x86: unify show_interrupts() and proc helpers
[linux-2.6/mini2440.git] / include / asm-x86 / bitops.h
blob451a74762bd4e95aa3fd1ba20c2c6230ced14c84
1 #ifndef ASM_X86__BITOPS_H
2 #define ASM_X86__BITOPS_H
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
27 #else
28 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
29 #endif
31 #define ADDR BITOP_ADDR(addr)
34 * We do the locked ops that don't return the old value as
35 * a mask operation on a byte.
37 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
38 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
39 #define CONST_MASK(nr) (1 << ((nr) & 7))
41 /**
42 * set_bit - Atomically set a bit in memory
43 * @nr: the bit to set
44 * @addr: the address to start counting from
46 * This function is atomic and may not be reordered. See __set_bit()
47 * if you do not require the atomic guarantees.
49 * Note: there are no guarantees that this function will not be reordered
50 * on non x86 architectures, so if you are writing portable code,
51 * make sure not to rely on its reordering guarantees.
53 * Note that @nr may be almost arbitrarily large; this function is not
54 * restricted to acting on a single-word quantity.
56 static inline void set_bit(unsigned int nr, volatile unsigned long *addr)
58 if (IS_IMMEDIATE(nr)) {
59 asm volatile(LOCK_PREFIX "orb %1,%0"
60 : CONST_MASK_ADDR(nr, addr)
61 : "iq" ((u8)CONST_MASK(nr))
62 : "memory");
63 } else {
64 asm volatile(LOCK_PREFIX "bts %1,%0"
65 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
69 /**
70 * __set_bit - Set a bit in memory
71 * @nr: the bit to set
72 * @addr: the address to start counting from
74 * Unlike set_bit(), this function is non-atomic and may be reordered.
75 * If it's called on the same region of memory simultaneously, the effect
76 * may be that only one operation succeeds.
78 static inline void __set_bit(int nr, volatile unsigned long *addr)
80 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
83 /**
84 * clear_bit - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
88 * clear_bit() is atomic and may not be reordered. However, it does
89 * not contain a memory barrier, so if it is used for locking purposes,
90 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
91 * in order to ensure changes are visible on other processors.
93 static inline void clear_bit(int nr, volatile unsigned long *addr)
95 if (IS_IMMEDIATE(nr)) {
96 asm volatile(LOCK_PREFIX "andb %1,%0"
97 : CONST_MASK_ADDR(nr, addr)
98 : "iq" ((u8)~CONST_MASK(nr)));
99 } else {
100 asm volatile(LOCK_PREFIX "btr %1,%0"
101 : BITOP_ADDR(addr)
102 : "Ir" (nr));
107 * clear_bit_unlock - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
111 * clear_bit() is atomic and implies release semantics before the memory
112 * operation. It can be used for an unlock.
114 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
116 barrier();
117 clear_bit(nr, addr);
120 static inline void __clear_bit(int nr, volatile unsigned long *addr)
122 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
126 * __clear_bit_unlock - Clears a bit in memory
127 * @nr: Bit to clear
128 * @addr: Address to start counting from
130 * __clear_bit() is non-atomic and implies release semantics before the memory
131 * operation. It can be used for an unlock if no other CPUs can concurrently
132 * modify other bits in the word.
134 * No memory barrier is required here, because x86 cannot reorder stores past
135 * older loads. Same principle as spin_unlock.
137 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
139 barrier();
140 __clear_bit(nr, addr);
143 #define smp_mb__before_clear_bit() barrier()
144 #define smp_mb__after_clear_bit() barrier()
147 * __change_bit - Toggle a bit in memory
148 * @nr: the bit to change
149 * @addr: the address to start counting from
151 * Unlike change_bit(), this function is non-atomic and may be reordered.
152 * If it's called on the same region of memory simultaneously, the effect
153 * may be that only one operation succeeds.
155 static inline void __change_bit(int nr, volatile unsigned long *addr)
157 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
161 * change_bit - Toggle a bit in memory
162 * @nr: Bit to change
163 * @addr: Address to start counting from
165 * change_bit() is atomic and may not be reordered.
166 * Note that @nr may be almost arbitrarily large; this function is not
167 * restricted to acting on a single-word quantity.
169 static inline void change_bit(int nr, volatile unsigned long *addr)
171 asm volatile(LOCK_PREFIX "btc %1,%0" : ADDR : "Ir" (nr));
175 * test_and_set_bit - Set a bit and return its old value
176 * @nr: Bit to set
177 * @addr: Address to count from
179 * This operation is atomic and cannot be reordered.
180 * It also implies a memory barrier.
182 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
184 int oldbit;
186 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
187 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
189 return oldbit;
193 * test_and_set_bit_lock - Set a bit and return its old value for lock
194 * @nr: Bit to set
195 * @addr: Address to count from
197 * This is the same as test_and_set_bit on x86.
199 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
201 return test_and_set_bit(nr, addr);
205 * __test_and_set_bit - Set a bit and return its old value
206 * @nr: Bit to set
207 * @addr: Address to count from
209 * This operation is non-atomic and can be reordered.
210 * If two examples of this operation race, one can appear to succeed
211 * but actually fail. You must protect multiple accesses with a lock.
213 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
215 int oldbit;
217 asm("bts %2,%1\n\t"
218 "sbb %0,%0"
219 : "=r" (oldbit), ADDR
220 : "Ir" (nr));
221 return oldbit;
225 * test_and_clear_bit - Clear a bit and return its old value
226 * @nr: Bit to clear
227 * @addr: Address to count from
229 * This operation is atomic and cannot be reordered.
