
= inb(ioaddr
->nsect_addr
);
345 tf
->hob_lbal
= inb(ioaddr
->lbal_addr
);
346 tf
->hob_lbam
= inb(ioaddr
->lbam_addr
);
347 tf
->hob_lbah
= inb(ioaddr
->lbah_addr
);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port
*ap
, struct ata_taskfile
*tf
)
365 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
367 tf
->command
= ata_check_status(ap
);
368 tf
->feature
= readb((void __iomem
*)ioaddr
->error_addr
);
369 tf
->nsect
= readb((void __iomem
*)ioaddr
->nsect_addr
);
370 tf
->lbal
= readb((void __iomem
*)ioaddr
->lbal_addr
);
371 tf
->lbam
= readb((void __iomem
*)ioaddr
->lbam_addr
);
372 tf
->lbah
= readb((void __iomem
*)ioaddr
->lbah_addr
);
373 tf
->device
= readb((void __iomem
*)ioaddr
->device_addr
);
375 if (tf
->flags
& ATA_TFLAG_LBA48
) {
376 writeb(tf
->ctl
| ATA_HOB
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
377 tf
->hob_feature
= readb((void __iomem
*)ioaddr
->error_addr
);
378 tf
->hob_nsect
= readb((void __iomem
*)ioaddr
->nsect_addr
);
379 tf
->hob_lbal
= readb((void __iomem
*)ioaddr
->lbal_addr
);
380 tf
->hob_lbam
= readb((void __iomem
*)ioaddr
->lbam_addr
);
381 tf
->hob_lbah
= readb((void __iomem
*)ioaddr
->lbah_addr
);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
404 if (ap
->flags
& ATA_FLAG_MMIO
)
405 ata_tf_read_mmio(ap
, tf
);
407 ata_tf_read_pio(ap
, tf
);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
419 * Inherited from caller.
421 static u8
ata_check_status_pio(struct ata_port
*ap
)
423 return inb(ap
->ioaddr
.status_addr
);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
435 * Inherited from caller.
437 static u8
ata_check_status_mmio(struct ata_port
*ap
)
439 return readb((void __iomem
*) ap
->ioaddr
.status_addr
);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
451 * May be used as the check_status() entry in ata_port_operations.
454 * Inherited from caller.
456 u8
ata_check_status(struct ata_port
*ap
)
458 if (ap
->flags
& ATA_FLAG_MMIO
)
459 return ata_check_status_mmio(ap
);
460 return ata_check_status_pio(ap
);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
475 * Inherited from caller.
477 u8
ata_altstatus(struct ata_port
*ap
)
479 if (ap
->ops
->check_altstatus
)
480 return ap
->ops
->check_altstatus(ap
);
482 if (ap
->flags
& ATA_FLAG_MMIO
)
483 return readb((void __iomem
*)ap
->ioaddr
.altstatus_addr
);
484 return inb(ap
->ioaddr
.altstatus_addr
);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
503 fis
[0] = 0x27; /* Register - Host to Device FIS */
504 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis
[2] = tf
->command
;
507 fis
[3] = tf
->feature
;
514 fis
[8] = tf
->hob_lbal
;
515 fis
[9] = tf
->hob_lbam
;
516 fis
[10] = tf
->hob_lbah
;
517 fis
[11] = tf
->hob_feature
;
520 fis
[13] = tf
->hob_nsect
;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
538 * Inherited from caller.
541 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
543 tf
->command
= fis
[2]; /* status */
544 tf
->feature
= fis
[3]; /* error */
551 tf
->hob_lbal
= fis
[8];
552 tf
->hob_lbam
= fis
[9];
553 tf
->hob_lbah
= fis
[10];
556 tf
->hob_nsect
= fis
[13];
559 static const u8 ata_rw_cmds
[] = {
563 ATA_CMD_READ_MULTI_EXT
,
564 ATA_CMD_WRITE_MULTI_EXT
,
568 ATA_CMD_PIO_READ_EXT
,
569 ATA_CMD_PIO_WRITE_EXT
,
578 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
579 * @qc: command to examine and configure
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
587 void ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
589 struct ata_taskfile
*tf
= &qc
->tf
;
590 struct ata_device
*dev
= qc
->dev
;
592 int index
, lba48
, write
;
594 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
595 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
597 if (dev
->flags
& ATA_DFLAG_PIO
) {
598 tf
->protocol
= ATA_PROT_PIO
;
599 index
= dev
->multi_count
? 0 : 4;
601 tf
->protocol
= ATA_PROT_DMA
;
605 tf
->command
= ata_rw_cmds
[index
+ lba48
+ write
];
608 static const char * xfer_mode_str
[] = {
628 * ata_udma_string - convert UDMA bit offset to string
629 * @mask: mask of bits supported; only highest bit counts.
631 * Determine string which represents the highest speed
632 * (highest bit in @udma_mask).
638 * Constant C string representing highest speed listed in
639 * @udma_mask, or the constant C string "<n/a>".
642 static const char *ata_mode_string(unsigned int mask
)
646 for (i
= 7; i
>= 0; i
--)
649 for (i
= ATA_SHIFT_MWDMA
+ 2; i
>= ATA_SHIFT_MWDMA
; i
--)
652 for (i
= ATA_SHIFT_PIO
+ 4; i
>= ATA_SHIFT_PIO
; i
--)
659 return xfer_mode_str
[i
];
663 * ata_pio_devchk - PATA device presence detection
664 * @ap: ATA channel to examine
665 * @device: Device to examine (starting at zero)
667 * This technique was originally described in
668 * Hale Landis's ATADRVR (www.ata-atapi.com), and
669 * later found its way into the ATA/ATAPI spec.
671 * Write a pattern to the ATA shadow registers,
672 * and if a device is present, it will respond by
673 * correctly storing and echoing back the
674 * ATA shadow register contents.
680 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
683 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
686 ap
->ops
->dev_select(ap
, device
);
688 outb(0x55, ioaddr
->nsect_addr
);
689 outb(0xaa, ioaddr
->lbal_addr
);
691 outb(0xaa, ioaddr
->nsect_addr
);
692 outb(0x55, ioaddr
->lbal_addr
);
694 outb(0x55, ioaddr
->nsect_addr
);
695 outb(0xaa, ioaddr
->lbal_addr
);
697 nsect
= inb(ioaddr
->nsect_addr
);
698 lbal
= inb(ioaddr
->lbal_addr
);
700 if ((nsect
== 0x55) && (lbal
== 0xaa))
701 return 1; /* we found a device */
703 return 0; /* nothing found */
707 * ata_mmio_devchk - PATA device presence detection
708 * @ap: ATA channel to examine
709 * @device: Device to examine (starting at zero)
711 * This technique was originally described in
712 * Hale Landis's ATADRVR (www.ata-atapi.com), and
713 * later found its way into the ATA/ATAPI spec.
715 * Write a pattern to the ATA shadow registers,
716 * and if a device is present, it will respond by
717 * correctly storing and echoing back the
718 * ATA shadow register contents.
724 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
727 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
730 ap
->ops
->dev_select(ap
, device
);
732 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
733 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
735 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
736 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
738 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
739 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
741 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
742 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
744 if ((nsect
== 0x55) && (lbal
== 0xaa))
745 return 1; /* we found a device */
747 return 0; /* nothing found */
751 * ata_devchk - PATA device presence detection
752 * @ap: ATA channel to examine
753 * @device: Device to examine (starting at zero)
755 * Dispatch ATA device presence detection, depending
756 * on whether we are using PIO or MMIO to talk to the
757 * ATA shadow registers.
763 static unsigned int ata_devchk(struct ata_port
*ap
,
766 if (ap
->flags
& ATA_FLAG_MMIO
)
767 return ata_mmio_devchk(ap
, device
);
768 return ata_pio_devchk(ap
, device
);
772 * ata_dev_classify - determine device type based on ATA-spec signature
773 * @tf: ATA taskfile register set for device to be identified
775 * Determine from taskfile register contents whether a device is
776 * ATA or ATAPI, as per "Signature and persistence" section
777 * of ATA/PI spec (volume 1, sect 5.14).
783 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
784 * the event of failure.
787 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
789 /* Apple's open source Darwin code hints that some devices only
790 * put a proper signature into the LBA mid/high registers,
791 * So, we only check those. It's sufficient for uniqueness.
794 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
795 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
796 DPRINTK("found ATA device by sig\n");
800 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
801 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
802 DPRINTK("found ATAPI device by sig\n");
803 return ATA_DEV_ATAPI
;
806 DPRINTK("unknown device\n");
807 return ATA_DEV_UNKNOWN
;
811 * ata_dev_try_classify - Parse returned ATA device signature
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
815 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
816 * an ATA/ATAPI-defined set of values is placed in the ATA
817 * shadow registers, indicating the results of device detection
820 * Select the ATA device, and read the values from the ATA shadow
821 * registers. Then parse according to the Error register value,
822 * and the spec-defined values examined by ata_dev_classify().
828 static u8
ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
)
830 struct ata_device
*dev
= &ap
->device
[device
];
831 struct ata_taskfile tf
;
835 ap
->ops
->dev_select(ap
, device
);
837 memset(&tf
, 0, sizeof(tf
));
839 ap
->ops
->tf_read(ap
, &tf
);
842 dev
->class = ATA_DEV_NONE
;
844 /* see if device passed diags */
847 else if ((device
== 0) && (err
== 0x81))
852 /* determine if device if ATA or ATAPI */
853 class = ata_dev_classify(&tf
);
854 if (class == ATA_DEV_UNKNOWN
)
856 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
865 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
866 * @id: IDENTIFY DEVICE results we will examine
867 * @s: string into which data is output
868 * @ofs: offset into identify device page
869 * @len: length of string to return. must be an even number.
871 * The strings in the IDENTIFY DEVICE page are broken up into
872 * 16-bit chunks. Run through the string, and output each
873 * 8-bit chunk linearly, regardless of platform.
879 void ata_dev_id_string(const u16
*id
, unsigned char *s
,
880 unsigned int ofs
, unsigned int len
)
900 * ata_noop_dev_select - Select device 0/1 on ATA bus
901 * @ap: ATA channel to manipulate
902 * @device: ATA device (numbered from zero) to select
904 * This function performs no actual function.
906 * May be used as the dev_select() entry in ata_port_operations.
911 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
917 * ata_std_dev_select - Select device 0/1 on ATA bus
918 * @ap: ATA channel to manipulate
919 * @device: ATA device (numbered from zero) to select
921 * Use the method defined in the ATA specification to
922 * make either device 0, or device 1, active on the
923 * ATA channel. Works with both PIO and MMIO.
925 * May be used as the dev_select() entry in ata_port_operations.
931 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
936 tmp
= ATA_DEVICE_OBS
;
938 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
940 if (ap
->flags
& ATA_FLAG_MMIO
) {
941 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
943 outb(tmp
, ap
->ioaddr
.device_addr
);
945 ata_pause(ap
); /* needed; also flushes, for mmio */
949 * ata_dev_select - Select device 0/1 on ATA bus
950 * @ap: ATA channel to manipulate
951 * @device: ATA device (numbered from zero) to select
952 * @wait: non-zero to wait for Status register BSY bit to clear
953 * @can_sleep: non-zero if context allows sleeping
955 * Use the method defined in the ATA specification to
956 * make either device 0, or device 1, active on the
959 * This is a high-level version of ata_std_dev_select(),
960 * which additionally provides the services of inserting
961 * the proper pauses and status polling, where needed.
967 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
968 unsigned int wait
, unsigned int can_sleep
)
970 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
971 ap
->id
, device
, wait
);
976 ap
->ops
->dev_select(ap
, device
);
979 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
986 * ata_dump_id - IDENTIFY DEVICE info debugging output
987 * @dev: Device whose IDENTIFY DEVICE page we will dump
989 * Dump selected 16-bit words from a detected device's
990 * IDENTIFY PAGE page.
996 static inline void ata_dump_id(const struct ata_device
*dev
)
998 DPRINTK("49==0x%04x "
1008 DPRINTK("80==0x%04x "
1018 DPRINTK("88==0x%04x "
1025 * Compute the PIO modes available for this device. This is not as
1026 * trivial as it seems if we must consider early devices correctly.
1028 * FIXME: pre IDE drive timing (do we care ?).
1031 static unsigned int ata_pio_modes(const struct ata_device
*adev
)
1035 /* Usual case. Word 53 indicates word 88 is valid */
1036 if (adev
->id
[ATA_ID_FIELD_VALID
] & (1 << 2)) {
1037 modes
= adev
->id
[ATA_ID_PIO_MODES
] & 0x03;
1043 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1044 for the maximum. Turn it into a mask and return it */
1045 modes
= (2 << (adev
->id
[ATA_ID_OLD_PIO_MODES
] & 0xFF)) - 1 ;
1049 static int ata_qc_wait_err(struct ata_queued_cmd
*qc
,
1050 struct completion
*wait
)
1054 if (wait_for_completion_timeout(wait
, 30 * HZ
) < 1) {
1055 /* timeout handling */
1056 unsigned int err_mask
= ac_err_mask(ata_chk_status(qc
->ap
));
1059 printk(KERN_WARNING
"ata%u: slow completion (cmd %x)\n",
1060 qc
->ap
->id
, qc
->tf
.command
);
1062 printk(KERN_WARNING
"ata%u: qc timeout (cmd %x)\n",
1063 qc
->ap
->id
, qc
->tf
.command
);
1067 ata_qc_complete(qc
, err_mask
);
1074 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1075 * @ap: port on which device we wish to probe resides
1076 * @device: device bus address, starting at zero
1078 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1079 * command, and read back the 512-byte device information page.
