sata_mv: fix pci_enable_msi() error handling
[linux-2.6/mini2440.git] / drivers / net / mv643xx_eth.c
blobd98e53efa2ef56158a8d0ea63fbcbda2dba08096
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(struct net_device *dev,
55 unsigned char *MacAddr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct net_device *dev, int *budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static const struct ethtool_ops mv643xx_ethtool_ops;
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
82 static void __iomem *mv643xx_eth_shared_base;
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
87 static inline u32 mv_read(int offset)
89 void __iomem *reg_base;
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
93 return readl(reg_base + offset);
96 static inline void mv_write(int offset, u32 data)
98 void __iomem *reg_base;
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
116 dev->mtu = new_mtu;
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
131 return 0;
135 * mv643xx_eth_rx_refill_descs
137 * Fills / refills RX queue on a certain gigabit ethernet port
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + ETH_DMA_ALIGN);
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (ETH_DMA_ALIGN - 1);
155 if (unaligned)
156 skb_reserve(skb, ETH_DMA_ALIGN - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
196 * mv643xx_eth_update_mac_address
198 * Update the MAC address of the port in the address table
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
213 * mv643xx_eth_set_rx_mode
215 * Change from promiscuos to regular rx mode
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
232 eth_port_set_multicast_list(dev);
236 * mv643xx_eth_set_mac_address
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
248 int i;
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
258 * mv643xx_eth_tx_timeout
260 * Called upon a timeout on transmitting a packet
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
267 struct mv643xx_private *mp = netdev_priv(dev);
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
276 * mv643xx_eth_tx_timeout_task
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
280 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
282 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
283 tx_timeout_task);
284 struct net_device *dev = mp->mii.dev; /* yuck */
286 if (!netif_running(dev))
287 return;
289 netif_stop_queue(dev);
291 eth_port_reset(mp->port_num);
292 eth_port_start(dev);
294 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
295 netif_wake_queue(dev);
299 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
301 * If force is non-zero, frees uncompleted descriptors as well
303 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
305 struct mv643xx_private *mp = netdev_priv(dev);
306 struct eth_tx_desc *desc;
307 u32 cmd_sts;
308 struct sk_buff *skb;
309 unsigned long flags;
310 int tx_index;
311 dma_addr_t addr;
312 int count;
313 int released = 0;
315 while (mp->tx_desc_count > 0) {
316 spin_lock_irqsave(&mp->lock, flags);
318 /* tx_desc_count might have changed before acquiring the lock */
319 if (mp->tx_desc_count <= 0) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
324 tx_index = mp->tx_used_desc_q;
325 desc = &mp->p_tx_desc_area[tx_index];
326 cmd_sts = desc->cmd_sts;
328 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
329 spin_unlock_irqrestore(&mp->lock, flags);
330 return released;
333 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
334 mp->tx_desc_count--;
336 addr = desc->buf_ptr;
337 count = desc->byte_cnt;
338 skb = mp->tx_skb[tx_index];
339 if (skb)
340 mp->tx_skb[tx_index] = NULL;
342 if (cmd_sts & ETH_ERROR_SUMMARY) {
343 printk("%s: Error in TX\n", dev->name);
344 mp->stats.tx_errors++;
347 spin_unlock_irqrestore(&mp->lock, flags);
349 if (cmd_sts & ETH_TX_FIRST_DESC)
350 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
351 else
352 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
354 if (skb)
355 dev_kfree_skb_irq(skb);
357 released = 1;
360 return released;
363 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
365 struct mv643xx_private *mp = netdev_priv(dev);
367 if (mv643xx_eth_free_tx_descs(dev, 0) &&
368 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
369 netif_wake_queue(dev);
372 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
374 mv643xx_eth_free_tx_descs(dev, 1);
378 * mv643xx_eth_receive
380 * This function is forward packets that are received from the port's
381 * queues toward kernel core or FastRoute them to another interface.
383 * Input : dev - a pointer to the required interface
384 * max - maximum number to receive (0 means unlimted)
386 * Output : number of served packets
388 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
390 struct mv643xx_private *mp = netdev_priv(dev);
391 struct net_device_stats *stats = &mp->stats;
392 unsigned int received_packets = 0;
393 struct sk_buff *skb;
394 struct pkt_info pkt_info;
396 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
397 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
398 DMA_FROM_DEVICE);
399 mp->rx_desc_count--;
400 received_packets++;
403 * Update statistics.
404 * Note byte count includes 4 byte CRC count
406 stats->rx_packets++;
407 stats->rx_bytes += pkt_info.byte_cnt;
408 skb = pkt_info.return_info;
410 * In case received a packet without first / last bits on OR
411 * the error summary bit is on, the packets needs to be dropeed.
