resources: fix parameter name and kernel-doc
[linux-2.6/mini2440.git] / mm / vmalloc.c
blob7e00b280648a2275a65acc17a696142c5de857d0
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/mutex.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/bootmem.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte_t *pte;
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 pmd_t *pmd;
50 unsigned long next;
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 pud_t *pud;
64 unsigned long next;
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 pgd_t *pgd;
78 unsigned long next;
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 pte_t *pte;
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 pmd_t *pmd;
120 unsigned long next;
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 pud_t *pud;
137 unsigned long next;
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 break;
172 } while (pgd++, addr = next, addr != end);
173 flush_cache_vmap(start, end);
175 if (unlikely(err))
176 return err;
177 return nr;
180 static inline int is_vmalloc_or_module_addr(const void *x)
183 * ARM, x86-64 and sparc64 put modules in a special place,
184 * and fall back on vmalloc() if that fails. Others
185 * just put it in the vmalloc space.
187 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
188 unsigned long addr = (unsigned long)x;
189 if (addr >= MODULES_VADDR && addr < MODULES_END)
190 return 1;
191 #endif
192 return is_vmalloc_addr(x);
196 * Walk a vmap address to the struct page it maps.
198 struct page *vmalloc_to_page(const void *vmalloc_addr)
200 unsigned long addr = (unsigned long) vmalloc_addr;
201 struct page *page = NULL;
202 pgd_t *pgd = pgd_offset_k(addr);
205 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
206 * architectures that do not vmalloc module space
208 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
210 if (!pgd_none(*pgd)) {
211 pud_t *pud = pud_offset(pgd, addr);
212 if (!pud_none(*pud)) {
213 pmd_t *pmd = pmd_offset(pud, addr);
214 if (!pmd_none(*pmd)) {
215 pte_t *ptep, pte;
217 ptep = pte_offset_map(pmd, addr);
218 pte = *ptep;
219 if (pte_present(pte))
220 page = pte_page(pte);
221 pte_unmap(ptep);
225 return page;
227 EXPORT_SYMBOL(vmalloc_to_page);
230 * Map a vmalloc()-space virtual address to the physical page frame number.
232 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
234 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
236 EXPORT_SYMBOL(vmalloc_to_pfn);
239 /*** Global kva allocator ***/
241 #define VM_LAZY_FREE 0x01
242 #define VM_LAZY_FREEING 0x02
243 #define VM_VM_AREA 0x04
245 struct vmap_area {
246 unsigned long va_start;
247 unsigned long va_end;
248 unsigned long flags;
249 struct rb_node rb_node; /* address sorted rbtree */
250 struct list_head list; /* address sorted list */
251 struct list_head purge_list; /* "lazy purge" list */
252 void *private;
253 struct rcu_head rcu_head;
256 static DEFINE_SPINLOCK(vmap_area_lock);
257 static struct rb_root vmap_area_root = RB_ROOT;
258 static LIST_HEAD(vmap_area_list);
260 static struct vmap_area *__find_vmap_area(unsigned long addr)
262 struct rb_node *n = vmap_area_root.rb_node;
264 while (n) {
265 struct vmap_area *va;
267 va = rb_entry(n, struct vmap_area, rb_node);
268 if (addr < va->va_start)
269 n = n->rb_left;
270 else if (addr > va->va_start)
271 n = n->rb_right;
272 else
273 return va;
276 return NULL;
279 static void __insert_vmap_area(struct vmap_area *va)
281 struct rb_node **p = &vmap_area_root.rb_node;
282 struct rb_node *parent = NULL;
283 struct rb_node *tmp;
285 while (*p) {
286 struct vmap_area *tmp;
288 parent = *p;
289 tmp = rb_entry(parent, struct vmap_area, rb_node);
290 if (va->va_start < tmp->va_end)
291 p = &(*p)->rb_left;
292 else if (va->va_end > tmp->va_start)
293 p = &(*p)->rb_right;
294 else
295 BUG();
298 rb_link_node(&va->rb_node, parent, p);
299 rb_insert_color(&va->rb_node, &vmap_area_root);
301 /* address-sort this list so it is usable like the vmlist */
302 tmp = rb_prev(&va->rb_node);
303 if (tmp) {
304 struct vmap_area *prev;
305 prev = rb_entry(tmp, struct vmap_area, rb_node);
306 list_add_rcu(&va->list, &prev->list);
307 } else
308 list_add_rcu(&va->list, &vmap_area_list);
311 static void purge_vmap_area_lazy(void);
314 * Allocate a region of KVA of the specified size and alignment, within the
315 * vstart and vend.