1080 * The device information page is fed to us via the standard
1081 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1082 * using standard PIO-IN paths)
1084 * After reading the device information page, we use several
1085 * bits of information from it to initialize data structures
1086 * that will be used during the lifetime of the ata_device.
1087 * Other data from the info page is used to disqualify certain
1088 * older ATA devices we do not wish to support.
1091 * Inherited from caller. Some functions called by this function
1092 * obtain the host_set lock.
1095 static void ata_dev_identify(struct ata_port
*ap
, unsigned int device
)
1097 struct ata_device
*dev
= &ap
->device
[device
];
1098 unsigned int major_version
;
1100 unsigned long xfer_modes
;
1101 unsigned int using_edd
;
1102 DECLARE_COMPLETION(wait
);
1103 struct ata_queued_cmd
*qc
;
1104 unsigned long flags
;
1107 if (!ata_dev_present(dev
)) {
1108 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1113 if (ap
->flags
& (ATA_FLAG_SRST
| ATA_FLAG_SATA_RESET
))
1118 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, device
);
1120 assert (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ATAPI
||
1121 dev
->class == ATA_DEV_NONE
);
1123 ata_dev_select(ap
, device
, 1, 1); /* select device 0/1 */
1125 qc
= ata_qc_new_init(ap
, dev
);
1128 ata_sg_init_one(qc
, dev
->id
, sizeof(dev
->id
));
1129 qc
->dma_dir
= DMA_FROM_DEVICE
;
1130 qc
->tf
.protocol
= ATA_PROT_PIO
;
1134 if (dev
->class == ATA_DEV_ATA
) {
1135 qc
->tf
.command
= ATA_CMD_ID_ATA
;
1136 DPRINTK("do ATA identify\n");
1138 qc
->tf
.command
= ATA_CMD_ID_ATAPI
;
1139 DPRINTK("do ATAPI identify\n");
1142 qc
->waiting
= &wait
;
1143 qc
->complete_fn
= ata_qc_complete_noop
;
1145 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1146 rc
= ata_qc_issue(qc
);
1147 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1152 ata_qc_wait_err(qc
, &wait
);
1154 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1155 ap
->ops
->tf_read(ap
, &qc
->tf
);
1156 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1158 if (qc
->tf
.command
& ATA_ERR
) {
1160 * arg! EDD works for all test cases, but seems to return
1161 * the ATA signature for some ATAPI devices. Until the
1162 * reason for this is found and fixed, we fix up the mess
1163 * here. If IDENTIFY DEVICE returns command aborted
1164 * (as ATAPI devices do), then we issue an
1165 * IDENTIFY PACKET DEVICE.
1167 * ATA software reset (SRST, the default) does not appear
1168 * to have this problem.
1170 if ((using_edd
) && (dev
->class == ATA_DEV_ATA
)) {
1171 u8 err
= qc
->tf
.feature
;
1172 if (err
& ATA_ABORTED
) {
1173 dev
->class = ATA_DEV_ATAPI
;
1184 swap_buf_le16(dev
->id
, ATA_ID_WORDS
);
1186 /* print device capabilities */
1187 printk(KERN_DEBUG
"ata%u: dev %u cfg "
1188 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1189 ap
->id
, device
, dev
->id
[49],
1190 dev
->id
[82], dev
->id
[83], dev
->id
[84],
1191 dev
->id
[85], dev
->id
[86], dev
->id
[87],
1195 * common ATA, ATAPI feature tests
1198 /* we require DMA support (bits 8 of word 49) */
1199 if (!ata_id_has_dma(dev
->id
)) {
1200 printk(KERN_DEBUG
"ata%u: no dma\n", ap
->id
);
1204 /* quick-n-dirty find max transfer mode; for printk only */
1205 xfer_modes
= dev
->id
[ATA_ID_UDMA_MODES
];
1207 xfer_modes
= (dev
->id
[ATA_ID_MWDMA_MODES
]) << ATA_SHIFT_MWDMA
;
1209 xfer_modes
= ata_pio_modes(dev
);
1213 /* ATA-specific feature tests */
1214 if (dev
->class == ATA_DEV_ATA
) {
1215 if (!ata_id_is_ata(dev
->id
)) /* sanity check */
1218 /* get major version */
1219 tmp
= dev
->id
[ATA_ID_MAJOR_VER
];
1220 for (major_version
= 14; major_version
>= 1; major_version
--)
1221 if (tmp
& (1 << major_version
))
1225 * The exact sequence expected by certain pre-ATA4 drives is:
1228 * INITIALIZE DEVICE PARAMETERS
1230 * Some drives were very specific about that exact sequence.
1232 if (major_version
< 4 || (!ata_id_has_lba(dev
->id
))) {
1233 ata_dev_init_params(ap
, dev
);
1235 /* current CHS translation info (id[53-58]) might be
1236 * changed. reread the identify device info.
1238 ata_dev_reread_id(ap
, dev
);
1241 if (ata_id_has_lba(dev
->id
)) {
1242 dev
->flags
|= ATA_DFLAG_LBA
;
1244 if (ata_id_has_lba48(dev
->id
)) {
1245 dev
->flags
|= ATA_DFLAG_LBA48
;
1246 dev
->n_sectors
= ata_id_u64(dev
->id
, 100);
1248 dev
->n_sectors
= ata_id_u32(dev
->id
, 60);
1251 /* print device info to dmesg */
1252 printk(KERN_INFO
"ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1255 ata_mode_string(xfer_modes
),
1256 (unsigned long long)dev
->n_sectors
,
1257 dev
->flags
& ATA_DFLAG_LBA48
? " LBA48" : " LBA");
1261 /* Default translation */
1262 dev
->cylinders
= dev
->id
[1];
1263 dev
->heads
= dev
->id
[3];
1264 dev
->sectors
= dev
->id
[6];
1265 dev
->n_sectors
= dev
->cylinders
* dev
->heads
* dev
->sectors
;
1267 if (ata_id_current_chs_valid(dev
->id
)) {
1268 /* Current CHS translation is valid. */
1269 dev
->cylinders
= dev
->id
[54];
1270 dev
->heads
= dev
->id
[55];
1271 dev
->sectors
= dev
->id
[56];
1273 dev
->n_sectors
= ata_id_u32(dev
->id
, 57);
1276 /* print device info to dmesg */
1277 printk(KERN_INFO
"ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1280 ata_mode_string(xfer_modes
),
1281 (unsigned long long)dev
->n_sectors
,
1282 (int)dev
->cylinders
, (int)dev
->heads
, (int)dev
->sectors
);
1286 ap
->host
->max_cmd_len
= 16;
1289 /* ATAPI-specific feature tests */
1290 else if (dev
->class == ATA_DEV_ATAPI
) {
1291 if (ata_id_is_ata(dev
->id
)) /* sanity check */
1294 rc
= atapi_cdb_len(dev
->id
);
1295 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1296 printk(KERN_WARNING
"ata%u: unsupported CDB len\n", ap
->id
);
1299 ap
->cdb_len
= (unsigned int) rc
;
1300 ap
->host
->max_cmd_len
= (unsigned char) ap
->cdb_len
;
1302 /* print device info to dmesg */
1303 printk(KERN_INFO
"ata%u: dev %u ATAPI, max %s\n",
1305 ata_mode_string(xfer_modes
));
1308 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap
));
1312 printk(KERN_WARNING
"ata%u: dev %u not supported, ignoring\n",
1315 dev
->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1316 DPRINTK("EXIT, err\n");
1320 static inline u8
ata_dev_knobble(const struct ata_port
*ap
)
1322 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(ap
->device
->id
)));
1326 * ata_dev_config - Run device specific handlers and check for
1327 * SATA->PATA bridges
1334 void ata_dev_config(struct ata_port
*ap
, unsigned int i
)
1336 /* limit bridge transfers to udma5, 200 sectors */
1337 if (ata_dev_knobble(ap
)) {
1338 printk(KERN_INFO
"ata%u(%u): applying bridge limits\n",
1339 ap
->id
, ap
->device
->devno
);
1340 ap
->udma_mask
&= ATA_UDMA5
;
1341 ap
->host
->max_sectors
= ATA_MAX_SECTORS
;
1342 ap
->host
->hostt
->max_sectors
= ATA_MAX_SECTORS
;
1343 ap
->device
->flags
|= ATA_DFLAG_LOCK_SECTORS
;
1346 if (ap
->ops
->dev_config
)
1347 ap
->ops
->dev_config(ap
, &ap
->device
[i
]);
1351 * ata_bus_probe - Reset and probe ATA bus
1354 * Master ATA bus probing function. Initiates a hardware-dependent
1355 * bus reset, then attempts to identify any devices found on
1359 * PCI/etc. bus probe sem.
1362 * Zero on success, non-zero on error.
1365 static int ata_bus_probe(struct ata_port
*ap
)
1367 unsigned int i
, found
= 0;
1369 ap
->ops
->phy_reset(ap
);
1370 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1373 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1374 ata_dev_identify(ap
, i
);
1375 if (ata_dev_present(&ap
->device
[i
])) {
1377 ata_dev_config(ap
,i
);
1381 if ((!found
) || (ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1382 goto err_out_disable
;
1385 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1386 goto err_out_disable
;
1391 ap
->ops
->port_disable(ap
);
1397 * ata_port_probe - Mark port as enabled
1398 * @ap: Port for which we indicate enablement
1400 * Modify @ap data structure such that the system
1401 * thinks that the entire port is enabled.
1403 * LOCKING: host_set lock, or some other form of
1407 void ata_port_probe(struct ata_port
*ap
)
1409 ap
->flags
&= ~ATA_FLAG_PORT_DISABLED
;
1413 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1414 * @ap: SATA port associated with target SATA PHY.
1416 * This function issues commands to standard SATA Sxxx
1417 * PHY registers, to wake up the phy (and device), and
1418 * clear any reset condition.
1421 * PCI/etc. bus probe sem.
1424 void __sata_phy_reset(struct ata_port
*ap
)
1427 unsigned long timeout
= jiffies
+ (HZ
* 5);
1429 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1430 /* issue phy wake/reset */
1431 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1432 /* Couldn't find anything in SATA I/II specs, but
1433 * AHCI-1.1 10.4.2 says at least 1 ms. */
1436 scr_write_flush(ap
, SCR_CONTROL
, 0x300); /* phy wake/clear reset */
1438 /* wait for phy to become ready, if necessary */
1441 sstatus
= scr_read(ap
, SCR_STATUS
);
1442 if ((sstatus
& 0xf) != 1)
1444 } while (time_before(jiffies
, timeout
));
1446 /* TODO: phy layer with polling, timeouts, etc. */
1447 if (sata_dev_present(ap
))
1450 sstatus
= scr_read(ap
, SCR_STATUS
);
1451 printk(KERN_INFO
"ata%u: no device found (phy stat %08x)\n",
1453 ata_port_disable(ap
);
1456 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1459 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1460 ata_port_disable(ap
);
1464 ap
->cbl
= ATA_CBL_SATA
;
1468 * sata_phy_reset - Reset SATA bus.
1469 * @ap: SATA port associated with target SATA PHY.
1471 * This function resets the SATA bus, and then probes
1472 * the bus for devices.
1475 * PCI/etc. bus probe sem.
1478 void sata_phy_reset(struct ata_port
*ap
)
1480 __sata_phy_reset(ap
);
1481 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1487 * ata_port_disable - Disable port.
1488 * @ap: Port to be disabled.
1490 * Modify @ap data structure such that the system
1491 * thinks that the entire port is disabled, and should
1492 * never attempt to probe or communicate with devices
1495 * LOCKING: host_set lock, or some other form of
1499 void ata_port_disable(struct ata_port
*ap
)
1501 ap
->device
[0].class = ATA_DEV_NONE
;
1502 ap
->device
[1].class = ATA_DEV_NONE
;
1503 ap
->flags
|= ATA_FLAG_PORT_DISABLED
;
1507 * This mode timing computation functionality is ported over from
1508 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1511 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1512 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1513 * for PIO 5, which is a nonstandard extension and UDMA6, which
1514 * is currently supported only by Maxtor drives.
1517 static const struct ata_timing ata_timing
[] = {
1519 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1520 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1521 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1522 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1524 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1525 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1526 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1530 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1531 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1532 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1534 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1535 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1536 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1538 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1539 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1540 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1542 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1543 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1544 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1546 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1551 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1552 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1554 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
1556 q
->setup
= EZ(t
->setup
* 1000, T
);
1557 q
->act8b
= EZ(t
->act8b
* 1000, T
);
1558 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
1559 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
1560 q
->active
= EZ(t
->active
* 1000, T
);
1561 q
->recover
= EZ(t
->recover
* 1000, T
);
1562 q
->cycle
= EZ(t
->cycle
* 1000, T
);
1563 q
->udma
= EZ(t
->udma
* 1000, UT
);
1566 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
1567 struct ata_timing
*m
, unsigned int what
)
1569 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
1570 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
1571 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
1572 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
1573 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
1574 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
1575 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
1576 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
1579 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
1581 const struct ata_timing
*t
;
1583 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
1584 if (t
->mode
== 0xFF)
1589 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
1590 struct ata_timing
*t
, int T
, int UT
)
1592 const struct ata_timing
*s
;
1593 struct ata_timing p
;
1599 if (!(s
= ata_timing_find_mode(speed
)))
1602 memcpy(t
, s
, sizeof(*s
));
1605 * If the drive is an EIDE drive, it can tell us it needs extended
1606 * PIO/MW_DMA cycle timing.
1609 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
1610 memset(&p
, 0, sizeof(p
));
1611 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
1612 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
1613 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
1614 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
1615 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
1617 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
1621 * Convert the timing to bus clock counts.
1624 ata_timing_quantize(t
, t
, T
, UT
);
1627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1628 * and some other commands. We have to ensure that the DMA cycle timing is
1629 * slower/equal than the fastest PIO timing.
