[PATCH] KERNELRELEASE depends on CONFIG_LOCALVERSION
[linux-2.6/mini2440.git] / drivers / net / forcedeth.c
blob525624fc03b47016c2d1f1586d49d92e83c4dbba
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
13 * Copyright (C) 2003,4 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
104 * Known bugs:
105 * We suspect that on some hardware no TX done interrupts are generated.
106 * This means recovery from netif_stop_queue only happens if the hw timer
107 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
108 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
109 * If your hardware reliably generates tx done interrupts, then you can remove
110 * DEV_NEED_TIMERIRQ from the driver_data flags.
111 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
112 * superfluous timer interrupts from the nic.
114 #define FORCEDETH_VERSION "0.47"
115 #define DRV_NAME "forcedeth"
117 #include <linux/module.h>
118 #include <linux/types.h>
119 #include <linux/pci.h>
120 #include <linux/interrupt.h>
121 #include <linux/netdevice.h>
122 #include <linux/etherdevice.h>
123 #include <linux/delay.h>
124 #include <linux/spinlock.h>
125 #include <linux/ethtool.h>
126 #include <linux/timer.h>
127 #include <linux/skbuff.h>
128 #include <linux/mii.h>
129 #include <linux/random.h>
130 #include <linux/init.h>
131 #include <linux/if_vlan.h>
133 #include <asm/irq.h>
134 #include <asm/io.h>
135 #include <asm/uaccess.h>
136 #include <asm/system.h>
138 #if 0
139 #define dprintk printk
140 #else
141 #define dprintk(x...) do { } while (0)
142 #endif
146 * Hardware access:
149 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
150 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
151 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
152 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
153 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
155 enum {
156 NvRegIrqStatus = 0x000,
157 #define NVREG_IRQSTAT_MIIEVENT 0x040
158 #define NVREG_IRQSTAT_MASK 0x1ff
159 NvRegIrqMask = 0x004,
160 #define NVREG_IRQ_RX_ERROR 0x0001
161 #define NVREG_IRQ_RX 0x0002
162 #define NVREG_IRQ_RX_NOBUF 0x0004
163 #define NVREG_IRQ_TX_ERR 0x0008
164 #define NVREG_IRQ_TX_OK 0x0010
165 #define NVREG_IRQ_TIMER 0x0020
166 #define NVREG_IRQ_LINK 0x0040
167 #define NVREG_IRQ_TX_ERROR 0x0080
168 #define NVREG_IRQ_TX1 0x0100
169 #define NVREG_IRQMASK_THROUGHPUT 0x00df
170 #define NVREG_IRQMASK_CPU 0x0040
172 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
173 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
174 NVREG_IRQ_TX1))
176 NvRegUnknownSetupReg6 = 0x008,
177 #define NVREG_UNKSETUP6_VAL 3
180 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
181 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
183 NvRegPollingInterval = 0x00c,
184 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
185 #define NVREG_POLL_DEFAULT_CPU 13
186 NvRegMisc1 = 0x080,
187 #define NVREG_MISC1_HD 0x02
188 #define NVREG_MISC1_FORCE 0x3b0f3c
190 NvRegTransmitterControl = 0x084,
191 #define NVREG_XMITCTL_START 0x01
192 NvRegTransmitterStatus = 0x088,
193 #define NVREG_XMITSTAT_BUSY 0x01
195 NvRegPacketFilterFlags = 0x8c,
196 #define NVREG_PFF_ALWAYS 0x7F0008
197 #define NVREG_PFF_PROMISC 0x80
198 #define NVREG_PFF_MYADDR 0x20
200 NvRegOffloadConfig = 0x90,
201 #define NVREG_OFFLOAD_HOMEPHY 0x601
202 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
203 NvRegReceiverControl = 0x094,
204 #define NVREG_RCVCTL_START 0x01
205 NvRegReceiverStatus = 0x98,
206 #define NVREG_RCVSTAT_BUSY 0x01
208 NvRegRandomSeed = 0x9c,
209 #define NVREG_RNDSEED_MASK 0x00ff
210 #define NVREG_RNDSEED_FORCE 0x7f00
211 #define NVREG_RNDSEED_FORCE2 0x2d00
212 #define NVREG_RNDSEED_FORCE3 0x7400
214 NvRegUnknownSetupReg1 = 0xA0,
215 #define NVREG_UNKSETUP1_VAL 0x16070f
216 NvRegUnknownSetupReg2 = 0xA4,
217 #define NVREG_UNKSETUP2_VAL 0x16
218 NvRegMacAddrA = 0xA8,
219 NvRegMacAddrB = 0xAC,
220 NvRegMulticastAddrA = 0xB0,
221 #define NVREG_MCASTADDRA_FORCE 0x01
222 NvRegMulticastAddrB = 0xB4,
223 NvRegMulticastMaskA = 0xB8,
224 NvRegMulticastMaskB = 0xBC,
226 NvRegPhyInterface = 0xC0,
227 #define PHY_RGMII 0x10000000
229 NvRegTxRingPhysAddr = 0x100,
230 NvRegRxRingPhysAddr = 0x104,
231 NvRegRingSizes = 0x108,
232 #define NVREG_RINGSZ_TXSHIFT 0
233 #define NVREG_RINGSZ_RXSHIFT 16
234 NvRegUnknownTransmitterReg = 0x10c,
235 NvRegLinkSpeed = 0x110,
236 #define NVREG_LINKSPEED_FORCE 0x10000
237 #define NVREG_LINKSPEED_10 1000
238 #define NVREG_LINKSPEED_100 100
239 #define NVREG_LINKSPEED_1000 50
240 #define NVREG_LINKSPEED_MASK (0xFFF)
241 NvRegUnknownSetupReg5 = 0x130,
242 #define NVREG_UNKSETUP5_BIT31 (1<<31)
243 NvRegUnknownSetupReg3 = 0x13c,
244 #define NVREG_UNKSETUP3_VAL1 0x200010
245 NvRegTxRxControl = 0x144,
246 #define NVREG_TXRXCTL_KICK 0x0001
247 #define NVREG_TXRXCTL_BIT1 0x0002
248 #define NVREG_TXRXCTL_BIT2 0x0004
249 #define NVREG_TXRXCTL_IDLE 0x0008
250 #define NVREG_TXRXCTL_RESET 0x0010
251 #define NVREG_TXRXCTL_RXCHECK 0x0400
252 #define NVREG_TXRXCTL_DESC_1 0
253 #define NVREG_TXRXCTL_DESC_2 0x02100
254 #define NVREG_TXRXCTL_DESC_3 0x02200
255 NvRegMIIStatus = 0x180,
256 #define NVREG_MIISTAT_ERROR 0x0001
257 #define NVREG_MIISTAT_LINKCHANGE 0x0008
258 #define NVREG_MIISTAT_MASK 0x000f
259 #define NVREG_MIISTAT_MASK2 0x000f
260 NvRegUnknownSetupReg4 = 0x184,
261 #define NVREG_UNKSETUP4_VAL 8
263 NvRegAdapterControl = 0x188,
264 #define NVREG_ADAPTCTL_START 0x02
265 #define NVREG_ADAPTCTL_LINKUP 0x04
266 #define NVREG_ADAPTCTL_PHYVALID 0x40000
267 #define NVREG_ADAPTCTL_RUNNING 0x100000
268 #define NVREG_ADAPTCTL_PHYSHIFT 24
269 NvRegMIISpeed = 0x18c,
270 #define NVREG_MIISPEED_BIT8 (1<<8)
271 #define NVREG_MIIDELAY 5
272 NvRegMIIControl = 0x190,
273 #define NVREG_MIICTL_INUSE 0x08000
274 #define NVREG_MIICTL_WRITE 0x00400
275 #define NVREG_MIICTL_ADDRSHIFT 5
276 NvRegMIIData = 0x194,
277 NvRegWakeUpFlags = 0x200,
278 #define NVREG_WAKEUPFLAGS_VAL 0x7770
279 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
280 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
281 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
282 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
283 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
284 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
285 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
286 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
287 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
288 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
290 NvRegPatternCRC = 0x204,
291 NvRegPatternMask = 0x208,
292 NvRegPowerCap = 0x268,
293 #define NVREG_POWERCAP_D3SUPP (1<<30)
294 #define NVREG_POWERCAP_D2SUPP (1<<26)
295 #define NVREG_POWERCAP_D1SUPP (1<<25)
296 NvRegPowerState = 0x26c,
297 #define NVREG_POWERSTATE_POWEREDUP 0x8000
298 #define NVREG_POWERSTATE_VALID 0x0100
299 #define NVREG_POWERSTATE_MASK 0x0003
300 #define NVREG_POWERSTATE_D0 0x0000
301 #define NVREG_POWERSTATE_D1 0x0001
302 #define NVREG_POWERSTATE_D2 0x0002
303 #define NVREG_POWERSTATE_D3 0x0003
306 /* Big endian: should work, but is untested */
307 struct ring_desc {
308 u32 PacketBuffer;
309 u32 FlagLen;
312 struct ring_desc_ex {
313 u32 PacketBufferHigh;
314 u32 PacketBufferLow;
315 u32 Reserved;
316 u32 FlagLen;
319 typedef union _ring_type {
320 struct ring_desc* orig;
321 struct ring_desc_ex* ex;
322 } ring_type;
324 #define FLAG_MASK_V1 0xffff0000
325 #define FLAG_MASK_V2 0xffffc000
326 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
327 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
329 #define NV_TX_LASTPACKET (1<<16)
330 #define NV_TX_RETRYERROR (1<<19)
331 #define NV_TX_FORCED_INTERRUPT (1<<24)
