Fix NULL ptr regression in powernow-k8
[linux-2.6/mini2440.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
blob66a37cf0ecb11feec38080a1c687a445108ba8d8
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
39 #include <asm/msr.h>
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
49 /* serialize freq changes */
50 static DEFINE_MUTEX(fidvid_mutex);
52 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54 static int cpu_family = CPU_OPTERON;
56 #ifndef CONFIG_SMP
57 static inline const struct cpumask *cpu_core_mask(int cpu)
59 return cpumask_of(0);
61 #endif
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
66 return 800 + (fid * 100);
69 /* Return a frequency in KHz, given an input fid */
70 static u32 find_khz_freq_from_fid(u32 fid)
72 return 1000 * find_freq_from_fid(fid);
75 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
76 u32 pstate)
78 return data[pstate].frequency;
81 /* Return the vco fid for an input fid
83 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
84 * only from corresponding high fids. This returns "high" fid corresponding to
85 * "low" one.
87 static u32 convert_fid_to_vco_fid(u32 fid)
89 if (fid < HI_FID_TABLE_BOTTOM)
90 return 8 + (2 * fid);
91 else
92 return fid;
96 * Return 1 if the pending bit is set. Unless we just instructed the processor
97 * to transition to a new state, seeing this bit set is really bad news.
99 static int pending_bit_stuck(void)
101 u32 lo, hi;
103 if (cpu_family == CPU_HW_PSTATE)
104 return 0;
106 rdmsr(MSR_FIDVID_STATUS, lo, hi);
107 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
111 * Update the global current fid / vid values from the status msr.
112 * Returns 1 on error.
114 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
116 u32 lo, hi;
117 u32 i = 0;
119 if (cpu_family == CPU_HW_PSTATE) {
120 if (data->currpstate == HW_PSTATE_INVALID) {
121 /* read (initial) hw pstate if not yet set */
122 rdmsr(MSR_PSTATE_STATUS, lo, hi);
123 i = lo & HW_PSTATE_MASK;
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
129 if (i >= data->numps)
130 data->currpstate = HW_PSTATE_0;
131 else
132 data->currpstate = i;
134 return 0;
136 do {
137 if (i++ > 10000) {
138 dprintk("detected change pending stuck\n");
139 return 1;
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 } while (lo & MSR_S_LO_CHANGE_PENDING);
144 data->currvid = hi & MSR_S_HI_CURRENT_VID;
145 data->currfid = lo & MSR_S_LO_CURRENT_FID;
147 return 0;
150 /* the isochronous relief time */
151 static void count_off_irt(struct powernow_k8_data *data)
153 udelay((1 << data->irt) * 10);
154 return;
157 /* the voltage stabilization time */
158 static void count_off_vst(struct powernow_k8_data *data)
160 udelay(data->vstable * VST_UNITS_20US);
161 return;
164 /* need to init the control msr to a safe value (for each cpu) */
165 static void fidvid_msr_init(void)
167 u32 lo, hi;
168 u8 fid, vid;
170 rdmsr(MSR_FIDVID_STATUS, lo, hi);
171 vid = hi & MSR_S_HI_CURRENT_VID;
172 fid = lo & MSR_S_LO_CURRENT_FID;
173 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
174 hi = MSR_C_HI_STP_GNT_BENIGN;
175 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
176 wrmsr(MSR_FIDVID_CTL, lo, hi);
179 /* write the new fid value along with the other control fields to the msr */
180 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
182 u32 lo;
183 u32 savevid = data->currvid;
184 u32 i = 0;
186 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
187 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
188 return 1;
191 lo = fid;
192 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
193 lo |= MSR_C_LO_INIT_FID_VID;
195 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
196 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
198 do {
199 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
200 if (i++ > 100) {
201 printk(KERN_ERR PFX
202 "Hardware error - pending bit very stuck - "
203 "no further pstate changes possible\n");
204 return 1;
206 } while (query_current_values_with_pending_wait(data));
208 count_off_irt(data);
210 if (savevid != data->currvid) {
211 printk(KERN_ERR PFX
212 "vid change on fid trans, old 0x%x, new 0x%x\n",
213 savevid, data->currvid);
214 return 1;
217 if (fid != data->currfid) {
218 printk(KERN_ERR PFX
219 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
220 data->currfid);
221 return 1;
224 return 0;
227 /* Write a new vid to the hardware */
228 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
230 u32 lo;
231 u32 savefid = data->currfid;
232 int i = 0;
234 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
235 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
236 return 1;
239 lo = data->currfid;
240 lo |= (vid << MSR_C_LO_VID_SHIFT);
241 lo |= MSR_C_LO_INIT_FID_VID;
243 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
244 vid, lo, STOP_GRANT_5NS);
