1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
59 #include <asm/system.h>
61 #include <asm/byteorder.h>
62 #include <asm/uaccess.h>
66 #include <asm/idprom.h>
67 #include <asm/openprom.h>
68 #include <asm/oplib.h>
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
79 #include "sungem_phy.h"
82 /* Stripping FCS is causing problems, disabled for now */
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
93 #define DRV_NAME "sungem"
94 #define DRV_VERSION "0.98"
95 #define DRV_RELDATE "8/24/03"
96 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
98 static char version
[] __devinitdata
=
99 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
101 MODULE_AUTHOR(DRV_AUTHOR
);
102 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
103 MODULE_LICENSE("GPL");
105 #define GEM_MODULE_NAME "gem"
106 #define PFX GEM_MODULE_NAME ": "
108 static struct pci_device_id gem_pci_tbl
[] = {
109 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
110 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
112 /* These models only differ from the original GEM in
113 * that their tx/rx fifos are of a different size and
114 * they only support 10/100 speeds. -DaveM
116 * Apple's GMAC does support gigabit on machines with
117 * the BCM54xx PHYs. -BenH
119 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
120 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
121 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
122 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
123 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
125 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
127 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
129 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
134 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
136 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
143 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
144 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
145 cmd
|= (MIF_FRAME_TAMSB
);
146 writel(cmd
, gp
->regs
+ MIF_FRAME
);
149 cmd
= readl(gp
->regs
+ MIF_FRAME
);
150 if (cmd
& MIF_FRAME_TALSB
)
159 return cmd
& MIF_FRAME_DATA
;
162 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
164 struct gem
*gp
= dev
->priv
;
165 return __phy_read(gp
, mii_id
, reg
);
168 static inline u16
phy_read(struct gem
*gp
, int reg
)
170 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
173 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
180 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
181 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
182 cmd
|= (MIF_FRAME_TAMSB
);
183 cmd
|= (val
& MIF_FRAME_DATA
);
184 writel(cmd
, gp
->regs
+ MIF_FRAME
);
187 cmd
= readl(gp
->regs
+ MIF_FRAME
);
188 if (cmd
& MIF_FRAME_TALSB
)
195 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
197 struct gem
*gp
= dev
->priv
;
198 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
201 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
203 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
206 static inline void gem_enable_ints(struct gem
*gp
)
208 /* Enable all interrupts but TXDONE */
209 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
212 static inline void gem_disable_ints(struct gem
*gp
)
214 /* Disable all interrupts, including TXDONE */
215 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
218 static void gem_get_cell(struct gem
*gp
)
220 BUG_ON(gp
->cell_enabled
< 0);
222 #ifdef CONFIG_PPC_PMAC
223 if (gp
->cell_enabled
== 1) {
225 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
228 #endif /* CONFIG_PPC_PMAC */
231 /* Turn off the chip's clock */
232 static void gem_put_cell(struct gem
*gp
)
234 BUG_ON(gp
->cell_enabled
<= 0);
236 #ifdef CONFIG_PPC_PMAC
237 if (gp
->cell_enabled
== 0) {
239 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
242 #endif /* CONFIG_PPC_PMAC */
245 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
247 if (netif_msg_intr(gp
))
248 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
251 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
253 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
256 if (netif_msg_intr(gp
))
257 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
258 gp
->dev
->name
, pcs_istat
);
260 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
261 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
266 /* The link status bit latches on zero, so you must
267 * read it twice in such a case to see a transition
268 * to the link being up.
270 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
271 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
273 (readl(gp
->regs
+ PCS_MIISTAT
) &
276 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
277 /* The remote-fault indication is only valid
278 * when autoneg has completed.
280 if (pcs_miistat
& PCS_MIISTAT_RF
)
281 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
282 "RemoteFault\n", dev
->name
);
284 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
288 if (pcs_miistat
& PCS_MIISTAT_LS
) {
289 printk(KERN_INFO
"%s: PCS link is now up.\n",
291 netif_carrier_on(gp
->dev
);
293 printk(KERN_INFO
"%s: PCS link is now down.\n",
295 netif_carrier_off(gp
->dev
);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp
->link_timer
))
306 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
308 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
310 if (netif_msg_intr(gp
))
311 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp
->dev
->name
, txmac_stat
);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
318 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
321 if (txmac_stat
& MAC_TXSTAT_URUN
) {
322 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
324 gp
->net_stats
.tx_fifo_errors
++;
327 if (txmac_stat
& MAC_TXSTAT_MPE
) {
328 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
330 gp
->net_stats
.tx_errors
++;
333 /* The rest are all cases of one of the 16-bit TX
336 if (txmac_stat
& MAC_TXSTAT_NCE
)
337 gp
->net_stats
.collisions
+= 0x10000;
339 if (txmac_stat
& MAC_TXSTAT_ECE
) {
340 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
341 gp
->net_stats
.collisions
+= 0x10000;
344 if (txmac_stat
& MAC_TXSTAT_LCE
) {
345 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
346 gp
->net_stats
.collisions
+= 0x10000;
349 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events.
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following.
358 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset.
361 static int gem_rxmac_reset(struct gem
*gp
)
363 struct net_device
*dev
= gp
->dev
;
368 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
370 for (limit
= 0; limit
< 5000; limit
++) {
371 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
376 printk(KERN_ERR
"%s: RX MAC will not reset, resetting whole "
377 "chip.\n", dev
->name
);
381 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
382 gp
->regs
+ MAC_RXCFG
);
383 for (limit
= 0; limit
< 5000; limit
++) {
384 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
389 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
390 "chip.\n", dev
->name
);
394 /* Second, disable RX DMA. */
395 writel(0, gp
->regs
+ RXDMA_CFG
);
396 for (limit
= 0; limit
< 5000; limit
++) {
397 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
402 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
403 "chip.\n", dev
->name
);
409 /* Execute RX reset command. */
410 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
411 gp
->regs
+ GREG_SWRST
);
412 for (limit
= 0; limit
< 5000; limit
++) {
413 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
418 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
419 "whole chip.\n", dev
->name
);
423 /* Refresh the RX ring. */
424 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
425 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
427 if (gp
->rx_skbs
[i
] == NULL
) {
428 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
429 "whole chip.\n", dev
->name
);
433 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
435 gp
->rx_new
= gp
->rx_old
= 0;
437 /* Now we must reprogram the rest of RX unit. */
438 desc_dma
= (u64
) gp
->gblock_dvma
;
439 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
440 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
441 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
442 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
443 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
444 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
445 writel(val
, gp
->regs
+ RXDMA_CFG
);
446 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
447 writel(((5 & RXDMA_BLANK_IPKTS
) |
448 ((8 << 12) & RXDMA_BLANK_ITIME
)),
449 gp
->regs
+ RXDMA_BLANK
);
451 writel(((5 & RXDMA_BLANK_IPKTS
) |
452 ((4 << 12) & RXDMA_BLANK_ITIME
)),
453 gp
->regs
+ RXDMA_BLANK
);
454 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
455 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
456 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
457 val
= readl(gp
->regs
+ RXDMA_CFG
);
458 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
459 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
460 val
= readl(gp
->regs
+ MAC_RXCFG
);
461 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
466 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
468 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
471 if (netif_msg_intr(gp
))
472 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
473 gp
->dev
->name
, rxmac_stat
);
475 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
476 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
478 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
480 gp
->net_stats
.rx_over_errors
++;
481 gp
->net_stats
.rx_fifo_errors
++;
483 ret
= gem_rxmac_reset(gp
);
486 if (rxmac_stat
& MAC_RXSTAT_ACE
)
487 gp
->net_stats
.rx_frame_errors
+= 0x10000;
489 if (rxmac_stat
& MAC_RXSTAT_CCE
)
490 gp
->net_stats
.rx_crc_errors
+= 0x10000;
492 if (rxmac_stat
& MAC_RXSTAT_LCE
)
493 gp
->net_stats
.rx_length_errors
+= 0x10000;
495 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
501 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
503 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
505 if (netif_msg_intr(gp
))
506 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
507 gp
->dev
->name
, mac_cstat
);
509 /* This interrupt is just for pause frame and pause
510 * tracking. It is useful for diagnostics and debug
511 * but probably by default we will mask these events.