1632 if (speed
> XFER_PIO_4
) {
1633 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
1634 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
1638 * Lenghten active & recovery time so that cycle time is correct.
1641 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
1642 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
1643 t
->rec8b
= t
->cyc8b
- t
->act8b
;
1646 if (t
->active
+ t
->recover
< t
->cycle
) {
1647 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
1648 t
->recover
= t
->cycle
- t
->active
;
1654 static const struct {
1657 } xfer_mode_classes
[] = {
1658 { ATA_SHIFT_UDMA
, XFER_UDMA_0
},
1659 { ATA_SHIFT_MWDMA
, XFER_MW_DMA_0
},
1660 { ATA_SHIFT_PIO
, XFER_PIO_0
},
1663 static inline u8
base_from_shift(unsigned int shift
)
1667 for (i
= 0; i
< ARRAY_SIZE(xfer_mode_classes
); i
++)
1668 if (xfer_mode_classes
[i
].shift
== shift
)
1669 return xfer_mode_classes
[i
].base
;
1674 static void ata_dev_set_mode(struct ata_port
*ap
, struct ata_device
*dev
)
1679 if (!ata_dev_present(dev
) || (ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1682 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
1683 dev
->flags
|= ATA_DFLAG_PIO
;
1685 ata_dev_set_xfermode(ap
, dev
);
1687 base
= base_from_shift(dev
->xfer_shift
);
1688 ofs
= dev
->xfer_mode
- base
;
1689 idx
= ofs
+ dev
->xfer_shift
;
1690 WARN_ON(idx
>= ARRAY_SIZE(xfer_mode_str
));
1692 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1693 idx
, dev
->xfer_shift
, (int)dev
->xfer_mode
, (int)base
, ofs
);
1695 printk(KERN_INFO
"ata%u: dev %u configured for %s\n",
1696 ap
->id
, dev
->devno
, xfer_mode_str
[idx
]);
1699 static int ata_host_set_pio(struct ata_port
*ap
)
1705 mask
= ata_get_mode_mask(ap
, ATA_SHIFT_PIO
);
1708 printk(KERN_WARNING
"ata%u: no PIO support\n", ap
->id
);
1712 base
= base_from_shift(ATA_SHIFT_PIO
);
1713 xfer_mode
= base
+ x
;
1715 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1716 (int)base
, (int)xfer_mode
, mask
, x
);
1718 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1719 struct ata_device
*dev
= &ap
->device
[i
];
1720 if (ata_dev_present(dev
)) {
1721 dev
->pio_mode
= xfer_mode
;
1722 dev
->xfer_mode
= xfer_mode
;
1723 dev
->xfer_shift
= ATA_SHIFT_PIO
;
1724 if (ap
->ops
->set_piomode
)
1725 ap
->ops
->set_piomode(ap
, dev
);
1732 static void ata_host_set_dma(struct ata_port
*ap
, u8 xfer_mode
,
1733 unsigned int xfer_shift
)
1737 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1738 struct ata_device
*dev
= &ap
->device
[i
];
1739 if (ata_dev_present(dev
)) {
1740 dev
->dma_mode
= xfer_mode
;
1741 dev
->xfer_mode
= xfer_mode
;
1742 dev
->xfer_shift
= xfer_shift
;
1743 if (ap
->ops
->set_dmamode
)
1744 ap
->ops
->set_dmamode(ap
, dev
);
1750 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1751 * @ap: port on which timings will be programmed
1753 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1756 * PCI/etc. bus probe sem.
1759 static void ata_set_mode(struct ata_port
*ap
)
1761 unsigned int xfer_shift
;
1765 /* step 1: always set host PIO timings */
1766 rc
= ata_host_set_pio(ap
);
1770 /* step 2: choose the best data xfer mode */
1771 xfer_mode
= xfer_shift
= 0;
1772 rc
= ata_choose_xfer_mode(ap
, &xfer_mode
, &xfer_shift
);
1776 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1777 if (xfer_shift
!= ATA_SHIFT_PIO
)
1778 ata_host_set_dma(ap
, xfer_mode
, xfer_shift
);
1780 /* step 4: update devices' xfer mode */
1781 ata_dev_set_mode(ap
, &ap
->device
[0]);
1782 ata_dev_set_mode(ap
, &ap
->device
[1]);
1784 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1787 if (ap
->ops
->post_set_mode
)
1788 ap
->ops
->post_set_mode(ap
);
1793 ata_port_disable(ap
);
1797 * ata_busy_sleep - sleep until BSY clears, or timeout
1798 * @ap: port containing status register to be polled
1799 * @tmout_pat: impatience timeout
1800 * @tmout: overall timeout
1802 * Sleep until ATA Status register bit BSY clears,
1803 * or a timeout occurs.
1809 static unsigned int ata_busy_sleep (struct ata_port
*ap
,
1810 unsigned long tmout_pat
,
1811 unsigned long tmout
)
1813 unsigned long timer_start
, timeout
;
1816 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
1817 timer_start
= jiffies
;
1818 timeout
= timer_start
+ tmout_pat
;
1819 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1821 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
1824 if (status
& ATA_BUSY
)
1825 printk(KERN_WARNING
"ata%u is slow to respond, "
1826 "please be patient\n", ap
->id
);
1828 timeout
= timer_start
+ tmout
;
1829 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1831 status
= ata_chk_status(ap
);
1834 if (status
& ATA_BUSY
) {
1835 printk(KERN_ERR
"ata%u failed to respond (%lu secs)\n",
1836 ap
->id
, tmout
/ HZ
);
1843 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
1845 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1846 unsigned int dev0
= devmask
& (1 << 0);
1847 unsigned int dev1
= devmask
& (1 << 1);
1848 unsigned long timeout
;
1850 /* if device 0 was found in ata_devchk, wait for its
1854 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1856 /* if device 1 was found in ata_devchk, wait for
1857 * register access, then wait for BSY to clear
1859 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
1863 ap
->ops
->dev_select(ap
, 1);
1864 if (ap
->flags
& ATA_FLAG_MMIO
) {
1865 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
1866 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
1868 nsect
= inb(ioaddr
->nsect_addr
);
1869 lbal
= inb(ioaddr
->lbal_addr
);
1871 if ((nsect
== 1) && (lbal
== 1))
1873 if (time_after(jiffies
, timeout
)) {
1877 msleep(50); /* give drive a breather */
1880 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1882 /* is all this really necessary? */
1883 ap
->ops
->dev_select(ap
, 0);
1885 ap
->ops
->dev_select(ap
, 1);
1887 ap
->ops
->dev_select(ap
, 0);
1891 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1892 * @ap: Port to reset and probe
1894 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1895 * probe the bus. Not often used these days.
1898 * PCI/etc. bus probe sem.
1899 * Obtains host_set lock.
1903 static unsigned int ata_bus_edd(struct ata_port
*ap
)
1905 struct ata_taskfile tf
;
1906 unsigned long flags
;
1908 /* set up execute-device-diag (bus reset) taskfile */
1909 /* also, take interrupts to a known state (disabled) */
1910 DPRINTK("execute-device-diag\n");
1911 ata_tf_init(ap
, &tf
, 0);
1913 tf
.command
= ATA_CMD_EDD
;
1914 tf
.protocol
= ATA_PROT_NODATA
;
1917 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1918 ata_tf_to_host(ap
, &tf
);
1919 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1921 /* spec says at least 2ms. but who knows with those
1922 * crazy ATAPI devices...
1926 return ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1929 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
1930 unsigned int devmask
)
1932 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1934 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
1936 /* software reset. causes dev0 to be selected */
1937 if (ap
->flags
& ATA_FLAG_MMIO
) {
1938 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1939 udelay(20); /* FIXME: flush */
1940 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
1941 udelay(20); /* FIXME: flush */
1942 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1944 outb(ap
->ctl
, ioaddr
->ctl_addr
);
1946 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1948 outb(ap
->ctl
, ioaddr
->ctl_addr
);
1951 /* spec mandates ">= 2ms" before checking status.
1952 * We wait 150ms, because that was the magic delay used for
1953 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1954 * between when the ATA command register is written, and then
1955 * status is checked. Because waiting for "a while" before
1956 * checking status is fine, post SRST, we perform this magic
1957 * delay here as well.
1961 ata_bus_post_reset(ap
, devmask
);
1967 * ata_bus_reset - reset host port and associated ATA channel
1968 * @ap: port to reset
1970 * This is typically the first time we actually start issuing
1971 * commands to the ATA channel. We wait for BSY to clear, then
1972 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1973 * result. Determine what devices, if any, are on the channel
1974 * by looking at the device 0/1 error register. Look at the signature
1975 * stored in each device's taskfile registers, to determine if
1976 * the device is ATA or ATAPI.
1979 * PCI/etc. bus probe sem.
1980 * Obtains host_set lock.
1983 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1986 void ata_bus_reset(struct ata_port
*ap
)
1988 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1989 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
1991 unsigned int dev0
, dev1
= 0, rc
= 0, devmask
= 0;
1993 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
1995 /* determine if device 0/1 are present */
1996 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
1999 dev0
= ata_devchk(ap
, 0);
2001 dev1
= ata_devchk(ap
, 1);
2005 devmask
|= (1 << 0);
2007 devmask
|= (1 << 1);
2009 /* select device 0 again */
2010 ap
->ops
->dev_select(ap
, 0);
2012 /* issue bus reset */
2013 if (ap
->flags
& ATA_FLAG_SRST
)
2014 rc
= ata_bus_softreset(ap
, devmask
);
2015 else if ((ap
->flags
& ATA_FLAG_SATA_RESET
) == 0) {
2016 /* set up device control */
2017 if (ap
->flags
& ATA_FLAG_MMIO
)
2018 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2020 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2021 rc
= ata_bus_edd(ap
);
2028 * determine by signature whether we have ATA or ATAPI devices
2030 err
= ata_dev_try_classify(ap
, 0);
2031 if ((slave_possible
) && (err
!= 0x81))
2032 ata_dev_try_classify(ap
, 1);
2034 /* re-enable interrupts */
2035 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2038 /* is double-select really necessary? */
2039 if (ap
->device
[1].class != ATA_DEV_NONE
)
2040 ap
->ops
->dev_select(ap
, 1);
2041 if (ap
->device
[0].class != ATA_DEV_NONE
)
2042 ap
->ops
->dev_select(ap
, 0);
2044 /* if no devices were detected, disable this port */
2045 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2046 (ap
->device
[1].class == ATA_DEV_NONE
))
2049 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2050 /* set up device control for ATA_FLAG_SATA_RESET */
2051 if (ap
->flags
& ATA_FLAG_MMIO
)
2052 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2054 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2061 printk(KERN_ERR
"ata%u: disabling port\n", ap
->id
);
2062 ap
->ops
->port_disable(ap
);
2067 static void ata_pr_blacklisted(const struct ata_port
*ap
,
2068 const struct ata_device
*dev
)
2070 printk(KERN_WARNING
"ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2071 ap
->id
, dev
->devno
);
2074 static const char * ata_dma_blacklist
[] = {
2093 "Toshiba CD-ROM XM-6202B",
2094 "TOSHIBA CD-ROM XM-1702BC",
2096 "E-IDE CD-ROM CR-840",
2099 "SAMSUNG CD-ROM SC-148C",
2100 "SAMSUNG CD-ROM SC",
2102 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2106 static int ata_dma_blacklisted(const struct ata_device
*dev
)
2108 unsigned char model_num
[40];
2113 ata_dev_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
2116 len
= strnlen(s
, sizeof(model_num
));
2118 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2119 while ((len
> 0) && (s
[len
- 1] == ' ')) {
2124 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
++)
2125 if (!strncmp(ata_dma_blacklist
[i
], s
, len
))
2131 static unsigned int ata_get_mode_mask(const struct ata_port
*ap
, int shift
)
2133 const struct ata_device
*master
, *slave
;
2136 master
= &ap
->device
[0];
2137 slave
= &ap
->device
[1];
2139 assert (ata_dev_present(master
) || ata_dev_present(slave
));
2141 if (shift
== ATA_SHIFT_UDMA
) {
2142 mask
= ap
->udma_mask
;
2143 if (ata_dev_present(master
)) {
2144 mask
&= (master
->id
[ATA_ID_UDMA_MODES
] & 0xff);
2145 if (ata_dma_blacklisted(master
)) {
2147 ata_pr_blacklisted(ap
, master
);
2150 if (ata_dev_present(slave
)) {
2151 mask
&= (slave
->id
[ATA_ID_UDMA_MODES
] & 0xff);
2152 if (ata_dma_blacklisted(slave
)) {
2154 ata_pr_blacklisted(ap
, slave
);
2158 else if (shift
== ATA_SHIFT_MWDMA
) {
2159 mask
= ap
->mwdma_mask
;
2160 if (ata_dev_present(master
)) {
2161 mask
&= (master
->id
[ATA_ID_MWDMA_MODES
] & 0x07);
2162 if (ata_dma_blacklisted(master
)) {
2164 ata_pr_blacklisted(ap
, master
);
2167 if (ata_dev_present(slave
)) {
2168 mask
&= (slave
->id
[ATA_ID_MWDMA_MODES
] & 0x07);
2169 if (ata_dma_blacklisted(slave
)) {
2171 ata_pr_blacklisted(ap
, slave
);
2175 else if (shift
== ATA_SHIFT_PIO
) {
2176 mask
= ap
->pio_mask
;
2177 if (ata_dev_present(master
)) {
2178 /* spec doesn't return explicit support for
2179 * PIO0-2, so we fake it
2181 u16 tmp_mode
= master
->id
[ATA_ID_PIO_MODES
] & 0x03;
2186 if (ata_dev_present(slave
)) {
2187 /* spec doesn't return explicit support for
2188 * PIO0-2, so we fake it
2190 u16 tmp_mode
= slave
->id
[ATA_ID_PIO_MODES
] & 0x03;
2197 mask
= 0xffffffff; /* shut up compiler warning */
2204 /* find greatest bit */
2205 static int fgb(u32 bitmap
)
2210 for (i
= 0; i
< 32; i
++)
2211 if (bitmap
& (1 << i
))
2218 * ata_choose_xfer_mode - attempt to find best transfer mode
2219 * @ap: Port for which an xfer mode will be selected
2220 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2221 * @xfer_shift_out: (output) bit shift that selects this mode
2223 * Based on host and device capabilities, determine the
2224 * maximum transfer mode that is amenable to all.