246 do {
247 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
248 if (i++ > 100) {
249 printk(KERN_ERR PFX "internal error - pending bit "
250 "very stuck - no further pstate "
251 "changes possible\n");
252 return 1;
254 } while (query_current_values_with_pending_wait(data));
256 if (savefid != data->currfid) {
257 printk(KERN_ERR PFX "fid changed on vid trans, old "
258 "0x%x new 0x%x\n",
259 savefid, data->currfid);
260 return 1;
263 if (vid != data->currvid) {
264 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
265 "curr 0x%x\n",
266 vid, data->currvid);
267 return 1;
270 return 0;
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
279 u32 reqvid, u32 step)
281 if ((data->currvid - reqvid) > step)
282 reqvid = data->currvid - step;
284 if (write_new_vid(data, reqvid))
285 return 1;
287 count_off_vst(data);
289 return 0;
292 /* Change hardware pstate by single MSR write */
293 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
295 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
296 data->currpstate = pstate;
297 return 0;
300 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
301 static int transition_fid_vid(struct powernow_k8_data *data,
302 u32 reqfid, u32 reqvid)
304 if (core_voltage_pre_transition(data, reqvid))
305 return 1;
307 if (core_frequency_transition(data, reqfid))
308 return 1;
310 if (core_voltage_post_transition(data, reqvid))
311 return 1;
313 if (query_current_values_with_pending_wait(data))
314 return 1;
316 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
317 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
318 "curr 0x%x 0x%x\n",
319 smp_processor_id(),
320 reqfid, reqvid, data->currfid, data->currvid);
321 return 1;
324 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
325 smp_processor_id(), data->currfid, data->currvid);
327 return 0;
330 /* Phase 1 - core voltage transition ... setup voltage */
331 static int core_voltage_pre_transition(struct powernow_k8_data *data,
332 u32 reqvid)
334 u32 rvosteps = data->rvo;
335 u32 savefid = data->currfid;
336 u32 maxvid, lo;
338 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
339 "reqvid 0x%x, rvo 0x%x\n",
340 smp_processor_id(),
341 data->currfid, data->currvid, reqvid, data->rvo);
343 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
344 maxvid = 0x1f & (maxvid >> 16);
345 dprintk("ph1 maxvid=0x%x\n", maxvid);
346 if (reqvid < maxvid) /* lower numbers are higher voltages */
347 reqvid = maxvid;
349 while (data->currvid > reqvid) {
350 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
351 data->currvid, reqvid);
352 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
353 return 1;
356 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
357 if (data->currvid == maxvid) {
358 rvosteps = 0;
359 } else {
360 dprintk("ph1: changing vid for rvo, req 0x%x\n",
361 data->currvid - 1);
362 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
363 return 1;
364 rvosteps--;
368 if (query_current_values_with_pending_wait(data))
369 return 1;
371 if (savefid != data->currfid) {
372 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
373 data->currfid);
374 return 1;
377 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
378 data->currfid, data->currvid);
380 return 0;
383 /* Phase 2 - core frequency transition */
384 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
386 u32 vcoreqfid, vcocurrfid, vcofiddiff;
387 u32 fid_interval, savevid = data->currvid;
389 if ((reqfid < HI_FID_TABLE_BOTTOM) &&
390 (data->currfid < HI_FID_TABLE_BOTTOM)) {
391 printk(KERN_ERR PFX "ph2: illegal lo-lo transition "
392 "0x%x 0x%x\n", reqfid, data->currfid);
393 return 1;
396 if (data->currfid == reqfid) {
397 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
398 data->currfid);
399 return 0;
402 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
403 "reqfid 0x%x\n",
404 smp_processor_id(),
405 data->currfid, data->currvid, reqfid);
407 vcoreqfid = convert_fid_to_vco_fid(reqfid);
408 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
409 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
410 : vcoreqfid - vcocurrfid;
412 while (vcofiddiff > 2) {
413 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
415 if (reqfid > data->currfid) {
416 if (data->currfid > LO_FID_TABLE_TOP) {
417 if (write_new_fid(data,
418 data->currfid + fid_interval))
419 return 1;
420 } else {
421 if (write_new_fid
422 (data,
423 2 + convert_fid_to_vco_fid(data->currfid)))
424 return 1;
426 } else {
427 if (write_new_fid(data, data->currfid - fid_interval))
428 return 1;
431 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
432 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
433 : vcoreqfid - vcocurrfid;
436 if (write_new_fid(data, reqfid))
437 return 1;
439 if (query_current_values_with_pending_wait(data))
440 return 1;