513 if (mac_cstat
& MAC_CSTAT_PS
)
516 if (mac_cstat
& MAC_CSTAT_PRCV
)
517 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
522 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
524 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
525 u32 reg_val
, changed_bits
;
527 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
528 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
530 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
535 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
537 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
539 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
540 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
541 printk(KERN_ERR
"%s: PCI error [%04x] ",
542 dev
->name
, pci_estat
);
544 if (pci_estat
& GREG_PCIESTAT_BADACK
)
545 printk("<No ACK64# during ABS64 cycle> ");
546 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
547 printk("<Delayed transaction timeout> ");
548 if (pci_estat
& GREG_PCIESTAT_OTHER
)
552 pci_estat
|= GREG_PCIESTAT_OTHER
;
553 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
556 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
559 /* Interrogate PCI config space for the
562 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
564 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
565 dev
->name
, pci_cfg_stat
);
566 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
567 printk(KERN_ERR
"%s: PCI parity error detected.\n",
569 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
570 printk(KERN_ERR
"%s: PCI target abort.\n",
572 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
573 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
575 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
576 printk(KERN_ERR
"%s: PCI master abort.\n",
578 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
579 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
581 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
582 printk(KERN_ERR
"%s: PCI parity error.\n",
585 /* Write the error bits back to clear them. */
586 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
587 PCI_STATUS_SIG_TARGET_ABORT
|
588 PCI_STATUS_REC_TARGET_ABORT
|
589 PCI_STATUS_REC_MASTER_ABORT
|
590 PCI_STATUS_SIG_SYSTEM_ERROR
|
591 PCI_STATUS_DETECTED_PARITY
);
592 pci_write_config_word(gp
->pdev
,
593 PCI_STATUS
, pci_cfg_stat
);
596 /* For all PCI errors, we should reset the chip. */
600 /* All non-normal interrupt conditions get serviced here.
601 * Returns non-zero if we should just exit the interrupt
602 * handler right now (ie. if we reset the card which invalidates
603 * all of the other original irq status bits).
605 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
607 if (gem_status
& GREG_STAT_RXNOBUF
) {
608 /* Frame arrived, no free RX buffers available. */
609 if (netif_msg_rx_err(gp
))
610 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
612 gp
->net_stats
.rx_dropped
++;
615 if (gem_status
& GREG_STAT_RXTAGERR
) {
616 /* corrupt RX tag framing */
617 if (netif_msg_rx_err(gp
))
618 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
620 gp
->net_stats
.rx_errors
++;
625 if (gem_status
& GREG_STAT_PCS
) {
626 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
630 if (gem_status
& GREG_STAT_TXMAC
) {
631 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
635 if (gem_status
& GREG_STAT_RXMAC
) {
636 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
640 if (gem_status
& GREG_STAT_MAC
) {
641 if (gem_mac_interrupt(dev
, gp
, gem_status
))
645 if (gem_status
& GREG_STAT_MIF
) {
646 if (gem_mif_interrupt(dev
, gp
, gem_status
))
650 if (gem_status
& GREG_STAT_PCIERR
) {
651 if (gem_pci_interrupt(dev
, gp
, gem_status
))
658 gp
->reset_task_pending
= 1;
659 schedule_work(&gp
->reset_task
);
664 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
668 if (netif_msg_intr(gp
))
669 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
670 gp
->dev
->name
, gem_status
);
673 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
674 while (entry
!= limit
) {
681 if (netif_msg_tx_done(gp
))
682 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
683 gp
->dev
->name
, entry
);
684 skb
= gp
->tx_skbs
[entry
];
685 if (skb_shinfo(skb
)->nr_frags
) {
686 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
690 last
&= (TX_RING_SIZE
- 1);
692 walk
= NEXT_TX(walk
);
701 gp
->tx_skbs
[entry
] = NULL
;
702 gp
->net_stats
.tx_bytes
+= skb
->len
;
704 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
705 txd
= &gp
->init_block
->txd
[entry
];
707 dma_addr
= le64_to_cpu(txd
->buffer
);
708 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
710 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
711 entry
= NEXT_TX(entry
);
714 gp
->net_stats
.tx_packets
++;
715 dev_kfree_skb_irq(skb
);
719 if (netif_queue_stopped(dev
) &&
720 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
721 netif_wake_queue(dev
);
724 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
726 int cluster_start
, curr
, count
, kick
;
728 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
732 while (curr
!= limit
) {
733 curr
= NEXT_RX(curr
);
735 struct gem_rxd
*rxd
=
736 &gp
->init_block
->rxd
[cluster_start
];
738 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
740 cluster_start
= NEXT_RX(cluster_start
);
741 if (cluster_start
== curr
)
750 writel(kick
, gp
->regs
+ RXDMA_KICK
);
754 static int gem_rx(struct gem
*gp
, int work_to_do
)
756 int entry
, drops
, work_done
= 0;
759 if (netif_msg_rx_status(gp
))
760 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
761 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
765 done
= readl(gp
->regs
+ RXDMA_DONE
);
767 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
769 u64 status
= cpu_to_le64(rxd
->status_word
);
773 if ((status
& RXDCTRL_OWN
) != 0)
776 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
779 /* When writing back RX descriptor, GEM writes status
780 * then buffer address, possibly in seperate transactions.
781 * If we don't wait for the chip to write both, we could
782 * post a new buffer to this descriptor then have GEM spam
783 * on the buffer address. We sync on the RX completion
784 * register to prevent this from happening.
787 done
= readl(gp
->regs
+ RXDMA_DONE
);
792 /* We can now account for the work we're about to do */
795 skb
= gp
->rx_skbs
[entry
];
797 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
798 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
799 gp
->net_stats
.rx_errors
++;
801 gp
->net_stats
.rx_length_errors
++;
802 if (len
& RXDCTRL_BAD
)
803 gp
->net_stats
.rx_crc_errors
++;
805 /* We'll just return it to GEM. */
807 gp
->net_stats
.rx_dropped
++;
811 dma_addr
= cpu_to_le64(rxd
->buffer
);
812 if (len
> RX_COPY_THRESHOLD
) {
813 struct sk_buff
*new_skb
;
815 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
816 if (new_skb
== NULL
) {
820 pci_unmap_page(gp
->pdev
, dma_addr
,
821 RX_BUF_ALLOC_SIZE(gp
),
823 gp
->rx_skbs
[entry
] = new_skb
;
824 new_skb
->dev
= gp
->dev
;
825 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
826 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
827 virt_to_page(new_skb
->data
),
828 offset_in_page(new_skb
->data
),
829 RX_BUF_ALLOC_SIZE(gp
),
830 PCI_DMA_FROMDEVICE
));
831 skb_reserve(new_skb
, RX_OFFSET
);
833 /* Trim the original skb for the netif. */
836 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
838 if (copy_skb
== NULL
) {
843 copy_skb
->dev
= gp
->dev
;
844 skb_reserve(copy_skb
, 2);
845 skb_put(copy_skb
, len
);
846 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
847 memcpy(copy_skb
->data
, skb
->data
, len
);
848 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
850 /* We'll reuse the original ring buffer. */
854 skb
->csum
= ntohs((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
855 skb
->ip_summed
= CHECKSUM_HW
;
856 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
858 netif_receive_skb(skb
);
860 gp
->net_stats
.rx_packets
++;
861 gp
->net_stats
.rx_bytes
+= len
;
862 gp
->dev
->last_rx
= jiffies
;
865 entry
= NEXT_RX(entry
);
868 gem_post_rxds(gp
, entry
);
873 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
879 static int gem_poll(struct net_device
*dev
, int *budget
)
881 struct gem
*gp
= dev
->priv
;
885 * NAPI locking nightmare: See comment at head of driver
887 spin_lock_irqsave(&gp
->lock
, flags
);
890 int work_to_do
, work_done
;
892 /* Handle anomalies */
893 if (gp
->status
& GREG_STAT_ABNORMAL
) {
894 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
898 /* Run TX completion thread */
899 spin_lock(&gp
->tx_lock
);
900 gem_tx(dev
, gp
, gp
->status
);
901 spin_unlock(&gp
->tx_lock
);
903 spin_unlock_irqrestore(&gp
->lock
, flags
);
905 /* Run RX thread. We don't use any locking here,
906 * code willing to do bad things - like cleaning the
907 * rx ring - must call netif_poll_disable(), which
908 * schedule_timeout()'s if polling is already disabled.
910 work_to_do
= min(*budget
, dev
->quota
);
912 work_done
= gem_rx(gp
, work_to_do
);
914 *budget
-= work_done
;
915 dev
->quota
-= work_done
;
917 if (work_done
>= work_to_do
)
920 spin_lock_irqsave(&gp
->lock
, flags
);
922 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
923 } while (gp
->status
& GREG_STAT_NAPI
);
925 __netif_rx_complete(dev
);
928 spin_unlock_irqrestore(&gp
->lock
, flags
);
932 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
934 struct net_device
*dev
= dev_id
;
935 struct gem
*gp
= dev
->priv
;
938 /* Swallow interrupts when shutting the chip down, though
939 * that shouldn't happen, we should have done free_irq() at
945 spin_lock_irqsave(&gp
->lock
, flags
);
947 if (netif_rx_schedule_prep(dev
)) {
948 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
950 if (gem_status
== 0) {
951 spin_unlock_irqrestore(&gp
->lock
, flags
);
954 gp
->status
= gem_status
;
955 gem_disable_ints(gp
);
956 __netif_rx_schedule(dev
);
959 spin_unlock_irqrestore(&gp
->lock
, flags
);
961 /* If polling was disabled at the time we received that
962 * interrupt, we may return IRQ_HANDLED here while we
963 * should return IRQ_NONE. No big deal...
968 #ifdef CONFIG_NET_POLL_CONTROLLER
969 static void gem_poll_controller(struct net_device
*dev
)
971 /* gem_interrupt is safe to reentrance so no need
972 * to disable_irq here.