332 #define NV_TX_DEFERRED (1<<26)
333 #define NV_TX_CARRIERLOST (1<<27)
334 #define NV_TX_LATECOLLISION (1<<28)
335 #define NV_TX_UNDERFLOW (1<<29)
336 #define NV_TX_ERROR (1<<30)
337 #define NV_TX_VALID (1<<31)
339 #define NV_TX2_LASTPACKET (1<<29)
340 #define NV_TX2_RETRYERROR (1<<18)
341 #define NV_TX2_FORCED_INTERRUPT (1<<30)
342 #define NV_TX2_DEFERRED (1<<25)
343 #define NV_TX2_CARRIERLOST (1<<26)
344 #define NV_TX2_LATECOLLISION (1<<27)
345 #define NV_TX2_UNDERFLOW (1<<28)
346 /* error and valid are the same for both */
347 #define NV_TX2_ERROR (1<<30)
348 #define NV_TX2_VALID (1<<31)
349 #define NV_TX2_TSO (1<<28)
350 #define NV_TX2_TSO_SHIFT 14
351 #define NV_TX2_CHECKSUM_L3 (1<<27)
352 #define NV_TX2_CHECKSUM_L4 (1<<26)
354 #define NV_RX_DESCRIPTORVALID (1<<16)
355 #define NV_RX_MISSEDFRAME (1<<17)
356 #define NV_RX_SUBSTRACT1 (1<<18)
357 #define NV_RX_ERROR1 (1<<23)
358 #define NV_RX_ERROR2 (1<<24)
359 #define NV_RX_ERROR3 (1<<25)
360 #define NV_RX_ERROR4 (1<<26)
361 #define NV_RX_CRCERR (1<<27)
362 #define NV_RX_OVERFLOW (1<<28)
363 #define NV_RX_FRAMINGERR (1<<29)
364 #define NV_RX_ERROR (1<<30)
365 #define NV_RX_AVAIL (1<<31)
367 #define NV_RX2_CHECKSUMMASK (0x1C000000)
368 #define NV_RX2_CHECKSUMOK1 (0x10000000)
369 #define NV_RX2_CHECKSUMOK2 (0x14000000)
370 #define NV_RX2_CHECKSUMOK3 (0x18000000)
371 #define NV_RX2_DESCRIPTORVALID (1<<29)
372 #define NV_RX2_SUBSTRACT1 (1<<25)
373 #define NV_RX2_ERROR1 (1<<18)
374 #define NV_RX2_ERROR2 (1<<19)
375 #define NV_RX2_ERROR3 (1<<20)
376 #define NV_RX2_ERROR4 (1<<21)
377 #define NV_RX2_CRCERR (1<<22)
378 #define NV_RX2_OVERFLOW (1<<23)
379 #define NV_RX2_FRAMINGERR (1<<24)
380 /* error and avail are the same for both */
381 #define NV_RX2_ERROR (1<<30)
382 #define NV_RX2_AVAIL (1<<31)
384 /* Miscelaneous hardware related defines: */
385 #define NV_PCI_REGSZ 0x270
387 /* various timeout delays: all in usec */
388 #define NV_TXRX_RESET_DELAY 4
389 #define NV_TXSTOP_DELAY1 10
390 #define NV_TXSTOP_DELAY1MAX 500000
391 #define NV_TXSTOP_DELAY2 100
392 #define NV_RXSTOP_DELAY1 10
393 #define NV_RXSTOP_DELAY1MAX 500000
394 #define NV_RXSTOP_DELAY2 100
395 #define NV_SETUP5_DELAY 5
396 #define NV_SETUP5_DELAYMAX 50000
397 #define NV_POWERUP_DELAY 5
398 #define NV_POWERUP_DELAYMAX 5000
399 #define NV_MIIBUSY_DELAY 50
400 #define NV_MIIPHY_DELAY 10
401 #define NV_MIIPHY_DELAYMAX 10000
403 #define NV_WAKEUPPATTERNS 5
404 #define NV_WAKEUPMASKENTRIES 4
406 /* General driver defaults */
407 #define NV_WATCHDOG_TIMEO (5*HZ)
409 #define RX_RING 128
410 #define TX_RING 64
412 * If your nic mysteriously hangs then try to reduce the limits
413 * to 1/0: It might be required to set NV_TX_LASTPACKET in the
414 * last valid ring entry. But this would be impossible to
415 * implement - probably a disassembly error.
417 #define TX_LIMIT_STOP 63
418 #define TX_LIMIT_START 62
420 /* rx/tx mac addr + type + vlan + align + slack*/
421 #define NV_RX_HEADERS (64)
422 /* even more slack. */
423 #define NV_RX_ALLOC_PAD (64)
425 /* maximum mtu size */
426 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
427 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
429 #define OOM_REFILL (1+HZ/20)
430 #define POLL_WAIT (1+HZ/100)
431 #define LINK_TIMEOUT (3*HZ)
434 * desc_ver values:
435 * The nic supports three different descriptor types:
436 * - DESC_VER_1: Original
437 * - DESC_VER_2: support for jumbo frames.
438 * - DESC_VER_3: 64-bit format.
440 #define DESC_VER_1 1
441 #define DESC_VER_2 2
442 #define DESC_VER_3 3
444 /* PHY defines */
445 #define PHY_OUI_MARVELL 0x5043
446 #define PHY_OUI_CICADA 0x03f1
447 #define PHYID1_OUI_MASK 0x03ff
448 #define PHYID1_OUI_SHFT 6
449 #define PHYID2_OUI_MASK 0xfc00
450 #define PHYID2_OUI_SHFT 10
451 #define PHY_INIT1 0x0f000
452 #define PHY_INIT2 0x0e00
453 #define PHY_INIT3 0x01000
454 #define PHY_INIT4 0x0200
455 #define PHY_INIT5 0x0004
456 #define PHY_INIT6 0x02000
457 #define PHY_GIGABIT 0x0100
459 #define PHY_TIMEOUT 0x1
460 #define PHY_ERROR 0x2
462 #define PHY_100 0x1
463 #define PHY_1000 0x2
464 #define PHY_HALF 0x100
466 /* FIXME: MII defines that should be added to <linux/mii.h> */
467 #define MII_1000BT_CR 0x09
468 #define MII_1000BT_SR 0x0a
469 #define ADVERTISE_1000FULL 0x0200
470 #define ADVERTISE_1000HALF 0x0100
471 #define LPA_1000FULL 0x0800
472 #define LPA_1000HALF 0x0400
476 * SMP locking:
477 * All hardware access under dev->priv->lock, except the performance
478 * critical parts:
479 * - rx is (pseudo-) lockless: it relies on the single-threading provided
480 * by the arch code for interrupts.
481 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
482 * needs dev->priv->lock :-(
483 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
486 /* in dev: base, irq */
487 struct fe_priv {
488 spinlock_t lock;
490 /* General data:
491 * Locking: spin_lock(&np->lock); */
492 struct net_device_stats stats;
493 int in_shutdown;
494 u32 linkspeed;
495 int duplex;
496 int autoneg;
497 int fixed_mode;
498 int phyaddr;
499 int wolenabled;
500 unsigned int phy_oui;
501 u16 gigabit;
503 /* General data: RO fields */
504 dma_addr_t ring_addr;
505 struct pci_dev *pci_dev;
506 u32 orig_mac[2];
507 u32 irqmask;
508 u32 desc_ver;
509 u32 txrxctl_bits;
511 void __iomem *base;
513 /* rx specific fields.
514 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
516 ring_type rx_ring;
517 unsigned int cur_rx, refill_rx;
518 struct sk_buff *rx_skbuff[RX_RING];
519 dma_addr_t rx_dma[RX_RING];
520 unsigned int rx_buf_sz;
521 unsigned int pkt_limit;
522 struct timer_list oom_kick;
523 struct timer_list nic_poll;
525 /* media detection workaround.
526 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
528 int need_linktimer;
529 unsigned long link_timeout;
531 * tx specific fields.
533 ring_type tx_ring;
534 unsigned int next_tx, nic_tx;
535 struct sk_buff *tx_skbuff[TX_RING];
536 dma_addr_t tx_dma[TX_RING];
537 u32 tx_flags;
541 * Maximum number of loops until we assume that a bit in the irq mask
542 * is stuck. Overridable with module param.
544 static int max_interrupt_work = 5;
547 * Optimization can be either throuput mode or cpu mode
549 * Throughput Mode: Every tx and rx packet will generate an interrupt.
550 * CPU Mode: Interrupts are controlled by a timer.
552 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
553 #define NV_OPTIMIZATION_MODE_CPU 1
554 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
557 * Poll interval for timer irq
559 * This interval determines how frequent an interrupt is generated.
560 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
561 * Min = 0, and Max = 65535
563 static int poll_interval = -1;
565 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
567 return netdev_priv(dev);
570 static inline u8 __iomem *get_hwbase(struct net_device *dev)
572 return ((struct fe_priv *)netdev_priv(dev))->base;
575 static inline void pci_push(u8 __iomem *base)
577 /* force out pending posted writes */
578 readl(base);
581 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
583 return le32_to_cpu(prd->FlagLen)
584 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
587 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
589 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
592 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
593 int delay, int delaymax, const char *msg)
595 u8 __iomem *base = get_hwbase(dev);
597 pci_push(base);
598 do {
599 udelay(delay);
600 delaymax -= delay;
601 if (delaymax < 0) {
602 if (msg)
603 printk(msg);
604 return 1;
606 } while ((readl(base + offset) & mask) != target);
607 return 0;
610 #define MII_READ (-1)
611 /* mii_rw: read/write a register on the PHY.