2227 * PCI/etc. bus probe sem.
2230 * Zero on success, negative on error.
2233 static int ata_choose_xfer_mode(const struct ata_port
*ap
,
2235 unsigned int *xfer_shift_out
)
2237 unsigned int mask
, shift
;
2240 for (i
= 0; i
< ARRAY_SIZE(xfer_mode_classes
); i
++) {
2241 shift
= xfer_mode_classes
[i
].shift
;
2242 mask
= ata_get_mode_mask(ap
, shift
);
2246 *xfer_mode_out
= xfer_mode_classes
[i
].base
+ x
;
2247 *xfer_shift_out
= shift
;
2256 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2257 * @ap: Port associated with device @dev
2258 * @dev: Device to which command will be sent
2260 * Issue SET FEATURES - XFER MODE command to device @dev
2264 * PCI/etc. bus probe sem.
2267 static void ata_dev_set_xfermode(struct ata_port
*ap
, struct ata_device
*dev
)
2269 DECLARE_COMPLETION(wait
);
2270 struct ata_queued_cmd
*qc
;
2272 unsigned long flags
;
2274 /* set up set-features taskfile */
2275 DPRINTK("set features - xfer mode\n");
2277 qc
= ata_qc_new_init(ap
, dev
);
2280 qc
->tf
.command
= ATA_CMD_SET_FEATURES
;
2281 qc
->tf
.feature
= SETFEATURES_XFER
;
2282 qc
->tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2283 qc
->tf
.protocol
= ATA_PROT_NODATA
;
2284 qc
->tf
.nsect
= dev
->xfer_mode
;
2286 qc
->waiting
= &wait
;
2287 qc
->complete_fn
= ata_qc_complete_noop
;
2289 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2290 rc
= ata_qc_issue(qc
);
2291 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2294 ata_port_disable(ap
);
2296 ata_qc_wait_err(qc
, &wait
);
2302 * ata_dev_reread_id - Reread the device identify device info
2303 * @ap: port where the device is
2304 * @dev: device to reread the identify device info
2309 static void ata_dev_reread_id(struct ata_port
*ap
, struct ata_device
*dev
)
2311 DECLARE_COMPLETION(wait
);
2312 struct ata_queued_cmd
*qc
;
2313 unsigned long flags
;
2316 qc
= ata_qc_new_init(ap
, dev
);
2319 ata_sg_init_one(qc
, dev
->id
, sizeof(dev
->id
));
2320 qc
->dma_dir
= DMA_FROM_DEVICE
;
2322 if (dev
->class == ATA_DEV_ATA
) {
2323 qc
->tf
.command
= ATA_CMD_ID_ATA
;
2324 DPRINTK("do ATA identify\n");
2326 qc
->tf
.command
= ATA_CMD_ID_ATAPI
;
2327 DPRINTK("do ATAPI identify\n");
2330 qc
->tf
.flags
|= ATA_TFLAG_DEVICE
;
2331 qc
->tf
.protocol
= ATA_PROT_PIO
;
2334 qc
->waiting
= &wait
;
2335 qc
->complete_fn
= ata_qc_complete_noop
;
2337 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2338 rc
= ata_qc_issue(qc
);
2339 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2344 ata_qc_wait_err(qc
, &wait
);
2346 swap_buf_le16(dev
->id
, ATA_ID_WORDS
);
2354 ata_port_disable(ap
);
2358 * ata_dev_init_params - Issue INIT DEV PARAMS command
2359 * @ap: Port associated with device @dev
2360 * @dev: Device to which command will be sent
2365 static void ata_dev_init_params(struct ata_port
*ap
, struct ata_device
*dev
)
2367 DECLARE_COMPLETION(wait
);
2368 struct ata_queued_cmd
*qc
;
2370 unsigned long flags
;
2371 u16 sectors
= dev
->id
[6];
2372 u16 heads
= dev
->id
[3];
2374 /* Number of sectors per track 1-255. Number of heads 1-16 */
2375 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
2378 /* set up init dev params taskfile */
2379 DPRINTK("init dev params \n");
2381 qc
= ata_qc_new_init(ap
, dev
);
2384 qc
->tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
2385 qc
->tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2386 qc
->tf
.protocol
= ATA_PROT_NODATA
;
2387 qc
->tf
.nsect
= sectors
;
2388 qc
->tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
2390 qc
->waiting
= &wait
;
2391 qc
->complete_fn
= ata_qc_complete_noop
;
2393 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2394 rc
= ata_qc_issue(qc
);
2395 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2398 ata_port_disable(ap
);
2400 ata_qc_wait_err(qc
, &wait
);
2406 * ata_sg_clean - Unmap DMA memory associated with command
2407 * @qc: Command containing DMA memory to be released
2409 * Unmap all mapped DMA memory associated with this command.
2412 * spin_lock_irqsave(host_set lock)
2415 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
2417 struct ata_port
*ap
= qc
->ap
;
2418 struct scatterlist
*sg
= qc
->__sg
;
2419 int dir
= qc
->dma_dir
;
2420 void *pad_buf
= NULL
;
2422 assert(qc
->flags
& ATA_QCFLAG_DMAMAP
);
2425 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
2426 assert(qc
->n_elem
== 1);
2428 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
2430 /* if we padded the buffer out to 32-bit bound, and data
2431 * xfer direction is from-device, we must copy from the
2432 * pad buffer back into the supplied buffer
2434 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
2435 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2437 if (qc
->flags
& ATA_QCFLAG_SG
) {
2439 dma_unmap_sg(ap
->host_set
->dev
, sg
, qc
->n_elem
, dir
);
2440 /* restore last sg */
2441 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
2443 struct scatterlist
*psg
= &qc
->pad_sgent
;
2444 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2445 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
2446 kunmap_atomic(psg
->page
, KM_IRQ0
);
2449 if (sg_dma_len(&sg
[0]) > 0)
2450 dma_unmap_single(ap
->host_set
->dev
,
2451 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
2454 sg
->length
+= qc
->pad_len
;
2456 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2457 pad_buf
, qc
->pad_len
);
2460 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
2465 * ata_fill_sg - Fill PCI IDE PRD table
2466 * @qc: Metadata associated with taskfile to be transferred
2468 * Fill PCI IDE PRD (scatter-gather) table with segments
2469 * associated with the current disk command.
2472 * spin_lock_irqsave(host_set lock)
2475 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
2477 struct ata_port
*ap
= qc
->ap
;
2478 struct scatterlist
*sg
;
2481 assert(qc
->__sg
!= NULL
);
2482 assert(qc
->n_elem
> 0);
2485 ata_for_each_sg(sg
, qc
) {
2489 /* determine if physical DMA addr spans 64K boundary.
2490 * Note h/w doesn't support 64-bit, so we unconditionally
2491 * truncate dma_addr_t to u32.
2493 addr
= (u32
) sg_dma_address(sg
);
2494 sg_len
= sg_dma_len(sg
);
2497 offset
= addr
& 0xffff;
2499 if ((offset
+ sg_len
) > 0x10000)
2500 len
= 0x10000 - offset
;
2502 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
2503 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
2504 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
2513 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2516 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2517 * @qc: Metadata associated with taskfile to check
2519 * Allow low-level driver to filter ATA PACKET commands, returning
2520 * a status indicating whether or not it is OK to use DMA for the
2521 * supplied PACKET command.
2524 * spin_lock_irqsave(host_set lock)
2526 * RETURNS: 0 when ATAPI DMA can be used
2529 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
2531 struct ata_port
*ap
= qc
->ap
;
2532 int rc
= 0; /* Assume ATAPI DMA is OK by default */
2534 if (ap
->ops
->check_atapi_dma
)
2535 rc
= ap
->ops
->check_atapi_dma(qc
);
2540 * ata_qc_prep - Prepare taskfile for submission
2541 * @qc: Metadata associated with taskfile to be prepared
2543 * Prepare ATA taskfile for submission.
2546 * spin_lock_irqsave(host_set lock)
2548 void ata_qc_prep(struct ata_queued_cmd
*qc
)
2550 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2557 * ata_sg_init_one - Associate command with memory buffer
2558 * @qc: Command to be associated
2559 * @buf: Memory buffer
2560 * @buflen: Length of memory buffer, in bytes.
2562 * Initialize the data-related elements of queued_cmd @qc
2563 * to point to a single memory buffer, @buf of byte length @buflen.
2566 * spin_lock_irqsave(host_set lock)
2569 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
2571 struct scatterlist
*sg
;
2573 qc
->flags
|= ATA_QCFLAG_SINGLE
;
2575 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
2576 qc
->__sg
= &qc
->sgent
;
2578 qc
->orig_n_elem
= 1;
2582 sg_init_one(sg
, buf
, buflen
);
2586 * ata_sg_init - Associate command with scatter-gather table.
2587 * @qc: Command to be associated
2588 * @sg: Scatter-gather table.
2589 * @n_elem: Number of elements in s/g table.
2591 * Initialize the data-related elements of queued_cmd @qc
2592 * to point to a scatter-gather table @sg, containing @n_elem
2596 * spin_lock_irqsave(host_set lock)
2599 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
2600 unsigned int n_elem
)
2602 qc
->flags
|= ATA_QCFLAG_SG
;
2604 qc
->n_elem
= n_elem
;
2605 qc
->orig_n_elem
= n_elem
;
2609 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2610 * @qc: Command with memory buffer to be mapped.
2612 * DMA-map the memory buffer associated with queued_cmd @qc.
2615 * spin_lock_irqsave(host_set lock)
2618 * Zero on success, negative on error.
2621 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
2623 struct ata_port
*ap
= qc
->ap
;
2624 int dir
= qc
->dma_dir
;
2625 struct scatterlist
*sg
= qc
->__sg
;
2626 dma_addr_t dma_address
;
2628 /* we must lengthen transfers to end on a 32-bit boundary */
2629 qc
->pad_len
= sg
->length
& 3;
2631 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2632 struct scatterlist
*psg
= &qc
->pad_sgent
;
2634 assert(qc
->dev
->class == ATA_DEV_ATAPI
);
2636 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
2638 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2639 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2642 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2643 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
2645 sg
->length
-= qc
->pad_len
;
2647 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2648 sg
->length
, qc
->pad_len
);
2652 sg_dma_address(sg
) = 0;
2656 dma_address
= dma_map_single(ap
->host_set
->dev
, qc
->buf_virt
,
2658 if (dma_mapping_error(dma_address
)) {
2660 sg
->length
+= qc
->pad_len
;
2664 sg_dma_address(sg
) = dma_address
;
2666 sg_dma_len(sg
) = sg
->length
;
2668 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
2669 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
2675 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2676 * @qc: Command with scatter-gather table to be mapped.
2678 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2681 * spin_lock_irqsave(host_set lock)
2684 * Zero on success, negative on error.
2688 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
2690 struct ata_port
*ap
= qc
->ap
;
2691 struct scatterlist
*sg
= qc
->__sg
;
2692 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
2693 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
2695 VPRINTK("ENTER, ata%u\n", ap
->id
);
2696 assert(qc
->flags
& ATA_QCFLAG_SG
);
2698 /* we must lengthen transfers to end on a 32-bit boundary */
2699 qc
->pad_len
= lsg
->length
& 3;
2701 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2702 struct scatterlist
*psg
= &qc
->pad_sgent
;
2703 unsigned int offset
;
2705 assert(qc
->dev
->class == ATA_DEV_ATAPI
);
2707 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
2710 * psg->page/offset are used to copy to-be-written
2711 * data in this function or read data in ata_sg_clean.
2713 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
2714 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
2715 psg
->offset
= offset_in_page(offset
);
2717 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
2718 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2719 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
2720 kunmap_atomic(psg
->page
, KM_IRQ0
);
2723 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2724 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
2726 lsg
->length
-= qc
->pad_len
;
2727 if (lsg
->length
== 0)
2730 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2731 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
2734 pre_n_elem
= qc
->n_elem
;
2735 if (trim_sg
&& pre_n_elem
)
2744 n_elem
= dma_map_sg(ap
->host_set
->dev
, sg
, pre_n_elem
, dir
);
2746 /* restore last sg */
2747 lsg
->length
+= qc
->pad_len
;
2751 DPRINTK("%d sg elements mapped\n", n_elem
);
2754 qc
->n_elem
= n_elem
;
2760 * ata_poll_qc_complete - turn irq back on and finish qc
2761 * @qc: Command to complete
2762 * @err_mask: ATA status register content
2765 * None. (grabs host lock)
2768 void ata_poll_qc_complete(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
2770 struct ata_port
*ap
= qc
->ap
;
2771 unsigned long flags
;
2773 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2774 ap
->flags
&= ~ATA_FLAG_NOINTR
;
2776 ata_qc_complete(qc
, err_mask
);
2777 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2782 * @ap: the target ata_port
2785 * None. (executing in kernel thread context)
2788 * timeout value to use
2791 static unsigned long ata_pio_poll(struct ata_port
*ap
)
2794 unsigned int poll_state
= HSM_ST_UNKNOWN
;
2795 unsigned int reg_state
= HSM_ST_UNKNOWN
;
2797 switch (ap
->hsm_task_state
) {
2800 poll_state
= HSM_ST_POLL
;
2804 case HSM_ST_LAST_POLL
:
2805 poll_state
= HSM_ST_LAST_POLL
;
2806 reg_state
= HSM_ST_LAST
;
2813 status
= ata_chk_status(ap
);
2814 if (status
& ATA_BUSY
) {
2815 if (time_after(jiffies
, ap
->pio_task_timeout
)) {
2816 ap
->hsm_task_state
= HSM_ST_TMOUT
;
2819 ap
->hsm_task_state
= poll_state
;
2820 return ATA_SHORT_PAUSE
;
2823 ap
->hsm_task_state
= reg_state
;
2828 * ata_pio_complete - check if drive is busy or idle
2829 * @ap: the target ata_port
2832 * None. (executing in kernel thread context)
2835 * Non-zero if qc completed, zero otherwise.