974 gem_interrupt(dev
->irq
, dev
, NULL
);
978 static void gem_tx_timeout(struct net_device
*dev
)
980 struct gem
*gp
= dev
->priv
;
982 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
984 printk("%s: hrm.. hw not running !\n", dev
->name
);
987 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
989 readl(gp
->regs
+ TXDMA_CFG
),
990 readl(gp
->regs
+ MAC_TXSTAT
),
991 readl(gp
->regs
+ MAC_TXCFG
));
992 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
994 readl(gp
->regs
+ RXDMA_CFG
),
995 readl(gp
->regs
+ MAC_RXSTAT
),
996 readl(gp
->regs
+ MAC_RXCFG
));
998 spin_lock_irq(&gp
->lock
);
999 spin_lock(&gp
->tx_lock
);
1001 gp
->reset_task_pending
= 1;
1002 schedule_work(&gp
->reset_task
);
1004 spin_unlock(&gp
->tx_lock
);
1005 spin_unlock_irq(&gp
->lock
);
1008 static __inline__
int gem_intme(int entry
)
1010 /* Algorithm: IRQ every 1/2 of descriptors. */
1011 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1017 static int gem_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1019 struct gem
*gp
= dev
->priv
;
1022 unsigned long flags
;
1025 if (skb
->ip_summed
== CHECKSUM_HW
) {
1026 u64 csum_start_off
, csum_stuff_off
;
1028 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
1029 csum_stuff_off
= (u64
) ((skb
->h
.raw
+ skb
->csum
) - skb
->data
);
1031 ctrl
= (TXDCTRL_CENAB
|
1032 (csum_start_off
<< 15) |
1033 (csum_stuff_off
<< 21));
1036 local_irq_save(flags
);
1037 if (!spin_trylock(&gp
->tx_lock
)) {
1038 /* Tell upper layer to requeue */
1039 local_irq_restore(flags
);
1040 return NETDEV_TX_LOCKED
;
1042 /* We raced with gem_do_stop() */
1044 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1045 return NETDEV_TX_BUSY
;
1048 /* This is a hard error, log it. */
1049 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1050 netif_stop_queue(dev
);
1051 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1052 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
1054 return NETDEV_TX_BUSY
;
1058 gp
->tx_skbs
[entry
] = skb
;
1060 if (skb_shinfo(skb
)->nr_frags
== 0) {
1061 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1066 mapping
= pci_map_page(gp
->pdev
,
1067 virt_to_page(skb
->data
),
1068 offset_in_page(skb
->data
),
1069 len
, PCI_DMA_TODEVICE
);
1070 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1071 if (gem_intme(entry
))
1072 ctrl
|= TXDCTRL_INTME
;
1073 txd
->buffer
= cpu_to_le64(mapping
);
1075 txd
->control_word
= cpu_to_le64(ctrl
);
1076 entry
= NEXT_TX(entry
);
1078 struct gem_txd
*txd
;
1081 dma_addr_t first_mapping
;
1082 int frag
, first_entry
= entry
;
1085 if (gem_intme(entry
))
1086 intme
|= TXDCTRL_INTME
;
1088 /* We must give this initial chunk to the device last.
1089 * Otherwise we could race with the device.
1091 first_len
= skb_headlen(skb
);
1092 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1093 offset_in_page(skb
->data
),
1094 first_len
, PCI_DMA_TODEVICE
);
1095 entry
= NEXT_TX(entry
);
1097 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1098 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1103 len
= this_frag
->size
;
1104 mapping
= pci_map_page(gp
->pdev
,
1106 this_frag
->page_offset
,
1107 len
, PCI_DMA_TODEVICE
);
1109 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1110 this_ctrl
|= TXDCTRL_EOF
;
1112 txd
= &gp
->init_block
->txd
[entry
];
1113 txd
->buffer
= cpu_to_le64(mapping
);
1115 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1117 if (gem_intme(entry
))
1118 intme
|= TXDCTRL_INTME
;
1120 entry
= NEXT_TX(entry
);
1122 txd
= &gp
->init_block
->txd
[first_entry
];
1123 txd
->buffer
= cpu_to_le64(first_mapping
);
1126 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1130 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1131 netif_stop_queue(dev
);
1133 if (netif_msg_tx_queued(gp
))
1134 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1135 dev
->name
, entry
, skb
->len
);
1137 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1138 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1140 dev
->trans_start
= jiffies
;
1142 return NETDEV_TX_OK
;
1145 #define STOP_TRIES 32
1147 /* Must be invoked under gp->lock and gp->tx_lock. */
1148 static void gem_reset(struct gem
*gp
)
1153 /* Make sure we won't get any more interrupts */
1154 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1156 /* Reset the chip */
1157 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1158 gp
->regs
+ GREG_SWRST
);
1164 val
= readl(gp
->regs
+ GREG_SWRST
);
1167 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1170 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1173 /* Must be invoked under gp->lock and gp->tx_lock. */
1174 static void gem_start_dma(struct gem
*gp
)
1178 /* We are ready to rock, turn everything on. */
1179 val
= readl(gp
->regs
+ TXDMA_CFG
);
1180 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1181 val
= readl(gp
->regs
+ RXDMA_CFG
);
1182 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1183 val
= readl(gp
->regs
+ MAC_TXCFG
);
1184 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1185 val
= readl(gp
->regs
+ MAC_RXCFG
);
1186 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1188 (void) readl(gp
->regs
+ MAC_RXCFG
);
1191 gem_enable_ints(gp
);
1193 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1196 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1197 * actually stopped before about 4ms tho ...
1199 static void gem_stop_dma(struct gem
*gp
)
1203 /* We are done rocking, turn everything off. */
1204 val
= readl(gp
->regs
+ TXDMA_CFG
);
1205 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1206 val
= readl(gp
->regs
+ RXDMA_CFG
);
1207 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1208 val
= readl(gp
->regs
+ MAC_TXCFG
);
1209 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1210 val
= readl(gp
->regs
+ MAC_RXCFG
);
1211 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1213 (void) readl(gp
->regs
+ MAC_RXCFG
);
1215 /* Need to wait a bit ... done by the caller */
1219 /* Must be invoked under gp->lock and gp->tx_lock. */
1220 // XXX dbl check what that function should do when called on PCS PHY
1221 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1223 u32 advertise
, features
;
1228 if (gp
->phy_type
!= phy_mii_mdio0
&&
1229 gp
->phy_type
!= phy_mii_mdio1
)
1232 /* Setup advertise */
1233 if (found_mii_phy(gp
))
1234 features
= gp
->phy_mii
.def
->features
;
1238 advertise
= features
& ADVERTISE_MASK
;
1239 if (gp
->phy_mii
.advertising
!= 0)
1240 advertise
&= gp
->phy_mii
.advertising
;
1242 autoneg
= gp
->want_autoneg
;
1243 speed
= gp
->phy_mii
.speed
;
1244 duplex
= gp
->phy_mii
.duplex
;
1246 /* Setup link parameters */
1249 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1250 advertise
= ep
->advertising
;
1255 duplex
= ep
->duplex
;
1259 /* Sanitize settings based on PHY capabilities */
1260 if ((features
& SUPPORTED_Autoneg
) == 0)
1262 if (speed
== SPEED_1000
&&
1263 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1265 if (speed
== SPEED_100
&&
1266 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1268 if (duplex
== DUPLEX_FULL
&&
1269 !(features
& (SUPPORTED_1000baseT_Full
|
1270 SUPPORTED_100baseT_Full
|
1271 SUPPORTED_10baseT_Full
)))
1272 duplex
= DUPLEX_HALF
;
1276 /* If we are asleep, we don't try to actually setup the PHY, we
1277 * just store the settings
1280 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1281 gp
->phy_mii
.speed
= speed
;
1282 gp
->phy_mii
.duplex
= duplex
;
1286 /* Configure PHY & start aneg */
1287 gp
->want_autoneg
= autoneg
;
1289 if (found_mii_phy(gp
))
1290 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1291 gp
->lstate
= link_aneg
;
1293 if (found_mii_phy(gp
))
1294 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1295 gp
->lstate
= link_force_ok
;
1299 gp
->timer_ticks
= 0;
1300 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1303 /* A link-up condition has occurred, initialize and enable the
1306 * Must be invoked under gp->lock and gp->tx_lock.
1308 static int gem_set_link_modes(struct gem
*gp
)
1311 int full_duplex
, speed
, pause
;
1317 if (found_mii_phy(gp
)) {
1318 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1320 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1321 speed
= gp
->phy_mii
.speed
;
1322 pause
= gp
->phy_mii
.pause
;
1323 } else if (gp
->phy_type
== phy_serialink
||
1324 gp
->phy_type
== phy_serdes
) {
1325 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1327 if (pcs_lpa
& PCS_MIIADV_FD
)
1332 if (netif_msg_link(gp
))
1333 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1334 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1339 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1341 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1343 /* MAC_TXCFG_NBO must be zero. */
1345 writel(val
, gp
->regs
+ MAC_TXCFG
);
1347 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1349 (gp
->phy_type
== phy_mii_mdio0
||
1350 gp
->phy_type
== phy_mii_mdio1
)) {
1351 val
|= MAC_XIFCFG_DISE
;
1352 } else if (full_duplex
) {
1353 val
|= MAC_XIFCFG_FLED
;
1356 if (speed
== SPEED_1000
)
1357 val
|= (MAC_XIFCFG_GMII
);
1359 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1361 /* If gigabit and half-duplex, enable carrier extension
1362 * mode. Else, disable it.