613 * Caller must guarantee serialization
615 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
617 u8 __iomem *base = get_hwbase(dev);
618 u32 reg;
619 int retval;
621 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
623 reg = readl(base + NvRegMIIControl);
624 if (reg & NVREG_MIICTL_INUSE) {
625 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
626 udelay(NV_MIIBUSY_DELAY);
629 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
630 if (value != MII_READ) {
631 writel(value, base + NvRegMIIData);
632 reg |= NVREG_MIICTL_WRITE;
634 writel(reg, base + NvRegMIIControl);
636 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
637 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
638 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
639 dev->name, miireg, addr);
640 retval = -1;
641 } else if (value != MII_READ) {
642 /* it was a write operation - fewer failures are detectable */
643 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
644 dev->name, value, miireg, addr);
645 retval = 0;
646 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
647 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
648 dev->name, miireg, addr);
649 retval = -1;
650 } else {
651 retval = readl(base + NvRegMIIData);
652 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
653 dev->name, miireg, addr, retval);
656 return retval;
659 static int phy_reset(struct net_device *dev)
661 struct fe_priv *np = netdev_priv(dev);
662 u32 miicontrol;
663 unsigned int tries = 0;
665 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
666 miicontrol |= BMCR_RESET;
667 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
668 return -1;
671 /* wait for 500ms */
672 msleep(500);
674 /* must wait till reset is deasserted */
675 while (miicontrol & BMCR_RESET) {
676 msleep(10);
677 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
678 /* FIXME: 100 tries seem excessive */
679 if (tries++ > 100)
680 return -1;
682 return 0;
685 static int phy_init(struct net_device *dev)
687 struct fe_priv *np = get_nvpriv(dev);
688 u8 __iomem *base = get_hwbase(dev);
689 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
691 /* set advertise register */
692 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
693 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
694 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
695 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
696 return PHY_ERROR;
699 /* get phy interface type */
700 phyinterface = readl(base + NvRegPhyInterface);
702 /* see if gigabit phy */
703 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
704 if (mii_status & PHY_GIGABIT) {
705 np->gigabit = PHY_GIGABIT;
706 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
707 mii_control_1000 &= ~ADVERTISE_1000HALF;
708 if (phyinterface & PHY_RGMII)
709 mii_control_1000 |= ADVERTISE_1000FULL;
710 else
711 mii_control_1000 &= ~ADVERTISE_1000FULL;
713 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
714 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
715 return PHY_ERROR;
718 else
719 np->gigabit = 0;
721 /* reset the phy */
722 if (phy_reset(dev)) {
723 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
724 return PHY_ERROR;
727 /* phy vendor specific configuration */
728 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
729 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
730 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
731 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
732 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
733 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
734 return PHY_ERROR;
736 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
737 phy_reserved |= PHY_INIT5;
738 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
739 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
740 return PHY_ERROR;
743 if (np->phy_oui == PHY_OUI_CICADA) {
744 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
745 phy_reserved |= PHY_INIT6;
746 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
747 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
748 return PHY_ERROR;
752 /* restart auto negotiation */
753 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
754 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
755 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
756 return PHY_ERROR;
759 return 0;
762 static void nv_start_rx(struct net_device *dev)
764 struct fe_priv *np = netdev_priv(dev);
765 u8 __iomem *base = get_hwbase(dev);
767 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
768 /* Already running? Stop it. */
769 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
770 writel(0, base + NvRegReceiverControl);
771 pci_push(base);
773 writel(np->linkspeed, base + NvRegLinkSpeed);
774 pci_push(base);
775 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
776 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
777 dev->name, np->duplex, np->linkspeed);
778 pci_push(base);
781 static void nv_stop_rx(struct net_device *dev)
783 u8 __iomem *base = get_hwbase(dev);
785 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
786 writel(0, base + NvRegReceiverControl);
787 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
788 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
789 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
791 udelay(NV_RXSTOP_DELAY2);
792 writel(0, base + NvRegLinkSpeed);
795 static void nv_start_tx(struct net_device *dev)
797 u8 __iomem *base = get_hwbase(dev);
799 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
800 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
801 pci_push(base);
804 static void nv_stop_tx(struct net_device *dev)
806 u8 __iomem *base = get_hwbase(dev);
808 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
809 writel(0, base + NvRegTransmitterControl);
810 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
811 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
812 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
814 udelay(NV_TXSTOP_DELAY2);
815 writel(0, base + NvRegUnknownTransmitterReg);
818 static void nv_txrx_reset(struct net_device *dev)
820 struct fe_priv *np = netdev_priv(dev);
821 u8 __iomem *base = get_hwbase(dev);
823 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
824 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
825 pci_push(base);
826 udelay(NV_TXRX_RESET_DELAY);
827 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
828 pci_push(base);
832 * nv_get_stats: dev->get_stats function
833 * Get latest stats value from the nic.
834 * Called with read_lock(&dev_base_lock) held for read -
835 * only synchronized against unregister_netdevice.
837 static struct net_device_stats *nv_get_stats(struct net_device *dev)
839 struct fe_priv *np = netdev_priv(dev);
841 /* It seems that the nic always generates interrupts and doesn't
842 * accumulate errors internally. Thus the current values in np->stats
843 * are already up to date.
845 return &np->stats;
849 * nv_alloc_rx: fill rx ring entries.
850 * Return 1 if the allocations for the skbs failed and the
851 * rx engine is without Available descriptors
853 static int nv_alloc_rx(struct net_device *dev)
855 struct fe_priv *np = netdev_priv(dev);
856 unsigned int refill_rx = np->refill_rx;
857 int nr;
859 while (np->cur_rx != refill_rx) {
860 struct sk_buff *skb;
862 nr = refill_rx % RX_RING;
863 if (np->rx_skbuff[nr] == NULL) {
865 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
866 if (!skb)
867 break;
869 skb->dev = dev;
870 np->rx_skbuff[nr] = skb;
871 } else {
872 skb = np->rx_skbuff[nr];
874 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
875 PCI_DMA_FROMDEVICE);
876 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
877 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
878 wmb();
879 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
880 } else {
881 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
882 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
883 wmb();
884 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
886 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
887 dev->name, refill_rx);
888 refill_rx++;
890 np->refill_rx = refill_rx;
891 if (np->cur_rx - refill_rx == RX_RING)
892 return 1;
893 return 0;
896 static void nv_do_rx_refill(unsigned long data)
898 struct net_device *dev = (struct net_device *) data;
899 struct fe_priv *np = netdev_priv(dev);
901 disable_irq(dev->irq);
902 if (nv_alloc_rx(dev)) {
903 spin_lock(&np->lock);
904 if (!np->in_shutdown)
905 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
906 spin_unlock(&np->lock);
908 enable_irq(dev->irq);
911 static void nv_init_rx(struct net_device *dev)
913 struct fe_priv *np = netdev_priv(dev);
914 int i;
916 np->cur_rx = RX_RING;
917 np->refill_rx = 0;
918 for (i = 0; i < RX_RING; i++)
919 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
920 np->rx_ring.orig[i].FlagLen = 0;
921 else
922 np->rx_ring.ex[i].FlagLen = 0;
925 static void nv_init_tx(struct net_device *dev)
927 struct fe_priv *np = netdev_priv(dev);
928 int i;
930 np->next_tx = np->nic_tx = 0;
931 for (i = 0; i < TX_RING; i++) {
932 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
933 np->tx_ring.orig[i].FlagLen = 0;
934 else
935 np->tx_ring.ex[i].FlagLen = 0;
936 np->tx_skbuff[i] = NULL;
940 static int nv_init_ring(struct net_device *dev)
942 nv_init_tx(dev);
943 nv_init_rx(dev);
944 return nv_alloc_rx(dev);
947 static void nv_release_txskb(struct net_device *dev, unsigned int skbnr)
949 struct fe_priv *np = netdev_priv(dev);
950 struct sk_buff *skb = np->tx_skbuff[skbnr];
951 unsigned int j, entry, fragments;
953 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d, skb %p\n",
954 dev->name, skbnr, np->tx_skbuff[skbnr]);
956 entry = skbnr;
957 if ((fragments = skb_shinfo(skb)->nr_frags) != 0) {
958 for (j = fragments; j >= 1; j--) {
959 skb_frag_t *frag = &skb_shinfo(skb)->frags[j-1];
960 pci_unmap_page(np->pci_dev, np->tx_dma[entry],
961 frag->size,
962 PCI_DMA_TODEVICE);
963 entry = (entry - 1) % TX_RING;
966 pci_unmap_single(np->pci_dev, np->tx_dma[entry],
967 skb->len - skb->data_len,
968 PCI_DMA_TODEVICE);
969 dev_kfree_skb_irq(skb);
970 np->tx_skbuff[skbnr] = NULL;
973 static void nv_drain_tx(struct net_device *dev)
975 struct fe_priv *np = netdev_priv(dev);
976 unsigned int i;
978 for (i = 0; i < TX_RING; i++) {
979 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
980 np->tx_ring.orig[i].FlagLen = 0;
981 else
982 np->tx_ring.ex[i].FlagLen = 0;
983 if (np->tx_skbuff[i]) {
984 nv_release_txskb(dev, i);
985 np->stats.tx_dropped++;
990 static void nv_drain_rx(struct net_device *dev)
992 struct fe_priv *np = netdev_priv(dev);
993 int i;
994 for (i = 0; i < RX_RING; i++) {
995 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
996 np->rx_ring.orig[i].FlagLen = 0;
997 else
998 np->rx_ring.ex[i].FlagLen = 0;
999 wmb();
1000 if (np->rx_skbuff[i]) {
1001 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1002 np->rx_skbuff[i]->len,
1003 PCI_DMA_FROMDEVICE);
1004 dev_kfree_skb(np->rx_skbuff[i]);
1005 np->rx_skbuff[i] = NULL;
1010 static void drain_ring(struct net_device *dev)
1012 nv_drain_tx(dev);
1013 nv_drain_rx(dev);
1017 * nv_start_xmit: dev->hard_start_xmit function
1018 * Called with dev->xmit_lock held.