413 if (((pkt_info.cmd_sts
414 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
415 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
416 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
417 stats->rx_dropped++;
418 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
419 ETH_RX_LAST_DESC)) !=
420 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
421 if (net_ratelimit())
422 printk(KERN_ERR
423 "%s: Received packet spread "
424 "on multiple descriptors\n",
425 dev->name);
427 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
428 stats->rx_errors++;
430 dev_kfree_skb_irq(skb);
431 } else {
433 * The -4 is for the CRC in the trailer of the
434 * received packet
436 skb_put(skb, pkt_info.byte_cnt - 4);
437 skb->dev = dev;
439 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
440 skb->ip_summed = CHECKSUM_UNNECESSARY;
441 skb->csum = htons(
442 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
444 skb->protocol = eth_type_trans(skb, dev);
445 #ifdef MV643XX_NAPI
446 netif_receive_skb(skb);
447 #else
448 netif_rx(skb);
449 #endif
451 dev->last_rx = jiffies;
453 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
455 return received_packets;
458 /* Set the mv643xx port configuration register for the speed/duplex mode. */
459 static void mv643xx_eth_update_pscr(struct net_device *dev,
460 struct ethtool_cmd *ecmd)
462 struct mv643xx_private *mp = netdev_priv(dev);
463 int port_num = mp->port_num;
464 u32 o_pscr, n_pscr;
465 unsigned int queues;
467 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
468 n_pscr = o_pscr;
470 /* clear speed, duplex and rx buffer size fields */
471 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
472 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
473 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
474 MV643XX_ETH_MAX_RX_PACKET_MASK);
476 if (ecmd->duplex == DUPLEX_FULL)
477 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
479 if (ecmd->speed == SPEED_1000)
480 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
481 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
482 else {
483 if (ecmd->speed == SPEED_100)
484 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
485 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
488 if (n_pscr != o_pscr) {
489 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
490 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
491 n_pscr);
492 else {
493 queues = mv643xx_eth_port_disable_tx(port_num);
495 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
496 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
497 o_pscr);
498 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
499 n_pscr);
500 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
501 n_pscr);
502 if (queues)
503 mv643xx_eth_port_enable_tx(port_num, queues);
509 * mv643xx_eth_int_handler
511 * Main interrupt handler for the gigbit ethernet ports
513 * Input : irq - irq number (not used)
514 * dev_id - a pointer to the required interface's data structure
515 * regs - not used
516 * Output : N/A
519 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
521 struct net_device *dev = (struct net_device *)dev_id;
522 struct mv643xx_private *mp = netdev_priv(dev);
523 u32 eth_int_cause, eth_int_cause_ext = 0;
524 unsigned int port_num = mp->port_num;
526 /* Read interrupt cause registers */
527 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
528 ETH_INT_UNMASK_ALL;
529 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
530 eth_int_cause_ext = mv_read(
531 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
532 ETH_INT_UNMASK_ALL_EXT;
533 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
534 ~eth_int_cause_ext);
537 /* PHY status changed */
538 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
539 struct ethtool_cmd cmd;
541 if (mii_link_ok(&mp->mii)) {
542 mii_ethtool_gset(&mp->mii, &cmd);
543 mv643xx_eth_update_pscr(dev, &cmd);
544 mv643xx_eth_port_enable_tx(port_num,
545 ETH_TX_QUEUES_ENABLED);
546 if (!netif_carrier_ok(dev)) {
547 netif_carrier_on(dev);
548 if (mp->tx_ring_size - mp->tx_desc_count >=
549 MAX_DESCS_PER_SKB)
550 netif_wake_queue(dev);
552 } else if (netif_carrier_ok(dev)) {
553 netif_stop_queue(dev);
554 netif_carrier_off(dev);
558 #ifdef MV643XX_NAPI
559 if (eth_int_cause & ETH_INT_CAUSE_RX) {
560 /* schedule the NAPI poll routine to maintain port */
561 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
562 ETH_INT_MASK_ALL);
563 /* wait for previous write to complete */
564 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
566 netif_rx_schedule(dev);
568 #else
569 if (eth_int_cause & ETH_INT_CAUSE_RX)
570 mv643xx_eth_receive_queue(dev, INT_MAX);
571 #endif
572 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
573 mv643xx_eth_free_completed_tx_descs(dev);
576 * If no real interrupt occured, exit.
577 * This can happen when using gigE interrupt coalescing mechanism.
579 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
580 return IRQ_NONE;
582 return IRQ_HANDLED;
585 #ifdef MV643XX_COAL
588 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
590 * DESCRIPTION:
591 * This routine sets the RX coalescing interrupt mechanism parameter.
592 * This parameter is a timeout counter, that counts in 64 t_clk
593 * chunks ; that when timeout event occurs a maskable interrupt
594 * occurs.
595 * The parameter is calculated using the tClk of the MV-643xx chip
596 * , and the required delay of the interrupt in usec.
598 * INPUT:
599 * unsigned int eth_port_num Ethernet port number
600 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
601 * unsigned int delay Delay in usec
603 * OUTPUT:
604 * Interrupt coalescing mechanism value is set in MV-643xx chip.
606 * RETURN:
607 * The interrupt coalescing value set in the gigE port.
610 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
611 unsigned int t_clk, unsigned int delay)
613 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
615 /* Set RX Coalescing mechanism */
616 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
617 ((coal & 0x3fff) << 8) |
618 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
619 & 0xffc000ff));
621 return coal;
623 #endif
626 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
628 * DESCRIPTION:
629 * This routine sets the TX coalescing interrupt mechanism parameter.
630 * This parameter is a timeout counter, that counts in 64 t_clk
631 * chunks ; that when timeout event occurs a maskable interrupt
632 * occurs.
633 * The parameter is calculated using the t_cLK frequency of the
634 * MV-643xx chip and the required delay in the interrupt in uSec
636 * INPUT:
637 * unsigned int eth_port_num Ethernet port number
638 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
639 * unsigned int delay Delay in uSeconds
641 * OUTPUT:
642 * Interrupt coalescing mechanism value is set in MV-643xx chip.
644 * RETURN:
645 * The interrupt coalescing value set in the gigE port.
648 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
649 unsigned int t_clk, unsigned int delay)
651 unsigned int coal;
652 coal = ((t_clk / 1000000) * delay) / 64;
653 /* Set TX Coalescing mechanism */
654 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
655 coal << 4);
656 return coal;
660 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
662 * DESCRIPTION:
663 * This function prepares a Rx chained list of descriptors and packet
664 * buffers in a form of a ring. The routine must be called after port
665 * initialization routine and before port start routine.
666 * The Ethernet SDMA engine uses CPU bus addresses to access the various
667 * devices in the system (i.e. DRAM). This function uses the ethernet
668 * struct 'virtual to physical' routine (set by the user) to set the ring
669 * with physical addresses.
671 * INPUT:
672 * struct mv643xx_private *mp Ethernet Port Control srtuct.
674 * OUTPUT:
675 * The routine updates the Ethernet port control struct with information
676 * regarding the Rx descriptors and buffers.
678 * RETURN:
679 * None.
681 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
683 volatile struct eth_rx_desc *p_rx_desc;
684 int rx_desc_num = mp->rx_ring_size;
685 int i;
687 /* initialize the next_desc_ptr links in the Rx descriptors ring */
688 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
689 for (i = 0; i < rx_desc_num; i++) {
690 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
691 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
694 /* Save Rx desc pointer to driver struct. */
695 mp->rx_curr_desc_q = 0;
696 mp->rx_used_desc_q = 0;
698 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
702 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
704 * DESCRIPTION:
705 * This function prepares a Tx chained list of descriptors and packet
706 * buffers in a form of a ring. The routine must be called after port
707 * initialization routine and before port start routine.