442 if (data->currfid != reqfid) {
443 printk(KERN_ERR PFX
444 "ph2: mismatch, failed fid transition, "
445 "curr 0x%x, req 0x%x\n",
446 data->currfid, reqfid);
447 return 1;
450 if (savevid != data->currvid) {
451 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
452 savevid, data->currvid);
453 return 1;
456 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
457 data->currfid, data->currvid);
459 return 0;
462 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
463 static int core_voltage_post_transition(struct powernow_k8_data *data,
464 u32 reqvid)
466 u32 savefid = data->currfid;
467 u32 savereqvid = reqvid;
469 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
470 smp_processor_id(),
471 data->currfid, data->currvid);
473 if (reqvid != data->currvid) {
474 if (write_new_vid(data, reqvid))
475 return 1;
477 if (savefid != data->currfid) {
478 printk(KERN_ERR PFX
479 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
480 savefid, data->currfid);
481 return 1;
484 if (data->currvid != reqvid) {
485 printk(KERN_ERR PFX
486 "ph3: failed vid transition\n, "
487 "req 0x%x, curr 0x%x",
488 reqvid, data->currvid);
489 return 1;
493 if (query_current_values_with_pending_wait(data))
494 return 1;
496 if (savereqvid != data->currvid) {
497 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
498 return 1;
501 if (savefid != data->currfid) {
502 dprintk("ph3 failed, currfid changed 0x%x\n",
503 data->currfid);
504 return 1;
507 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
508 data->currfid, data->currvid);
510 return 0;
513 static int check_supported_cpu(unsigned int cpu)
515 cpumask_t oldmask;
516 u32 eax, ebx, ecx, edx;
517 unsigned int rc = 0;
519 oldmask = current->cpus_allowed;
520 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
522 if (smp_processor_id() != cpu) {
523 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
524 goto out;
527 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
528 goto out;
530 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
531 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
532 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
533 goto out;
535 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
536 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
537 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
538 printk(KERN_INFO PFX
539 "Processor cpuid %x not supported\n", eax);
540 goto out;
543 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
544 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
545 printk(KERN_INFO PFX
546 "No frequency change capabilities detected\n");
547 goto out;
550 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
551 if ((edx & P_STATE_TRANSITION_CAPABLE)
552 != P_STATE_TRANSITION_CAPABLE) {
553 printk(KERN_INFO PFX
554 "Power state transitions not supported\n");
555 goto out;
557 } else { /* must be a HW Pstate capable processor */
558 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
559 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
560 cpu_family = CPU_HW_PSTATE;
561 else
562 goto out;
565 rc = 1;
567 out:
568 set_cpus_allowed_ptr(current, &oldmask);
569 return rc;
572 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
573 u8 maxvid)
575 unsigned int j;
576 u8 lastfid = 0xff;
578 for (j = 0; j < data->numps; j++) {
579 if (pst[j].vid > LEAST_VID) {
580 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
581 j, pst[j].vid);
582 return -EINVAL;
584 if (pst[j].vid < data->rvo) {
585 /* vid + rvo >= 0 */
586 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
587 " %d\n", j);
588 return -ENODEV;
590 if (pst[j].vid < maxvid + data->rvo) {
591 /* vid + rvo >= maxvid */
592 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
593 " %d\n", j);
594 return -ENODEV;
596 if (pst[j].fid > MAX_FID) {
597 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
598 " %d\n", j);
599 return -ENODEV;
601 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
602 /* Only first fid is allowed to be in "low" range */
603 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
604 "0x%x\n", j, pst[j].fid);
605 return -EINVAL;
607 if (pst[j].fid < lastfid)
608 lastfid = pst[j].fid;
610 if (lastfid & 1) {
611 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
612 return -EINVAL;
614 if (lastfid > LO_FID_TABLE_TOP)
615 printk(KERN_INFO FW_BUG PFX
616 "first fid not from lo freq table\n");
618 return 0;
621 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
622 unsigned int entry)
624 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
627 static void print_basics(struct powernow_k8_data *data)
629 int j;
630 for (j = 0; j < data->numps; j++) {
631 if (data->powernow_table[j].frequency !=
632 CPUFREQ_ENTRY_INVALID) {
633 if (cpu_family == CPU_HW_PSTATE) {
634 printk(KERN_INFO PFX
635 " %d : pstate %d (%d MHz)\n", j,