1020 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1022 struct fe_priv *np = netdev_priv(dev);
1023 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1024 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1025 unsigned int nr = (np->next_tx + fragments) % TX_RING;
1026 unsigned int i;
1028 spin_lock_irq(&np->lock);
1030 if ((np->next_tx - np->nic_tx + fragments) > TX_LIMIT_STOP) {
1031 spin_unlock_irq(&np->lock);
1032 netif_stop_queue(dev);
1033 return NETDEV_TX_BUSY;
1036 np->tx_skbuff[nr] = skb;
1038 if (fragments) {
1039 dprintk(KERN_DEBUG "%s: nv_start_xmit: buffer contains %d fragments\n", dev->name, fragments);
1040 /* setup descriptors in reverse order */
1041 for (i = fragments; i >= 1; i--) {
1042 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1043 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset, frag->size,
1044 PCI_DMA_TODEVICE);
1046 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1047 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1048 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1049 } else {
1050 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1051 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1052 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1055 nr = (nr - 1) % TX_RING;
1057 if (np->desc_ver == DESC_VER_1)
1058 tx_flags_extra &= ~NV_TX_LASTPACKET;
1059 else
1060 tx_flags_extra &= ~NV_TX2_LASTPACKET;
1064 #ifdef NETIF_F_TSO
1065 if (skb_shinfo(skb)->tso_size)
1066 tx_flags_extra |= NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1067 else
1068 #endif
1069 tx_flags_extra |= (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1071 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len-skb->data_len,
1072 PCI_DMA_TODEVICE);
1074 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1075 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1076 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1077 } else {
1078 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1079 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1080 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1083 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission. tx_flags_extra: %x\n",
1084 dev->name, np->next_tx, tx_flags_extra);
1086 int j;
1087 for (j=0; j<64; j++) {
1088 if ((j%16) == 0)
1089 dprintk("\n%03x:", j);
1090 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1092 dprintk("\n");
1095 np->next_tx += 1 + fragments;
1097 dev->trans_start = jiffies;
1098 spin_unlock_irq(&np->lock);
1099 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1100 pci_push(get_hwbase(dev));
1101 return NETDEV_TX_OK;
1105 * nv_tx_done: check for completed packets, release the skbs.
1107 * Caller must own np->lock.
1109 static void nv_tx_done(struct net_device *dev)
1111 struct fe_priv *np = netdev_priv(dev);
1112 u32 Flags;
1113 unsigned int i;
1114 struct sk_buff *skb;
1116 while (np->nic_tx != np->next_tx) {
1117 i = np->nic_tx % TX_RING;
1119 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1120 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1121 else
1122 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1124 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1125 dev->name, np->nic_tx, Flags);
1126 if (Flags & NV_TX_VALID)
1127 break;
1128 if (np->desc_ver == DESC_VER_1) {
1129 if (Flags & NV_TX_LASTPACKET) {
1130 skb = np->tx_skbuff[i];
1131 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1132 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1133 if (Flags & NV_TX_UNDERFLOW)
1134 np->stats.tx_fifo_errors++;
1135 if (Flags & NV_TX_CARRIERLOST)
1136 np->stats.tx_carrier_errors++;
1137 np->stats.tx_errors++;
1138 } else {
1139 np->stats.tx_packets++;
1140 np->stats.tx_bytes += skb->len;
1142 nv_release_txskb(dev, i);
1144 } else {
1145 if (Flags & NV_TX2_LASTPACKET) {
1146 skb = np->tx_skbuff[i];
1147 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1148 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1149 if (Flags & NV_TX2_UNDERFLOW)
1150 np->stats.tx_fifo_errors++;
1151 if (Flags & NV_TX2_CARRIERLOST)
1152 np->stats.tx_carrier_errors++;
1153 np->stats.tx_errors++;
1154 } else {
1155 np->stats.tx_packets++;
1156 np->stats.tx_bytes += skb->len;
1158 nv_release_txskb(dev, i);
1161 np->nic_tx++;
1163 if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1164 netif_wake_queue(dev);
1168 * nv_tx_timeout: dev->tx_timeout function
1169 * Called with dev->xmit_lock held.
1171 static void nv_tx_timeout(struct net_device *dev)
1173 struct fe_priv *np = netdev_priv(dev);
1174 u8 __iomem *base = get_hwbase(dev);
1176 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1177 readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1180 int i;
1182 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1183 dev->name, (unsigned long)np->ring_addr,
1184 np->next_tx, np->nic_tx);
1185 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1186 for (i=0;i<0x400;i+= 32) {
1187 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1189 readl(base + i + 0), readl(base + i + 4),
1190 readl(base + i + 8), readl(base + i + 12),
1191 readl(base + i + 16), readl(base + i + 20),
1192 readl(base + i + 24), readl(base + i + 28));
1194 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1195 for (i=0;i<TX_RING;i+= 4) {
1196 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1197 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1199 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1200 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1201 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1202 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1203 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1204 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1205 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1206 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1207 } else {
1208 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1210 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1211 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1212 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1213 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1214 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1215 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1216 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1217 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1218 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1219 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1220 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1221 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1226 spin_lock_irq(&np->lock);
1228 /* 1) stop tx engine */
1229 nv_stop_tx(dev);
1231 /* 2) check that the packets were not sent already: */
1232 nv_tx_done(dev);
1234 /* 3) if there are dead entries: clear everything */
1235 if (np->next_tx != np->nic_tx) {
1236 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1237 nv_drain_tx(dev);
1238 np->next_tx = np->nic_tx = 0;
1239 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1240 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1241 else
1242 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1243 netif_wake_queue(dev);
1246 /* 4) restart tx engine */
1247 nv_start_tx(dev);
1248 spin_unlock_irq(&np->lock);
1252 * Called when the nic notices a mismatch between the actual data len on the
1253 * wire and the len indicated in the 802 header
1255 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1257 int hdrlen; /* length of the 802 header */
1258 int protolen; /* length as stored in the proto field */
1260 /* 1) calculate len according to header */
1261 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1262 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1263 hdrlen = VLAN_HLEN;
1264 } else {
1265 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1266 hdrlen = ETH_HLEN;
1268 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1269 dev->name, datalen, protolen, hdrlen);
1270 if (protolen > ETH_DATA_LEN)
1271 return datalen; /* Value in proto field not a len, no checks possible */
1273 protolen += hdrlen;
1274 /* consistency checks: */
1275 if (datalen > ETH_ZLEN) {
1276 if (datalen >= protolen) {
1277 /* more data on wire than in 802 header, trim of
1278 * additional data.
1280 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1281 dev->name, protolen);
1282 return protolen;
1283 } else {
1284 /* less data on wire than mentioned in header.
1285 * Discard the packet.
1287 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1288 dev->name);
1289 return -1;
1291 } else {
1292 /* short packet. Accept only if 802 values are also short */
1293 if (protolen > ETH_ZLEN) {
1294 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1295 dev->name);
1296 return -1;
1298 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1299 dev->name, datalen);
1300 return datalen;
1304 static void nv_rx_process(struct net_device *dev)
1306 struct fe_priv *np = netdev_priv(dev);
1307 u32 Flags;
1309 for (;;) {
1310 struct sk_buff *skb;
1311 int len;
1312 int i;
1313 if (np->cur_rx - np->refill_rx >= RX_RING)
1314 break; /* we scanned the whole ring - do not continue */
1316 i = np->cur_rx % RX_RING;
1317 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1318 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1319 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1320 } else {
1321 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1322 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1325 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1326 dev->name, np->cur_rx, Flags);
1328 if (Flags & NV_RX_AVAIL)
1329 break; /* still owned by hardware, */
1332 * the packet is for us - immediately tear down the pci mapping.
1333 * TODO: check if a prefetch of the first cacheline improves
1334 * the performance.