2838 static int ata_pio_complete (struct ata_port
*ap
)
2840 struct ata_queued_cmd
*qc
;
2844 * This is purely heuristic. This is a fast path. Sometimes when
2845 * we enter, BSY will be cleared in a chk-status or two. If not,
2846 * the drive is probably seeking or something. Snooze for a couple
2847 * msecs, then chk-status again. If still busy, fall back to
2848 * HSM_ST_POLL state.
2850 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 10);
2851 if (drv_stat
& (ATA_BUSY
| ATA_DRQ
)) {
2853 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 10);
2854 if (drv_stat
& (ATA_BUSY
| ATA_DRQ
)) {
2855 ap
->hsm_task_state
= HSM_ST_LAST_POLL
;
2856 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
2861 drv_stat
= ata_wait_idle(ap
);
2862 if (!ata_ok(drv_stat
)) {
2863 ap
->hsm_task_state
= HSM_ST_ERR
;
2867 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
2870 ap
->hsm_task_state
= HSM_ST_IDLE
;
2872 ata_poll_qc_complete(qc
, 0);
2874 /* another command may start at this point */
2881 * swap_buf_le16 - swap halves of 16-words in place
2882 * @buf: Buffer to swap
2883 * @buf_words: Number of 16-bit words in buffer.
2885 * Swap halves of 16-bit words if needed to convert from
2886 * little-endian byte order to native cpu byte order, or
2890 * Inherited from caller.
2892 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
2897 for (i
= 0; i
< buf_words
; i
++)
2898 buf
[i
] = le16_to_cpu(buf
[i
]);
2899 #endif /* __BIG_ENDIAN */
2903 * ata_mmio_data_xfer - Transfer data by MMIO
2904 * @ap: port to read/write
2906 * @buflen: buffer length
2907 * @write_data: read/write
2909 * Transfer data from/to the device data register by MMIO.
2912 * Inherited from caller.
2915 static void ata_mmio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
2916 unsigned int buflen
, int write_data
)
2919 unsigned int words
= buflen
>> 1;
2920 u16
*buf16
= (u16
*) buf
;
2921 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
2923 /* Transfer multiple of 2 bytes */
2925 for (i
= 0; i
< words
; i
++)
2926 writew(le16_to_cpu(buf16
[i
]), mmio
);
2928 for (i
= 0; i
< words
; i
++)
2929 buf16
[i
] = cpu_to_le16(readw(mmio
));
2932 /* Transfer trailing 1 byte, if any. */
2933 if (unlikely(buflen
& 0x01)) {
2934 u16 align_buf
[1] = { 0 };
2935 unsigned char *trailing_buf
= buf
+ buflen
- 1;
2938 memcpy(align_buf
, trailing_buf
, 1);
2939 writew(le16_to_cpu(align_buf
[0]), mmio
);
2941 align_buf
[0] = cpu_to_le16(readw(mmio
));
2942 memcpy(trailing_buf
, align_buf
, 1);
2948 * ata_pio_data_xfer - Transfer data by PIO
2949 * @ap: port to read/write
2951 * @buflen: buffer length
2952 * @write_data: read/write
2954 * Transfer data from/to the device data register by PIO.
2957 * Inherited from caller.
2960 static void ata_pio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
2961 unsigned int buflen
, int write_data
)
2963 unsigned int words
= buflen
>> 1;
2965 /* Transfer multiple of 2 bytes */
2967 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
2969 insw(ap
->ioaddr
.data_addr
, buf
, words
);
2971 /* Transfer trailing 1 byte, if any. */
2972 if (unlikely(buflen
& 0x01)) {
2973 u16 align_buf
[1] = { 0 };
2974 unsigned char *trailing_buf
= buf
+ buflen
- 1;
2977 memcpy(align_buf
, trailing_buf
, 1);
2978 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
2980 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
2981 memcpy(trailing_buf
, align_buf
, 1);
2987 * ata_data_xfer - Transfer data from/to the data register.
2988 * @ap: port to read/write
2990 * @buflen: buffer length
2991 * @do_write: read/write
2993 * Transfer data from/to the device data register.
2996 * Inherited from caller.
2999 static void ata_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3000 unsigned int buflen
, int do_write
)
3002 if (ap
->flags
& ATA_FLAG_MMIO
)
3003 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
3005 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
3009 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3010 * @qc: Command on going
3012 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3015 * Inherited from caller.
3018 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3020 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3021 struct scatterlist
*sg
= qc
->__sg
;
3022 struct ata_port
*ap
= qc
->ap
;
3024 unsigned int offset
;
3027 if (qc
->cursect
== (qc
->nsect
- 1))
3028 ap
->hsm_task_state
= HSM_ST_LAST
;
3030 page
= sg
[qc
->cursg
].page
;
3031 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
3033 /* get the current page and offset */
3034 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3035 offset
%= PAGE_SIZE
;
3037 buf
= kmap(page
) + offset
;
3042 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3047 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3049 /* do the actual data transfer */
3050 do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3051 ata_data_xfer(ap
, buf
, ATA_SECT_SIZE
, do_write
);
3057 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3058 * @qc: Command on going
3059 * @bytes: number of bytes
3061 * Transfer Transfer data from/to the ATAPI device.
3064 * Inherited from caller.
3068 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3070 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3071 struct scatterlist
*sg
= qc
->__sg
;
3072 struct ata_port
*ap
= qc
->ap
;
3075 unsigned int offset
, count
;
3077 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3078 ap
->hsm_task_state
= HSM_ST_LAST
;
3081 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3083 * The end of qc->sg is reached and the device expects
3084 * more data to transfer. In order not to overrun qc->sg
3085 * and fulfill length specified in the byte count register,
3086 * - for read case, discard trailing data from the device
3087 * - for write case, padding zero data to the device
3089 u16 pad_buf
[1] = { 0 };
3090 unsigned int words
= bytes
>> 1;
3093 if (words
) /* warning if bytes > 1 */
3094 printk(KERN_WARNING
"ata%u: %u bytes trailing data\n",
3097 for (i
= 0; i
< words
; i
++)
3098 ata_data_xfer(ap
, (unsigned char*)pad_buf
, 2, do_write
);
3100 ap
->hsm_task_state
= HSM_ST_LAST
;
3104 sg
= &qc
->__sg
[qc
->cursg
];
3107 offset
= sg
->offset
+ qc
->cursg_ofs
;
3109 /* get the current page and offset */
3110 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3111 offset
%= PAGE_SIZE
;
3113 /* don't overrun current sg */
3114 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3116 /* don't cross page boundaries */
3117 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3119 buf
= kmap(page
) + offset
;
3122 qc
->curbytes
+= count
;
3123 qc
->cursg_ofs
+= count
;
3125 if (qc
->cursg_ofs
== sg
->length
) {
3130 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3132 /* do the actual data transfer */
3133 ata_data_xfer(ap
, buf
, count
, do_write
);
3142 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3143 * @qc: Command on going
3145 * Transfer Transfer data from/to the ATAPI device.
3148 * Inherited from caller.
3151 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3153 struct ata_port
*ap
= qc
->ap
;
3154 struct ata_device
*dev
= qc
->dev
;
3155 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3156 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3158 ap
->ops
->tf_read(ap
, &qc
->tf
);
3159 ireason
= qc
->tf
.nsect
;
3160 bc_lo
= qc
->tf
.lbam
;
3161 bc_hi
= qc
->tf
.lbah
;
3162 bytes
= (bc_hi
<< 8) | bc_lo
;
3164 /* shall be cleared to zero, indicating xfer of data */
3165 if (ireason
& (1 << 0))
3168 /* make sure transfer direction matches expected */
3169 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3170 if (do_write
!= i_write
)
3173 __atapi_pio_bytes(qc
, bytes
);
3178 printk(KERN_INFO
"ata%u: dev %u: ATAPI check failed\n",
3179 ap
->id
, dev
->devno
);
3180 ap
->hsm_task_state
= HSM_ST_ERR
;
3184 * ata_pio_block - start PIO on a block
3185 * @ap: the target ata_port
3188 * None. (executing in kernel thread context)
3191 static void ata_pio_block(struct ata_port
*ap
)
3193 struct ata_queued_cmd
*qc
;
3197 * This is purely heuristic. This is a fast path.
3198 * Sometimes when we enter, BSY will be cleared in
3199 * a chk-status or two. If not, the drive is probably seeking
3200 * or something. Snooze for a couple msecs, then
3201 * chk-status again. If still busy, fall back to
3202 * HSM_ST_POLL state.
3204 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
3205 if (status
& ATA_BUSY
) {
3207 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3208 if (status
& ATA_BUSY
) {
3209 ap
->hsm_task_state
= HSM_ST_POLL
;
3210 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3215 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3218 if (is_atapi_taskfile(&qc
->tf
)) {
3219 /* no more data to transfer or unsupported ATAPI command */
3220 if ((status
& ATA_DRQ
) == 0) {
3221 ap
->hsm_task_state
= HSM_ST_LAST
;
3225 atapi_pio_bytes(qc
);
3227 /* handle BSY=0, DRQ=0 as error */
3228 if ((status
& ATA_DRQ
) == 0) {
3229 ap
->hsm_task_state
= HSM_ST_ERR
;
3237 static void ata_pio_error(struct ata_port
*ap
)
3239 struct ata_queued_cmd
*qc
;
3241 printk(KERN_WARNING
"ata%u: PIO error\n", ap
->id
);
3243 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3246 ap
->hsm_task_state
= HSM_ST_IDLE
;
3248 ata_poll_qc_complete(qc
, AC_ERR_ATA_BUS
);
3251 static void ata_pio_task(void *_data
)
3253 struct ata_port
*ap
= _data
;
3254 unsigned long timeout
;
3261 switch (ap
->hsm_task_state
) {
3270 qc_completed
= ata_pio_complete(ap
);
3274 case HSM_ST_LAST_POLL
:
3275 timeout
= ata_pio_poll(ap
);
3285 queue_delayed_work(ata_wq
, &ap
->pio_task
, timeout
);
3286 else if (!qc_completed
)
3291 * ata_qc_timeout - Handle timeout of queued command
3292 * @qc: Command that timed out
3294 * Some part of the kernel (currently, only the SCSI layer)
3295 * has noticed that the active command on port @ap has not
3296 * completed after a specified length of time. Handle this
3297 * condition by disabling DMA (if necessary) and completing
3298 * transactions, with error if necessary.
3300 * This also handles the case of the "lost interrupt", where
3301 * for some reason (possibly hardware bug, possibly driver bug)
3302 * an interrupt was not delivered to the driver, even though the
3303 * transaction completed successfully.
3306 * Inherited from SCSI layer (none, can sleep)
3309 static void ata_qc_timeout(struct ata_queued_cmd
*qc
)
3311 struct ata_port
*ap
= qc
->ap
;
3312 struct ata_host_set
*host_set
= ap
->host_set
;
3313 u8 host_stat
= 0, drv_stat
;
3314 unsigned long flags
;
3318 spin_lock_irqsave(&host_set
->lock
, flags
);
3320 /* hack alert! We cannot use the supplied completion
3321 * function from inside the ->eh_strategy_handler() thread.
3322 * libata is the only user of ->eh_strategy_handler() in
3323 * any kernel, so the default scsi_done() assumes it is
3324 * not being called from the SCSI EH.
3326 qc
->scsidone
= scsi_finish_command
;
3328 switch (qc
->tf
.protocol
) {
3331 case ATA_PROT_ATAPI_DMA
:
3332 host_stat
= ap
->ops
->bmdma_status(ap
);
3334 /* before we do anything else, clear DMA-Start bit */
3335 ap
->ops
->bmdma_stop(qc
);
3341 drv_stat
= ata_chk_status(ap
);
3343 /* ack bmdma irq events */
3344 ap
->ops
->irq_clear(ap
);
3346 printk(KERN_ERR
"ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3347 ap
->id
, qc
->tf
.command
, drv_stat
, host_stat
);
3349 /* complete taskfile transaction */
3350 ata_qc_complete(qc
, ac_err_mask(drv_stat
));
3354 spin_unlock_irqrestore(&host_set
->lock
, flags
);
3360 * ata_eng_timeout - Handle timeout of queued command
3361 * @ap: Port on which timed-out command is active
3363 * Some part of the kernel (currently, only the SCSI layer)
3364 * has noticed that the active command on port @ap has not
3365 * completed after a specified length of time. Handle this
3366 * condition by disabling DMA (if necessary) and completing
3367 * transactions, with error if necessary.
3369 * This also handles the case of the "lost interrupt", where
3370 * for some reason (possibly hardware bug, possibly driver bug)
3371 * an interrupt was not delivered to the driver, even though the
3372 * transaction completed successfully.