317 static struct vmap_area *alloc_vmap_area(unsigned long size,
318 unsigned long align,
319 unsigned long vstart, unsigned long vend,
320 int node, gfp_t gfp_mask)
322 struct vmap_area *va;
323 struct rb_node *n;
324 unsigned long addr;
325 int purged = 0;
327 BUG_ON(size & ~PAGE_MASK);
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
334 retry:
335 addr = ALIGN(vstart, align);
337 spin_lock(&vmap_area_lock);
338 /* XXX: could have a last_hole cache */
339 n = vmap_area_root.rb_node;
340 if (n) {
341 struct vmap_area *first = NULL;
343 do {
344 struct vmap_area *tmp;
345 tmp = rb_entry(n, struct vmap_area, rb_node);
346 if (tmp->va_end >= addr) {
347 if (!first && tmp->va_start < addr + size)
348 first = tmp;
349 n = n->rb_left;
350 } else {
351 first = tmp;
352 n = n->rb_right;
354 } while (n);
356 if (!first)
357 goto found;
359 if (first->va_end < addr) {
360 n = rb_next(&first->rb_node);
361 if (n)
362 first = rb_entry(n, struct vmap_area, rb_node);
363 else
364 goto found;
367 while (addr + size > first->va_start && addr + size <= vend) {
368 addr = ALIGN(first->va_end + PAGE_SIZE, align);
370 n = rb_next(&first->rb_node);
371 if (n)
372 first = rb_entry(n, struct vmap_area, rb_node);
373 else
374 goto found;
377 found:
378 if (addr + size > vend) {
379 spin_unlock(&vmap_area_lock);
380 if (!purged) {
381 purge_vmap_area_lazy();
382 purged = 1;
383 goto retry;
385 if (printk_ratelimit())
386 printk(KERN_WARNING
387 "vmap allocation for size %lu failed: "
388 "use vmalloc=<size> to increase size.\n", size);
389 return ERR_PTR(-EBUSY);
392 BUG_ON(addr & (align-1));
394 va->va_start = addr;
395 va->va_end = addr + size;
396 va->flags = 0;
397 __insert_vmap_area(va);
398 spin_unlock(&vmap_area_lock);
400 return va;
403 static void rcu_free_va(struct rcu_head *head)
405 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
407 kfree(va);
410 static void __free_vmap_area(struct vmap_area *va)
412 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
413 rb_erase(&va->rb_node, &vmap_area_root);
414 RB_CLEAR_NODE(&va->rb_node);
415 list_del_rcu(&va->list);
417 call_rcu(&va->rcu_head, rcu_free_va);
421 * Free a region of KVA allocated by alloc_vmap_area
423 static void free_vmap_area(struct vmap_area *va)
425 spin_lock(&vmap_area_lock);
426 __free_vmap_area(va);
427 spin_unlock(&vmap_area_lock);
431 * Clear the pagetable entries of a given vmap_area
433 static void unmap_vmap_area(struct vmap_area *va)
435 vunmap_page_range(va->va_start, va->va_end);
438 static void vmap_debug_free_range(unsigned long start, unsigned long end)
441 * Unmap page tables and force a TLB flush immediately if
442 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
443 * bugs similarly to those in linear kernel virtual address
444 * space after a page has been freed.
446 * All the lazy freeing logic is still retained, in order to
447 * minimise intrusiveness of this debugging feature.
449 * This is going to be *slow* (linear kernel virtual address
450 * debugging doesn't do a broadcast TLB flush so it is a lot
451 * faster).
453 #ifdef CONFIG_DEBUG_PAGEALLOC
454 vunmap_page_range(start, end);
455 flush_tlb_kernel_range(start, end);
456 #endif
460 * lazy_max_pages is the maximum amount of virtual address space we gather up
461 * before attempting to purge with a TLB flush.
463 * There is a tradeoff here: a larger number will cover more kernel page tables
464 * and take slightly longer to purge, but it will linearly reduce the number of
465 * global TLB flushes that must be performed. It would seem natural to scale
466 * this number up linearly with the number of CPUs (because vmapping activity
467 * could also scale linearly with the number of CPUs), however it is likely
468 * that in practice, workloads might be constrained in other ways that mean
469 * vmap activity will not scale linearly with CPUs. Also, I want to be
470 * conservative and not introduce a big latency on huge systems, so go with
471 * a less aggressive log scale. It will still be an improvement over the old
472 * code, and it will be simple to change the scale factor if we find that it
473 * becomes a problem on bigger systems.
475 static unsigned long lazy_max_pages(void)
477 unsigned int log;
479 log = fls(num_online_cpus());
481 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
484 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
487 * Purges all lazily-freed vmap areas.
489 * If sync is 0 then don't purge if there is already a purge in progress.
490 * If force_flush is 1, then flush kernel TLBs between *start and *end even
491 * if we found no lazy vmap areas to unmap (callers can use this to optimise
492 * their own TLB flushing).
493 * Returns with *start = min(*start, lowest purged address)
494 * *end = max(*end, highest purged address)
496 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
497 int sync, int force_flush)
499 static DEFINE_MUTEX(purge_lock);
500 LIST_HEAD(valist);
501 struct vmap_area *va;
502 int nr = 0;
505 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
506 * should not expect such behaviour. This just simplifies locking for
507 * the case that isn't actually used at the moment anyway.
509 if (!sync && !force_flush) {
510 if (!mutex_trylock(&purge_lock))
511 return;
512 } else
513 mutex_lock(&purge_lock);
515 rcu_read_lock();
516 list_for_each_entry_rcu(va, &vmap_area_list, list) {
517 if (va->flags & VM_LAZY_FREE) {
518 if (va->va_start < *start)
519 *start = va->va_start;
520 if (va->va_end > *end)
521 *end = va->va_end;
522 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
523 unmap_vmap_area(va);
524 list_add_tail(&va->purge_list, &valist);
525 va->flags |= VM_LAZY_FREEING;
526 va->flags &= ~VM_LAZY_FREE;
529 rcu_read_unlock();
531 if (nr) {
532 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
533 atomic_sub(nr, &vmap_lazy_nr);
536 if (nr || force_flush)
537 flush_tlb_kernel_range(*start, *end);
539 if (nr) {
540 spin_lock(&vmap_area_lock);
541 list_for_each_entry(va, &valist, purge_list)
542 __free_vmap_area(va);
543 spin_unlock(&vmap_area_lock);
545 mutex_unlock(&purge_lock);
549 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
550 * is already purging.