1336 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1337 np->rx_skbuff[i]->len,
1338 PCI_DMA_FROMDEVICE);
1341 int j;
1342 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1343 for (j=0; j<64; j++) {
1344 if ((j%16) == 0)
1345 dprintk("\n%03x:", j);
1346 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1348 dprintk("\n");
1350 /* look at what we actually got: */
1351 if (np->desc_ver == DESC_VER_1) {
1352 if (!(Flags & NV_RX_DESCRIPTORVALID))
1353 goto next_pkt;
1355 if (Flags & NV_RX_ERROR) {
1356 if (Flags & NV_RX_MISSEDFRAME) {
1357 np->stats.rx_missed_errors++;
1358 np->stats.rx_errors++;
1359 goto next_pkt;
1361 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1362 np->stats.rx_errors++;
1363 goto next_pkt;
1365 if (Flags & NV_RX_CRCERR) {
1366 np->stats.rx_crc_errors++;
1367 np->stats.rx_errors++;
1368 goto next_pkt;
1370 if (Flags & NV_RX_OVERFLOW) {
1371 np->stats.rx_over_errors++;
1372 np->stats.rx_errors++;
1373 goto next_pkt;
1375 if (Flags & NV_RX_ERROR4) {
1376 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1377 if (len < 0) {
1378 np->stats.rx_errors++;
1379 goto next_pkt;
1382 /* framing errors are soft errors. */
1383 if (Flags & NV_RX_FRAMINGERR) {
1384 if (Flags & NV_RX_SUBSTRACT1) {
1385 len--;
1389 } else {
1390 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1391 goto next_pkt;
1393 if (Flags & NV_RX2_ERROR) {
1394 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1395 np->stats.rx_errors++;
1396 goto next_pkt;
1398 if (Flags & NV_RX2_CRCERR) {
1399 np->stats.rx_crc_errors++;
1400 np->stats.rx_errors++;
1401 goto next_pkt;
1403 if (Flags & NV_RX2_OVERFLOW) {
1404 np->stats.rx_over_errors++;
1405 np->stats.rx_errors++;
1406 goto next_pkt;
1408 if (Flags & NV_RX2_ERROR4) {
1409 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1410 if (len < 0) {
1411 np->stats.rx_errors++;
1412 goto next_pkt;
1415 /* framing errors are soft errors */
1416 if (Flags & NV_RX2_FRAMINGERR) {
1417 if (Flags & NV_RX2_SUBSTRACT1) {
1418 len--;
1422 Flags &= NV_RX2_CHECKSUMMASK;
1423 if (Flags == NV_RX2_CHECKSUMOK1 ||
1424 Flags == NV_RX2_CHECKSUMOK2 ||
1425 Flags == NV_RX2_CHECKSUMOK3) {
1426 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1427 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1428 } else {
1429 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1432 /* got a valid packet - forward it to the network core */
1433 skb = np->rx_skbuff[i];
1434 np->rx_skbuff[i] = NULL;
1436 skb_put(skb, len);
1437 skb->protocol = eth_type_trans(skb, dev);
1438 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1439 dev->name, np->cur_rx, len, skb->protocol);
1440 netif_rx(skb);
1441 dev->last_rx = jiffies;
1442 np->stats.rx_packets++;
1443 np->stats.rx_bytes += len;
1444 next_pkt:
1445 np->cur_rx++;
1449 static void set_bufsize(struct net_device *dev)
1451 struct fe_priv *np = netdev_priv(dev);
1453 if (dev->mtu <= ETH_DATA_LEN)
1454 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1455 else
1456 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1460 * nv_change_mtu: dev->change_mtu function
1461 * Called with dev_base_lock held for read.
1463 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1465 struct fe_priv *np = netdev_priv(dev);
1466 int old_mtu;
1468 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1469 return -EINVAL;
1471 old_mtu = dev->mtu;
1472 dev->mtu = new_mtu;
1474 /* return early if the buffer sizes will not change */
1475 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1476 return 0;
1477 if (old_mtu == new_mtu)
1478 return 0;
1480 /* synchronized against open : rtnl_lock() held by caller */
1481 if (netif_running(dev)) {
1482 u8 __iomem *base = get_hwbase(dev);
1484 * It seems that the nic preloads valid ring entries into an
1485 * internal buffer. The procedure for flushing everything is
1486 * guessed, there is probably a simpler approach.
1487 * Changing the MTU is a rare event, it shouldn't matter.
1489 disable_irq(dev->irq);
1490 spin_lock_bh(&dev->xmit_lock);
1491 spin_lock(&np->lock);
1492 /* stop engines */
1493 nv_stop_rx(dev);
1494 nv_stop_tx(dev);
1495 nv_txrx_reset(dev);
1496 /* drain rx queue */
1497 nv_drain_rx(dev);
1498 nv_drain_tx(dev);
1499 /* reinit driver view of the rx queue */
1500 nv_init_rx(dev);
1501 nv_init_tx(dev);
1502 /* alloc new rx buffers */
1503 set_bufsize(dev);
1504 if (nv_alloc_rx(dev)) {
1505 if (!np->in_shutdown)
1506 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1508 /* reinit nic view of the rx queue */
1509 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1510 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1511 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1512 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1513 else
1514 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1515 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1516 base + NvRegRingSizes);
1517 pci_push(base);
1518 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1519 pci_push(base);
1521 /* restart rx engine */
1522 nv_start_rx(dev);
1523 nv_start_tx(dev);
1524 spin_unlock(&np->lock);
1525 spin_unlock_bh(&dev->xmit_lock);
1526 enable_irq(dev->irq);
1528 return 0;
1531 static void nv_copy_mac_to_hw(struct net_device *dev)
1533 u8 __iomem *base = get_hwbase(dev);
1534 u32 mac[2];
1536 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1537 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1538 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1540 writel(mac[0], base + NvRegMacAddrA);
1541 writel(mac[1], base + NvRegMacAddrB);
1545 * nv_set_mac_address: dev->set_mac_address function
1546 * Called with rtnl_lock() held.
1548 static int nv_set_mac_address(struct net_device *dev, void *addr)
1550 struct fe_priv *np = netdev_priv(dev);
1551 struct sockaddr *macaddr = (struct sockaddr*)addr;
1553 if(!is_valid_ether_addr(macaddr->sa_data))
1554 return -EADDRNOTAVAIL;
1556 /* synchronized against open : rtnl_lock() held by caller */
1557 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1559 if (netif_running(dev)) {
1560 spin_lock_bh(&dev->xmit_lock);
1561 spin_lock_irq(&np->lock);
1563 /* stop rx engine */
1564 nv_stop_rx(dev);
1566 /* set mac address */
1567 nv_copy_mac_to_hw(dev);
1569 /* restart rx engine */
1570 nv_start_rx(dev);
1571 spin_unlock_irq(&np->lock);
1572 spin_unlock_bh(&dev->xmit_lock);
1573 } else {
1574 nv_copy_mac_to_hw(dev);
1576 return 0;
1580 * nv_set_multicast: dev->set_multicast function
1581 * Called with dev->xmit_lock held.
1583 static void nv_set_multicast(struct net_device *dev)
1585 struct fe_priv *np = netdev_priv(dev);
1586 u8 __iomem *base = get_hwbase(dev);
1587 u32 addr[2];
1588 u32 mask[2];
1589 u32 pff;
1591 memset(addr, 0, sizeof(addr));
1592 memset(mask, 0, sizeof(mask));
1594 if (dev->flags & IFF_PROMISC) {
1595 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1596 pff = NVREG_PFF_PROMISC;
1597 } else {
1598 pff = NVREG_PFF_MYADDR;
1600 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1601 u32 alwaysOff[2];
1602 u32 alwaysOn[2];
1604 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1605 if (dev->flags & IFF_ALLMULTI) {
1606 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1607 } else {
1608 struct dev_mc_list *walk;
1610 walk = dev->mc_list;
1611 while (walk != NULL) {
1612 u32 a, b;
1613 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1614 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1615 alwaysOn[0] &= a;
1616 alwaysOff[0] &= ~a;
1617 alwaysOn[1] &= b;
1618 alwaysOff[1] &= ~b;
1619 walk = walk->next;
1622 addr[0] = alwaysOn[0];
1623 addr[1] = alwaysOn[1];
1624 mask[0] = alwaysOn[0] | alwaysOff[0];
1625 mask[1] = alwaysOn[1] | alwaysOff[1];
1628 addr[0] |= NVREG_MCASTADDRA_FORCE;
1629 pff |= NVREG_PFF_ALWAYS;
1630 spin_lock_irq(&np->lock);
1631 nv_stop_rx(dev);
1632 writel(addr[0], base + NvRegMulticastAddrA);
1633 writel(addr[1], base + NvRegMulticastAddrB);
1634 writel(mask[0], base + NvRegMulticastMaskA);
1635 writel(mask[1], base + NvRegMulticastMaskB);
1636 writel(pff, base + NvRegPacketFilterFlags);
1637 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1638 dev->name);
1639 nv_start_rx(dev);
1640 spin_unlock_irq(&np->lock);
1644 * nv_update_linkspeed: Setup the MAC according to the link partner
1645 * @dev: Network device to be configured
1647 * The function queries the PHY and checks if there is a link partner.
1648 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1649 * set to 10 MBit HD.
1651 * The function returns 0 if there is no link partner and 1 if there is
1652 * a good link partner.
1654 static int nv_update_linkspeed(struct net_device *dev)
1656 struct fe_priv *np = netdev_priv(dev);
1657 u8 __iomem *base = get_hwbase(dev);
1658 int adv, lpa;
1659 int newls = np->linkspeed;
1660 int newdup = np->duplex;
1661 int mii_status;
1662 int retval = 0;
1663 u32 control_1000, status_1000, phyreg;
1665 /* BMSR_LSTATUS is latched, read it twice:
1666 * we want the current value.