3375 * Inherited from SCSI layer (none, can sleep)
3378 void ata_eng_timeout(struct ata_port
*ap
)
3380 struct ata_queued_cmd
*qc
;
3384 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3388 printk(KERN_ERR
"ata%u: BUG: timeout without command\n",
3398 * ata_qc_new - Request an available ATA command, for queueing
3399 * @ap: Port associated with device @dev
3400 * @dev: Device from whom we request an available command structure
3406 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
3408 struct ata_queued_cmd
*qc
= NULL
;
3411 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++)
3412 if (!test_and_set_bit(i
, &ap
->qactive
)) {
3413 qc
= ata_qc_from_tag(ap
, i
);
3424 * ata_qc_new_init - Request an available ATA command, and initialize it
3425 * @ap: Port associated with device @dev
3426 * @dev: Device from whom we request an available command structure
3432 struct ata_queued_cmd
*ata_qc_new_init(struct ata_port
*ap
,
3433 struct ata_device
*dev
)
3435 struct ata_queued_cmd
*qc
;
3437 qc
= ata_qc_new(ap
);
3449 int ata_qc_complete_noop(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
3454 static void __ata_qc_complete(struct ata_queued_cmd
*qc
)
3456 struct ata_port
*ap
= qc
->ap
;
3457 unsigned int tag
, do_clear
= 0;
3461 if (likely(ata_tag_valid(tag
))) {
3462 if (tag
== ap
->active_tag
)
3463 ap
->active_tag
= ATA_TAG_POISON
;
3464 qc
->tag
= ATA_TAG_POISON
;
3469 struct completion
*waiting
= qc
->waiting
;
3474 if (likely(do_clear
))
3475 clear_bit(tag
, &ap
->qactive
);
3479 * ata_qc_free - free unused ata_queued_cmd
3480 * @qc: Command to complete
3482 * Designed to free unused ata_queued_cmd object
3483 * in case something prevents using it.
3486 * spin_lock_irqsave(host_set lock)
3488 void ata_qc_free(struct ata_queued_cmd
*qc
)
3490 assert(qc
!= NULL
); /* ata_qc_from_tag _might_ return NULL */
3491 assert(qc
->waiting
== NULL
); /* nothing should be waiting */
3493 __ata_qc_complete(qc
);
3497 * ata_qc_complete - Complete an active ATA command
3498 * @qc: Command to complete
3499 * @err_mask: ATA Status register contents
3501 * Indicate to the mid and upper layers that an ATA
3502 * command has completed, with either an ok or not-ok status.
3505 * spin_lock_irqsave(host_set lock)
3508 void ata_qc_complete(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
3512 assert(qc
!= NULL
); /* ata_qc_from_tag _might_ return NULL */
3513 assert(qc
->flags
& ATA_QCFLAG_ACTIVE
);
3515 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3518 /* atapi: mark qc as inactive to prevent the interrupt handler
3519 * from completing the command twice later, before the error handler
3520 * is called. (when rc != 0 and atapi request sense is needed)
3522 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
3524 /* call completion callback */
3525 rc
= qc
->complete_fn(qc
, err_mask
);
3527 /* if callback indicates not to complete command (non-zero),
3528 * return immediately
3533 __ata_qc_complete(qc
);
3538 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
3540 struct ata_port
*ap
= qc
->ap
;
3542 switch (qc
->tf
.protocol
) {
3544 case ATA_PROT_ATAPI_DMA
:
3547 case ATA_PROT_ATAPI
:
3549 case ATA_PROT_PIO_MULT
:
3550 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
3563 * ata_qc_issue - issue taskfile to device
3564 * @qc: command to issue to device
3566 * Prepare an ATA command to submission to device.
3567 * This includes mapping the data into a DMA-able
3568 * area, filling in the S/G table, and finally
3569 * writing the taskfile to hardware, starting the command.
3572 * spin_lock_irqsave(host_set lock)
3575 * Zero on success, negative on error.
3578 int ata_qc_issue(struct ata_queued_cmd
*qc
)
3580 struct ata_port
*ap
= qc
->ap
;
3582 if (ata_should_dma_map(qc
)) {
3583 if (qc
->flags
& ATA_QCFLAG_SG
) {
3584 if (ata_sg_setup(qc
))
3586 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
3587 if (ata_sg_setup_one(qc
))
3591 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3594 ap
->ops
->qc_prep(qc
);
3596 qc
->ap
->active_tag
= qc
->tag
;
3597 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
3599 return ap
->ops
->qc_issue(qc
);
3607 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3608 * @qc: command to issue to device
3610 * Using various libata functions and hooks, this function
3611 * starts an ATA command. ATA commands are grouped into
3612 * classes called "protocols", and issuing each type of protocol
3613 * is slightly different.
3615 * May be used as the qc_issue() entry in ata_port_operations.
3618 * spin_lock_irqsave(host_set lock)
3621 * Zero on success, negative on error.
3624 int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
3626 struct ata_port
*ap
= qc
->ap
;
3628 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
3630 switch (qc
->tf
.protocol
) {
3631 case ATA_PROT_NODATA
:
3632 ata_tf_to_host(ap
, &qc
->tf
);
3636 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
3637 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
3638 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
3641 case ATA_PROT_PIO
: /* load tf registers, initiate polling pio */
3642 ata_qc_set_polling(qc
);
3643 ata_tf_to_host(ap
, &qc
->tf
);
3644 ap
->hsm_task_state
= HSM_ST
;
3645 queue_work(ata_wq
, &ap
->pio_task
);
3648 case ATA_PROT_ATAPI
:
3649 ata_qc_set_polling(qc
);
3650 ata_tf_to_host(ap
, &qc
->tf
);
3651 queue_work(ata_wq
, &ap
->packet_task
);
3654 case ATA_PROT_ATAPI_NODATA
:
3655 ap
->flags
|= ATA_FLAG_NOINTR
;
3656 ata_tf_to_host(ap
, &qc
->tf
);
3657 queue_work(ata_wq
, &ap
->packet_task
);
3660 case ATA_PROT_ATAPI_DMA
:
3661 ap
->flags
|= ATA_FLAG_NOINTR
;
3662 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
3663 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
3664 queue_work(ata_wq
, &ap
->packet_task
);
3676 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3677 * @qc: Info associated with this ATA transaction.
3680 * spin_lock_irqsave(host_set lock)
3683 static void ata_bmdma_setup_mmio (struct ata_queued_cmd
*qc
)
3685 struct ata_port
*ap
= qc
->ap
;
3686 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3688 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3690 /* load PRD table addr. */
3691 mb(); /* make sure PRD table writes are visible to controller */
3692 writel(ap
->prd_dma
, mmio
+ ATA_DMA_TABLE_OFS
);
3694 /* specify data direction, triple-check start bit is clear */
3695 dmactl
= readb(mmio
+ ATA_DMA_CMD
);
3696 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3698 dmactl
|= ATA_DMA_WR
;
3699 writeb(dmactl
, mmio
+ ATA_DMA_CMD
);
3701 /* issue r/w command */
3702 ap
->ops
->exec_command(ap
, &qc
->tf
);
3706 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3707 * @qc: Info associated with this ATA transaction.
3710 * spin_lock_irqsave(host_set lock)
3713 static void ata_bmdma_start_mmio (struct ata_queued_cmd
*qc
)
3715 struct ata_port
*ap
= qc
->ap
;
3716 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3719 /* start host DMA transaction */
3720 dmactl
= readb(mmio
+ ATA_DMA_CMD
);
3721 writeb(dmactl
| ATA_DMA_START
, mmio
+ ATA_DMA_CMD
);
3723 /* Strictly, one may wish to issue a readb() here, to
3724 * flush the mmio write. However, control also passes
3725 * to the hardware at this point, and it will interrupt
3726 * us when we are to resume control. So, in effect,
3727 * we don't care when the mmio write flushes.
3728 * Further, a read of the DMA status register _immediately_
3729 * following the write may not be what certain flaky hardware
3730 * is expected, so I think it is best to not add a readb()
3731 * without first all the MMIO ATA cards/mobos.
3732 * Or maybe I'm just being paranoid.
3737 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3738 * @qc: Info associated with this ATA transaction.
3741 * spin_lock_irqsave(host_set lock)
3744 static void ata_bmdma_setup_pio (struct ata_queued_cmd
*qc
)
3746 struct ata_port
*ap
= qc
->ap
;
3747 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3750 /* load PRD table addr. */
3751 outl(ap
->prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
3753 /* specify data direction, triple-check start bit is clear */
3754 dmactl
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3755 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3757 dmactl
|= ATA_DMA_WR
;
3758 outb(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3760 /* issue r/w command */
3761 ap
->ops
->exec_command(ap
, &qc
->tf
);
3765 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3766 * @qc: Info associated with this ATA transaction.
3769 * spin_lock_irqsave(host_set lock)
3772 static void ata_bmdma_start_pio (struct ata_queued_cmd
*qc
)
3774 struct ata_port
*ap
= qc
->ap
;
3777 /* start host DMA transaction */
3778 dmactl
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3779 outb(dmactl
| ATA_DMA_START
,
3780 ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3785 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3786 * @qc: Info associated with this ATA transaction.
3788 * Writes the ATA_DMA_START flag to the DMA command register.
3790 * May be used as the bmdma_start() entry in ata_port_operations.
3793 * spin_lock_irqsave(host_set lock)
3795 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3797 if (qc
->ap
->flags
& ATA_FLAG_MMIO
)
3798 ata_bmdma_start_mmio(qc
);
3800 ata_bmdma_start_pio(qc
);
3805 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3806 * @qc: Info associated with this ATA transaction.
3808 * Writes address of PRD table to device's PRD Table Address
3809 * register, sets the DMA control register, and calls
3810 * ops->exec_command() to start the transfer.
3812 * May be used as the bmdma_setup() entry in ata_port_operations.
3815 * spin_lock_irqsave(host_set lock)
3817 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
3819 if (qc
->ap
->flags
& ATA_FLAG_MMIO
)
3820 ata_bmdma_setup_mmio(qc
);
3822 ata_bmdma_setup_pio(qc
);
3827 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3828 * @ap: Port associated with this ATA transaction.
3830 * Clear interrupt and error flags in DMA status register.
3832 * May be used as the irq_clear() entry in ata_port_operations.
3835 * spin_lock_irqsave(host_set lock)
3838 void ata_bmdma_irq_clear(struct ata_port
*ap
)
3840 if (ap
->flags
& ATA_FLAG_MMIO
) {
3841 void __iomem
*mmio
= ((void __iomem
*) ap
->ioaddr
.bmdma_addr
) + ATA_DMA_STATUS
;
3842 writeb(readb(mmio
), mmio
);
3844 unsigned long addr
= ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
;
3845 outb(inb(addr
), addr
);
3852 * ata_bmdma_status - Read PCI IDE BMDMA status
3853 * @ap: Port associated with this ATA transaction.
3855 * Read and return BMDMA status register.
3857 * May be used as the bmdma_status() entry in ata_port_operations.
3860 * spin_lock_irqsave(host_set lock)
3863 u8
ata_bmdma_status(struct ata_port
*ap
)
3866 if (ap
->flags
& ATA_FLAG_MMIO
) {
3867 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3868 host_stat
= readb(mmio
+ ATA_DMA_STATUS
);
3870 host_stat
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3876 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3877 * @qc: Command we are ending DMA for
3879 * Clears the ATA_DMA_START flag in the dma control register
3881 * May be used as the bmdma_stop() entry in ata_port_operations.
3884 * spin_lock_irqsave(host_set lock)
3887 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3889 struct ata_port
*ap
= qc
->ap
;
3890 if (ap
->flags
& ATA_FLAG_MMIO
) {
3891 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3893 /* clear start/stop bit */
3894 writeb(readb(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3895 mmio
+ ATA_DMA_CMD
);
3897 /* clear start/stop bit */
3898 outb(inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3899 ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3902 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3903 ata_altstatus(ap
); /* dummy read */
3907 * ata_host_intr - Handle host interrupt for given (port, task)
3908 * @ap: Port on which interrupt arrived (possibly...)
3909 * @qc: Taskfile currently active in engine
3911 * Handle host interrupt for given queued command. Currently,
3912 * only DMA interrupts are handled. All other commands are
3913 * handled via polling with interrupts disabled (nIEN bit).
3916 * spin_lock_irqsave(host_set lock)
3919 * One if interrupt was handled, zero if not (shared irq).
3922 inline unsigned int ata_host_intr (struct ata_port
*ap
,
3923 struct ata_queued_cmd
*qc
)
3925 u8 status
, host_stat
;
3927 switch (qc
->tf
.protocol
) {
3930 case ATA_PROT_ATAPI_DMA
:
3931 case ATA_PROT_ATAPI
:
3932 /* check status of DMA engine */
3933 host_stat
= ap
->ops
->bmdma_status(ap
);
3934 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
3936 /* if it's not our irq... */
3937 if (!(host_stat
& ATA_DMA_INTR
))
3940 /* before we do anything else, clear DMA-Start bit */
3941 ap
->ops
->bmdma_stop(qc
);
3945 case ATA_PROT_ATAPI_NODATA
:
3946 case ATA_PROT_NODATA
:
3947 /* check altstatus */
3948 status
= ata_altstatus(ap
);
3949 if (status
& ATA_BUSY
)
3952 /* check main status, clearing INTRQ */
3953 status
= ata_chk_status(ap
);
3954 if (unlikely(status
& ATA_BUSY
))
3956 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3957 ap
->id
, qc
->tf
.protocol
, status
);
3959 /* ack bmdma irq events */
3960 ap
->ops
->irq_clear(ap
);
3962 /* complete taskfile transaction */
3963 ata_qc_complete(qc
, ac_err_mask(status
));
3970 return 1; /* irq handled */
3973 ap
->stats
.idle_irq
++;
3976 if ((ap
->stats
.idle_irq
% 1000) == 0) {
3978 ata_irq_ack(ap
, 0); /* debug trap */
3979 printk(KERN_WARNING
"ata%d: irq trap\n", ap
->id
);
3982 return 0; /* irq not handled */
3986 * ata_interrupt - Default ATA host interrupt handler
3987 * @irq: irq line (unused)
3988 * @dev_instance: pointer to our ata_host_set information structure
3991 * Default interrupt handler for PCI IDE devices. Calls
3992 * ata_host_intr() for each port that is not disabled.