636 data->powernow_table[j].index,
637 data->powernow_table[j].frequency/1000);
638 } else {
639 printk(KERN_INFO PFX
640 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
642 data->powernow_table[j].index & 0xff,
643 data->powernow_table[j].frequency/1000,
644 data->powernow_table[j].index >> 8);
648 if (data->batps)
649 printk(KERN_INFO PFX "Only %d pstates on battery\n",
650 data->batps);
653 static u32 freq_from_fid_did(u32 fid, u32 did)
655 u32 mhz = 0;
657 if (boot_cpu_data.x86 == 0x10)
658 mhz = (100 * (fid + 0x10)) >> did;
659 else if (boot_cpu_data.x86 == 0x11)
660 mhz = (100 * (fid + 8)) >> did;
661 else
662 BUG();
664 return mhz * 1000;
667 static int fill_powernow_table(struct powernow_k8_data *data,
668 struct pst_s *pst, u8 maxvid)
670 struct cpufreq_frequency_table *powernow_table;
671 unsigned int j;
673 if (data->batps) {
674 /* use ACPI support to get full speed on mains power */
675 printk(KERN_WARNING PFX
676 "Only %d pstates usable (use ACPI driver for full "
677 "range\n", data->batps);
678 data->numps = data->batps;
681 for (j = 1; j < data->numps; j++) {
682 if (pst[j-1].fid >= pst[j].fid) {
683 printk(KERN_ERR PFX "PST out of sequence\n");
684 return -EINVAL;
688 if (data->numps < 2) {
689 printk(KERN_ERR PFX "no p states to transition\n");
690 return -ENODEV;
693 if (check_pst_table(data, pst, maxvid))
694 return -EINVAL;
696 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
697 * (data->numps + 1)), GFP_KERNEL);
698 if (!powernow_table) {
699 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
700 return -ENOMEM;
703 for (j = 0; j < data->numps; j++) {
704 int freq;
705 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
706 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
707 freq = find_khz_freq_from_fid(pst[j].fid);
708 powernow_table[j].frequency = freq;
710 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
711 powernow_table[data->numps].index = 0;
713 if (query_current_values_with_pending_wait(data)) {
714 kfree(powernow_table);
715 return -EIO;
718 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
719 data->powernow_table = powernow_table;
720 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
721 print_basics(data);
723 for (j = 0; j < data->numps; j++)
724 if ((pst[j].fid == data->currfid) &&
725 (pst[j].vid == data->currvid))
726 return 0;
728 dprintk("currfid/vid do not match PST, ignoring\n");
729 return 0;
732 /* Find and validate the PSB/PST table in BIOS. */
733 static int find_psb_table(struct powernow_k8_data *data)
735 struct psb_s *psb;
736 unsigned int i;
737 u32 mvs;
738 u8 maxvid;
739 u32 cpst = 0;
740 u32 thiscpuid;
742 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
743 /* Scan BIOS looking for the signature. */
744 /* It can not be at ffff0 - it is too big. */
746 psb = phys_to_virt(i);
747 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
748 continue;
750 dprintk("found PSB header at 0x%p\n", psb);
752 dprintk("table vers: 0x%x\n", psb->tableversion);
753 if (psb->tableversion != PSB_VERSION_1_4) {
754 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
755 return -ENODEV;
758 dprintk("flags: 0x%x\n", psb->flags1);
759 if (psb->flags1) {
760 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
761 return -ENODEV;
764 data->vstable = psb->vstable;
765 dprintk("voltage stabilization time: %d(*20us)\n",
766 data->vstable);
768 dprintk("flags2: 0x%x\n", psb->flags2);
769 data->rvo = psb->flags2 & 3;
770 data->irt = ((psb->flags2) >> 2) & 3;
771 mvs = ((psb->flags2) >> 4) & 3;
772 data->vidmvs = 1 << mvs;
773 data->batps = ((psb->flags2) >> 6) & 3;
775 dprintk("ramp voltage offset: %d\n", data->rvo);
776 dprintk("isochronous relief time: %d\n", data->irt);
777 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
779 dprintk("numpst: 0x%x\n", psb->num_tables);
780 cpst = psb->num_tables;
781 if ((psb->cpuid == 0x00000fc0) ||
782 (psb->cpuid == 0x00000fe0)) {
783 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
784 if ((thiscpuid == 0x00000fc0) ||
785 (thiscpuid == 0x00000fe0))
786 cpst = 1;
788 if (cpst != 1) {
789 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
790 return -ENODEV;
793 data->plllock = psb->plllocktime;
794 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
795 dprintk("maxfid: 0x%x\n", psb->maxfid);
796 dprintk("maxvid: 0x%x\n", psb->maxvid);
797 maxvid = psb->maxvid;
799 data->numps = psb->numps;
800 dprintk("numpstates: 0x%x\n", data->numps);
801 return fill_powernow_table(data,
802 (struct pst_s *)(psb+1), maxvid);
805 * If you see this message, complain to BIOS manufacturer. If
806 * he tells you "we do not support Linux" or some similar
807 * nonsense, remember that Windows 2000 uses the same legacy
808 * mechanism that the old Linux PSB driver uses. Tell them it
809 * is broken with Windows 2000.