708 * The Ethernet SDMA engine uses CPU bus addresses to access the various
709 * devices in the system (i.e. DRAM). This function uses the ethernet
710 * struct 'virtual to physical' routine (set by the user) to set the ring
711 * with physical addresses.
713 * INPUT:
714 * struct mv643xx_private *mp Ethernet Port Control srtuct.
716 * OUTPUT:
717 * The routine updates the Ethernet port control struct with information
718 * regarding the Tx descriptors and buffers.
720 * RETURN:
721 * None.
723 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
725 int tx_desc_num = mp->tx_ring_size;
726 struct eth_tx_desc *p_tx_desc;
727 int i;
729 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
730 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
731 for (i = 0; i < tx_desc_num; i++) {
732 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
733 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
736 mp->tx_curr_desc_q = 0;
737 mp->tx_used_desc_q = 0;
739 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
742 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
744 struct mv643xx_private *mp = netdev_priv(dev);
745 int err;
747 spin_lock_irq(&mp->lock);
748 err = mii_ethtool_sset(&mp->mii, cmd);
749 spin_unlock_irq(&mp->lock);
751 return err;
754 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
756 struct mv643xx_private *mp = netdev_priv(dev);
757 int err;
759 spin_lock_irq(&mp->lock);
760 err = mii_ethtool_gset(&mp->mii, cmd);
761 spin_unlock_irq(&mp->lock);
763 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
764 cmd->supported &= ~SUPPORTED_1000baseT_Half;
765 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
767 return err;
771 * mv643xx_eth_open
773 * This function is called when openning the network device. The function
774 * should initialize all the hardware, initialize cyclic Rx/Tx
775 * descriptors chain and buffers and allocate an IRQ to the network
776 * device.
778 * Input : a pointer to the network device structure
780 * Output : zero of success , nonzero if fails.
783 static int mv643xx_eth_open(struct net_device *dev)
785 struct mv643xx_private *mp = netdev_priv(dev);
786 unsigned int port_num = mp->port_num;
787 unsigned int size;
788 int err;
790 err = request_irq(dev->irq, mv643xx_eth_int_handler,
791 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
792 if (err) {
793 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
794 port_num);
795 return -EAGAIN;
798 eth_port_init(mp);
800 memset(&mp->timeout, 0, sizeof(struct timer_list));
801 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
802 mp->timeout.data = (unsigned long)dev;
804 /* Allocate RX and TX skb rings */
805 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
806 GFP_KERNEL);
807 if (!mp->rx_skb) {
808 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
809 err = -ENOMEM;
810 goto out_free_irq;
812 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
813 GFP_KERNEL);
814 if (!mp->tx_skb) {
815 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
816 err = -ENOMEM;
817 goto out_free_rx_skb;
820 /* Allocate TX ring */
821 mp->tx_desc_count = 0;
822 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
823 mp->tx_desc_area_size = size;
825 if (mp->tx_sram_size) {
826 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
827 mp->tx_sram_size);
828 mp->tx_desc_dma = mp->tx_sram_addr;
829 } else
830 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
831 &mp->tx_desc_dma,
832 GFP_KERNEL);
834 if (!mp->p_tx_desc_area) {
835 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
836 dev->name, size);
837 err = -ENOMEM;
838 goto out_free_tx_skb;
840 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
841 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
843 ether_init_tx_desc_ring(mp);
845 /* Allocate RX ring */
846 mp->rx_desc_count = 0;
847 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
848 mp->rx_desc_area_size = size;
850 if (mp->rx_sram_size) {
851 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
852 mp->rx_sram_size);
853 mp->rx_desc_dma = mp->rx_sram_addr;
854 } else
855 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
856 &mp->rx_desc_dma,
857 GFP_KERNEL);
859 if (!mp->p_rx_desc_area) {
860 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
861 dev->name, size);
862 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
863 dev->name);
864 if (mp->rx_sram_size)
865 iounmap(mp->p_tx_desc_area);
866 else
867 dma_free_coherent(NULL, mp->tx_desc_area_size,
868 mp->p_tx_desc_area, mp->tx_desc_dma);
869 err = -ENOMEM;
870 goto out_free_tx_skb;
872 memset((void *)mp->p_rx_desc_area, 0, size);
874 ether_init_rx_desc_ring(mp);
876 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
878 /* Clear any pending ethernet port interrupts */
879 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
880 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
882 eth_port_start(dev);
884 /* Interrupt Coalescing */
886 #ifdef MV643XX_COAL
887 mp->rx_int_coal =
888 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
889 #endif
891 mp->tx_int_coal =
892 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
894 /* Unmask phy and link status changes interrupts */
895 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
896 ETH_INT_UNMASK_ALL_EXT);
898 /* Unmask RX buffer and TX end interrupt */
899 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
901 return 0;
903 out_free_tx_skb:
904 kfree(mp->tx_skb);
905 out_free_rx_skb:
906 kfree(mp->rx_skb);
907 out_free_irq:
908 free_irq(dev->irq, dev);
910 return err;
913 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
915 struct mv643xx_private *mp = netdev_priv(dev);
917 /* Stop Tx Queues */
918 mv643xx_eth_port_disable_tx(mp->port_num);
920 /* Free outstanding skb's on TX ring */
921 mv643xx_eth_free_all_tx_descs(dev);
923 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
925 /* Free TX ring */
926 if (mp->tx_sram_size)
927 iounmap(mp->p_tx_desc_area);
928 else
929 dma_free_coherent(NULL, mp->tx_desc_area_size,
930 mp->p_tx_desc_area, mp->tx_desc_dma);
933 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
935 struct mv643xx_private *mp = netdev_priv(dev);
936 unsigned int port_num = mp->port_num;
937 int curr;
939 /* Stop RX Queues */
940 mv643xx_eth_port_disable_rx(port_num);
942 /* Free preallocated skb's on RX rings */
943 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
944 if (mp->rx_skb[curr]) {
945 dev_kfree_skb(mp->rx_skb[curr]);
946 mp->rx_desc_count--;
950 if (mp->rx_desc_count)
951 printk(KERN_ERR
952 "%s: Error in freeing Rx Ring. %d skb's still"
953 " stuck in RX Ring - ignoring them\n", dev->name,
954 mp->rx_desc_count);
955 /* Free RX ring */
956 if (mp->rx_sram_size)
957 iounmap(mp->p_rx_desc_area);
958 else
959 dma_free_coherent(NULL, mp->rx_desc_area_size,
960 mp->p_rx_desc_area, mp->rx_desc_dma);
964 * mv643xx_eth_stop
966 * This function is used when closing the network device.