3995 * Obtains host_set lock during operation.
3998 * IRQ_NONE or IRQ_HANDLED.
4001 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
, struct pt_regs
*regs
)
4003 struct ata_host_set
*host_set
= dev_instance
;
4005 unsigned int handled
= 0;
4006 unsigned long flags
;
4008 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4009 spin_lock_irqsave(&host_set
->lock
, flags
);
4011 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4012 struct ata_port
*ap
;
4014 ap
= host_set
->ports
[i
];
4016 !(ap
->flags
& (ATA_FLAG_PORT_DISABLED
| ATA_FLAG_NOINTR
))) {
4017 struct ata_queued_cmd
*qc
;
4019 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4020 if (qc
&& (!(qc
->tf
.ctl
& ATA_NIEN
)) &&
4021 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4022 handled
|= ata_host_intr(ap
, qc
);
4026 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4028 return IRQ_RETVAL(handled
);
4032 * atapi_packet_task - Write CDB bytes to hardware
4033 * @_data: Port to which ATAPI device is attached.
4035 * When device has indicated its readiness to accept
4036 * a CDB, this function is called. Send the CDB.
4037 * If DMA is to be performed, exit immediately.
4038 * Otherwise, we are in polling mode, so poll
4039 * status under operation succeeds or fails.
4042 * Kernel thread context (may sleep)
4045 static void atapi_packet_task(void *_data
)
4047 struct ata_port
*ap
= _data
;
4048 struct ata_queued_cmd
*qc
;
4051 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4053 assert(qc
->flags
& ATA_QCFLAG_ACTIVE
);
4055 /* sleep-wait for BSY to clear */
4056 DPRINTK("busy wait\n");
4057 if (ata_busy_sleep(ap
, ATA_TMOUT_CDB_QUICK
, ATA_TMOUT_CDB
))
4058 goto err_out_status
;
4060 /* make sure DRQ is set */
4061 status
= ata_chk_status(ap
);
4062 if ((status
& (ATA_BUSY
| ATA_DRQ
)) != ATA_DRQ
)
4066 DPRINTK("send cdb\n");
4067 assert(ap
->cdb_len
>= 12);
4069 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
||
4070 qc
->tf
.protocol
== ATA_PROT_ATAPI_NODATA
) {
4071 unsigned long flags
;
4073 /* Once we're done issuing command and kicking bmdma,
4074 * irq handler takes over. To not lose irq, we need
4075 * to clear NOINTR flag before sending cdb, but
4076 * interrupt handler shouldn't be invoked before we're
4077 * finished. Hence, the following locking.
4079 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
4080 ap
->flags
&= ~ATA_FLAG_NOINTR
;
4081 ata_data_xfer(ap
, qc
->cdb
, ap
->cdb_len
, 1);
4082 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
)
4083 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4084 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
4086 ata_data_xfer(ap
, qc
->cdb
, ap
->cdb_len
, 1);
4088 /* PIO commands are handled by polling */
4089 ap
->hsm_task_state
= HSM_ST
;
4090 queue_work(ata_wq
, &ap
->pio_task
);
4096 status
= ata_chk_status(ap
);
4098 ata_poll_qc_complete(qc
, __ac_err_mask(status
));
4103 * ata_port_start - Set port up for dma.
4104 * @ap: Port to initialize
4106 * Called just after data structures for each port are
4107 * initialized. Allocates space for PRD table.
4109 * May be used as the port_start() entry in ata_port_operations.
4112 * Inherited from caller.
4115 int ata_port_start (struct ata_port
*ap
)
4117 struct device
*dev
= ap
->host_set
->dev
;
4120 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
4124 rc
= ata_pad_alloc(ap
, dev
);
4126 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4130 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
4137 * ata_port_stop - Undo ata_port_start()
4138 * @ap: Port to shut down
4140 * Frees the PRD table.
4142 * May be used as the port_stop() entry in ata_port_operations.
4145 * Inherited from caller.
4148 void ata_port_stop (struct ata_port
*ap
)
4150 struct device
*dev
= ap
->host_set
->dev
;
4152 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4153 ata_pad_free(ap
, dev
);
4156 void ata_host_stop (struct ata_host_set
*host_set
)
4158 if (host_set
->mmio_base
)
4159 iounmap(host_set
->mmio_base
);
4164 * ata_host_remove - Unregister SCSI host structure with upper layers
4165 * @ap: Port to unregister
4166 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4169 * Inherited from caller.
4172 static void ata_host_remove(struct ata_port
*ap
, unsigned int do_unregister
)
4174 struct Scsi_Host
*sh
= ap
->host
;
4179 scsi_remove_host(sh
);
4181 ap
->ops
->port_stop(ap
);
4185 * ata_host_init - Initialize an ata_port structure
4186 * @ap: Structure to initialize
4187 * @host: associated SCSI mid-layer structure
4188 * @host_set: Collection of hosts to which @ap belongs
4189 * @ent: Probe information provided by low-level driver
4190 * @port_no: Port number associated with this ata_port
4192 * Initialize a new ata_port structure, and its associated
4196 * Inherited from caller.
4199 static void ata_host_init(struct ata_port
*ap
, struct Scsi_Host
*host
,
4200 struct ata_host_set
*host_set
,
4201 const struct ata_probe_ent
*ent
, unsigned int port_no
)
4207 host
->max_channel
= 1;
4208 host
->unique_id
= ata_unique_id
++;
4209 host
->max_cmd_len
= 12;
4211 ap
->flags
= ATA_FLAG_PORT_DISABLED
;
4212 ap
->id
= host
->unique_id
;
4214 ap
->ctl
= ATA_DEVCTL_OBS
;
4215 ap
->host_set
= host_set
;
4216 ap
->port_no
= port_no
;
4218 ent
->legacy_mode
? ent
->hard_port_no
: port_no
;
4219 ap
->pio_mask
= ent
->pio_mask
;
4220 ap
->mwdma_mask
= ent
->mwdma_mask
;
4221 ap
->udma_mask
= ent
->udma_mask
;
4222 ap
->flags
|= ent
->host_flags
;
4223 ap
->ops
= ent
->port_ops
;
4224 ap
->cbl
= ATA_CBL_NONE
;
4225 ap
->active_tag
= ATA_TAG_POISON
;
4226 ap
->last_ctl
= 0xFF;
4228 INIT_WORK(&ap
->packet_task
, atapi_packet_task
, ap
);
4229 INIT_WORK(&ap
->pio_task
, ata_pio_task
, ap
);
4231 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
4232 ap
->device
[i
].devno
= i
;
4235 ap
->stats
.unhandled_irq
= 1;
4236 ap
->stats
.idle_irq
= 1;
4239 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
4243 * ata_host_add - Attach low-level ATA driver to system
4244 * @ent: Information provided by low-level driver
4245 * @host_set: Collections of ports to which we add
4246 * @port_no: Port number associated with this host
4248 * Attach low-level ATA driver to system.
4251 * PCI/etc. bus probe sem.
4254 * New ata_port on success, for NULL on error.
4257 static struct ata_port
* ata_host_add(const struct ata_probe_ent
*ent
,
4258 struct ata_host_set
*host_set
,
4259 unsigned int port_no
)
4261 struct Scsi_Host
*host
;
4262 struct ata_port
*ap
;
4266 host
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
4270 ap
= (struct ata_port
*) &host
->hostdata
[0];
4272 ata_host_init(ap
, host
, host_set
, ent
, port_no
);
4274 rc
= ap
->ops
->port_start(ap
);
4281 scsi_host_put(host
);
4286 * ata_device_add - Register hardware device with ATA and SCSI layers
4287 * @ent: Probe information describing hardware device to be registered
4289 * This function processes the information provided in the probe
4290 * information struct @ent, allocates the necessary ATA and SCSI
4291 * host information structures, initializes them, and registers
4292 * everything with requisite kernel subsystems.
4294 * This function requests irqs, probes the ATA bus, and probes
4298 * PCI/etc. bus probe sem.
4301 * Number of ports registered. Zero on error (no ports registered).
4304 int ata_device_add(const struct ata_probe_ent
*ent
)
4306 unsigned int count
= 0, i
;
4307 struct device
*dev
= ent
->dev
;
4308 struct ata_host_set
*host_set
;
4311 /* alloc a container for our list of ATA ports (buses) */
4312 host_set
= kzalloc(sizeof(struct ata_host_set
) +
4313 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
4316 spin_lock_init(&host_set
->lock
);
4318 host_set
->dev
= dev
;
4319 host_set
->n_ports
= ent
->n_ports
;
4320 host_set
->irq
= ent
->irq
;
4321 host_set
->mmio_base
= ent
->mmio_base
;
4322 host_set
->private_data
= ent
->private_data
;
4323 host_set
->ops
= ent
->port_ops
;
4325 /* register each port bound to this device */
4326 for (i
= 0; i
< ent
->n_ports
; i
++) {
4327 struct ata_port
*ap
;
4328 unsigned long xfer_mode_mask
;
4330 ap
= ata_host_add(ent
, host_set
, i
);
4334 host_set
->ports
[i
] = ap
;
4335 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
4336 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
4337 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
4339 /* print per-port info to dmesg */
4340 printk(KERN_INFO
"ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4341 "bmdma 0x%lX irq %lu\n",
4343 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
4344 ata_mode_string(xfer_mode_mask
),
4345 ap
->ioaddr
.cmd_addr
,
4346 ap
->ioaddr
.ctl_addr
,
4347 ap
->ioaddr
.bmdma_addr
,
4351 host_set
->ops
->irq_clear(ap
);
4358 /* obtain irq, that is shared between channels */
4359 if (request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
4360 DRV_NAME
, host_set
))
4363 /* perform each probe synchronously */
4364 DPRINTK("probe begin\n");
4365 for (i
= 0; i
< count
; i
++) {
4366 struct ata_port
*ap
;
4369 ap
= host_set
->ports
[i
];
4371 DPRINTK("ata%u: probe begin\n", ap
->id
);
4372 rc
= ata_bus_probe(ap
);
4373 DPRINTK("ata%u: probe end\n", ap
->id
);
4376 /* FIXME: do something useful here?
4377 * Current libata behavior will
4378 * tear down everything when
4379 * the module is removed
4380 * or the h/w is unplugged.
4384 rc
= scsi_add_host(ap
->host
, dev
);
4386 printk(KERN_ERR
"ata%u: scsi_add_host failed\n",
4388 /* FIXME: do something useful here */
4389 /* FIXME: handle unconditional calls to
4390 * scsi_scan_host and ata_host_remove, below,
4396 /* probes are done, now scan each port's disk(s) */
4397 DPRINTK("probe begin\n");
4398 for (i
= 0; i
< count
; i
++) {
4399 struct ata_port
*ap
= host_set
->ports
[i
];
4401 ata_scsi_scan_host(ap
);
4404 dev_set_drvdata(dev
, host_set
);
4406 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
4407 return ent
->n_ports
; /* success */
4410 for (i
= 0; i
< count
; i
++) {
4411 ata_host_remove(host_set
->ports
[i
], 1);
4412 scsi_host_put(host_set
->ports
[i
]->host
);
4416 VPRINTK("EXIT, returning 0\n");
4421 * ata_host_set_remove - PCI layer callback for device removal
4422 * @host_set: ATA host set that was removed
4424 * Unregister all objects associated with this host set. Free those
4428 * Inherited from calling layer (may sleep).
4431 void ata_host_set_remove(struct ata_host_set
*host_set
)
4433 struct ata_port
*ap
;
4436 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4437 ap
= host_set
->ports
[i
];
4438 scsi_remove_host(ap
->host
);
4441 free_irq(host_set
->irq
, host_set
);
4443 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4444 ap
= host_set
->ports
[i
];
4446 ata_scsi_release(ap
->host
);
4448 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
4449 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
4451 if (ioaddr
->cmd_addr
== 0x1f0)
4452 release_region(0x1f0, 8);
4453 else if (ioaddr
->cmd_addr
== 0x170)
4454 release_region(0x170, 8);
4457 scsi_host_put(ap
->host
);
4460 if (host_set
->ops
->host_stop
)
4461 host_set
->ops
->host_stop(host_set
);
4467 * ata_scsi_release - SCSI layer callback hook for host unload
4468 * @host: libata host to be unloaded
4470 * Performs all duties necessary to shut down a libata port...
4471 * Kill port kthread, disable port, and release resources.
4474 * Inherited from SCSI layer.
4480 int ata_scsi_release(struct Scsi_Host
*host
)
4482 struct ata_port
*ap
= (struct ata_port
*) &host
->hostdata
[0];
4486 ap
->ops
->port_disable(ap
);
4487 ata_host_remove(ap
, 0);
4494 * ata_std_ports - initialize ioaddr with standard port offsets.
4495 * @ioaddr: IO address structure to be initialized
4497 * Utility function which initializes data_addr, error_addr,
4498 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4499 * device_addr, status_addr, and command_addr to standard offsets
4500 * relative to cmd_addr.