1668 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1669 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1671 if (!(mii_status & BMSR_LSTATUS)) {
1672 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1673 dev->name);
1674 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1675 newdup = 0;
1676 retval = 0;
1677 goto set_speed;
1680 if (np->autoneg == 0) {
1681 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1682 dev->name, np->fixed_mode);
1683 if (np->fixed_mode & LPA_100FULL) {
1684 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1685 newdup = 1;
1686 } else if (np->fixed_mode & LPA_100HALF) {
1687 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1688 newdup = 0;
1689 } else if (np->fixed_mode & LPA_10FULL) {
1690 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1691 newdup = 1;
1692 } else {
1693 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1694 newdup = 0;
1696 retval = 1;
1697 goto set_speed;
1699 /* check auto negotiation is complete */
1700 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1701 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1702 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1703 newdup = 0;
1704 retval = 0;
1705 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1706 goto set_speed;
1709 retval = 1;
1710 if (np->gigabit == PHY_GIGABIT) {
1711 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1712 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1714 if ((control_1000 & ADVERTISE_1000FULL) &&
1715 (status_1000 & LPA_1000FULL)) {
1716 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1717 dev->name);
1718 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1719 newdup = 1;
1720 goto set_speed;
1724 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1725 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1726 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1727 dev->name, adv, lpa);
1729 /* FIXME: handle parallel detection properly */
1730 lpa = lpa & adv;
1731 if (lpa & LPA_100FULL) {
1732 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1733 newdup = 1;
1734 } else if (lpa & LPA_100HALF) {
1735 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1736 newdup = 0;
1737 } else if (lpa & LPA_10FULL) {
1738 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1739 newdup = 1;
1740 } else if (lpa & LPA_10HALF) {
1741 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1742 newdup = 0;
1743 } else {
1744 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1745 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1746 newdup = 0;
1749 set_speed:
1750 if (np->duplex == newdup && np->linkspeed == newls)
1751 return retval;
1753 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1754 dev->name, np->linkspeed, np->duplex, newls, newdup);
1756 np->duplex = newdup;
1757 np->linkspeed = newls;
1759 if (np->gigabit == PHY_GIGABIT) {
1760 phyreg = readl(base + NvRegRandomSeed);
1761 phyreg &= ~(0x3FF00);
1762 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1763 phyreg |= NVREG_RNDSEED_FORCE3;
1764 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1765 phyreg |= NVREG_RNDSEED_FORCE2;
1766 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1767 phyreg |= NVREG_RNDSEED_FORCE;
1768 writel(phyreg, base + NvRegRandomSeed);
1771 phyreg = readl(base + NvRegPhyInterface);
1772 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1773 if (np->duplex == 0)
1774 phyreg |= PHY_HALF;
1775 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1776 phyreg |= PHY_100;
1777 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1778 phyreg |= PHY_1000;
1779 writel(phyreg, base + NvRegPhyInterface);
1781 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1782 base + NvRegMisc1);
1783 pci_push(base);
1784 writel(np->linkspeed, base + NvRegLinkSpeed);
1785 pci_push(base);
1787 return retval;
1790 static void nv_linkchange(struct net_device *dev)
1792 if (nv_update_linkspeed(dev)) {
1793 if (!netif_carrier_ok(dev)) {
1794 netif_carrier_on(dev);
1795 printk(KERN_INFO "%s: link up.\n", dev->name);
1796 nv_start_rx(dev);
1798 } else {
1799 if (netif_carrier_ok(dev)) {
1800 netif_carrier_off(dev);
1801 printk(KERN_INFO "%s: link down.\n", dev->name);
1802 nv_stop_rx(dev);
1807 static void nv_link_irq(struct net_device *dev)
1809 u8 __iomem *base = get_hwbase(dev);
1810 u32 miistat;
1812 miistat = readl(base + NvRegMIIStatus);
1813 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1814 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1816 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1817 nv_linkchange(dev);
1818 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1821 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1823 struct net_device *dev = (struct net_device *) data;
1824 struct fe_priv *np = netdev_priv(dev);
1825 u8 __iomem *base = get_hwbase(dev);
1826 u32 events;
1827 int i;
1829 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1831 for (i=0; ; i++) {
1832 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1833 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1834 pci_push(base);
1835 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1836 if (!(events & np->irqmask))
1837 break;
1839 spin_lock(&np->lock);
1840 nv_tx_done(dev);
1841 spin_unlock(&np->lock);
1843 nv_rx_process(dev);
1844 if (nv_alloc_rx(dev)) {
1845 spin_lock(&np->lock);
1846 if (!np->in_shutdown)
1847 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1848 spin_unlock(&np->lock);
1851 if (events & NVREG_IRQ_LINK) {
1852 spin_lock(&np->lock);
1853 nv_link_irq(dev);
1854 spin_unlock(&np->lock);
1856 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1857 spin_lock(&np->lock);
1858 nv_linkchange(dev);
1859 spin_unlock(&np->lock);
1860 np->link_timeout = jiffies + LINK_TIMEOUT;
1862 if (events & (NVREG_IRQ_TX_ERR)) {
1863 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1864 dev->name, events);
1866 if (events & (NVREG_IRQ_UNKNOWN)) {
1867 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1868 dev->name, events);
1870 if (i > max_interrupt_work) {
1871 spin_lock(&np->lock);
1872 /* disable interrupts on the nic */
1873 writel(0, base + NvRegIrqMask);
1874 pci_push(base);
1876 if (!np->in_shutdown)
1877 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1878 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1879 spin_unlock(&np->lock);
1880 break;
1884 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1886 return IRQ_RETVAL(i);
1889 static void nv_do_nic_poll(unsigned long data)
1891 struct net_device *dev = (struct net_device *) data;
1892 struct fe_priv *np = netdev_priv(dev);
1893 u8 __iomem *base = get_hwbase(dev);
1895 disable_irq(dev->irq);
1896 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1898 * reenable interrupts on the nic, we have to do this before calling
1899 * nv_nic_irq because that may decide to do otherwise
1901 writel(np->irqmask, base + NvRegIrqMask);
1902 pci_push(base);
1903 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1904 enable_irq(dev->irq);
1907 #ifdef CONFIG_NET_POLL_CONTROLLER
1908 static void nv_poll_controller(struct net_device *dev)
1910 nv_do_nic_poll((unsigned long) dev);
1912 #endif
1914 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1916 struct fe_priv *np = netdev_priv(dev);
1917 strcpy(info->driver, "forcedeth");
1918 strcpy(info->version, FORCEDETH_VERSION);
1919 strcpy(info->bus_info, pci_name(np->pci_dev));
1922 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1924 struct fe_priv *np = netdev_priv(dev);
1925 wolinfo->supported = WAKE_MAGIC;
1927 spin_lock_irq(&np->lock);
1928 if (np->wolenabled)
1929 wolinfo->wolopts = WAKE_MAGIC;
1930 spin_unlock_irq(&np->lock);
1933 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1935 struct fe_priv *np = netdev_priv(dev);
1936 u8 __iomem *base = get_hwbase(dev);
1938 spin_lock_irq(&np->lock);
1939 if (wolinfo->wolopts == 0) {
1940 writel(0, base + NvRegWakeUpFlags);
1941 np->wolenabled = 0;
1943 if (wolinfo->wolopts & WAKE_MAGIC) {
1944 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1945 np->wolenabled = 1;
1947 spin_unlock_irq(&np->lock);
1948 return 0;
1951 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1953 struct fe_priv *np = netdev_priv(dev);
1954 int adv;
1956 spin_lock_irq(&np->lock);
1957 ecmd->port = PORT_MII;
1958 if (!netif_running(dev)) {
1959 /* We do not track link speed / duplex setting if the
1960 * interface is disabled. Force a link check */
1961 nv_update_linkspeed(dev);
1963 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1964 case NVREG_LINKSPEED_10:
1965 ecmd->speed = SPEED_10;
1966 break;
1967 case NVREG_LINKSPEED_100:
1968 ecmd->speed = SPEED_100;
1969 break;
1970 case NVREG_LINKSPEED_1000:
1971 ecmd->speed = SPEED_1000;
1972 break;
1974 ecmd->duplex = DUPLEX_HALF;
1975 if (np->duplex)
1976 ecmd->duplex = DUPLEX_FULL;
1978 ecmd->autoneg = np->autoneg;
1980 ecmd->advertising = ADVERTISED_MII;
1981 if (np->autoneg) {
1982 ecmd->advertising |= ADVERTISED_Autoneg;
1983 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1984 } else {
1985 adv = np->fixed_mode;
1987 if (adv & ADVERTISE_10HALF)
1988 ecmd->advertising |= ADVERTISED_10baseT_Half;
1989 if (adv & ADVERTISE_10FULL)
1990 ecmd->advertising |= ADVERTISED_10baseT_Full;
1991 if (adv & ADVERTISE_100HALF)
1992 ecmd->advertising |= ADVERTISED_100baseT_Half;
1993 if (adv & ADVERTISE_100FULL)
1994 ecmd->advertising |= ADVERTISED_100baseT_Full;
1995 if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1996 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1997 if (adv & ADVERTISE_1000FULL)
1998 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2001 ecmd->supported = (SUPPORTED_Autoneg |
2002 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2003 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2004 SUPPORTED_MII);
2005 if (np->gigabit == PHY_GIGABIT)
2006 ecmd->supported |= SUPPORTED_1000baseT_Full;
2008 ecmd->phy_address = np->phyaddr;
2009 ecmd->transceiver = XCVR_EXTERNAL;
2011 /* ignore maxtxpkt, maxrxpkt for now */
2012 spin_unlock_irq(&np->lock);
2013 return 0;
2016 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2018 struct fe_priv *np = netdev_priv(dev);
2020 if (ecmd->port != PORT_MII)
2021 return -EINVAL;
2022 if (ecmd->transceiver != XCVR_EXTERNAL)
2023 return -EINVAL;
2024 if (ecmd->phy_address != np->phyaddr) {
2025 /* TODO: support switching between multiple phys. Should be