1364 if (speed
== SPEED_1000
&& !full_duplex
) {
1365 val
= readl(gp
->regs
+ MAC_TXCFG
);
1366 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1368 val
= readl(gp
->regs
+ MAC_RXCFG
);
1369 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1371 val
= readl(gp
->regs
+ MAC_TXCFG
);
1372 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1374 val
= readl(gp
->regs
+ MAC_RXCFG
);
1375 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1378 if (gp
->phy_type
== phy_serialink
||
1379 gp
->phy_type
== phy_serdes
) {
1380 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1382 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1386 if (netif_msg_link(gp
)) {
1388 printk(KERN_INFO
"%s: Pause is enabled "
1389 "(rxfifo: %d off: %d on: %d)\n",
1395 printk(KERN_INFO
"%s: Pause is disabled\n",
1401 writel(512, gp
->regs
+ MAC_STIME
);
1403 writel(64, gp
->regs
+ MAC_STIME
);
1404 val
= readl(gp
->regs
+ MAC_MCCFG
);
1406 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1408 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1409 writel(val
, gp
->regs
+ MAC_MCCFG
);
1416 /* Must be invoked under gp->lock and gp->tx_lock. */
1417 static int gem_mdio_link_not_up(struct gem
*gp
)
1419 switch (gp
->lstate
) {
1420 case link_force_ret
:
1421 if (netif_msg_link(gp
))
1422 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1423 " forced mode\n", gp
->dev
->name
);
1424 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1425 gp
->last_forced_speed
, DUPLEX_HALF
);
1426 gp
->timer_ticks
= 5;
1427 gp
->lstate
= link_force_ok
;
1430 /* We try forced modes after a failed aneg only on PHYs that don't
1431 * have "magic_aneg" bit set, which means they internally do the
1432 * while forced-mode thingy. On these, we just restart aneg
1434 if (gp
->phy_mii
.def
->magic_aneg
)
1436 if (netif_msg_link(gp
))
1437 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1439 /* Try forced modes. */
1440 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1442 gp
->timer_ticks
= 5;
1443 gp
->lstate
= link_force_try
;
1445 case link_force_try
:
1446 /* Downgrade from 100 to 10 Mbps if necessary.
1447 * If already at 10Mbps, warn user about the
1448 * situation every 10 ticks.
1450 if (gp
->phy_mii
.speed
== SPEED_100
) {
1451 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1453 gp
->timer_ticks
= 5;
1454 if (netif_msg_link(gp
))
1455 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1465 static void gem_link_timer(unsigned long data
)
1467 struct gem
*gp
= (struct gem
*) data
;
1468 int restart_aneg
= 0;
1473 spin_lock_irq(&gp
->lock
);
1474 spin_lock(&gp
->tx_lock
);
1477 /* If the reset task is still pending, we just
1478 * reschedule the link timer
1480 if (gp
->reset_task_pending
)
1483 if (gp
->phy_type
== phy_serialink
||
1484 gp
->phy_type
== phy_serdes
) {
1485 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1487 if (!(val
& PCS_MIISTAT_LS
))
1488 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1490 if ((val
& PCS_MIISTAT_LS
) != 0) {
1491 gp
->lstate
= link_up
;
1492 netif_carrier_on(gp
->dev
);
1493 (void)gem_set_link_modes(gp
);
1497 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1498 /* Ok, here we got a link. If we had it due to a forced
1499 * fallback, and we were configured for autoneg, we do
1500 * retry a short autoneg pass. If you know your hub is
1501 * broken, use ethtool ;)
1503 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1504 gp
->lstate
= link_force_ret
;
1505 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1506 gp
->timer_ticks
= 5;
1507 if (netif_msg_link(gp
))
1508 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1509 " autoneg once...\n", gp
->dev
->name
);
1510 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1511 } else if (gp
->lstate
!= link_up
) {
1512 gp
->lstate
= link_up
;
1513 netif_carrier_on(gp
->dev
);
1514 if (gem_set_link_modes(gp
))
1518 /* If the link was previously up, we restart the
1521 if (gp
->lstate
== link_up
) {
1522 gp
->lstate
= link_down
;
1523 if (netif_msg_link(gp
))
1524 printk(KERN_INFO
"%s: Link down\n",
1526 netif_carrier_off(gp
->dev
);
1527 gp
->reset_task_pending
= 1;
1528 schedule_work(&gp
->reset_task
);
1530 } else if (++gp
->timer_ticks
> 10) {
1531 if (found_mii_phy(gp
))
1532 restart_aneg
= gem_mdio_link_not_up(gp
);
1538 gem_begin_auto_negotiation(gp
, NULL
);
1542 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1545 spin_unlock(&gp
->tx_lock
);
1546 spin_unlock_irq(&gp
->lock
);
1549 /* Must be invoked under gp->lock and gp->tx_lock. */
1550 static void gem_clean_rings(struct gem
*gp
)
1552 struct gem_init_block
*gb
= gp
->init_block
;
1553 struct sk_buff
*skb
;
1555 dma_addr_t dma_addr
;
1557 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1558 struct gem_rxd
*rxd
;
1561 if (gp
->rx_skbs
[i
] != NULL
) {
1562 skb
= gp
->rx_skbs
[i
];
1563 dma_addr
= le64_to_cpu(rxd
->buffer
);
1564 pci_unmap_page(gp
->pdev
, dma_addr
,
1565 RX_BUF_ALLOC_SIZE(gp
),
1566 PCI_DMA_FROMDEVICE
);
1567 dev_kfree_skb_any(skb
);
1568 gp
->rx_skbs
[i
] = NULL
;
1570 rxd
->status_word
= 0;
1575 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1576 if (gp
->tx_skbs
[i
] != NULL
) {
1577 struct gem_txd
*txd
;
1580 skb
= gp
->tx_skbs
[i
];
1581 gp
->tx_skbs
[i
] = NULL
;
1583 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1584 int ent
= i
& (TX_RING_SIZE
- 1);
1586 txd
= &gb
->txd
[ent
];
1587 dma_addr
= le64_to_cpu(txd
->buffer
);
1588 pci_unmap_page(gp
->pdev
, dma_addr
,
1589 le64_to_cpu(txd
->control_word
) &
1590 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1592 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1595 dev_kfree_skb_any(skb
);
1600 /* Must be invoked under gp->lock and gp->tx_lock. */
1601 static void gem_init_rings(struct gem
*gp
)
1603 struct gem_init_block
*gb
= gp
->init_block
;
1604 struct net_device
*dev
= gp
->dev
;
1606 dma_addr_t dma_addr
;
1608 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1610 gem_clean_rings(gp
);
1612 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1613 (unsigned)VLAN_ETH_FRAME_LEN
);
1615 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1616 struct sk_buff
*skb
;
1617 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1619 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1622 rxd
->status_word
= 0;
1626 gp
->rx_skbs
[i
] = skb
;
1628 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1629 dma_addr
= pci_map_page(gp
->pdev
,
1630 virt_to_page(skb
->data
),
1631 offset_in_page(skb
->data
),
1632 RX_BUF_ALLOC_SIZE(gp
),
1633 PCI_DMA_FROMDEVICE
);
1634 rxd
->buffer
= cpu_to_le64(dma_addr
);
1636 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1637 skb_reserve(skb
, RX_OFFSET
);
1640 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1641 struct gem_txd
*txd
= &gb
->txd
[i
];
1643 txd
->control_word
= 0;
1650 /* Init PHY interface and start link poll state machine */
1651 static void gem_init_phy(struct gem
*gp
)
1655 /* Revert MIF CFG setting done on stop_phy */
1656 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1657 mifcfg
&= ~MIF_CFG_BBMODE
;
1658 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1660 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1663 /* Those delay sucks, the HW seem to love them though, I'll
1664 * serisouly consider breaking some locks here to be able
1665 * to schedule instead
1667 for (i
= 0; i
< 3; i
++) {
1668 #ifdef CONFIG_PPC_PMAC
1669 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1672 /* Some PHYs used by apple have problem getting back to us,
1673 * we do an additional reset here
1675 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1677 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1680 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1685 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1686 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1689 /* Init datapath mode register. */
1690 if (gp
->phy_type
== phy_mii_mdio0
||
1691 gp
->phy_type
== phy_mii_mdio1
) {
1692 val
= PCS_DMODE_MGM
;
1693 } else if (gp
->phy_type
== phy_serialink
) {
1694 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1696 val
= PCS_DMODE_ESM
;
1699 writel(val
, gp
->regs
+ PCS_DMODE
);
1702 if (gp
->phy_type
== phy_mii_mdio0
||
1703 gp
->phy_type
== phy_mii_mdio1
) {
1704 // XXX check for errors
1705 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1708 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1709 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1714 /* Reset PCS unit. */
1715 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1716 val
|= PCS_MIICTRL_RST
;
1717 writeb(val
, gp
->regs
+ PCS_MIICTRL
);
1720 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1726 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1729 /* Make sure PCS is disabled while changing advertisement
1732 val
= readl(gp
->regs
+ PCS_CFG
);
1733 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1734 writel(val
, gp
->regs
+ PCS_CFG
);
1736 /* Advertise all capabilities except assymetric
1739 val
= readl(gp
->regs
+ PCS_MIIADV
);
1740 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1741 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1742 writel(val
, gp
->regs
+ PCS_MIIADV
);
1744 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1745 * and re-enable PCS.