4502 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4505 void ata_std_ports(struct ata_ioports
*ioaddr
)
4507 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
4508 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
4509 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
4510 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
4511 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
4512 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
4513 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
4514 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
4515 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
4516 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
4519 static struct ata_probe_ent
*
4520 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
4522 struct ata_probe_ent
*probe_ent
;
4524 probe_ent
= kzalloc(sizeof(*probe_ent
), GFP_KERNEL
);
4526 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
4527 kobject_name(&(dev
->kobj
)));
4531 INIT_LIST_HEAD(&probe_ent
->node
);
4532 probe_ent
->dev
= dev
;
4534 probe_ent
->sht
= port
->sht
;
4535 probe_ent
->host_flags
= port
->host_flags
;
4536 probe_ent
->pio_mask
= port
->pio_mask
;
4537 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
4538 probe_ent
->udma_mask
= port
->udma_mask
;
4539 probe_ent
->port_ops
= port
->port_ops
;
4548 void ata_pci_host_stop (struct ata_host_set
*host_set
)
4550 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
4552 pci_iounmap(pdev
, host_set
->mmio_base
);
4556 * ata_pci_init_native_mode - Initialize native-mode driver
4557 * @pdev: pci device to be initialized
4558 * @port: array[2] of pointers to port info structures.
4559 * @ports: bitmap of ports present
4561 * Utility function which allocates and initializes an
4562 * ata_probe_ent structure for a standard dual-port
4563 * PIO-based IDE controller. The returned ata_probe_ent
4564 * structure can be passed to ata_device_add(). The returned
4565 * ata_probe_ent structure should then be freed with kfree().
4567 * The caller need only pass the address of the primary port, the
4568 * secondary will be deduced automatically. If the device has non
4569 * standard secondary port mappings this function can be called twice,
4570 * once for each interface.
4573 struct ata_probe_ent
*
4574 ata_pci_init_native_mode(struct pci_dev
*pdev
, struct ata_port_info
**port
, int ports
)
4576 struct ata_probe_ent
*probe_ent
=
4577 ata_probe_ent_alloc(pci_dev_to_dev(pdev
), port
[0]);
4583 probe_ent
->irq
= pdev
->irq
;
4584 probe_ent
->irq_flags
= SA_SHIRQ
;
4585 probe_ent
->private_data
= port
[0]->private_data
;
4587 if (ports
& ATA_PORT_PRIMARY
) {
4588 probe_ent
->port
[p
].cmd_addr
= pci_resource_start(pdev
, 0);
4589 probe_ent
->port
[p
].altstatus_addr
=
4590 probe_ent
->port
[p
].ctl_addr
=
4591 pci_resource_start(pdev
, 1) | ATA_PCI_CTL_OFS
;
4592 probe_ent
->port
[p
].bmdma_addr
= pci_resource_start(pdev
, 4);
4593 ata_std_ports(&probe_ent
->port
[p
]);
4597 if (ports
& ATA_PORT_SECONDARY
) {
4598 probe_ent
->port
[p
].cmd_addr
= pci_resource_start(pdev
, 2);
4599 probe_ent
->port
[p
].altstatus_addr
=
4600 probe_ent
->port
[p
].ctl_addr
=
4601 pci_resource_start(pdev
, 3) | ATA_PCI_CTL_OFS
;
4602 probe_ent
->port
[p
].bmdma_addr
= pci_resource_start(pdev
, 4) + 8;
4603 ata_std_ports(&probe_ent
->port
[p
]);
4607 probe_ent
->n_ports
= p
;
4611 static struct ata_probe_ent
*ata_pci_init_legacy_port(struct pci_dev
*pdev
, struct ata_port_info
*port
, int port_num
)
4613 struct ata_probe_ent
*probe_ent
;
4615 probe_ent
= ata_probe_ent_alloc(pci_dev_to_dev(pdev
), port
);
4619 probe_ent
->legacy_mode
= 1;
4620 probe_ent
->n_ports
= 1;
4621 probe_ent
->hard_port_no
= port_num
;
4622 probe_ent
->private_data
= port
->private_data
;
4627 probe_ent
->irq
= 14;
4628 probe_ent
->port
[0].cmd_addr
= 0x1f0;
4629 probe_ent
->port
[0].altstatus_addr
=
4630 probe_ent
->port
[0].ctl_addr
= 0x3f6;
4633 probe_ent
->irq
= 15;
4634 probe_ent
->port
[0].cmd_addr
= 0x170;
4635 probe_ent
->port
[0].altstatus_addr
=
4636 probe_ent
->port
[0].ctl_addr
= 0x376;
4639 probe_ent
->port
[0].bmdma_addr
= pci_resource_start(pdev
, 4) + 8 * port_num
;
4640 ata_std_ports(&probe_ent
->port
[0]);
4645 * ata_pci_init_one - Initialize/register PCI IDE host controller
4646 * @pdev: Controller to be initialized
4647 * @port_info: Information from low-level host driver
4648 * @n_ports: Number of ports attached to host controller
4650 * This is a helper function which can be called from a driver's
4651 * xxx_init_one() probe function if the hardware uses traditional
4652 * IDE taskfile registers.
4654 * This function calls pci_enable_device(), reserves its register
4655 * regions, sets the dma mask, enables bus master mode, and calls
4659 * Inherited from PCI layer (may sleep).
4662 * Zero on success, negative on errno-based value on error.
4665 int ata_pci_init_one (struct pci_dev
*pdev
, struct ata_port_info
**port_info
,
4666 unsigned int n_ports
)
4668 struct ata_probe_ent
*probe_ent
= NULL
, *probe_ent2
= NULL
;
4669 struct ata_port_info
*port
[2];
4671 unsigned int legacy_mode
= 0;
4672 int disable_dev_on_err
= 1;
4677 port
[0] = port_info
[0];
4679 port
[1] = port_info
[1];
4683 if ((port
[0]->host_flags
& ATA_FLAG_NO_LEGACY
) == 0
4684 && (pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
4685 /* TODO: What if one channel is in native mode ... */
4686 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
4687 mask
= (1 << 2) | (1 << 0);
4688 if ((tmp8
& mask
) != mask
)
4689 legacy_mode
= (1 << 3);
4693 if ((!legacy_mode
) && (n_ports
> 2)) {
4694 printk(KERN_ERR
"ata: BUG: native mode, n_ports > 2\n");
4699 /* FIXME: Really for ATA it isn't safe because the device may be
4700 multi-purpose and we want to leave it alone if it was already
4701 enabled. Secondly for shared use as Arjan says we want refcounting
4703 Checking dev->is_enabled is insufficient as this is not set at
4704 boot for the primary video which is BIOS enabled
4707 rc
= pci_enable_device(pdev
);
4711 rc
= pci_request_regions(pdev
, DRV_NAME
);
4713 disable_dev_on_err
= 0;
4717 /* FIXME: Should use platform specific mappers for legacy port ranges */
4719 if (!request_region(0x1f0, 8, "libata")) {
4720 struct resource
*conflict
, res
;
4722 res
.end
= 0x1f0 + 8 - 1;
4723 conflict
= ____request_resource(&ioport_resource
, &res
);
4724 if (!strcmp(conflict
->name
, "libata"))
4725 legacy_mode
|= (1 << 0);
4727 disable_dev_on_err
= 0;
4728 printk(KERN_WARNING
"ata: 0x1f0 IDE port busy\n");
4731 legacy_mode
|= (1 << 0);
4733 if (!request_region(0x170, 8, "libata")) {
4734 struct resource
*conflict
, res
;
4736 res
.end
= 0x170 + 8 - 1;
4737 conflict
= ____request_resource(&ioport_resource
, &res
);
4738 if (!strcmp(conflict
->name
, "libata"))
4739 legacy_mode
|= (1 << 1);
4741 disable_dev_on_err
= 0;
4742 printk(KERN_WARNING
"ata: 0x170 IDE port busy\n");
4745 legacy_mode
|= (1 << 1);
4748 /* we have legacy mode, but all ports are unavailable */
4749 if (legacy_mode
== (1 << 3)) {
4751 goto err_out_regions
;
4754 rc
= pci_set_dma_mask(pdev
, ATA_DMA_MASK
);
4756 goto err_out_regions
;
4757 rc
= pci_set_consistent_dma_mask(pdev
, ATA_DMA_MASK
);
4759 goto err_out_regions
;
4762 if (legacy_mode
& (1 << 0))
4763 probe_ent
= ata_pci_init_legacy_port(pdev
, port
[0], 0);
4764 if (legacy_mode
& (1 << 1))
4765 probe_ent2
= ata_pci_init_legacy_port(pdev
, port
[1], 1);
4768 probe_ent
= ata_pci_init_native_mode(pdev
, port
, ATA_PORT_PRIMARY
| ATA_PORT_SECONDARY
);
4770 probe_ent
= ata_pci_init_native_mode(pdev
, port
, ATA_PORT_PRIMARY
);
4772 if (!probe_ent
&& !probe_ent2
) {
4774 goto err_out_regions
;
4777 pci_set_master(pdev
);
4779 /* FIXME: check ata_device_add return */
4781 if (legacy_mode
& (1 << 0))
4782 ata_device_add(probe_ent
);
4783 if (legacy_mode
& (1 << 1))
4784 ata_device_add(probe_ent2
);
4786 ata_device_add(probe_ent
);
4794 if (legacy_mode
& (1 << 0))
4795 release_region(0x1f0, 8);
4796 if (legacy_mode
& (1 << 1))
4797 release_region(0x170, 8);
4798 pci_release_regions(pdev
);
4800 if (disable_dev_on_err
)
4801 pci_disable_device(pdev
);
4806 * ata_pci_remove_one - PCI layer callback for device removal
4807 * @pdev: PCI device that was removed
4809 * PCI layer indicates to libata via this hook that
4810 * hot-unplug or module unload event has occurred.
4811 * Handle this by unregistering all objects associated
4812 * with this PCI device. Free those objects. Then finally
4813 * release PCI resources and disable device.
4816 * Inherited from PCI layer (may sleep).
4819 void ata_pci_remove_one (struct pci_dev
*pdev
)
4821 struct device
*dev
= pci_dev_to_dev(pdev
);
4822 struct ata_host_set
*host_set
= dev_get_drvdata(dev
);
4824 ata_host_set_remove(host_set
);
4825 pci_release_regions(pdev
);
4826 pci_disable_device(pdev
);
4827 dev_set_drvdata(dev
, NULL
);
4830 /* move to PCI subsystem */
4831 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
4833 unsigned long tmp
= 0;
4835 switch (bits
->width
) {
4838 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
4844 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
4850 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
4861 return (tmp
== bits
->val
) ? 1 : 0;
4863 #endif /* CONFIG_PCI */
4866 static int __init
ata_init(void)
4868 ata_wq
= create_workqueue("ata");
4872 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
4876 static void __exit
ata_exit(void)
4878 destroy_workqueue(ata_wq
);
4881 module_init(ata_init
);
4882 module_exit(ata_exit
);
4884 static unsigned long ratelimit_time
;
4885 static spinlock_t ata_ratelimit_lock
= SPIN_LOCK_UNLOCKED
;
4887 int ata_ratelimit(void)
4890 unsigned long flags
;
4892 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
4894 if (time_after(jiffies
, ratelimit_time
)) {
4896 ratelimit_time
= jiffies
+ (HZ
/5);
4900 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
4906 * libata is essentially a library of internal helper functions for
4907 * low-level ATA host controller drivers. As such, the API/ABI is
4908 * likely to change as new drivers are added and updated.
4909 * Do not depend on ABI/API stability.
4912 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
4913 EXPORT_SYMBOL_GPL(ata_std_ports
);
4914 EXPORT_SYMBOL_GPL(ata_device_add
);
4915 EXPORT_SYMBOL_GPL(ata_host_set_remove
);
4916 EXPORT_SYMBOL_GPL(ata_sg_init
);
4917 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
4918 EXPORT_SYMBOL_GPL(ata_qc_complete
);
4919 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
4920 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
4921 EXPORT_SYMBOL_GPL(ata_tf_load
);
4922 EXPORT_SYMBOL_GPL(ata_tf_read
);
4923 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
4924 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
4925 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
4926 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
4927 EXPORT_SYMBOL_GPL(ata_check_status
);
4928 EXPORT_SYMBOL_GPL(ata_altstatus
);
4929 EXPORT_SYMBOL_GPL(ata_exec_command
);
4930 EXPORT_SYMBOL_GPL(ata_port_start
);
4931 EXPORT_SYMBOL_GPL(ata_port_stop
);
4932 EXPORT_SYMBOL_GPL(ata_host_stop
);
4933 EXPORT_SYMBOL_GPL(ata_interrupt
);
4934 EXPORT_SYMBOL_GPL(ata_qc_prep
);
4935 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
4936 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
4937 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
4938 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
4939 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
4940 EXPORT_SYMBOL_GPL(ata_port_probe
);
4941 EXPORT_SYMBOL_GPL(sata_phy_reset
);
4942 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
4943 EXPORT_SYMBOL_GPL(ata_bus_reset
);
4944 EXPORT_SYMBOL_GPL(ata_port_disable
);
4945 EXPORT_SYMBOL_GPL(ata_ratelimit
);
4946 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
4947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
4948 EXPORT_SYMBOL_GPL(ata_scsi_error
);
4949 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
4950 EXPORT_SYMBOL_GPL(ata_scsi_release
);
4951 EXPORT_SYMBOL_GPL(ata_host_intr
);
4952 EXPORT_SYMBOL_GPL(ata_dev_classify
);
4953 EXPORT_SYMBOL_GPL(ata_dev_id_string
);
4954 EXPORT_SYMBOL_GPL(ata_dev_config
);
4955 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
4957 EXPORT_SYMBOL_GPL(ata_timing_compute
);
4958 EXPORT_SYMBOL_GPL(ata_timing_merge
);
4961 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
4962 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
4963 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
4964 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
4965 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
4966 #endif /* CONFIG_PCI */