552 static void try_purge_vmap_area_lazy(void)
554 unsigned long start = ULONG_MAX, end = 0;
556 __purge_vmap_area_lazy(&start, &end, 0, 0);
560 * Kick off a purge of the outstanding lazy areas.
562 static void purge_vmap_area_lazy(void)
564 unsigned long start = ULONG_MAX, end = 0;
566 __purge_vmap_area_lazy(&start, &end, 1, 0);
570 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
571 * called for the correct range previously.
573 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
575 va->flags |= VM_LAZY_FREE;
576 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
577 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
578 try_purge_vmap_area_lazy();
582 * Free and unmap a vmap area
584 static void free_unmap_vmap_area(struct vmap_area *va)
586 flush_cache_vunmap(va->va_start, va->va_end);
587 free_unmap_vmap_area_noflush(va);
590 static struct vmap_area *find_vmap_area(unsigned long addr)
592 struct vmap_area *va;
594 spin_lock(&vmap_area_lock);
595 va = __find_vmap_area(addr);
596 spin_unlock(&vmap_area_lock);
598 return va;
601 static void free_unmap_vmap_area_addr(unsigned long addr)
603 struct vmap_area *va;
605 va = find_vmap_area(addr);
606 BUG_ON(!va);
607 free_unmap_vmap_area(va);
611 /*** Per cpu kva allocator ***/
614 * vmap space is limited especially on 32 bit architectures. Ensure there is
615 * room for at least 16 percpu vmap blocks per CPU.
618 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
619 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
620 * instead (we just need a rough idea)
622 #if BITS_PER_LONG == 32
623 #define VMALLOC_SPACE (128UL*1024*1024)
624 #else
625 #define VMALLOC_SPACE (128UL*1024*1024*1024)
626 #endif
628 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
629 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
630 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
631 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
632 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
633 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
634 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
635 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
636 VMALLOC_PAGES / NR_CPUS / 16))
638 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
640 static bool vmap_initialized __read_mostly = false;
642 struct vmap_block_queue {
643 spinlock_t lock;
644 struct list_head free;
645 struct list_head dirty;
646 unsigned int nr_dirty;
649 struct vmap_block {
650 spinlock_t lock;
651 struct vmap_area *va;
652 struct vmap_block_queue *vbq;
653 unsigned long free, dirty;
654 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
655 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
656 union {
657 struct {
658 struct list_head free_list;
659 struct list_head dirty_list;
661 struct rcu_head rcu_head;
665 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
666 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
669 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
670 * in the free path. Could get rid of this if we change the API to return a
671 * "cookie" from alloc, to be passed to free. But no big deal yet.
673 static DEFINE_SPINLOCK(vmap_block_tree_lock);
674 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
677 * We should probably have a fallback mechanism to allocate virtual memory
678 * out of partially filled vmap blocks. However vmap block sizing should be
679 * fairly reasonable according to the vmalloc size, so it shouldn't be a
680 * big problem.
683 static unsigned long addr_to_vb_idx(unsigned long addr)
685 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
686 addr /= VMAP_BLOCK_SIZE;
687 return addr;
690 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
692 struct vmap_block_queue *vbq;
693 struct vmap_block *vb;
694 struct vmap_area *va;
695 unsigned long vb_idx;
696 int node, err;
698 node = numa_node_id();
700 vb = kmalloc_node(sizeof(struct vmap_block),
701 gfp_mask & GFP_RECLAIM_MASK, node);
702 if (unlikely(!vb))
703 return ERR_PTR(-ENOMEM);
705 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
706 VMALLOC_START, VMALLOC_END,
707 node, gfp_mask);
708 if (unlikely(IS_ERR(va))) {
709 kfree(vb);
710 return ERR_PTR(PTR_ERR(va));
713 err = radix_tree_preload(gfp_mask);
714 if (unlikely(err)) {
715 kfree(vb);
716 free_vmap_area(va);
717 return ERR_PTR(err);
720 spin_lock_init(&vb->lock);
721 vb->va = va;
722 vb->free = VMAP_BBMAP_BITS;
723 vb->dirty = 0;
724 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
725 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
726 INIT_LIST_HEAD(&vb->free_list);
727 INIT_LIST_HEAD(&vb->dirty_list);
729 vb_idx = addr_to_vb_idx(va->va_start);
730 spin_lock(&vmap_block_tree_lock);
731 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
732 spin_unlock(&vmap_block_tree_lock);
733 BUG_ON(err);
734 radix_tree_preload_end();
736 vbq = &get_cpu_var(vmap_block_queue);
737 vb->vbq = vbq;
738 spin_lock(&vbq->lock);
739 list_add(&vb->free_list, &vbq->free);
740 spin_unlock(&vbq->lock);
741 put_cpu_var(vmap_cpu_blocks);
743 return vb;
746 static void rcu_free_vb(struct rcu_head *head)