967 * It updates the hardware,
968 * release all memory that holds buffers and descriptors and release the IRQ.
969 * Input : a pointer to the device structure
970 * Output : zero if success , nonzero if fails
973 static int mv643xx_eth_stop(struct net_device *dev)
975 struct mv643xx_private *mp = netdev_priv(dev);
976 unsigned int port_num = mp->port_num;
978 /* Mask all interrupts on ethernet port */
979 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
980 /* wait for previous write to complete */
981 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
983 #ifdef MV643XX_NAPI
984 netif_poll_disable(dev);
985 #endif
986 netif_carrier_off(dev);
987 netif_stop_queue(dev);
989 eth_port_reset(mp->port_num);
991 mv643xx_eth_free_tx_rings(dev);
992 mv643xx_eth_free_rx_rings(dev);
994 #ifdef MV643XX_NAPI
995 netif_poll_enable(dev);
996 #endif
998 free_irq(dev->irq, dev);
1000 return 0;
1003 #ifdef MV643XX_NAPI
1005 * mv643xx_poll
1007 * This function is used in case of NAPI
1009 static int mv643xx_poll(struct net_device *dev, int *budget)
1011 struct mv643xx_private *mp = netdev_priv(dev);
1012 int done = 1, orig_budget, work_done;
1013 unsigned int port_num = mp->port_num;
1015 #ifdef MV643XX_TX_FAST_REFILL
1016 if (++mp->tx_clean_threshold > 5) {
1017 mv643xx_eth_free_completed_tx_descs(dev);
1018 mp->tx_clean_threshold = 0;
1020 #endif
1022 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1023 != (u32) mp->rx_used_desc_q) {
1024 orig_budget = *budget;
1025 if (orig_budget > dev->quota)
1026 orig_budget = dev->quota;
1027 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1028 *budget -= work_done;
1029 dev->quota -= work_done;
1030 if (work_done >= orig_budget)
1031 done = 0;
1034 if (done) {
1035 netif_rx_complete(dev);
1036 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1037 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1038 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1039 ETH_INT_UNMASK_ALL);
1042 return done ? 0 : 1;
1044 #endif
1047 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1049 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1050 * This helper function detects that case.
1053 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1055 unsigned int frag;
1056 skb_frag_t *fragp;
1058 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1059 fragp = &skb_shinfo(skb)->frags[frag];
1060 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1061 return 1;
1063 return 0;
1067 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1069 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1071 int tx_desc_curr;
1073 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1075 tx_desc_curr = mp->tx_curr_desc_q;
1076 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1078 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1080 return tx_desc_curr;
1084 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1086 * Ensure the data for each fragment to be transmitted is mapped properly,
1087 * then fill in descriptors in the tx hw queue.
1089 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1090 struct sk_buff *skb)
1092 int frag;
1093 int tx_index;
1094 struct eth_tx_desc *desc;
1096 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1097 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1099 tx_index = eth_alloc_tx_desc_index(mp);
1100 desc = &mp->p_tx_desc_area[tx_index];
1102 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1103 /* Last Frag enables interrupt and frees the skb */
1104 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1105 desc->cmd_sts |= ETH_ZERO_PADDING |
1106 ETH_TX_LAST_DESC |
1107 ETH_TX_ENABLE_INTERRUPT;
1108 mp->tx_skb[tx_index] = skb;
1109 } else
1110 mp->tx_skb[tx_index] = NULL;
1112 desc = &mp->p_tx_desc_area[tx_index];
1113 desc->l4i_chk = 0;
1114 desc->byte_cnt = this_frag->size;
1115 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1116 this_frag->page_offset,
1117 this_frag->size,
1118 DMA_TO_DEVICE);
1123 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1125 * Ensure the data for an skb to be transmitted is mapped properly,
1126 * then fill in descriptors in the tx hw queue and start the hardware.
1128 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1129 struct sk_buff *skb)
1131 int tx_index;
1132 struct eth_tx_desc *desc;
1133 u32 cmd_sts;
1134 int length;
1135 int nr_frags = skb_shinfo(skb)->nr_frags;
1137 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1139 tx_index = eth_alloc_tx_desc_index(mp);
1140 desc = &mp->p_tx_desc_area[tx_index];
1142 if (nr_frags) {
1143 eth_tx_fill_frag_descs(mp, skb);
1145 length = skb_headlen(skb);
1146 mp->tx_skb[tx_index] = NULL;
1147 } else {
1148 cmd_sts |= ETH_ZERO_PADDING |
1149 ETH_TX_LAST_DESC |
1150 ETH_TX_ENABLE_INTERRUPT;
1151 length = skb->len;
1152 mp->tx_skb[tx_index] = skb;
1155 desc->byte_cnt = length;
1156 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1158 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1159 BUG_ON(skb->protocol != ETH_P_IP);
1161 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1162 ETH_GEN_IP_V_4_CHECKSUM |
1163 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1165 switch (skb->nh.iph->protocol) {
1166 case IPPROTO_UDP:
1167 cmd_sts |= ETH_UDP_FRAME;
1168 desc->l4i_chk = skb->h.uh->check;
1169 break;
1170 case IPPROTO_TCP:
1171 desc->l4i_chk = skb->h.th->check;
1172 break;
1173 default:
1174 BUG();
1176 } else {
1177 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1178 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1179 desc->l4i_chk = 0;
1182 /* ensure all other descriptors are written before first cmd_sts */
1183 wmb();
1184 desc->cmd_sts = cmd_sts;
1186 /* ensure all descriptors are written before poking hardware */
1187 wmb();
1188 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1190 mp->tx_desc_count += nr_frags + 1;
1194 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1197 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1199 struct mv643xx_private *mp = netdev_priv(dev);
1200 struct net_device_stats *stats = &mp->stats;
1201 unsigned long flags;
1203 BUG_ON(netif_queue_stopped(dev));
1204 BUG_ON(skb == NULL);
1206 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1207 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1208 netif_stop_queue(dev);
1209 return 1;
1212 if (has_tiny_unaligned_frags(skb)) {
1213 if (__skb_linearize(skb)) {
1214 stats->tx_dropped++;
1215 printk(KERN_DEBUG "%s: failed to linearize tiny "
1216 "unaligned fragment\n", dev->name);
1217 return 1;
1221 spin_lock_irqsave(&mp->lock, flags);
1223 eth_tx_submit_descs_for_skb(mp, skb);
1224 stats->tx_bytes = skb->len;
1225 stats->tx_packets++;
1226 dev->trans_start = jiffies;
1228 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1229 netif_stop_queue(dev);
1231 spin_unlock_irqrestore(&mp->lock, flags);
1233 return 0; /* success */
1237 * mv643xx_eth_get_stats
1239 * Returns a pointer to the interface statistics.