2026 * trivial, but not enabled due to lack of test hardware. */
2027 return -EINVAL;
2029 if (ecmd->autoneg == AUTONEG_ENABLE) {
2030 u32 mask;
2032 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2033 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2034 if (np->gigabit == PHY_GIGABIT)
2035 mask |= ADVERTISED_1000baseT_Full;
2037 if ((ecmd->advertising & mask) == 0)
2038 return -EINVAL;
2040 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2041 /* Note: autonegotiation disable, speed 1000 intentionally
2042 * forbidden - noone should need that. */
2044 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2045 return -EINVAL;
2046 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2047 return -EINVAL;
2048 } else {
2049 return -EINVAL;
2052 spin_lock_irq(&np->lock);
2053 if (ecmd->autoneg == AUTONEG_ENABLE) {
2054 int adv, bmcr;
2056 np->autoneg = 1;
2058 /* advertise only what has been requested */
2059 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2060 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2061 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2062 adv |= ADVERTISE_10HALF;
2063 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2064 adv |= ADVERTISE_10FULL;
2065 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2066 adv |= ADVERTISE_100HALF;
2067 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2068 adv |= ADVERTISE_100FULL;
2069 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2071 if (np->gigabit == PHY_GIGABIT) {
2072 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2073 adv &= ~ADVERTISE_1000FULL;
2074 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2075 adv |= ADVERTISE_1000FULL;
2076 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2079 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2080 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2081 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2083 } else {
2084 int adv, bmcr;
2086 np->autoneg = 0;
2088 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2089 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2090 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2091 adv |= ADVERTISE_10HALF;
2092 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2093 adv |= ADVERTISE_10FULL;
2094 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2095 adv |= ADVERTISE_100HALF;
2096 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2097 adv |= ADVERTISE_100FULL;
2098 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2099 np->fixed_mode = adv;
2101 if (np->gigabit == PHY_GIGABIT) {
2102 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2103 adv &= ~ADVERTISE_1000FULL;
2104 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2107 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2108 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2109 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2110 bmcr |= BMCR_FULLDPLX;
2111 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2112 bmcr |= BMCR_SPEED100;
2113 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2115 if (netif_running(dev)) {
2116 /* Wait a bit and then reconfigure the nic. */
2117 udelay(10);
2118 nv_linkchange(dev);
2121 spin_unlock_irq(&np->lock);
2123 return 0;
2126 #define FORCEDETH_REGS_VER 1
2127 #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
2129 static int nv_get_regs_len(struct net_device *dev)
2131 return FORCEDETH_REGS_SIZE;
2134 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2136 struct fe_priv *np = netdev_priv(dev);
2137 u8 __iomem *base = get_hwbase(dev);
2138 u32 *rbuf = buf;
2139 int i;
2141 regs->version = FORCEDETH_REGS_VER;
2142 spin_lock_irq(&np->lock);
2143 for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2144 rbuf[i] = readl(base + i*sizeof(u32));
2145 spin_unlock_irq(&np->lock);
2148 static int nv_nway_reset(struct net_device *dev)
2150 struct fe_priv *np = netdev_priv(dev);
2151 int ret;
2153 spin_lock_irq(&np->lock);
2154 if (np->autoneg) {
2155 int bmcr;
2157 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2158 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2159 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2161 ret = 0;
2162 } else {
2163 ret = -EINVAL;
2165 spin_unlock_irq(&np->lock);
2167 return ret;
2170 static struct ethtool_ops ops = {
2171 .get_drvinfo = nv_get_drvinfo,
2172 .get_link = ethtool_op_get_link,
2173 .get_wol = nv_get_wol,
2174 .set_wol = nv_set_wol,
2175 .get_settings = nv_get_settings,
2176 .set_settings = nv_set_settings,
2177 .get_regs_len = nv_get_regs_len,
2178 .get_regs = nv_get_regs,
2179 .nway_reset = nv_nway_reset,
2180 .get_perm_addr = ethtool_op_get_perm_addr,
2183 static int nv_open(struct net_device *dev)
2185 struct fe_priv *np = netdev_priv(dev);
2186 u8 __iomem *base = get_hwbase(dev);
2187 int ret, oom, i;
2189 dprintk(KERN_DEBUG "nv_open: begin\n");
2191 /* 1) erase previous misconfiguration */
2192 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2193 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2194 writel(0, base + NvRegMulticastAddrB);
2195 writel(0, base + NvRegMulticastMaskA);
2196 writel(0, base + NvRegMulticastMaskB);
2197 writel(0, base + NvRegPacketFilterFlags);
2199 writel(0, base + NvRegTransmitterControl);
2200 writel(0, base + NvRegReceiverControl);
2202 writel(0, base + NvRegAdapterControl);
2204 /* 2) initialize descriptor rings */
2205 set_bufsize(dev);
2206 oom = nv_init_ring(dev);
2208 writel(0, base + NvRegLinkSpeed);
2209 writel(0, base + NvRegUnknownTransmitterReg);
2210 nv_txrx_reset(dev);
2211 writel(0, base + NvRegUnknownSetupReg6);
2213 np->in_shutdown = 0;
2215 /* 3) set mac address */
2216 nv_copy_mac_to_hw(dev);
2218 /* 4) give hw rings */
2219 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2220 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2221 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2222 else
2223 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2224 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2225 base + NvRegRingSizes);
2227 /* 5) continue setup */
2228 writel(np->linkspeed, base + NvRegLinkSpeed);
2229 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2230 writel(np->txrxctl_bits, base + NvRegTxRxControl);
2231 pci_push(base);
2232 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2233 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2234 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2235 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2237 writel(0, base + NvRegUnknownSetupReg4);
2238 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2239 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2241 /* 6) continue setup */
2242 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2243 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2244 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2245 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2247 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2248 get_random_bytes(&i, sizeof(i));
2249 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2250 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2251 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2252 if (poll_interval == -1) {
2253 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2254 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2255 else
2256 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2258 else
2259 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2260 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2261 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2262 base + NvRegAdapterControl);
2263 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2264 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2265 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2267 i = readl(base + NvRegPowerState);
2268 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2269 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2271 pci_push(base);
2272 udelay(10);
2273 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2275 writel(0, base + NvRegIrqMask);
2276 pci_push(base);
2277 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2278 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2279 pci_push(base);
2281 ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2282 if (ret)
2283 goto out_drain;
2285 /* ask for interrupts */
2286 writel(np->irqmask, base + NvRegIrqMask);
2288 spin_lock_irq(&np->lock);
2289 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2290 writel(0, base + NvRegMulticastAddrB);
2291 writel(0, base + NvRegMulticastMaskA);
2292 writel(0, base + NvRegMulticastMaskB);
2293 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2294 /* One manual link speed update: Interrupts are enabled, future link
2295 * speed changes cause interrupts and are handled by nv_link_irq().
2298 u32 miistat;
2299 miistat = readl(base + NvRegMIIStatus);
2300 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2301 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2303 /* set linkspeed to invalid value, thus force nv_update_linkspeed
2304 * to init hw */
2305 np->linkspeed = 0;
2306 ret = nv_update_linkspeed(dev);
2307 nv_start_rx(dev);
2308 nv_start_tx(dev);
2309 netif_start_queue(dev);
2310 if (ret) {
2311 netif_carrier_on(dev);
2312 } else {
2313 printk("%s: no link during initialization.\n", dev->name);
2314 netif_carrier_off(dev);
2316 if (oom)
2317 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2318 spin_unlock_irq(&np->lock);
2320 return 0;
2321 out_drain:
2322 drain_ring(dev);
2323 return ret;
2326 static int nv_close(struct net_device *dev)
2328 struct fe_priv *np = netdev_priv(dev);
2329 u8 __iomem *base;
2331 spin_lock_irq(&np->lock);
2332 np->in_shutdown = 1;
2333 spin_unlock_irq(&np->lock);
2334 synchronize_irq(dev->irq);
2336 del_timer_sync(&np->oom_kick);
2337 del_timer_sync(&np->nic_poll);
2339 netif_stop_queue(dev);
2340 spin_lock_irq(&np->lock);
2341 nv_stop_tx(dev);
2342 nv_stop_rx(dev);
2343 nv_txrx_reset(dev);
2345 /* disable interrupts on the nic or we will lock up */
2346 base = get_hwbase(dev);
2347 writel(0, base + NvRegIrqMask);
2348 pci_push(base);
2349 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2351 spin_unlock_irq(&np->lock);
2353 free_irq(dev->irq, dev);
2355 drain_ring(dev);
2357 if (np->wolenabled)
2358 nv_start_rx(dev);
2360 /* special op: write back the misordered MAC address - otherwise
2361 * the next nv_probe would see a wrong address.