811 * The reference to the AMD documentation is chapter 9 in the
812 * BIOS and Kernel Developer's Guide, which is available on
813 * www.amd.com
815 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
816 return -ENODEV;
819 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
820 unsigned int index)
822 acpi_integer control;
824 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
825 return;
827 control = data->acpi_data.states[index].control; data->irt = (control
828 >> IRT_SHIFT) & IRT_MASK; data->rvo = (control >>
829 RVO_SHIFT) & RVO_MASK; data->exttype = (control
830 >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
831 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1
832 << ((control >> MVS_SHIFT) & MVS_MASK); data->vstable =
833 (control >> VST_SHIFT) & VST_MASK; }
835 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
837 struct cpufreq_frequency_table *powernow_table;
838 int ret_val = -ENODEV;
839 acpi_integer control, status;
841 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
842 dprintk("register performance failed: bad ACPI data\n");
843 return -EIO;
846 /* verify the data contained in the ACPI structures */
847 if (data->acpi_data.state_count <= 1) {
848 dprintk("No ACPI P-States\n");
849 goto err_out;
852 control = data->acpi_data.control_register.space_id;
853 status = data->acpi_data.status_register.space_id;
855 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
856 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
857 dprintk("Invalid control/status registers (%x - %x)\n",
858 control, status);
859 goto err_out;
862 /* fill in data->powernow_table */
863 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
864 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
865 if (!powernow_table) {
866 dprintk("powernow_table memory alloc failure\n");
867 goto err_out;
870 if (cpu_family == CPU_HW_PSTATE)
871 ret_val = fill_powernow_table_pstate(data, powernow_table);
872 else
873 ret_val = fill_powernow_table_fidvid(data, powernow_table);
874 if (ret_val)
875 goto err_out_mem;
877 powernow_table[data->acpi_data.state_count].frequency =
878 CPUFREQ_TABLE_END;
879 powernow_table[data->acpi_data.state_count].index = 0;
880 data->powernow_table = powernow_table;
882 /* fill in data */
883 data->numps = data->acpi_data.state_count;
884 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
885 print_basics(data);
886 powernow_k8_acpi_pst_values(data, 0);
888 /* notify BIOS that we exist */
889 acpi_processor_notify_smm(THIS_MODULE);
891 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
892 printk(KERN_ERR PFX
893 "unable to alloc powernow_k8_data cpumask\n");
894 ret_val = -ENOMEM;
895 goto err_out_mem;
898 return 0;
900 err_out_mem:
901 kfree(powernow_table);
903 err_out:
904 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
906 /* data->acpi_data.state_count informs us at ->exit()
907 * whether ACPI was used */
908 data->acpi_data.state_count = 0;
910 return ret_val;
913 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
914 struct cpufreq_frequency_table *powernow_table)
916 int i;
917 u32 hi = 0, lo = 0;
918 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
919 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
921 for (i = 0; i < data->acpi_data.state_count; i++) {
922 u32 index;
924 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
925 if (index > data->max_hw_pstate) {
926 printk(KERN_ERR PFX "invalid pstate %d - "
927 "bad value %d.\n", i, index);
928 printk(KERN_ERR PFX "Please report to BIOS "
929 "manufacturer\n");
930 invalidate_entry(powernow_table, i);
931 continue;
933 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