1241 * Input : dev - a pointer to the required interface
1243 * Output : a pointer to the interface's statistics
1246 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1248 struct mv643xx_private *mp = netdev_priv(dev);
1250 return &mp->stats;
1253 #ifdef CONFIG_NET_POLL_CONTROLLER
1254 static void mv643xx_netpoll(struct net_device *netdev)
1256 struct mv643xx_private *mp = netdev_priv(netdev);
1257 int port_num = mp->port_num;
1259 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1260 /* wait for previous write to complete */
1261 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1263 mv643xx_eth_int_handler(netdev->irq, netdev);
1265 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1267 #endif
1269 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1270 int speed, int duplex,
1271 struct ethtool_cmd *cmd)
1273 struct mv643xx_private *mp = netdev_priv(dev);
1275 memset(cmd, 0, sizeof(*cmd));
1277 cmd->port = PORT_MII;
1278 cmd->transceiver = XCVR_INTERNAL;
1279 cmd->phy_address = phy_address;
1281 if (speed == 0) {
1282 cmd->autoneg = AUTONEG_ENABLE;
1283 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1284 cmd->speed = SPEED_100;
1285 cmd->advertising = ADVERTISED_10baseT_Half |
1286 ADVERTISED_10baseT_Full |
1287 ADVERTISED_100baseT_Half |
1288 ADVERTISED_100baseT_Full;
1289 if (mp->mii.supports_gmii)
1290 cmd->advertising |= ADVERTISED_1000baseT_Full;
1291 } else {
1292 cmd->autoneg = AUTONEG_DISABLE;
1293 cmd->speed = speed;
1294 cmd->duplex = duplex;
1299 * mv643xx_eth_probe
1301 * First function called after registering the network device.
1302 * It's purpose is to initialize the device as an ethernet device,
1303 * fill the ethernet device structure with pointers * to functions,
1304 * and set the MAC address of the interface
1306 * Input : struct device *
1307 * Output : -ENOMEM if failed , 0 if success
1309 static int mv643xx_eth_probe(struct platform_device *pdev)
1311 struct mv643xx_eth_platform_data *pd;
1312 int port_num = pdev->id;
1313 struct mv643xx_private *mp;
1314 struct net_device *dev;
1315 u8 *p;
1316 struct resource *res;
1317 int err;
1318 struct ethtool_cmd cmd;
1319 int duplex = DUPLEX_HALF;
1320 int speed = 0; /* default to auto-negotiation */
1322 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1323 if (!dev)
1324 return -ENOMEM;
1326 platform_set_drvdata(pdev, dev);
1328 mp = netdev_priv(dev);
1330 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1331 BUG_ON(!res);
1332 dev->irq = res->start;
1334 mp->port_num = port_num;
1336 dev->open = mv643xx_eth_open;
1337 dev->stop = mv643xx_eth_stop;
1338 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1339 dev->get_stats = mv643xx_eth_get_stats;
1340 dev->set_mac_address = mv643xx_eth_set_mac_address;
1341 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1343 /* No need to Tx Timeout */
1344 dev->tx_timeout = mv643xx_eth_tx_timeout;
1345 #ifdef MV643XX_NAPI
1346 dev->poll = mv643xx_poll;
1347 dev->weight = 64;
1348 #endif
1350 #ifdef CONFIG_NET_POLL_CONTROLLER
1351 dev->poll_controller = mv643xx_netpoll;
1352 #endif
1354 dev->watchdog_timeo = 2 * HZ;
1355 dev->tx_queue_len = mp->tx_ring_size;
1356 dev->base_addr = 0;
1357 dev->change_mtu = mv643xx_eth_change_mtu;
1358 dev->do_ioctl = mv643xx_eth_do_ioctl;
1359 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1361 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1362 #ifdef MAX_SKB_FRAGS
1364 * Zero copy can only work if we use Discovery II memory. Else, we will
1365 * have to map the buffers to ISA memory which is only 16 MB
1367 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1368 #endif
1369 #endif
1371 /* Configure the timeout task */
1372 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1374 spin_lock_init(&mp->lock);
1376 /* set default config values */
1377 eth_port_uc_addr_get(dev, dev->dev_addr);
1378 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1379 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1381 pd = pdev->dev.platform_data;
1382 if (pd) {
1383 if (pd->mac_addr)
1384 memcpy(dev->dev_addr, pd->mac_addr, 6);
1386 if (pd->phy_addr || pd->force_phy_addr)
1387 ethernet_phy_set(port_num, pd->phy_addr);
1389 if (pd->rx_queue_size)
1390 mp->rx_ring_size = pd->rx_queue_size;
1392 if (pd->tx_queue_size)
1393 mp->tx_ring_size = pd->tx_queue_size;
1395 if (pd->tx_sram_size) {
1396 mp->tx_sram_size = pd->tx_sram_size;
1397 mp->tx_sram_addr = pd->tx_sram_addr;
1400 if (pd->rx_sram_size) {
1401 mp->rx_sram_size = pd->rx_sram_size;
1402 mp->rx_sram_addr = pd->rx_sram_addr;
1405 duplex = pd->duplex;
1406 speed = pd->speed;
1409 /* Hook up MII support for ethtool */
1410 mp->mii.dev = dev;
1411 mp->mii.mdio_read = mv643xx_mdio_read;
1412 mp->mii.mdio_write = mv643xx_mdio_write;
1413 mp->mii.phy_id = ethernet_phy_get(port_num);
1414 mp->mii.phy_id_mask = 0x3f;
1415 mp->mii.reg_num_mask = 0x1f;
1417 err = ethernet_phy_detect(port_num);
1418 if (err) {
1419 pr_debug("MV643xx ethernet port %d: "
1420 "No PHY detected at addr %d\n",
1421 port_num, ethernet_phy_get(port_num));
1422 goto out;
1425 ethernet_phy_reset(port_num);
1426 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1427 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1428 mv643xx_eth_update_pscr(dev, &cmd);