1747 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1748 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1749 val
&= ~PCS_MIICTRL_WB
;
1750 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1752 val
= readl(gp
->regs
+ PCS_CFG
);
1753 val
|= PCS_CFG_ENABLE
;
1754 writel(val
, gp
->regs
+ PCS_CFG
);
1756 /* Make sure serialink loopback is off. The meaning
1757 * of this bit is logically inverted based upon whether
1758 * you are in Serialink or SERDES mode.
1760 val
= readl(gp
->regs
+ PCS_SCTRL
);
1761 if (gp
->phy_type
== phy_serialink
)
1762 val
&= ~PCS_SCTRL_LOOP
;
1764 val
|= PCS_SCTRL_LOOP
;
1765 writel(val
, gp
->regs
+ PCS_SCTRL
);
1768 /* Default aneg parameters */
1769 gp
->timer_ticks
= 0;
1770 gp
->lstate
= link_down
;
1771 netif_carrier_off(gp
->dev
);
1773 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1774 spin_lock_irq(&gp
->lock
);
1775 gem_begin_auto_negotiation(gp
, NULL
);
1776 spin_unlock_irq(&gp
->lock
);
1779 /* Must be invoked under gp->lock and gp->tx_lock. */
1780 static void gem_init_dma(struct gem
*gp
)
1782 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1785 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1786 writel(val
, gp
->regs
+ TXDMA_CFG
);
1788 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1789 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1790 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1792 writel(0, gp
->regs
+ TXDMA_KICK
);
1794 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1795 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1796 writel(val
, gp
->regs
+ RXDMA_CFG
);
1798 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1799 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1801 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1803 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1804 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1805 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1807 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1808 writel(((5 & RXDMA_BLANK_IPKTS
) |
1809 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1810 gp
->regs
+ RXDMA_BLANK
);
1812 writel(((5 & RXDMA_BLANK_IPKTS
) |
1813 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1814 gp
->regs
+ RXDMA_BLANK
);
1817 /* Must be invoked under gp->lock and gp->tx_lock. */
1818 static u32
gem_setup_multicast(struct gem
*gp
)
1823 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1824 (gp
->dev
->mc_count
> 256)) {
1825 for (i
=0; i
<16; i
++)
1826 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1827 rxcfg
|= MAC_RXCFG_HFE
;
1828 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1829 rxcfg
|= MAC_RXCFG_PROM
;
1833 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1836 for (i
= 0; i
< 16; i
++)
1839 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1840 char *addrs
= dmi
->dmi_addr
;
1847 crc
= ether_crc_le(6, addrs
);
1849 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1851 for (i
=0; i
<16; i
++)
1852 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1853 rxcfg
|= MAC_RXCFG_HFE
;
1859 /* Must be invoked under gp->lock and gp->tx_lock. */
1860 static void gem_init_mac(struct gem
*gp
)
1862 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1864 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1866 writel(0x00, gp
->regs
+ MAC_IPG0
);
1867 writel(0x08, gp
->regs
+ MAC_IPG1
);
1868 writel(0x04, gp
->regs
+ MAC_IPG2
);
1869 writel(0x40, gp
->regs
+ MAC_STIME
);
1870 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1872 /* Ethernet payload + header + FCS + optional VLAN tag. */
1873 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1875 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1876 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1877 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1878 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1880 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1882 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1883 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1884 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1886 writel(0, gp
->regs
+ MAC_ADDR3
);
1887 writel(0, gp
->regs
+ MAC_ADDR4
);
1888 writel(0, gp
->regs
+ MAC_ADDR5
);
1890 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1891 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1892 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1894 writel(0, gp
->regs
+ MAC_AFILT0
);
1895 writel(0, gp
->regs
+ MAC_AFILT1
);
1896 writel(0, gp
->regs
+ MAC_AFILT2
);
1897 writel(0, gp
->regs
+ MAC_AF21MSK
);
1898 writel(0, gp
->regs
+ MAC_AF0MSK
);
1900 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1902 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1904 writel(0, gp
->regs
+ MAC_NCOLL
);
1905 writel(0, gp
->regs
+ MAC_FASUCC
);
1906 writel(0, gp
->regs
+ MAC_ECOLL
);
1907 writel(0, gp
->regs
+ MAC_LCOLL
);
1908 writel(0, gp
->regs
+ MAC_DTIMER
);
1909 writel(0, gp
->regs
+ MAC_PATMPS
);
1910 writel(0, gp
->regs
+ MAC_RFCTR
);
1911 writel(0, gp
->regs
+ MAC_LERR
);
1912 writel(0, gp
->regs
+ MAC_AERR
);
1913 writel(0, gp
->regs
+ MAC_FCSERR
);
1914 writel(0, gp
->regs
+ MAC_RXCVERR
);
1916 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1917 * them once a link is established.
1919 writel(0, gp
->regs
+ MAC_TXCFG
);
1920 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1921 writel(0, gp
->regs
+ MAC_MCCFG
);
1922 writel(0, gp
->regs
+ MAC_XIFCFG
);
1924 /* Setup MAC interrupts. We want to get all of the interesting
1925 * counter expiration events, but we do not want to hear about
1926 * normal rx/tx as the DMA engine tells us that.
1928 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1929 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1931 /* Don't enable even the PAUSE interrupts for now, we
1932 * make no use of those events other than to record them.
1934 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1936 /* Don't enable GEM's WOL in normal operations
1939 writel(0, gp
->regs
+ WOL_WAKECSR
);
1942 /* Must be invoked under gp->lock and gp->tx_lock. */
1943 static void gem_init_pause_thresholds(struct gem
*gp
)
1947 /* Calculate pause thresholds. Setting the OFF threshold to the
1948 * full RX fifo size effectively disables PAUSE generation which
1949 * is what we do for 10/100 only GEMs which have FIFOs too small
1950 * to make real gains from PAUSE.
1952 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1953 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1955 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1956 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1957 int on
= off
- max_frame
;
1959 gp
->rx_pause_off
= off
;
1960 gp
->rx_pause_on
= on
;
1964 /* Configure the chip "burst" DMA mode & enable some
1965 * HW bug fixes on Apple version
1968 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1969 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1970 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1971 cfg
|= GREG_CFG_IBURST
;
1973 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1974 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1975 writel(cfg
, gp
->regs
+ GREG_CFG
);
1977 /* If Infinite Burst didn't stick, then use different
1978 * thresholds (and Apple bug fixes don't exist)
1980 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1981 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1982 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1983 writel(cfg
, gp
->regs
+ GREG_CFG
);
1987 static int gem_check_invariants(struct gem
*gp
)
1989 struct pci_dev
*pdev
= gp
->pdev
;
1992 /* On Apple's sungem, we can't rely on registers as the chip
1993 * was been powered down by the firmware. The PHY is looked
1996 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1997 gp
->phy_type
= phy_mii_mdio0
;
1998 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1999 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2002 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2003 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
2004 mif_cfg
|= MIF_CFG_MDI0
;
2005 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2006 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
2007 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
2009 /* We hard-code the PHY address so we can properly bring it out of
2010 * reset later on, we can't really probe it at this point, though
2011 * that isn't an issue.
2013 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
2014 gp
->mii_phy_addr
= 1;
2016 gp
->mii_phy_addr
= 0;
2021 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2023 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2024 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2025 /* One of the MII PHYs _must_ be present
2026 * as this chip has no gigabit PHY.
2028 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2029 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2035 /* Determine initial PHY interface type guess. MDIO1 is the
2036 * external PHY and thus takes precedence over MDIO0.