934 if (!(hi & HW_PSTATE_VALID_MASK)) {
935 dprintk("invalid pstate %d, ignoring\n", index);
936 invalidate_entry(powernow_table, i);
937 continue;
940 powernow_table[i].index = index;
942 /* Frequency may be rounded for these */
943 if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
944 powernow_table[i].frequency =
945 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
946 } else
947 powernow_table[i].frequency =
948 data->acpi_data.states[i].core_frequency * 1000;
950 return 0;
953 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
954 struct cpufreq_frequency_table *powernow_table)
956 int i;
957 int cntlofreq = 0;
959 for (i = 0; i < data->acpi_data.state_count; i++) {
960 u32 fid;
961 u32 vid;
962 u32 freq, index;
963 acpi_integer status, control;
965 if (data->exttype) {
966 status = data->acpi_data.states[i].status;
967 fid = status & EXT_FID_MASK;
968 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
969 } else {
970 control = data->acpi_data.states[i].control;
971 fid = control & FID_MASK;
972 vid = (control >> VID_SHIFT) & VID_MASK;
975 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
977 index = fid | (vid<<8);
978 powernow_table[i].index = index;
980 freq = find_khz_freq_from_fid(fid);
981 powernow_table[i].frequency = freq;
983 /* verify frequency is OK */
984 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
985 dprintk("invalid freq %u kHz, ignoring\n", freq);
986 invalidate_entry(powernow_table, i);
987 continue;
990 /* verify voltage is OK -
991 * BIOSs are using "off" to indicate invalid */
992 if (vid == VID_OFF) {
993 dprintk("invalid vid %u, ignoring\n", vid);
994 invalidate_entry(powernow_table, i);
995 continue;
998 /* verify only 1 entry from the lo frequency table */
999 if (fid < HI_FID_TABLE_BOTTOM) {
1000 if (cntlofreq) {
1001 /* if both entries are the same,
1002 * ignore this one ... */
1003 if ((freq != powernow_table[cntlofreq].frequency) ||
1004 (index != powernow_table[cntlofreq].index)) {
1005 printk(KERN_ERR PFX
1006 "Too many lo freq table "
1007 "entries\n");
1008 return 1;
1011 dprintk("double low frequency table entry, "
1012 "ignoring it.\n");
1013 invalidate_entry(data, i);
1014 continue;
1015 } else
1016 cntlofreq = i;
1019 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1020 printk(KERN_INFO PFX "invalid freq entries "
1021 "%u kHz vs. %u kHz\n", freq,
1022 (unsigned int)
1023 (data->acpi_data.states[i].core_frequency
1024 * 1000));
1025 invalidate_entry(powernow_table, i);
1026 continue;
1029 return 0;
1032 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1034 if (data->acpi_data.state_count)
1035 acpi_processor_unregister_performance(&data->acpi_data,
1036 data->cpu);
1037 free_cpumask_var(data->acpi_data.shared_cpu_map);
1040 static int get_transition_latency(struct powernow_k8_data *data)
1042 int max_latency = 0;
1043 int i;
1044 for (i = 0; i < data->acpi_data.state_count; i++) {
1045 int cur_latency = data->acpi_data.states[i].transition_latency
1046 + data->acpi_data.states[i].bus_master_latency;
1047 if (cur_latency > max_latency)
1048 max_latency = cur_latency;
1050 /* value in usecs, needs to be in nanoseconds */
1051 return 1000 * max_latency;
1054 /* Take a frequency, and issue the fid/vid transition command */
1055 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056 unsigned int index)
1058 u32 fid = 0;
1059 u32 vid = 0;
1060 int res, i;
1061 struct cpufreq_freqs freqs;
1063 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1065 /* fid/vid correctness check for k8 */
1066 /* fid are the lower 8 bits of the index we stored into
1067 * the cpufreq frequency table in find_psb_table, vid
1068 * are the upper 8 bits.