2363 writel(np->orig_mac[0], base + NvRegMacAddrA);
2364 writel(np->orig_mac[1], base + NvRegMacAddrB);
2366 /* FIXME: power down nic */
2368 return 0;
2371 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2373 struct net_device *dev;
2374 struct fe_priv *np;
2375 unsigned long addr;
2376 u8 __iomem *base;
2377 int err, i;
2379 dev = alloc_etherdev(sizeof(struct fe_priv));
2380 err = -ENOMEM;
2381 if (!dev)
2382 goto out;
2384 np = netdev_priv(dev);
2385 np->pci_dev = pci_dev;
2386 spin_lock_init(&np->lock);
2387 SET_MODULE_OWNER(dev);
2388 SET_NETDEV_DEV(dev, &pci_dev->dev);
2390 init_timer(&np->oom_kick);
2391 np->oom_kick.data = (unsigned long) dev;
2392 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
2393 init_timer(&np->nic_poll);
2394 np->nic_poll.data = (unsigned long) dev;
2395 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
2397 err = pci_enable_device(pci_dev);
2398 if (err) {
2399 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2400 err, pci_name(pci_dev));
2401 goto out_free;
2404 pci_set_master(pci_dev);
2406 err = pci_request_regions(pci_dev, DRV_NAME);
2407 if (err < 0)
2408 goto out_disable;
2410 err = -EINVAL;
2411 addr = 0;
2412 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2413 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2414 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2415 pci_resource_len(pci_dev, i),
2416 pci_resource_flags(pci_dev, i));
2417 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2418 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2419 addr = pci_resource_start(pci_dev, i);
2420 break;
2423 if (i == DEVICE_COUNT_RESOURCE) {
2424 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2425 pci_name(pci_dev));
2426 goto out_relreg;
2429 /* handle different descriptor versions */
2430 if (id->driver_data & DEV_HAS_HIGH_DMA) {
2431 /* packet format 3: supports 40-bit addressing */
2432 np->desc_ver = DESC_VER_3;
2433 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2434 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2435 pci_name(pci_dev));
2436 } else {
2437 dev->features |= NETIF_F_HIGHDMA;
2439 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2440 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2441 /* packet format 2: supports jumbo frames */
2442 np->desc_ver = DESC_VER_2;
2443 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2444 } else {
2445 /* original packet format */
2446 np->desc_ver = DESC_VER_1;
2447 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2450 np->pkt_limit = NV_PKTLIMIT_1;
2451 if (id->driver_data & DEV_HAS_LARGEDESC)
2452 np->pkt_limit = NV_PKTLIMIT_2;
2454 if (id->driver_data & DEV_HAS_CHECKSUM) {
2455 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2456 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2457 #ifdef NETIF_F_TSO
2458 dev->features |= NETIF_F_TSO;
2459 #endif
2462 err = -ENOMEM;
2463 np->base = ioremap(addr, NV_PCI_REGSZ);
2464 if (!np->base)
2465 goto out_relreg;
2466 dev->base_addr = (unsigned long)np->base;
2468 dev->irq = pci_dev->irq;
2470 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2471 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2472 sizeof(struct ring_desc) * (RX_RING + TX_RING),
2473 &np->ring_addr);
2474 if (!np->rx_ring.orig)
2475 goto out_unmap;
2476 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2477 } else {
2478 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2479 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2480 &np->ring_addr);
2481 if (!np->rx_ring.ex)
2482 goto out_unmap;
2483 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2486 dev->open = nv_open;
2487 dev->stop = nv_close;
2488 dev->hard_start_xmit = nv_start_xmit;
2489 dev->get_stats = nv_get_stats;
2490 dev->change_mtu = nv_change_mtu;
2491 dev->set_mac_address = nv_set_mac_address;
2492 dev->set_multicast_list = nv_set_multicast;
2493 #ifdef CONFIG_NET_POLL_CONTROLLER
2494 dev->poll_controller = nv_poll_controller;
2495 #endif
2496 SET_ETHTOOL_OPS(dev, &ops);
2497 dev->tx_timeout = nv_tx_timeout;
2498 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2500 pci_set_drvdata(pci_dev, dev);
2502 /* read the mac address */
2503 base = get_hwbase(dev);
2504 np->orig_mac[0] = readl(base + NvRegMacAddrA);
2505 np->orig_mac[1] = readl(base + NvRegMacAddrB);
2507 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
2508 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
2509 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2510 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2511 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
2512 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
2513 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
2515 if (!is_valid_ether_addr(dev->perm_addr)) {
2517 * Bad mac address. At least one bios sets the mac address
2518 * to 01:23:45:67:89:ab
2520 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2521 pci_name(pci_dev),
2522 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2523 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2524 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2525 dev->dev_addr[0] = 0x00;
2526 dev->dev_addr[1] = 0x00;
2527 dev->dev_addr[2] = 0x6c;
2528 get_random_bytes(&dev->dev_addr[3], 3);
2531 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2532 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2533 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2535 /* disable WOL */
2536 writel(0, base + NvRegWakeUpFlags);
2537 np->wolenabled = 0;
2539 if (np->desc_ver == DESC_VER_1) {
2540 np->tx_flags = NV_TX_VALID;
2541 } else {
2542 np->tx_flags = NV_TX2_VALID;
2544 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2545 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
2546 else
2547 np->irqmask = NVREG_IRQMASK_CPU;
2549 if (id->driver_data & DEV_NEED_TIMERIRQ)
2550 np->irqmask |= NVREG_IRQ_TIMER;
2551 if (id->driver_data & DEV_NEED_LINKTIMER) {
2552 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2553 np->need_linktimer = 1;
2554 np->link_timeout = jiffies + LINK_TIMEOUT;
2555 } else {
2556 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2557 np->need_linktimer = 0;
2560 /* find a suitable phy */
2561 for (i = 1; i <= 32; i++) {
2562 int id1, id2;
2563 int phyaddr = i & 0x1F;
2565 spin_lock_irq(&np->lock);
2566 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
2567 spin_unlock_irq(&np->lock);
2568 if (id1 < 0 || id1 == 0xffff)
2569 continue;
2570 spin_lock_irq(&np->lock);
2571 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
2572 spin_unlock_irq(&np->lock);
2573 if (id2 < 0 || id2 == 0xffff)
2574 continue;
2576 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2577 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2578 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2579 pci_name(pci_dev), id1, id2, phyaddr);
2580 np->phyaddr = phyaddr;
2581 np->phy_oui = id1 | id2;
2582 break;
2584 if (i == 33) {
2585 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2586 pci_name(pci_dev));
2587 goto out_freering;
2590 /* reset it */
2591 phy_init(dev);
2593 /* set default link speed settings */
2594 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2595 np->duplex = 0;
2596 np->autoneg = 1;
2598 err = register_netdev(dev);
2599 if (err) {
2600 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2601 goto out_freering;
2603 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2604 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2605 pci_name(pci_dev));
2607 return 0;
2609 out_freering:
2610 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2611 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2612 np->rx_ring.orig, np->ring_addr);
2613 else
2614 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2615 np->rx_ring.ex, np->ring_addr);
2616 pci_set_drvdata(pci_dev, NULL);
2617 out_unmap:
2618 iounmap(get_hwbase(dev));
2619 out_relreg:
2620 pci_release_regions(pci_dev);
2621 out_disable:
2622 pci_disable_device(pci_dev);
2623 out_free:
2624 free_netdev(dev);
2625 out:
2626 return err;
2629 static void __devexit nv_remove(struct pci_dev *pci_dev)
2631 struct net_device *dev = pci_get_drvdata(pci_dev);
2632 struct fe_priv *np = netdev_priv(dev);
2634 unregister_netdev(dev);
2636 /* free all structures */
2637 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2638 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2639 else
2640 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2641 iounmap(get_hwbase(dev));
2642 pci_release_regions(pci_dev);
2643 pci_disable_device(pci_dev);
2644 free_netdev(dev);
2645 pci_set_drvdata(pci_dev, NULL);
2648 static struct pci_device_id pci_tbl[] = {
2649 { /* nForce Ethernet Controller */
2650 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2651 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2653 { /* nForce2 Ethernet Controller */
2654 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2655 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2657 { /* nForce3 Ethernet Controller */
2658 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2659 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2661 { /* nForce3 Ethernet Controller */
2662 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2663 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2665 { /* nForce3 Ethernet Controller */
2666 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2667 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2669 { /* nForce3 Ethernet Controller */
2670 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2671 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2673 { /* nForce3 Ethernet Controller */
2674 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2675 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2677 { /* CK804 Ethernet Controller */
2678 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2679 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2681 { /* CK804 Ethernet Controller */
2682 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2683 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2685 { /* MCP04 Ethernet Controller */
2686 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2687 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2689 { /* MCP04 Ethernet Controller */
2690 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2691 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2693 { /* MCP51 Ethernet Controller */
2694 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2695 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2697 { /* MCP51 Ethernet Controller */
2698 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2699 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2701 { /* MCP55 Ethernet Controller */
2702 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2703 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2705 { /* MCP55 Ethernet Controller */
2706 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2707 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2709 {0,},
2712 static struct pci_driver driver = {
2713 .name = "forcedeth",
2714 .id_table = pci_tbl,
2715 .probe = nv_probe,
2716 .remove = __devexit_p(nv_remove),
2720 static int __init init_nic(void)
2722 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2723 return pci_module_init(&driver);
2726 static void __exit exit_nic(void)
2728 pci_unregister_driver(&driver);
2731 module_param(max_interrupt_work, int, 0);
2732 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2733 module_param(optimization_mode, int, 0);
2734 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
2735 module_param(poll_interval, int, 0);
2736 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
2738 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2739 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2740 MODULE_LICENSE("GPL");
2742 MODULE_DEVICE_TABLE(pci, pci_tbl);
2744 module_init(init_nic);
2745 module_exit(exit_nic);