1429 mv643xx_set_settings(dev, &cmd);
1431 SET_MODULE_OWNER(dev);
1432 SET_NETDEV_DEV(dev, &pdev->dev);
1433 err = register_netdev(dev);
1434 if (err)
1435 goto out;
1437 p = dev->dev_addr;
1438 printk(KERN_NOTICE
1439 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1440 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1442 if (dev->features & NETIF_F_SG)
1443 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1445 if (dev->features & NETIF_F_IP_CSUM)
1446 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1447 dev->name);
1449 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1450 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1451 #endif
1453 #ifdef MV643XX_COAL
1454 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1455 dev->name);
1456 #endif
1458 #ifdef MV643XX_NAPI
1459 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1460 #endif
1462 if (mp->tx_sram_size > 0)
1463 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1465 return 0;
1467 out:
1468 free_netdev(dev);
1470 return err;
1473 static int mv643xx_eth_remove(struct platform_device *pdev)
1475 struct net_device *dev = platform_get_drvdata(pdev);
1477 unregister_netdev(dev);
1478 flush_scheduled_work();
1480 free_netdev(dev);
1481 platform_set_drvdata(pdev, NULL);
1482 return 0;
1485 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1487 struct resource *res;
1489 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1491 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1492 if (res == NULL)
1493 return -ENODEV;
1495 mv643xx_eth_shared_base = ioremap(res->start,
1496 MV643XX_ETH_SHARED_REGS_SIZE);
1497 if (mv643xx_eth_shared_base == NULL)
1498 return -ENOMEM;
1500 return 0;
1504 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1506 iounmap(mv643xx_eth_shared_base);
1507 mv643xx_eth_shared_base = NULL;
1509 return 0;
1512 static struct platform_driver mv643xx_eth_driver = {
1513 .probe = mv643xx_eth_probe,
1514 .remove = mv643xx_eth_remove,
1515 .driver = {
1516 .name = MV643XX_ETH_NAME,
1520 static struct platform_driver mv643xx_eth_shared_driver = {
1521 .probe = mv643xx_eth_shared_probe,
1522 .remove = mv643xx_eth_shared_remove,
1523 .driver = {
1524 .name = MV643XX_ETH_SHARED_NAME,
1529 * mv643xx_init_module
1531 * Registers the network drivers into the Linux kernel
1533 * Input : N/A
1535 * Output : N/A
1537 static int __init mv643xx_init_module(void)
1539 int rc;
1541 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1542 if (!rc) {
1543 rc = platform_driver_register(&mv643xx_eth_driver);
1544 if (rc)
1545 platform_driver_unregister(&mv643xx_eth_shared_driver);
1547 return rc;
1551 * mv643xx_cleanup_module
1553 * Registers the network drivers into the Linux kernel
1555 * Input : N/A
1557 * Output : N/A
1559 static void __exit mv643xx_cleanup_module(void)
1561 platform_driver_unregister(&mv643xx_eth_driver);
1562 platform_driver_unregister(&mv643xx_eth_shared_driver);
1565 module_init(mv643xx_init_module);
1566 module_exit(mv643xx_cleanup_module);
1568 MODULE_LICENSE("GPL");
1569 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1570 " and Dale Farnsworth");
1571 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1574 * The second part is the low level driver of the gigE ethernet ports.
1578 * Marvell's Gigabit Ethernet controller low level driver
1580 * DESCRIPTION:
1581 * This file introduce low level API to Marvell's Gigabit Ethernet
1582 * controller. This Gigabit Ethernet Controller driver API controls
1583 * 1) Operations (i.e. port init, start, reset etc').
1584 * 2) Data flow (i.e. port send, receive etc').
1585 * Each Gigabit Ethernet port is controlled via
1586 * struct mv643xx_private.
1587 * This struct includes user configuration information as well as
1588 * driver internal data needed for its operations.
1590 * Supported Features:
1591 * - This low level driver is OS independent. Allocating memory for
1592 * the descriptor rings and buffers are not within the scope of
1593 * this driver.
1594 * - The user is free from Rx/Tx queue managing.
1595 * - This low level driver introduce functionality API that enable
1596 * the to operate Marvell's Gigabit Ethernet Controller in a
1597 * convenient way.
1598 * - Simple Gigabit Ethernet port operation API.
1599 * - Simple Gigabit Ethernet port data flow API.
1600 * - Data flow and operation API support per queue functionality.
1601 * - Support cached descriptors for better performance.
1602 * - Enable access to all four DRAM banks and internal SRAM memory
1603 * spaces.
1604 * - PHY access and control API.
1605 * - Port control register configuration API.
1606 * - Full control over Unicast and Multicast MAC configurations.
1608 * Operation flow:
1610 * Initialization phase
1611 * This phase complete the initialization of the the
1612 * mv643xx_private struct.
1613 * User information regarding port configuration has to be set
1614 * prior to calling the port initialization routine.
1616 * In this phase any port Tx/Rx activity is halted, MIB counters
1617 * are cleared, PHY address is set according to user parameter and
1618 * access to DRAM and internal SRAM memory spaces.