748 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
750 kfree(vb);
753 static void free_vmap_block(struct vmap_block *vb)
755 struct vmap_block *tmp;
756 unsigned long vb_idx;
758 spin_lock(&vb->vbq->lock);
759 if (!list_empty(&vb->free_list))
760 list_del(&vb->free_list);
761 if (!list_empty(&vb->dirty_list))
762 list_del(&vb->dirty_list);
763 spin_unlock(&vb->vbq->lock);
765 vb_idx = addr_to_vb_idx(vb->va->va_start);
766 spin_lock(&vmap_block_tree_lock);
767 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
768 spin_unlock(&vmap_block_tree_lock);
769 BUG_ON(tmp != vb);
771 free_unmap_vmap_area_noflush(vb->va);
772 call_rcu(&vb->rcu_head, rcu_free_vb);
775 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
777 struct vmap_block_queue *vbq;
778 struct vmap_block *vb;
779 unsigned long addr = 0;
780 unsigned int order;
782 BUG_ON(size & ~PAGE_MASK);
783 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
784 order = get_order(size);
786 again:
787 rcu_read_lock();
788 vbq = &get_cpu_var(vmap_block_queue);
789 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
790 int i;
792 spin_lock(&vb->lock);
793 i = bitmap_find_free_region(vb->alloc_map,
794 VMAP_BBMAP_BITS, order);
796 if (i >= 0) {
797 addr = vb->va->va_start + (i << PAGE_SHIFT);
798 BUG_ON(addr_to_vb_idx(addr) !=
799 addr_to_vb_idx(vb->va->va_start));
800 vb->free -= 1UL << order;
801 if (vb->free == 0) {
802 spin_lock(&vbq->lock);
803 list_del_init(&vb->free_list);
804 spin_unlock(&vbq->lock);
806 spin_unlock(&vb->lock);
807 break;
809 spin_unlock(&vb->lock);
811 put_cpu_var(vmap_cpu_blocks);
812 rcu_read_unlock();
814 if (!addr) {
815 vb = new_vmap_block(gfp_mask);
816 if (IS_ERR(vb))
817 return vb;
818 goto again;
821 return (void *)addr;
824 static void vb_free(const void *addr, unsigned long size)
826 unsigned long offset;
827 unsigned long vb_idx;
828 unsigned int order;
829 struct vmap_block *vb;
831 BUG_ON(size & ~PAGE_MASK);
832 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
834 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
836 order = get_order(size);
838 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
840 vb_idx = addr_to_vb_idx((unsigned long)addr);
841 rcu_read_lock();
842 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
843 rcu_read_unlock();
844 BUG_ON(!vb);
846 spin_lock(&vb->lock);
847 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
848 if (!vb->dirty) {
849 spin_lock(&vb->vbq->lock);
850 list_add(&vb->dirty_list, &vb->vbq->dirty);
851 spin_unlock(&vb->vbq->lock);
853 vb->dirty += 1UL << order;
854 if (vb->dirty == VMAP_BBMAP_BITS) {
855 BUG_ON(vb->free || !list_empty(&vb->free_list));
856 spin_unlock(&vb->lock);
857 free_vmap_block(vb);
858 } else
859 spin_unlock(&vb->lock);
863 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
865 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
866 * to amortize TLB flushing overheads. What this means is that any page you
867 * have now, may, in a former life, have been mapped into kernel virtual
868 * address by the vmap layer and so there might be some CPUs with TLB entries
869 * still referencing that page (additional to the regular 1:1 kernel mapping).
871 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
872 * be sure that none of the pages we have control over will have any aliases
873 * from the vmap layer.
875 void vm_unmap_aliases(void)
877 unsigned long start = ULONG_MAX, end = 0;
878 int cpu;
879 int flush = 0;
881 if (unlikely(!vmap_initialized))
882 return;
884 for_each_possible_cpu(cpu) {
885 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
886 struct vmap_block *vb;
888 rcu_read_lock();
889 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
890 int i;
892 spin_lock(&vb->lock);
893 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
894 while (i < VMAP_BBMAP_BITS) {
895 unsigned long s, e;
896 int j;
897 j = find_next_zero_bit(vb->dirty_map,
898 VMAP_BBMAP_BITS, i);
900 s = vb->va->va_start + (i << PAGE_SHIFT);
901 e = vb->va->va_start + (j << PAGE_SHIFT);
902 vunmap_page_range(s, e);
903 flush = 1;
905 if (s < start)
906 start = s;
907 if (e > end)
908 end = e;
910 i = j;
911 i = find_next_bit(vb->dirty_map,
912 VMAP_BBMAP_BITS, i);
914 spin_unlock(&vb->lock);
916 rcu_read_unlock();
919 __purge_vmap_area_lazy(&start, &end, 1, flush);
921 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
924 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
925 * @mem: the pointer returned by vm_map_ram
926 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
928 void vm_unmap_ram(const void *mem, unsigned int count)
930 unsigned long size = count << PAGE_SHIFT;
931 unsigned long addr = (unsigned long)mem;
933 BUG_ON(!addr);
934 BUG_ON(addr < VMALLOC_START);
935 BUG_ON(addr > VMALLOC_END);
936 BUG_ON(addr & (PAGE_SIZE-1));
938 debug_check_no_locks_freed(mem, size);
939 vmap_debug_free_range(addr, addr+size);
941 if (likely(count <= VMAP_MAX_ALLOC))
942 vb_free(mem, size);
943 else
944 free_unmap_vmap_area_addr(addr);
946 EXPORT_SYMBOL(vm_unmap_ram);
949 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
950 * @pages: an array of pointers to the pages to be mapped