1070 fid = data->powernow_table[index].index & 0xFF;
1071 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1073 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1075 if (query_current_values_with_pending_wait(data))
1076 return 1;
1078 if ((data->currvid == vid) && (data->currfid == fid)) {
1079 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1080 fid, vid);
1081 return 0;
1084 if ((fid < HI_FID_TABLE_BOTTOM) &&
1085 (data->currfid < HI_FID_TABLE_BOTTOM)) {
1086 printk(KERN_ERR PFX
1087 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1088 data->currfid, fid);
1089 return 1;
1092 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1093 smp_processor_id(), fid, vid);
1094 freqs.old = find_khz_freq_from_fid(data->currfid);
1095 freqs.new = find_khz_freq_from_fid(fid);
1097 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1098 freqs.cpu = i;
1099 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1102 res = transition_fid_vid(data, fid, vid);
1103 freqs.new = find_khz_freq_from_fid(data->currfid);
1105 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1106 freqs.cpu = i;
1107 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1109 return res;
1112 /* Take a frequency, and issue the hardware pstate transition command */
1113 static int transition_frequency_pstate(struct powernow_k8_data *data,
1114 unsigned int index)
1116 u32 pstate = 0;
1117 int res, i;
1118 struct cpufreq_freqs freqs;
1120 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1122 /* get MSR index for hardware pstate transition */
1123 pstate = index & HW_PSTATE_MASK;
1124 if (pstate > data->max_hw_pstate)
1125 return 0;
1126 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1127 data->currpstate);
1128 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1130 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1131 freqs.cpu = i;
1132 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1135 res = transition_pstate(data, pstate);
1136 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1138 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1139 freqs.cpu = i;
1140 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1142 return res;
1145 /* Driver entry point to switch to the target frequency */
1146 static int powernowk8_target(struct cpufreq_policy *pol,
1147 unsigned targfreq, unsigned relation)
1149 cpumask_t oldmask;
1150 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1151 u32 checkfid;
1152 u32 checkvid;
1153 unsigned int newstate;
1154 int ret = -EIO;
1156 if (!data)
1157 return -EINVAL;
1159 checkfid = data->currfid;
1160 checkvid = data->currvid;
1162 /* only run on specific CPU from here on */
1163 oldmask = current->cpus_allowed;
1164 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1166 if (smp_processor_id() != pol->cpu) {
1167 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1168 goto err_out;
1171 if (pending_bit_stuck()) {
1172 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1173 goto err_out;
1176 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1177 pol->cpu, targfreq, pol->min, pol->max, relation);
1179 if (query_current_values_with_pending_wait(data))
1180 goto err_out;
1182 if (cpu_family != CPU_HW_PSTATE) {
1183 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1184 data->currfid, data->currvid);
1186 if ((checkvid != data->currvid) ||
1187 (checkfid != data->currfid)) {
1188 printk(KERN_INFO PFX
1189 "error - out of sync, fix 0x%x 0x%x, "
1190 "vid 0x%x 0x%x\n",
1191 checkfid, data->currfid,
1192 checkvid, data->currvid);
1196 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1197 targfreq, relation, &newstate))
1198 goto err_out;
1200 mutex_lock(&fidvid_mutex);
1202 powernow_k8_acpi_pst_values(data, newstate);
1204 if (cpu_family == CPU_HW_PSTATE)
1205 ret = transition_frequency_pstate(data, newstate);
1206 else
1207 ret = transition_frequency_fidvid(data, newstate);
1208 if (ret) {
1209 printk(KERN_ERR PFX "transition frequency failed\n");
1210 ret = 1;
1211 mutex_unlock(&fidvid_mutex);
1212 goto err_out;
1214 mutex_unlock(&fidvid_mutex);
1216 if (cpu_family == CPU_HW_PSTATE)
1217 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1218 newstate);
1219 else
1220 pol->cur = find_khz_freq_from_fid(data->currfid);
1221 ret = 0;
1223 err_out:
1224 set_cpus_allowed_ptr(current, &oldmask);
1225 return ret;
1228 /* Driver entry point to verify the policy and range of frequencies */
1229 static int powernowk8_verify(struct cpufreq_policy *pol)
1231 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1233 if (!data)
1234 return -EINVAL;
1236 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1239 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1240 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1241 KERN_ERR FW_BUG PFX "Try again with latest BIOS.\n";
1243 /* per CPU init entry point to the driver */
1244 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1246 struct powernow_k8_data *data;
1247 cpumask_t oldmask;
1248 int rc;
1250 if (!cpu_online(pol->cpu))
1251 return -ENODEV;
1253 if (!check_supported_cpu(pol->cpu))
1254 return -ENODEV;
1256 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1257 if (!data) {
1258 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1259 return -ENOMEM;
1262 data->cpu = pol->cpu;
1263 data->currpstate = HW_PSTATE_INVALID;
1265 if (powernow_k8_cpu_init_acpi(data)) {
1267 * Use the PSB BIOS structure. This is only availabe on
1268 * an UP version, and is deprecated by AMD.
1270 if (num_online_cpus() != 1) {
1271 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1272 goto err_out;
1274 if (pol->cpu != 0) {
1275 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1276 "CPU other than CPU0. Complain to your BIOS "
1277 "vendor.\n");
1278 goto err_out;
1280 rc = find_psb_table(data);
1281 if (rc)
1282 goto err_out;
1284 /* Take a crude guess here.