1620 * Driver ring initialization
1621 * Allocating memory for the descriptor rings and buffers is not
1622 * within the scope of this driver. Thus, the user is required to
1623 * allocate memory for the descriptors ring and buffers. Those
1624 * memory parameters are used by the Rx and Tx ring initialization
1625 * routines in order to curve the descriptor linked list in a form
1626 * of a ring.
1627 * Note: Pay special attention to alignment issues when using
1628 * cached descriptors/buffers. In this phase the driver store
1629 * information in the mv643xx_private struct regarding each queue
1630 * ring.
1632 * Driver start
1633 * This phase prepares the Ethernet port for Rx and Tx activity.
1634 * It uses the information stored in the mv643xx_private struct to
1635 * initialize the various port registers.
1637 * Data flow:
1638 * All packet references to/from the driver are done using
1639 * struct pkt_info.
1640 * This struct is a unified struct used with Rx and Tx operations.
1641 * This way the user is not required to be familiar with neither
1642 * Tx nor Rx descriptors structures.
1643 * The driver's descriptors rings are management by indexes.
1644 * Those indexes controls the ring resources and used to indicate
1645 * a SW resource error:
1646 * 'current'
1647 * This index points to the current available resource for use. For
1648 * example in Rx process this index will point to the descriptor
1649 * that will be passed to the user upon calling the receive
1650 * routine. In Tx process, this index will point to the descriptor
1651 * that will be assigned with the user packet info and transmitted.
1652 * 'used'
1653 * This index points to the descriptor that need to restore its
1654 * resources. For example in Rx process, using the Rx buffer return
1655 * API will attach the buffer returned in packet info to the
1656 * descriptor pointed by 'used'. In Tx process, using the Tx
1657 * descriptor return will merely return the user packet info with
1658 * the command status of the transmitted buffer pointed by the
1659 * 'used' index. Nevertheless, it is essential to use this routine
1660 * to update the 'used' index.
1661 * 'first'
1662 * This index supports Tx Scatter-Gather. It points to the first
1663 * descriptor of a packet assembled of multiple buffers. For
1664 * example when in middle of Such packet we have a Tx resource
1665 * error the 'curr' index get the value of 'first' to indicate
1666 * that the ring returned to its state before trying to transmit
1667 * this packet.
1669 * Receive operation:
1670 * The eth_port_receive API set the packet information struct,
1671 * passed by the caller, with received information from the
1672 * 'current' SDMA descriptor.
1673 * It is the user responsibility to return this resource back
1674 * to the Rx descriptor ring to enable the reuse of this source.
1675 * Return Rx resource is done using the eth_rx_return_buff API.
1677 * Prior to calling the initialization routine eth_port_init() the user
1678 * must set the following fields under mv643xx_private struct:
1679 * port_num User Ethernet port number.
1680 * port_config User port configuration value.
1681 * port_config_extend User port config extend value.
1682 * port_sdma_config User port SDMA config value.
1683 * port_serial_control User port serial control value.
1685 * This driver data flow is done using the struct pkt_info which
1686 * is a unified struct for Rx and Tx operations:
1688 * byte_cnt Tx/Rx descriptor buffer byte count.
1689 * l4i_chk CPU provided TCP Checksum. For Tx operation
1690 * only.
1691 * cmd_sts Tx/Rx descriptor command status.
1692 * buf_ptr Tx/Rx descriptor buffer pointer.
1693 * return_info Tx/Rx user resource return information.
1696 /* PHY routines */
1697 static int ethernet_phy_get(unsigned int eth_port_num);
1698 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1700 /* Ethernet Port routines */
1701 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1704 * eth_port_init - Initialize the Ethernet port driver
1706 * DESCRIPTION:
1707 * This function prepares the ethernet port to start its activity:
1708 * 1) Completes the ethernet port driver struct initialization toward port
1709 * start routine.
1710 * 2) Resets the device to a quiescent state in case of warm reboot.
1711 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1712 * 4) Clean MAC tables. The reset status of those tables is unknown.
1713 * 5) Set PHY address.
1714 * Note: Call this routine prior to eth_port_start routine and after
1715 * setting user values in the user fields of Ethernet port control
1716 * struct.
1718 * INPUT:
1719 * struct mv643xx_private *mp Ethernet port control struct
1721 * OUTPUT:
1722 * See description.
1724 * RETURN:
1725 * None.
1727 static void eth_port_init(struct mv643xx_private *mp)
1729 mp->rx_resource_err = 0;
1731 eth_port_reset(mp->port_num);
1733 eth_port_init_mac_tables(mp->port_num);
1737 * eth_port_start - Start the Ethernet port activity.
1739 * DESCRIPTION:
1740 * This routine prepares the Ethernet port for Rx and Tx activity:
1741 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1742 * has been initialized a descriptor's ring (using
1743 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1744 * 2. Initialize and enable the Ethernet configuration port by writing to
1745 * the port's configuration and command registers.
1746 * 3. Initialize and enable the SDMA by writing to the SDMA's
1747 * configuration and command registers. After completing these steps,
1748 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1750 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1751 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1752 * and ether_init_rx_desc_ring for Rx queues).
1754 * INPUT:
1755 * dev - a pointer to the required interface
1757 * OUTPUT:
1758 * Ethernet port is ready to receive and transmit.
1760 * RETURN:
1761 * None.
1763 static void eth_port_start(struct net_device *dev)
1765 struct mv643xx_private *mp = netdev_priv(dev);
1766 unsigned int port_num = mp->port_num;
1767 int tx_curr_desc, rx_curr_desc;
1768 u32 pscr;
1769 struct ethtool_cmd ethtool_cmd;
1771 /* Assignment of Tx CTRP of given queue */
1772 tx_curr_desc = mp->tx_curr_desc_q;
1773 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1774 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1776 /* Assignment of Rx CRDP of given queue */
1777 rx_curr_desc = mp->rx_curr_desc_q;
1778 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1779 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1781 /* Add the assigned Ethernet address to the port's address table */
1782 eth_port_uc_addr_set(port_num, dev->dev_addr);
1784 /* Assign port configuration and command. */
1785 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1786 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1788 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1789 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1791 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1793 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1794 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1796 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1797 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1798 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1799 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1800 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1802 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1804 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1805 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1807 /* Assign port SDMA configuration */
1808 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1809 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1811 /* Enable port Rx. */
1812 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1814 /* Disable port bandwidth limits by clearing MTU register */
1815 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1817 /* save phy settings across reset */
1818 mv643xx_get_settings(dev, &ethtool_cmd);
1819 ethernet_phy_reset(mp->port_num);
1820 mv643xx_set_settings(dev, &ethtool_cmd);
1824 * eth_port_uc_addr_set - This function Set the port Unicast address.