951 * @count: number of pages
952 * @node: prefer to allocate data structures on this node
953 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
955 * Returns: a pointer to the address that has been mapped, or %NULL on failure
957 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
959 unsigned long size = count << PAGE_SHIFT;
960 unsigned long addr;
961 void *mem;
963 if (likely(count <= VMAP_MAX_ALLOC)) {
964 mem = vb_alloc(size, GFP_KERNEL);
965 if (IS_ERR(mem))
966 return NULL;
967 addr = (unsigned long)mem;
968 } else {
969 struct vmap_area *va;
970 va = alloc_vmap_area(size, PAGE_SIZE,
971 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
972 if (IS_ERR(va))
973 return NULL;
975 addr = va->va_start;
976 mem = (void *)addr;
978 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
979 vm_unmap_ram(mem, count);
980 return NULL;
982 return mem;
984 EXPORT_SYMBOL(vm_map_ram);
986 void __init vmalloc_init(void)
988 struct vmap_area *va;
989 struct vm_struct *tmp;
990 int i;
992 for_each_possible_cpu(i) {
993 struct vmap_block_queue *vbq;
995 vbq = &per_cpu(vmap_block_queue, i);
996 spin_lock_init(&vbq->lock);
997 INIT_LIST_HEAD(&vbq->free);
998 INIT_LIST_HEAD(&vbq->dirty);
999 vbq->nr_dirty = 0;
1002 /* Import existing vmlist entries. */
1003 for (tmp = vmlist; tmp; tmp = tmp->next) {
1004 va = alloc_bootmem(sizeof(struct vmap_area));
1005 va->flags = tmp->flags | VM_VM_AREA;
1006 va->va_start = (unsigned long)tmp->addr;
1007 va->va_end = va->va_start + tmp->size;
1008 __insert_vmap_area(va);
1010 vmap_initialized = true;
1013 void unmap_kernel_range(unsigned long addr, unsigned long size)
1015 unsigned long end = addr + size;
1016 vunmap_page_range(addr, end);
1017 flush_tlb_kernel_range(addr, end);
1020 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1022 unsigned long addr = (unsigned long)area->addr;
1023 unsigned long end = addr + area->size - PAGE_SIZE;
1024 int err;
1026 err = vmap_page_range(addr, end, prot, *pages);
1027 if (err > 0) {
1028 *pages += err;
1029 err = 0;
1032 return err;
1034 EXPORT_SYMBOL_GPL(map_vm_area);
1036 /*** Old vmalloc interfaces ***/
1037 DEFINE_RWLOCK(vmlist_lock);
1038 struct vm_struct *vmlist;
1040 static struct vm_struct *__get_vm_area_node(unsigned long size,
1041 unsigned long flags, unsigned long start, unsigned long end,
1042 int node, gfp_t gfp_mask, void *caller)
1044 static struct vmap_area *va;
1045 struct vm_struct *area;
1046 struct vm_struct *tmp, **p;
1047 unsigned long align = 1;
1049 BUG_ON(in_interrupt());
1050 if (flags & VM_IOREMAP) {
1051 int bit = fls(size);
1053 if (bit > IOREMAP_MAX_ORDER)
1054 bit = IOREMAP_MAX_ORDER;
1055 else if (bit < PAGE_SHIFT)
1056 bit = PAGE_SHIFT;
1058 align = 1ul << bit;
1061 size = PAGE_ALIGN(size);
1062 if (unlikely(!size))
1063 return NULL;
1065 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1066 if (unlikely(!area))
1067 return NULL;
1070 * We always allocate a guard page.
1072 size += PAGE_SIZE;
1074 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1075 if (IS_ERR(va)) {
1076 kfree(area);
1077 return NULL;
1080 area->flags = flags;
1081 area->addr = (void *)va->va_start;
1082 area->size = size;
1083 area->pages = NULL;
1084 area->nr_pages = 0;
1085 area->phys_addr = 0;
1086 area->caller = caller;
1087 va->private = area;
1088 va->flags |= VM_VM_AREA;
1090 write_lock(&vmlist_lock);
1091 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1092 if (tmp->addr >= area->addr)
1093 break;
1095 area->next = *p;
1096 *p = area;
1097 write_unlock(&vmlist_lock);
1099 return area;
1102 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1103 unsigned long start, unsigned long end)
1105 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1106 __builtin_return_address(0));
1108 EXPORT_SYMBOL_GPL(__get_vm_area);
1111 * get_vm_area - reserve a contiguous kernel virtual area
1112 * @size: size of the area
1113 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1115 * Search an area of @size in the kernel virtual mapping area,
1116 * and reserved it for out purposes. Returns the area descriptor
1117 * on success or %NULL on failure.
1119 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1121 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1122 -1, GFP_KERNEL, __builtin_return_address(0));
1125 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1126 void *caller)
1128 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1129 -1, GFP_KERNEL, caller);
1132 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1133 int node, gfp_t gfp_mask)
1135 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1136 gfp_mask, __builtin_return_address(0));
1139 static struct vm_struct *find_vm_area(const void *addr)
1141 struct vmap_area *va;
1143 va = find_vmap_area((unsigned long)addr);
1144 if (va && va->flags & VM_VM_AREA)
1145 return va->private;
1147 return NULL;
1151 * remove_vm_area - find and remove a continuous kernel virtual area
1152 * @addr: base address
1154 * Search for the kernel VM area starting at @addr, and remove it.
1155 * This function returns the found VM area, but using it is NOT safe
1156 * on SMP machines, except for its size or flags.