230 * It also implies a memory barrier.
232 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
234 int oldbit;
236 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
237 "sbb %0,%0"
238 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
240 return oldbit;
244 * __test_and_clear_bit - Clear a bit and return its old value
245 * @nr: Bit to clear
246 * @addr: Address to count from
248 * This operation is non-atomic and can be reordered.
249 * If two examples of this operation race, one can appear to succeed
250 * but actually fail. You must protect multiple accesses with a lock.
252 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
254 int oldbit;
256 asm volatile("btr %2,%1\n\t"
257 "sbb %0,%0"
258 : "=r" (oldbit), ADDR
259 : "Ir" (nr));
260 return oldbit;
263 /* WARNING: non atomic and it can be reordered! */
264 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
266 int oldbit;
268 asm volatile("btc %2,%1\n\t"
269 "sbb %0,%0"
270 : "=r" (oldbit), ADDR
271 : "Ir" (nr) : "memory");
273 return oldbit;
277 * test_and_change_bit - Change a bit and return its old value
278 * @nr: Bit to change
279 * @addr: Address to count from
281 * This operation is atomic and cannot be reordered.
282 * It also implies a memory barrier.
284 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
286 int oldbit;
288 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
289 "sbb %0,%0"
290 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
292 return oldbit;
295 static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
297 return ((1UL << (nr % BITS_PER_LONG)) &
298 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
301 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
303 int oldbit;
305 asm volatile("bt %2,%1\n\t"
306 "sbb %0,%0"
307 : "=r" (oldbit)
308 : "m" (*(unsigned long *)addr), "Ir" (nr));
310 return oldbit;
313 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
315 * test_bit - Determine whether a bit is set
316 * @nr: bit number to test
317 * @addr: Address to start counting from
319 static int test_bit(int nr, const volatile unsigned long *addr);
320 #endif
322 #define test_bit(nr, addr) \
323 (__builtin_constant_p((nr)) \
324 ? constant_test_bit((nr), (addr)) \
325 : variable_test_bit((nr), (addr)))
328 * __ffs - find first set bit in word
329 * @word: The word to search
331 * Undefined if no bit exists, so code should check against 0 first.
333 static inline unsigned long __ffs(unsigned long word)
335 asm("bsf %1,%0"
336 : "=r" (word)
337 : "rm" (word));
338 return word;
342 * ffz - find first zero bit in word
343 * @word: The word to search
345 * Undefined if no zero exists, so code should check against ~0UL first.
347 static inline unsigned long ffz(unsigned long word)
349 asm("bsf %1,%0"
350 : "=r" (word)
351 : "r" (~word));
352 return word;
356 * __fls: find last set bit in word
357 * @word: The word to search
359 * Undefined if no set bit exists, so code should check against 0 first.
361 static inline unsigned long __fls(unsigned long word)
363 asm("bsr %1,%0"
364 : "=r" (word)
365 : "rm" (word));
366 return word;
369 #ifdef __KERNEL__
371 * ffs - find first set bit in word
372 * @x: the word to search
374 * This is defined the same way as the libc and compiler builtin ffs
375 * routines, therefore differs in spirit from the other bitops.
377 * ffs(value) returns 0 if value is 0 or the position of the first
378 * set bit if value is nonzero. The first (least significant) bit
379 * is at position 1.
381 static inline int ffs(int x)
383 int r;
384 #ifdef CONFIG_X86_CMOV
385 asm("bsfl %1,%0\n\t"
386 "cmovzl %2,%0"
387 : "=r" (r) : "rm" (x), "r" (-1));
388 #else
389 asm("bsfl %1,%0\n\t"
390 "jnz 1f\n\t"
391 "movl $-1,%0\n"
392 "1:" : "=r" (r) : "rm" (x));
393 #endif
394 return r + 1;
398 * fls - find last set bit in word
399 * @x: the word to search
401 * This is defined in a similar way as the libc and compiler builtin
402 * ffs, but returns the position of the most significant set bit.
404 * fls(value) returns 0 if value is 0 or the position of the last
405 * set bit if value is nonzero. The last (most significant) bit is
406 * at position 32.
408 static inline int fls(int x)
410 int r;
411 #ifdef CONFIG_X86_CMOV
412 asm("bsrl %1,%0\n\t"
413 "cmovzl %2,%0"
414 : "=&r" (r) : "rm" (x), "rm" (-1));
415 #else
416 asm("bsrl %1,%0\n\t"
417 "jnz 1f\n\t"
418 "movl $-1,%0\n"
419 "1:" : "=r" (r) : "rm" (x));
420 #endif
421 return r + 1;
423 #endif /* __KERNEL__ */
425 #undef ADDR
427 #ifdef __KERNEL__
429 #include <asm-generic/bitops/sched.h>
431 #define ARCH_HAS_FAST_MULTIPLIER 1
433 #include <asm-generic/bitops/hweight.h>
435 #endif /* __KERNEL__ */
437 #include <asm-generic/bitops/fls64.h>
439 #ifdef __KERNEL__
441 #include <asm-generic/bitops/ext2-non-atomic.h>
443 #define ext2_set_bit_atomic(lock, nr, addr) \
444 test_and_set_bit((nr), (unsigned long *)(addr))
445 #define ext2_clear_bit_atomic(lock, nr, addr) \
446 test_and_clear_bit((nr), (unsigned long *)(addr))
448 #include <asm-generic/bitops/minix.h>
450 #endif /* __KERNEL__ */
451 #endif /* ASM_X86__BITOPS_H */