2039 if (mif_cfg
& MIF_CFG_MDI1
) {
2040 gp
->phy_type
= phy_mii_mdio1
;
2041 mif_cfg
|= MIF_CFG_PSELECT
;
2042 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2043 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2044 gp
->phy_type
= phy_mii_mdio0
;
2045 mif_cfg
&= ~MIF_CFG_PSELECT
;
2046 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2048 gp
->phy_type
= phy_serialink
;
2050 if (gp
->phy_type
== phy_mii_mdio1
||
2051 gp
->phy_type
== phy_mii_mdio0
) {
2054 for (i
= 0; i
< 32; i
++) {
2055 gp
->mii_phy_addr
= i
;
2056 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2060 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2061 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
2064 gp
->phy_type
= phy_serdes
;
2068 /* Fetch the FIFO configurations now too. */
2069 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2070 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2072 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2073 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2074 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2075 gp
->rx_fifo_sz
!= (20 * 1024)) {
2076 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2077 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2082 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2083 gp
->rx_fifo_sz
!= (2 * 1024)) {
2084 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2085 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2088 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2095 /* Must be invoked under gp->lock and gp->tx_lock. */
2096 static void gem_reinit_chip(struct gem
*gp
)
2098 /* Reset the chip */
2101 /* Make sure ints are disabled */
2102 gem_disable_ints(gp
);
2104 /* Allocate & setup ring buffers */
2107 /* Configure pause thresholds */
2108 gem_init_pause_thresholds(gp
);
2110 /* Init DMA & MAC engines */
2116 /* Must be invoked with no lock held. */
2117 static void gem_stop_phy(struct gem
*gp
, int wol
)
2120 unsigned long flags
;
2122 /* Let the chip settle down a bit, it seems that helps
2123 * for sleep mode on some models
2127 /* Make sure we aren't polling PHY status change. We
2128 * don't currently use that feature though
2130 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2131 mifcfg
&= ~MIF_CFG_POLL
;
2132 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2134 if (wol
&& gp
->has_wol
) {
2135 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2138 /* Setup wake-on-lan for MAGIC packet */
2139 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2140 gp
->regs
+ MAC_RXCFG
);
2141 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2142 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2143 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2145 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2146 csr
= WOL_WAKECSR_ENABLE
;
2147 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2148 csr
|= WOL_WAKECSR_MII
;
2149 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2151 writel(0, gp
->regs
+ MAC_RXCFG
);
2152 (void)readl(gp
->regs
+ MAC_RXCFG
);
2153 /* Machine sleep will die in strange ways if we
2154 * dont wait a bit here, looks like the chip takes
2155 * some time to really shut down
2160 writel(0, gp
->regs
+ MAC_TXCFG
);
2161 writel(0, gp
->regs
+ MAC_XIFCFG
);
2162 writel(0, gp
->regs
+ TXDMA_CFG
);
2163 writel(0, gp
->regs
+ RXDMA_CFG
);
2166 spin_lock_irqsave(&gp
->lock
, flags
);
2167 spin_lock(&gp
->tx_lock
);
2169 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2170 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2171 spin_unlock(&gp
->tx_lock
);
2172 spin_unlock_irqrestore(&gp
->lock
, flags
);
2174 /* No need to take the lock here */
2176 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2177 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2179 /* According to Apple, we must set the MDIO pins to this begnign
2180 * state or we may 1) eat more current, 2) damage some PHYs
2182 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2183 writel(0, gp
->regs
+ MIF_BBCLK
);
2184 writel(0, gp
->regs
+ MIF_BBDATA
);
2185 writel(0, gp
->regs
+ MIF_BBOENAB
);
2186 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2187 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2192 static int gem_do_start(struct net_device
*dev
)
2194 struct gem
*gp
= dev
->priv
;
2195 unsigned long flags
;
2197 spin_lock_irqsave(&gp
->lock
, flags
);
2198 spin_lock(&gp
->tx_lock
);
2200 /* Enable the cell */
2203 /* Init & setup chip hardware */
2204 gem_reinit_chip(gp
);
2208 if (gp
->lstate
== link_up
) {
2209 netif_carrier_on(gp
->dev
);
2210 gem_set_link_modes(gp
);
2213 netif_wake_queue(gp
->dev
);
2215 spin_unlock(&gp
->tx_lock
);
2216 spin_unlock_irqrestore(&gp
->lock
, flags
);
2218 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2219 SA_SHIRQ
, dev
->name
, (void *)dev
)) {
2220 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2222 spin_lock_irqsave(&gp
->lock
, flags
);
2223 spin_lock(&gp
->tx_lock
);
2227 gem_clean_rings(gp
);
2230 spin_unlock(&gp
->tx_lock
);
2231 spin_unlock_irqrestore(&gp
->lock
, flags
);
2239 static void gem_do_stop(struct net_device
*dev
, int wol
)
2241 struct gem
*gp
= dev
->priv
;
2242 unsigned long flags
;
2244 spin_lock_irqsave(&gp
->lock
, flags
);
2245 spin_lock(&gp
->tx_lock
);
2249 /* Stop netif queue */
2250 netif_stop_queue(dev
);
2252 /* Make sure ints are disabled */
2253 gem_disable_ints(gp
);
2255 /* We can drop the lock now */
2256 spin_unlock(&gp
->tx_lock
);
2257 spin_unlock_irqrestore(&gp
->lock
, flags
);
2259 /* If we are going to sleep with WOL */
2266 /* Get rid of rings */
2267 gem_clean_rings(gp
);
2269 /* No irq needed anymore */
2270 free_irq(gp
->pdev
->irq
, (void *) dev
);
2272 /* Cell not needed neither if no WOL */
2274 spin_lock_irqsave(&gp
->lock
, flags
);
2276 spin_unlock_irqrestore(&gp
->lock
, flags
);
2280 static void gem_reset_task(void *data
)
2282 struct gem
*gp
= (struct gem
*) data
;
2286 netif_poll_disable(gp
->dev
);
2288 spin_lock_irq(&gp
->lock
);
2289 spin_lock(&gp
->tx_lock
);
2291 if (gp
->running
== 0)
2295 netif_stop_queue(gp
->dev
);
2297 /* Reset the chip & rings */
2298 gem_reinit_chip(gp
);
2299 if (gp
->lstate
== link_up
)
2300 gem_set_link_modes(gp
);
2301 netif_wake_queue(gp
->dev
);
2304 gp
->reset_task_pending
= 0;
2306 spin_unlock(&gp
->tx_lock
);
2307 spin_unlock_irq(&gp
->lock
);
2309 netif_poll_enable(gp
->dev
);
2315 static int gem_open(struct net_device
*dev
)
2317 struct gem
*gp
= dev
->priv
;
2322 /* We need the cell enabled */
2324 rc
= gem_do_start(dev
);
2325 gp
->opened
= (rc
== 0);
2332 static int gem_close(struct net_device
*dev
)
2334 struct gem
*gp
= dev
->priv
;
2336 /* Note: we don't need to call netif_poll_disable() here because
2337 * our caller (dev_close) already did it for us
2344 gem_do_stop(dev
, 0);
2352 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2354 struct net_device
*dev
= pci_get_drvdata(pdev
);
2355 struct gem
*gp
= dev
->priv
;
2356 unsigned long flags
;
2360 netif_poll_disable(dev
);
2362 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2364 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2366 /* Keep the cell enabled during the entire operation */
2367 spin_lock_irqsave(&gp
->lock
, flags
);
2368 spin_lock(&gp
->tx_lock
);
2370 spin_unlock(&gp
->tx_lock
);
2371 spin_unlock_irqrestore(&gp
->lock
, flags
);
2373 /* If the driver is opened, we stop the MAC */
2375 /* Stop traffic, mark us closed */
2376 netif_device_detach(dev
);
2378 /* Switch off MAC, remember WOL setting */
2379 gp
->asleep_wol
= gp
->wake_on_lan
;
2380 gem_do_stop(dev
, gp
->asleep_wol
);
2384 /* Mark us asleep */
2388 /* Stop the link timer */
2389 del_timer_sync(&gp
->link_timer
);
2391 /* Now we release the semaphore to not block the reset task who
2392 * can take it too. We are marked asleep, so there will be no
2397 /* Wait for a pending reset task to complete */
2398 while (gp
->reset_task_pending
)
2400 flush_scheduled_work();
2402 /* Shut the PHY down eventually and setup WOL */
2403 gem_stop_phy(gp
, gp
->asleep_wol
);
2405 /* Make sure bus master is disabled */
2406 pci_disable_device(gp
->pdev
);
2408 /* Release the cell, no need to take a lock at this point since
2409 * nothing else can happen now
2416 static int gem_resume(struct pci_dev
*pdev
)
2418 struct net_device
*dev
= pci_get_drvdata(pdev
);
2419 struct gem
*gp
= dev
->priv
;
2420 unsigned long flags
;
2422 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2426 /* Keep the cell enabled during the entire operation, no need to
2427 * take a lock here tho since nothing else can happen while we are
2432 /* Make sure PCI access and bus master are enabled */
2433 if (pci_enable_device(gp
->pdev
)) {
2434 printk(KERN_ERR
"%s: Can't re-enable chip !\n",
2436 /* Put cell and forget it for now, it will be considered as
2437 * still asleep, a new sleep cycle may bring it back
2443 pci_set_master(gp
->pdev
);
2445 /* Reset everything */
2448 /* Mark us woken up */
2452 /* Bring the PHY back. Again, lock is useless at this point as
2453 * nothing can be happening until we restart the whole thing
2457 /* If we were opened, bring everything back */
2462 /* Re-attach net device */
2463 netif_device_attach(dev
);
2467 spin_lock_irqsave(&gp
->lock
, flags
);
2468 spin_lock(&gp
->tx_lock
);
2470 /* If we had WOL enabled, the cell clock was never turned off during
2471 * sleep, so we end up beeing unbalanced. Fix that here
2476 /* This function doesn't need to hold the cell, it will be held if the
2477 * driver is open by gem_do_start().