1158 struct vm_struct *remove_vm_area(const void *addr)
1160 struct vmap_area *va;
1162 va = find_vmap_area((unsigned long)addr);
1163 if (va && va->flags & VM_VM_AREA) {
1164 struct vm_struct *vm = va->private;
1165 struct vm_struct *tmp, **p;
1167 vmap_debug_free_range(va->va_start, va->va_end);
1168 free_unmap_vmap_area(va);
1169 vm->size -= PAGE_SIZE;
1171 write_lock(&vmlist_lock);
1172 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1174 *p = tmp->next;
1175 write_unlock(&vmlist_lock);
1177 return vm;
1179 return NULL;
1182 static void __vunmap(const void *addr, int deallocate_pages)
1184 struct vm_struct *area;
1186 if (!addr)
1187 return;
1189 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1190 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1191 return;
1194 area = remove_vm_area(addr);
1195 if (unlikely(!area)) {
1196 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1197 addr);
1198 return;
1201 debug_check_no_locks_freed(addr, area->size);
1202 debug_check_no_obj_freed(addr, area->size);
1204 if (deallocate_pages) {
1205 int i;
1207 for (i = 0; i < area->nr_pages; i++) {
1208 struct page *page = area->pages[i];
1210 BUG_ON(!page);
1211 __free_page(page);
1214 if (area->flags & VM_VPAGES)
1215 vfree(area->pages);
1216 else
1217 kfree(area->pages);
1220 kfree(area);
1221 return;
1225 * vfree - release memory allocated by vmalloc()
1226 * @addr: memory base address
1228 * Free the virtually continuous memory area starting at @addr, as
1229 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1230 * NULL, no operation is performed.
1232 * Must not be called in interrupt context.
1234 void vfree(const void *addr)
1236 BUG_ON(in_interrupt());
1237 __vunmap(addr, 1);
1239 EXPORT_SYMBOL(vfree);
1242 * vunmap - release virtual mapping obtained by vmap()
1243 * @addr: memory base address
1245 * Free the virtually contiguous memory area starting at @addr,
1246 * which was created from the page array passed to vmap().
1248 * Must not be called in interrupt context.
1250 void vunmap(const void *addr)
1252 BUG_ON(in_interrupt());
1253 __vunmap(addr, 0);
1255 EXPORT_SYMBOL(vunmap);
1258 * vmap - map an array of pages into virtually contiguous space
1259 * @pages: array of page pointers
1260 * @count: number of pages to map
1261 * @flags: vm_area->flags
1262 * @prot: page protection for the mapping
1264 * Maps @count pages from @pages into contiguous kernel virtual
1265 * space.
1267 void *vmap(struct page **pages, unsigned int count,
1268 unsigned long flags, pgprot_t prot)
1270 struct vm_struct *area;
1272 if (count > num_physpages)
1273 return NULL;
1275 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1276 __builtin_return_address(0));
1277 if (!area)
1278 return NULL;
1280 if (map_vm_area(area, prot, &pages)) {
1281 vunmap(area->addr);
1282 return NULL;
1285 return area->addr;
1287 EXPORT_SYMBOL(vmap);
1289 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1290 int node, void *caller);
1291 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1292 pgprot_t prot, int node, void *caller)
1294 struct page **pages;
1295 unsigned int nr_pages, array_size, i;
1297 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1298 array_size = (nr_pages * sizeof(struct page *));
1300 area->nr_pages = nr_pages;
1301 /* Please note that the recursion is strictly bounded. */
1302 if (array_size > PAGE_SIZE) {
1303 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1304 PAGE_KERNEL, node, caller);
1305 area->flags |= VM_VPAGES;
1306 } else {
1307 pages = kmalloc_node(array_size,
1308 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1309 node);
1311 area->pages = pages;
1312 area->caller = caller;
1313 if (!area->pages) {
1314 remove_vm_area(area->addr);
1315 kfree(area);
1316 return NULL;
1319 for (i = 0; i < area->nr_pages; i++) {
1320 struct page *page;
1322 if (node < 0)
1323 page = alloc_page(gfp_mask);
1324 else
1325 page = alloc_pages_node(node, gfp_mask, 0);
1327 if (unlikely(!page)) {
1328 /* Successfully allocated i pages, free them in __vunmap() */
1329 area->nr_pages = i;
1330 goto fail;
1332 area->pages[i] = page;
1335 if (map_vm_area(area, prot, &pages))
1336 goto fail;
1337 return area->addr;
1339 fail:
1340 vfree(area->addr);
1341 return NULL;
1344 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1346 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1347 __builtin_return_address(0));
1351 * __vmalloc_node - allocate virtually contiguous memory
1352 * @size: allocation size
1353 * @gfp_mask: flags for the page level allocator
1354 * @prot: protection mask for the allocated pages
1355 * @node: node to use for allocation or -1
1356 * @caller: caller's return address
1358 * Allocate enough pages to cover @size from the page level
1359 * allocator with @gfp_mask flags. Map them into contiguous
1360 * kernel virtual space, using a pagetable protection of @prot.
1362 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1363 int node, void *caller)
1365 struct vm_struct *area;
1367 size = PAGE_ALIGN(size);
1368 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1369 return NULL;
1371 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1372 node, gfp_mask, caller);
1374 if (!area)
1375 return NULL;
1377 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1380 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1382 return __vmalloc_node(size, gfp_mask, prot, -1,
1383 __builtin_return_address(0));
1385 EXPORT_SYMBOL(__vmalloc);
1388 * vmalloc - allocate virtually contiguous memory
1389 * @size: allocation size
1390 * Allocate enough pages to cover @size from the page level
1391 * allocator and map them into contiguous kernel virtual space.
1393 * For tight control over page level allocator and protection flags
1394 * use __vmalloc() instead.
1396 void *vmalloc(unsigned long size)
1398 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1399 -1, __builtin_return_address(0));
1401 EXPORT_SYMBOL(vmalloc);
1404 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1405 * @size: allocation size
1407 * The resulting memory area is zeroed so it can be mapped to userspace
1408 * without leaking data.