1285 * That guess was in microseconds, so multiply with 1000 */
1286 pol->cpuinfo.transition_latency = (
1287 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1288 ((1 << data->irt) * 30)) * 1000;
1289 } else /* ACPI _PSS objects available */
1290 pol->cpuinfo.transition_latency = get_transition_latency(data);
1292 /* only run on specific CPU from here on */
1293 oldmask = current->cpus_allowed;
1294 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1296 if (smp_processor_id() != pol->cpu) {
1297 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1298 goto err_out_unmask;
1301 if (pending_bit_stuck()) {
1302 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1303 goto err_out_unmask;
1306 if (query_current_values_with_pending_wait(data))
1307 goto err_out_unmask;
1309 if (cpu_family == CPU_OPTERON)
1310 fidvid_msr_init();
1312 /* run on any CPU again */
1313 set_cpus_allowed_ptr(current, &oldmask);
1315 if (cpu_family == CPU_HW_PSTATE)
1316 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1317 else
1318 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1319 data->available_cores = pol->cpus;
1321 if (cpu_family == CPU_HW_PSTATE)
1322 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1323 data->currpstate);
1324 else
1325 pol->cur = find_khz_freq_from_fid(data->currfid);
1326 dprintk("policy current frequency %d kHz\n", pol->cur);
1328 /* min/max the cpu is capable of */
1329 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1330 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1331 powernow_k8_cpu_exit_acpi(data);
1332 kfree(data->powernow_table);
1333 kfree(data);
1334 return -EINVAL;
1337 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1339 if (cpu_family == CPU_HW_PSTATE)
1340 dprintk("cpu_init done, current pstate 0x%x\n",
1341 data->currpstate);
1342 else
1343 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1344 data->currfid, data->currvid);
1346 per_cpu(powernow_data, pol->cpu) = data;
1348 return 0;
1350 err_out_unmask:
1351 set_cpus_allowed_ptr(current, &oldmask);
1352 powernow_k8_cpu_exit_acpi(data);
1354 err_out:
1355 kfree(data);
1356 return -ENODEV;
1359 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1361 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1363 if (!data)
1364 return -EINVAL;
1366 powernow_k8_cpu_exit_acpi(data);
1368 cpufreq_frequency_table_put_attr(pol->cpu);
1370 kfree(data->powernow_table);
1371 kfree(data);
1373 return 0;
1376 static unsigned int powernowk8_get(unsigned int cpu)
1378 struct powernow_k8_data *data;
1379 cpumask_t oldmask = current->cpus_allowed;
1380 unsigned int khz = 0;
1381 unsigned int first;
1383 first = cpumask_first(cpu_core_mask(cpu));
1384 data = per_cpu(powernow_data, first);
1386 if (!data)
1387 return -EINVAL;
1389 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1390 if (smp_processor_id() != cpu) {
1391 printk(KERN_ERR PFX
1392 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1393 set_cpus_allowed_ptr(current, &oldmask);
1394 return 0;
1397 if (query_current_values_with_pending_wait(data))
1398 goto out;
1400 if (cpu_family == CPU_HW_PSTATE)
1401 khz = find_khz_freq_from_pstate(data->powernow_table,
1402 data->currpstate);
1403 else
1404 khz = find_khz_freq_from_fid(data->currfid);
1407 out:
1408 set_cpus_allowed_ptr(current, &oldmask);
1409 return khz;
1412 static struct freq_attr *powernow_k8_attr[] = {
1413 &cpufreq_freq_attr_scaling_available_freqs,
1414 NULL,
1417 static struct cpufreq_driver cpufreq_amd64_driver = {
1418 .verify = powernowk8_verify,
1419 .target = powernowk8_target,
1420 .init = powernowk8_cpu_init,
1421 .exit = __devexit_p(powernowk8_cpu_exit),
1422 .get = powernowk8_get,
1423 .name = "powernow-k8",
1424 .owner = THIS_MODULE,
1425 .attr = powernow_k8_attr,
1428 /* driver entry point for init */
1429 static int __cpuinit powernowk8_init(void)
1431 unsigned int i, supported_cpus = 0;
1433 for_each_online_cpu(i) {
1434 if (check_supported_cpu(i))
1435 supported_cpus++;
1438 if (supported_cpus == num_online_cpus()) {
1439 printk(KERN_INFO PFX "Found %d %s "
1440 "processors (%d cpu cores) (" VERSION ")\n",
1441 num_online_nodes(),
1442 boot_cpu_data.x86_model_id, supported_cpus);
1443 return cpufreq_register_driver(&cpufreq_amd64_driver);
1446 return -ENODEV;
1449 /* driver entry point for term */
1450 static void __exit powernowk8_exit(void)
1452 dprintk("exit\n");
1454 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1457 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1458 "Mark Langsdorf <mark.langsdorf@amd.com>");
1459 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1460 MODULE_LICENSE("GPL");
1462 late_initcall(powernowk8_init);
1463 module_exit(powernowk8_exit);