2481 spin_unlock(&gp
->tx_lock
);
2482 spin_unlock_irqrestore(&gp
->lock
, flags
);
2484 netif_poll_enable(dev
);
2490 #endif /* CONFIG_PM */
2492 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2494 struct gem
*gp
= dev
->priv
;
2495 struct net_device_stats
*stats
= &gp
->net_stats
;
2497 spin_lock_irq(&gp
->lock
);
2498 spin_lock(&gp
->tx_lock
);
2500 /* I have seen this being called while the PM was in progress,
2501 * so we shield against this
2504 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2505 writel(0, gp
->regs
+ MAC_FCSERR
);
2507 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2508 writel(0, gp
->regs
+ MAC_AERR
);
2510 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2511 writel(0, gp
->regs
+ MAC_LERR
);
2513 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2514 stats
->collisions
+=
2515 (readl(gp
->regs
+ MAC_ECOLL
) +
2516 readl(gp
->regs
+ MAC_LCOLL
));
2517 writel(0, gp
->regs
+ MAC_ECOLL
);
2518 writel(0, gp
->regs
+ MAC_LCOLL
);
2521 spin_unlock(&gp
->tx_lock
);
2522 spin_unlock_irq(&gp
->lock
);
2524 return &gp
->net_stats
;
2527 static void gem_set_multicast(struct net_device
*dev
)
2529 struct gem
*gp
= dev
->priv
;
2530 u32 rxcfg
, rxcfg_new
;
2534 spin_lock_irq(&gp
->lock
);
2535 spin_lock(&gp
->tx_lock
);
2540 netif_stop_queue(dev
);
2542 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2543 rxcfg_new
= gem_setup_multicast(gp
);
2545 rxcfg_new
|= MAC_RXCFG_SFCS
;
2547 gp
->mac_rx_cfg
= rxcfg_new
;
2549 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2550 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2556 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2559 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2561 netif_wake_queue(dev
);
2564 spin_unlock(&gp
->tx_lock
);
2565 spin_unlock_irq(&gp
->lock
);
2568 /* Jumbo-grams don't seem to work :-( */
2569 #define GEM_MIN_MTU 68
2571 #define GEM_MAX_MTU 1500
2573 #define GEM_MAX_MTU 9000
2576 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2578 struct gem
*gp
= dev
->priv
;
2580 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2583 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2584 /* We'll just catch it later when the
2585 * device is up'd or resumed.
2592 spin_lock_irq(&gp
->lock
);
2593 spin_lock(&gp
->tx_lock
);
2596 gem_reinit_chip(gp
);
2597 if (gp
->lstate
== link_up
)
2598 gem_set_link_modes(gp
);
2600 spin_unlock(&gp
->tx_lock
);
2601 spin_unlock_irq(&gp
->lock
);
2607 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2609 struct gem
*gp
= dev
->priv
;
2611 strcpy(info
->driver
, DRV_NAME
);
2612 strcpy(info
->version
, DRV_VERSION
);
2613 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2616 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2618 struct gem
*gp
= dev
->priv
;
2620 if (gp
->phy_type
== phy_mii_mdio0
||
2621 gp
->phy_type
== phy_mii_mdio1
) {
2622 if (gp
->phy_mii
.def
)
2623 cmd
->supported
= gp
->phy_mii
.def
->features
;
2625 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2626 SUPPORTED_10baseT_Full
);
2628 /* XXX hardcoded stuff for now */
2629 cmd
->port
= PORT_MII
;
2630 cmd
->transceiver
= XCVR_EXTERNAL
;
2631 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2633 /* Return current PHY settings */
2634 spin_lock_irq(&gp
->lock
);
2635 cmd
->autoneg
= gp
->want_autoneg
;
2636 cmd
->speed
= gp
->phy_mii
.speed
;
2637 cmd
->duplex
= gp
->phy_mii
.duplex
;
2638 cmd
->advertising
= gp
->phy_mii
.advertising
;
2640 /* If we started with a forced mode, we don't have a default
2641 * advertise set, we need to return something sensible so
2642 * userland can re-enable autoneg properly.
2644 if (cmd
->advertising
== 0)
2645 cmd
->advertising
= cmd
->supported
;
2646 spin_unlock_irq(&gp
->lock
);
2647 } else { // XXX PCS ?
2649 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2650 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2652 cmd
->advertising
= cmd
->supported
;
2654 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2655 cmd
->transceiver
= cmd
->autoneg
= 0;
2657 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2662 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2664 struct gem
*gp
= dev
->priv
;
2666 /* Verify the settings we care about. */
2667 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2668 cmd
->autoneg
!= AUTONEG_DISABLE
)
2671 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2672 cmd
->advertising
== 0)
2675 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2676 ((cmd
->speed
!= SPEED_1000
&&
2677 cmd
->speed
!= SPEED_100
&&
2678 cmd
->speed
!= SPEED_10
) ||
2679 (cmd
->duplex
!= DUPLEX_HALF
&&
2680 cmd
->duplex
!= DUPLEX_FULL
)))
2683 /* Apply settings and restart link process. */
2684 spin_lock_irq(&gp
->lock
);
2686 gem_begin_auto_negotiation(gp
, cmd
);
2688 spin_unlock_irq(&gp
->lock
);
2693 static int gem_nway_reset(struct net_device
*dev
)
2695 struct gem
*gp
= dev
->priv
;
2697 if (!gp
->want_autoneg
)
2700 /* Restart link process. */
2701 spin_lock_irq(&gp
->lock
);
2703 gem_begin_auto_negotiation(gp
, NULL
);
2705 spin_unlock_irq(&gp
->lock
);
2710 static u32
gem_get_msglevel(struct net_device
*dev
)
2712 struct gem
*gp
= dev
->priv
;
2713 return gp
->msg_enable
;
2716 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2718 struct gem
*gp
= dev
->priv
;
2719 gp
->msg_enable
= value
;
2723 /* Add more when I understand how to program the chip */
2724 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2726 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2728 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2730 struct gem
*gp
= dev
->priv
;
2732 /* Add more when I understand how to program the chip */
2734 wol
->supported
= WOL_SUPPORTED_MASK
;
2735 wol
->wolopts
= gp
->wake_on_lan
;
2742 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2744 struct gem
*gp
= dev
->priv
;
2748 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2752 static struct ethtool_ops gem_ethtool_ops
= {
2753 .get_drvinfo
= gem_get_drvinfo
,
2754 .get_link
= ethtool_op_get_link
,
2755 .get_settings
= gem_get_settings
,
2756 .set_settings
= gem_set_settings
,
2757 .nway_reset
= gem_nway_reset
,
2758 .get_msglevel
= gem_get_msglevel
,
2759 .set_msglevel
= gem_set_msglevel
,
2760 .get_wol
= gem_get_wol
,
2761 .set_wol
= gem_set_wol
,
2764 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2766 struct gem
*gp
= dev
->priv
;
2767 struct mii_ioctl_data
*data
= if_mii(ifr
);
2768 int rc
= -EOPNOTSUPP
;
2769 unsigned long flags
;
2771 /* Hold the PM semaphore while doing ioctl's or we may collide
2772 * with power management.