1410 void *vmalloc_user(unsigned long size)
1412 struct vm_struct *area;
1413 void *ret;
1415 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1416 PAGE_KERNEL, -1, __builtin_return_address(0));
1417 if (ret) {
1418 area = find_vm_area(ret);
1419 area->flags |= VM_USERMAP;
1421 return ret;
1423 EXPORT_SYMBOL(vmalloc_user);
1426 * vmalloc_node - allocate memory on a specific node
1427 * @size: allocation size
1428 * @node: numa node
1430 * Allocate enough pages to cover @size from the page level
1431 * allocator and map them into contiguous kernel virtual space.
1433 * For tight control over page level allocator and protection flags
1434 * use __vmalloc() instead.
1436 void *vmalloc_node(unsigned long size, int node)
1438 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1439 node, __builtin_return_address(0));
1441 EXPORT_SYMBOL(vmalloc_node);
1443 #ifndef PAGE_KERNEL_EXEC
1444 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1445 #endif
1448 * vmalloc_exec - allocate virtually contiguous, executable memory
1449 * @size: allocation size
1451 * Kernel-internal function to allocate enough pages to cover @size
1452 * the page level allocator and map them into contiguous and
1453 * executable kernel virtual space.
1455 * For tight control over page level allocator and protection flags
1456 * use __vmalloc() instead.
1459 void *vmalloc_exec(unsigned long size)
1461 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1462 -1, __builtin_return_address(0));
1465 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1466 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1467 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1468 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1469 #else
1470 #define GFP_VMALLOC32 GFP_KERNEL
1471 #endif
1474 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1475 * @size: allocation size
1477 * Allocate enough 32bit PA addressable pages to cover @size from the
1478 * page level allocator and map them into contiguous kernel virtual space.
1480 void *vmalloc_32(unsigned long size)
1482 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1483 -1, __builtin_return_address(0));
1485 EXPORT_SYMBOL(vmalloc_32);
1488 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1489 * @size: allocation size
1491 * The resulting memory area is 32bit addressable and zeroed so it can be
1492 * mapped to userspace without leaking data.
1494 void *vmalloc_32_user(unsigned long size)
1496 struct vm_struct *area;
1497 void *ret;
1499 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1500 -1, __builtin_return_address(0));
1501 if (ret) {
1502 area = find_vm_area(ret);
1503 area->flags |= VM_USERMAP;
1505 return ret;
1507 EXPORT_SYMBOL(vmalloc_32_user);
1509 long vread(char *buf, char *addr, unsigned long count)
1511 struct vm_struct *tmp;
1512 char *vaddr, *buf_start = buf;
1513 unsigned long n;
1515 /* Don't allow overflow */
1516 if ((unsigned long) addr + count < count)
1517 count = -(unsigned long) addr;
1519 read_lock(&vmlist_lock);
1520 for (tmp = vmlist; tmp; tmp = tmp->next) {
1521 vaddr = (char *) tmp->addr;
1522 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1523 continue;
1524 while (addr < vaddr) {
1525 if (count == 0)
1526 goto finished;
1527 *buf = '\0';
1528 buf++;
1529 addr++;
1530 count--;
1532 n = vaddr + tmp->size - PAGE_SIZE - addr;
1533 do {
1534 if (count == 0)
1535 goto finished;
1536 *buf = *addr;
1537 buf++;
1538 addr++;
1539 count--;
1540 } while (--n > 0);
1542 finished:
1543 read_unlock(&vmlist_lock);
1544 return buf - buf_start;
1547 long vwrite(char *buf, char *addr, unsigned long count)
1549 struct vm_struct *tmp;
1550 char *vaddr, *buf_start = buf;
1551 unsigned long n;
1553 /* Don't allow overflow */
1554 if ((unsigned long) addr + count < count)
1555 count = -(unsigned long) addr;
1557 read_lock(&vmlist_lock);
1558 for (tmp = vmlist; tmp; tmp = tmp->next) {
1559 vaddr = (char *) tmp->addr;
1560 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1561 continue;
1562 while (addr < vaddr) {
1563 if (count == 0)
1564 goto finished;
1565 buf++;
1566 addr++;
1567 count--;
1569 n = vaddr + tmp->size - PAGE_SIZE - addr;
1570 do {
1571 if (count == 0)
1572 goto finished;
1573 *addr = *buf;
1574 buf++;
1575 addr++;
1576 count--;
1577 } while (--n > 0);
1579 finished:
1580 read_unlock(&vmlist_lock);
1581 return buf - buf_start;
1585 * remap_vmalloc_range - map vmalloc pages to userspace
1586 * @vma: vma to cover (map full range of vma)
1587 * @addr: vmalloc memory
1588 * @pgoff: number of pages into addr before first page to map
1590 * Returns: 0 for success, -Exxx on failure
1592 * This function checks that addr is a valid vmalloc'ed area, and
1593 * that it is big enough to cover the vma. Will return failure if
1594 * that criteria isn't met.
1596 * Similar to remap_pfn_range() (see mm/memory.c)
1598 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1599 unsigned long pgoff)
1601 struct vm_struct *area;
1602 unsigned long uaddr = vma->vm_start;
1603 unsigned long usize = vma->vm_end - vma->vm_start;
1605 if ((PAGE_SIZE-1) & (unsigned long)addr)
1606 return -EINVAL;
1608 area = find_vm_area(addr);
1609 if (!area)
1610 return -EINVAL;
1612 if (!(area->flags & VM_USERMAP))
1613 return -EINVAL;
1615 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1616 return -EINVAL;
1618 addr += pgoff << PAGE_SHIFT;
1619 do {
1620 struct page *page = vmalloc_to_page(addr);
1621 int ret;
1623 ret = vm_insert_page(vma, uaddr, page);
1624 if (ret)
1625 return ret;
1627 uaddr += PAGE_SIZE;
1628 addr += PAGE_SIZE;
1629 usize -= PAGE_SIZE;
1630 } while (usize > 0);
1632 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1633 vma->vm_flags |= VM_RESERVED;
1635 return 0;
1637 EXPORT_SYMBOL(remap_vmalloc_range);
1640 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1641 * have one.
1643 void __attribute__((weak)) vmalloc_sync_all(void)
1648 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1650 /* apply_to_page_range() does all the hard work. */
1651 return 0;
1655 * alloc_vm_area - allocate a range of kernel address space
1656 * @size: size of the area
1658 * Returns: NULL on failure, vm_struct on success
1660 * This function reserves a range of kernel address space, and
1661 * allocates pagetables to map that range. No actual mappings
1662 * are created. If the kernel address space is not shared
1663 * between processes, it syncs the pagetable across all
1664 * processes.
1666 struct vm_struct *alloc_vm_area(size_t size)
1668 struct vm_struct *area;
1670 area = get_vm_area_caller(size, VM_IOREMAP,
1671 __builtin_return_address(0));
1672 if (area == NULL)
1673 return NULL;
1676 * This ensures that page tables are constructed for this region
1677 * of kernel virtual address space and mapped into init_mm.
1679 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1680 area->size, f, NULL)) {
1681 free_vm_area(area);
1682 return NULL;
1685 /* Make sure the pagetables are constructed in process kernel
1686 mappings */
1687 vmalloc_sync_all();
1689 return area;
1691 EXPORT_SYMBOL_GPL(alloc_vm_area);
1693 void free_vm_area(struct vm_struct *area)
1695 struct vm_struct *ret;
1696 ret = remove_vm_area(area->addr);
1697 BUG_ON(ret != area);
1698 kfree(area);
1700 EXPORT_SYMBOL_GPL(free_vm_area);
1703 #ifdef CONFIG_PROC_FS
1704 static void *s_start(struct seq_file *m, loff_t *pos)
1706 loff_t n = *pos;
1707 struct vm_struct *v;
1709 read_lock(&vmlist_lock);
1710 v = vmlist;
1711 while (n > 0 && v) {
1712 n--;
1713 v = v->next;
1715 if (!n)
1716 return v;
1718 return NULL;
1722 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1724 struct vm_struct *v = p;
1726 ++*pos;
1727 return v->next;
1730 static void s_stop(struct seq_file *m, void *p)
1732 read_unlock(&vmlist_lock);
1735 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1737 if (NUMA_BUILD) {
1738 unsigned int nr, *counters = m->private;
1740 if (!counters)
1741 return;
1743 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1745 for (nr = 0; nr < v->nr_pages; nr++)
1746 counters[page_to_nid(v->pages[nr])]++;
1748 for_each_node_state(nr, N_HIGH_MEMORY)
1749 if (counters[nr])
1750 seq_printf(m, " N%u=%u", nr, counters[nr]);
1754 static int s_show(struct seq_file *m, void *p)
1756 struct vm_struct *v = p;
1758 seq_printf(m, "0x%p-0x%p %7ld",
1759 v->addr, v->addr + v->size, v->size);
1761 if (v->caller) {
1762 char buff[KSYM_SYMBOL_LEN];
1764 seq_putc(m, ' ');
1765 sprint_symbol(buff, (unsigned long)v->caller);
1766 seq_puts(m, buff);
1769 if (v->nr_pages)
1770 seq_printf(m, " pages=%d", v->nr_pages);
1772 if (v->phys_addr)
1773 seq_printf(m, " phys=%lx", v->phys_addr);
1775 if (v->flags & VM_IOREMAP)
1776 seq_printf(m, " ioremap");
1778 if (v->flags & VM_ALLOC)
1779 seq_printf(m, " vmalloc");
1781 if (v->flags & VM_MAP)
1782 seq_printf(m, " vmap");
1784 if (v->flags & VM_USERMAP)
1785 seq_printf(m, " user");
1787 if (v->flags & VM_VPAGES)
1788 seq_printf(m, " vpages");
1790 show_numa_info(m, v);
1791 seq_putc(m, '\n');
1792 return 0;
1795 static const struct seq_operations vmalloc_op = {
1796 .start = s_start,
1797 .next = s_next,
1798 .stop = s_stop,
1799 .show = s_show,
1802 static int vmalloc_open(struct inode *inode, struct file *file)
1804 unsigned int *ptr = NULL;
1805 int ret;
1807 if (NUMA_BUILD)
1808 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1809 ret = seq_open(file, &vmalloc_op);
1810 if (!ret) {
1811 struct seq_file *m = file->private_data;
1812 m->private = ptr;
1813 } else
1814 kfree(ptr);
1815 return ret;
1818 static const struct file_operations proc_vmalloc_operations = {
1819 .open = vmalloc_open,
1820 .read = seq_read,
1821 .llseek = seq_lseek,
1822 .release = seq_release_private,
1825 static int __init proc_vmalloc_init(void)
1827 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1828 return 0;
1830 module_init(proc_vmalloc_init);
1831 #endif