2776 spin_lock_irqsave(&gp
->lock
, flags
);
2778 spin_unlock_irqrestore(&gp
->lock
, flags
);
2781 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2782 data
->phy_id
= gp
->mii_phy_addr
;
2783 /* Fallthrough... */
2785 case SIOCGMIIREG
: /* Read MII PHY register. */
2789 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2790 data
->reg_num
& 0x1f);
2795 case SIOCSMIIREG
: /* Write MII PHY register. */
2796 if (!capable(CAP_NET_ADMIN
))
2798 else if (!gp
->running
)
2801 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2808 spin_lock_irqsave(&gp
->lock
, flags
);
2810 spin_unlock_irqrestore(&gp
->lock
, flags
);
2817 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2818 /* Fetch MAC address from vital product data of PCI ROM. */
2819 static void find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2823 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2824 void __iomem
*p
= rom_base
+ this_offset
;
2827 if (readb(p
+ 0) != 0x90 ||
2828 readb(p
+ 1) != 0x00 ||
2829 readb(p
+ 2) != 0x09 ||
2830 readb(p
+ 3) != 0x4e ||
2831 readb(p
+ 4) != 0x41 ||
2832 readb(p
+ 5) != 0x06)
2838 for (i
= 0; i
< 6; i
++)
2839 dev_addr
[i
] = readb(p
+ i
);
2844 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2849 if (pdev
->resource
[PCI_ROM_RESOURCE
].parent
== NULL
) {
2850 if (pci_assign_resource(pdev
, PCI_ROM_RESOURCE
) < 0)
2854 pci_read_config_dword(pdev
, pdev
->rom_base_reg
, &rom_reg_orig
);
2855 pci_write_config_dword(pdev
, pdev
->rom_base_reg
,
2856 rom_reg_orig
| PCI_ROM_ADDRESS_ENABLE
);
2858 p
= ioremap(pci_resource_start(pdev
, PCI_ROM_RESOURCE
), (64 * 1024));
2859 if (p
!= NULL
&& readb(p
) == 0x55 && readb(p
+ 1) == 0xaa)
2860 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2865 pci_write_config_dword(pdev
, pdev
->rom_base_reg
, rom_reg_orig
);
2869 /* Sun MAC prefix then 3 random bytes. */
2873 get_random_bytes(dev_addr
+ 3, 3);
2876 #endif /* not Sparc and not PPC */
2878 static int __devinit
gem_get_device_address(struct gem
*gp
)
2880 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2881 struct net_device
*dev
= gp
->dev
;
2884 #if defined(__sparc__)
2885 struct pci_dev
*pdev
= gp
->pdev
;
2886 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
2890 node
= pcp
->prom_node
;
2891 if (prom_getproplen(node
, "local-mac-address") == 6)
2892 prom_getproperty(node
, "local-mac-address",
2898 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2899 #elif defined(CONFIG_PPC_PMAC)
2900 unsigned char *addr
;
2902 addr
= get_property(gp
->of_node
, "local-mac-address", NULL
);
2905 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2908 memcpy(dev
->dev_addr
, addr
, 6);
2910 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2915 static void __devexit
gem_remove_one(struct pci_dev
*pdev
)
2917 struct net_device
*dev
= pci_get_drvdata(pdev
);
2920 struct gem
*gp
= dev
->priv
;
2922 unregister_netdev(dev
);
2924 /* Stop the link timer */
2925 del_timer_sync(&gp
->link_timer
);
2927 /* We shouldn't need any locking here */
2930 /* Wait for a pending reset task to complete */
2931 while (gp
->reset_task_pending
)
2933 flush_scheduled_work();
2935 /* Shut the PHY down */
2936 gem_stop_phy(gp
, 0);
2940 /* Make sure bus master is disabled */
2941 pci_disable_device(gp
->pdev
);
2943 /* Free resources */
2944 pci_free_consistent(pdev
,
2945 sizeof(struct gem_init_block
),
2949 pci_release_regions(pdev
);
2952 pci_set_drvdata(pdev
, NULL
);
2956 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2957 const struct pci_device_id
*ent
)
2959 static int gem_version_printed
= 0;
2960 unsigned long gemreg_base
, gemreg_len
;
2961 struct net_device
*dev
;
2963 int i
, err
, pci_using_dac
;
2965 if (gem_version_printed
++ == 0)
2966 printk(KERN_INFO
"%s", version
);
2968 /* Apple gmac note: during probe, the chip is powered up by
2969 * the arch code to allow the code below to work (and to let
2970 * the chip be probed on the config space. It won't stay powered
2971 * up until the interface is brought up however, so we can't rely
2972 * on register configuration done at this point.
2974 err
= pci_enable_device(pdev
);
2976 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
2980 pci_set_master(pdev
);
2982 /* Configure DMA attributes. */
2984 /* All of the GEM documentation states that 64-bit DMA addressing
2985 * is fully supported and should work just fine. However the
2986 * front end for RIO based GEMs is different and only supports
2987 * 32-bit addressing.
2989 * For now we assume the various PPC GEMs are 32-bit only as well.
2991 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2992 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2993 !pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
2996 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
2998 printk(KERN_ERR PFX
"No usable DMA configuration, "
3000 goto err_disable_device
;
3005 gemreg_base
= pci_resource_start(pdev
, 0);
3006 gemreg_len
= pci_resource_len(pdev
, 0);
3008 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3009 printk(KERN_ERR PFX
"Cannot find proper PCI device "
3010 "base address, aborting.\n");
3012 goto err_disable_device
;
3015 dev
= alloc_etherdev(sizeof(*gp
));
3017 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
3019 goto err_disable_device
;
3021 SET_MODULE_OWNER(dev
);
3022 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3026 err
= pci_request_regions(pdev
, DRV_NAME
);
3028 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
3030 goto err_out_free_netdev
;
3034 dev
->base_addr
= (long) pdev
;
3037 gp
->msg_enable
= DEFAULT_MSG
;
3039 spin_lock_init(&gp
->lock
);
3040 spin_lock_init(&gp
->tx_lock
);
3041 init_MUTEX(&gp
->pm_sem
);
3043 init_timer(&gp
->link_timer
);
3044 gp
->link_timer
.function
= gem_link_timer
;
3045 gp
->link_timer
.data
= (unsigned long) gp
;
3047 INIT_WORK(&gp
->reset_task
, gem_reset_task
, gp
);
3049 gp
->lstate
= link_down
;
3050 gp
->timer_ticks
= 0;
3051 netif_carrier_off(dev
);
3053 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3054 if (gp
->regs
== 0UL) {
3055 printk(KERN_ERR PFX
"Cannot map device registers, "
3058 goto err_out_free_res
;
3061 /* On Apple, we want a reference to the Open Firmware device-tree
3062 * node. We use it for clock control.
3064 #ifdef CONFIG_PPC_PMAC
3065 gp
->of_node
= pci_device_to_OF_node(pdev
);
3068 /* Only Apple version supports WOL afaik */
3069 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3072 /* Make sure cell is enabled */
3075 /* Make sure everything is stopped and in init state */
3078 /* Fill up the mii_phy structure (even if we won't use it) */
3079 gp
->phy_mii
.dev
= dev
;
3080 gp
->phy_mii
.mdio_read
= _phy_read
;
3081 gp
->phy_mii
.mdio_write
= _phy_write
;
3083 /* By default, we start with autoneg */
3084 gp
->want_autoneg
= 1;
3086 /* Check fifo sizes, PHY type, etc... */
3087 if (gem_check_invariants(gp
)) {
3089 goto err_out_iounmap
;
3092 /* It is guaranteed that the returned buffer will be at least
3093 * PAGE_SIZE aligned.
3095 gp
->init_block
= (struct gem_init_block
*)
3096 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3098 if (!gp
->init_block
) {
3099 printk(KERN_ERR PFX
"Cannot allocate init block, "
3102 goto err_out_iounmap
;
3105 if (gem_get_device_address(gp
))
3106 goto err_out_free_consistent
;
3108 dev
->open
= gem_open
;
3109 dev
->stop
= gem_close
;
3110 dev
->hard_start_xmit
= gem_start_xmit
;
3111 dev
->get_stats
= gem_get_stats
;
3112 dev
->set_multicast_list
= gem_set_multicast
;
3113 dev
->do_ioctl
= gem_ioctl
;
3114 dev
->poll
= gem_poll
;
3116 dev
->ethtool_ops
= &gem_ethtool_ops
;
3117 dev
->tx_timeout
= gem_tx_timeout
;
3118 dev
->watchdog_timeo
= 5 * HZ
;
3119 dev
->change_mtu
= gem_change_mtu
;
3120 dev
->irq
= pdev
->irq
;
3122 #ifdef CONFIG_NET_POLL_CONTROLLER
3123 dev
->poll_controller
= gem_poll_controller
;
3126 /* Set that now, in case PM kicks in now */
3127 pci_set_drvdata(pdev
, dev
);
3129 /* Detect & init PHY, start autoneg, we release the cell now
3130 * too, it will be managed by whoever needs it
3134 spin_lock_irq(&gp
->lock
);
3136 spin_unlock_irq(&gp
->lock
);
3138 /* Register with kernel */
3139 if (register_netdev(dev
)) {
3140 printk(KERN_ERR PFX
"Cannot register net device, "
3143 goto err_out_free_consistent
;
3146 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3148 for (i
= 0; i
< 6; i
++)
3149 printk("%2.2x%c", dev
->dev_addr
[i
],
3150 i
== 5 ? ' ' : ':');
3153 if (gp
->phy_type
== phy_mii_mdio0
||
3154 gp
->phy_type
== phy_mii_mdio1
)
3155 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
3156 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3158 /* GEM can do it all... */
3159 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3161 dev
->features
|= NETIF_F_HIGHDMA
;
3165 err_out_free_consistent
:
3166 gem_remove_one(pdev
);
3172 pci_release_regions(pdev
);
3174 err_out_free_netdev
:
3177 pci_disable_device(pdev
);
3183 static struct pci_driver gem_driver
= {
3184 .name
= GEM_MODULE_NAME
,
3185 .id_table
= gem_pci_tbl
,
3186 .probe
= gem_init_one
,
3187 .remove
= __devexit_p(gem_remove_one
),
3189 .suspend
= gem_suspend
,
3190 .resume
= gem_resume
,
3191 #endif /* CONFIG_PM */
3194 static int __init
gem_init(void)
3196 return pci_module_init(&gem_driver
);
3199 static void __exit
gem_cleanup(void)
3201 pci_unregister_driver(&gem_driver
);
3204 module_init(gem_init
);
3205 module_exit(gem_cleanup
);