1826 * DESCRIPTION:
1827 * This function Set the port Ethernet MAC address.
1829 * INPUT:
1830 * unsigned int eth_port_num Port number.
1831 * char * p_addr Address to be set
1833 * OUTPUT:
1834 * Set MAC address low and high registers. also calls
1835 * eth_port_set_filter_table_entry() to set the unicast
1836 * table with the proper information.
1838 * RETURN:
1839 * N/A.
1842 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1843 unsigned char *p_addr)
1845 unsigned int mac_h;
1846 unsigned int mac_l;
1847 int table;
1849 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1850 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1851 (p_addr[3] << 0);
1853 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1854 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1856 /* Accept frames of this address */
1857 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1858 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1862 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1863 * (MAC address) from the ethernet hw registers.
1865 * DESCRIPTION:
1866 * This function retrieves the port Ethernet MAC address.
1868 * INPUT:
1869 * unsigned int eth_port_num Port number.
1870 * char *MacAddr pointer where the MAC address is stored
1872 * OUTPUT:
1873 * Copy the MAC address to the location pointed to by MacAddr
1875 * RETURN:
1876 * N/A.
1879 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1881 struct mv643xx_private *mp = netdev_priv(dev);
1882 unsigned int mac_h;
1883 unsigned int mac_l;
1885 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1886 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1888 p_addr[0] = (mac_h >> 24) & 0xff;
1889 p_addr[1] = (mac_h >> 16) & 0xff;
1890 p_addr[2] = (mac_h >> 8) & 0xff;
1891 p_addr[3] = mac_h & 0xff;
1892 p_addr[4] = (mac_l >> 8) & 0xff;
1893 p_addr[5] = mac_l & 0xff;
1897 * The entries in each table are indexed by a hash of a packet's MAC
1898 * address. One bit in each entry determines whether the packet is
1899 * accepted. There are 4 entries (each 8 bits wide) in each register
1900 * of the table. The bits in each entry are defined as follows:
1901 * 0 Accept=1, Drop=0
1902 * 3-1 Queue (ETH_Q0=0)
1903 * 7-4 Reserved = 0;
1905 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1907 unsigned int table_reg;
1908 unsigned int tbl_offset;
1909 unsigned int reg_offset;
1911 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1912 reg_offset = entry % 4; /* Entry offset within the register */
1914 /* Set "accepts frame bit" at specified table entry */
1915 table_reg = mv_read(table + tbl_offset);
1916 table_reg |= 0x01 << (8 * reg_offset);
1917 mv_write(table + tbl_offset, table_reg);
1921 * eth_port_mc_addr - Multicast address settings.
1923 * The MV device supports multicast using two tables:
1924 * 1) Special Multicast Table for MAC addresses of the form
1925 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1926 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1927 * Table entries in the DA-Filter table.
1928 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1929 * is used as an index to the Other Multicast Table entries in the
1930 * DA-Filter table. This function calculates the CRC-8bit value.
1931 * In either case, eth_port_set_filter_table_entry() is then called
1932 * to set to set the actual table entry.
1934 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1936 unsigned int mac_h;
1937 unsigned int mac_l;
1938 unsigned char crc_result = 0;
1939 int table;
1940 int mac_array[48];
1941 int crc[8];
1942 int i;
1944 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1945 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1946 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1947 (eth_port_num);
1948 eth_port_set_filter_table_entry(table, p_addr[5]);
1949 return;
1952 /* Calculate CRC-8 out of the given address */
1953 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1954 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1955 (p_addr[4] << 8) | (p_addr[5] << 0);
1957 for (i = 0; i < 32; i++)
1958 mac_array[i] = (mac_l >> i) & 0x1;
1959 for (i = 32; i < 48; i++)
1960 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1962 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1963 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1964 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1965 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1966 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1968 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1969 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1970 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1971 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1972 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1973 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1974 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1976 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1977 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1978 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1979 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1980 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1981 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1983 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1984 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1985 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1986 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1987 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1988 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1990 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1991 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1992 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1993 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1994 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1995 mac_array[3] ^ mac_array[2];
1997 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1998 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1999 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2000 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2001 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2002 mac_array[4] ^ mac_array[3];
2004 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2005 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2006 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2007 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2008 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2009 mac_array[4];
2011 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2012 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2013 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2014 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2015 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2017 for (i = 0; i < 8; i++)
2018 crc_result = crc_result | (crc[i] << i);
2020 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2021 eth_port_set_filter_table_entry(table, crc_result);
2025 * Set the entire multicast list based on dev->mc_list.
2027 static void eth_port_set_multicast_list(struct net_device *dev)
2030 struct dev_mc_list *mc_list;
2031 int i;
2032 int table_index;
2033 struct mv643xx_private *mp = netdev_priv(dev);
2034 unsigned int eth_port_num = mp->port_num;
2036 /* If the device is in promiscuous mode or in all multicast mode,
2037 * we will fully populate both multicast tables with accept.
2038 * This is guaranteed to yield a match on all multicast addresses...
2040 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2041 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2042 /* Set all entries in DA filter special multicast
2043 * table (Ex_dFSMT)
2044 * Set for ETH_Q0 for now
2045 * Bits
2046 * 0 Accept=1, Drop=0
2047 * 3-1 Queue ETH_Q0=0
2048 * 7-4 Reserved = 0;
2050 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2052 /* Set all entries in DA filter other multicast
2053 * table (Ex_dFOMT)
2054 * Set for ETH_Q0 for now
2055 * Bits
2056 * 0 Accept=1, Drop=0
2057 * 3-1 Queue ETH_Q0=0
2058 * 7-4 Reserved = 0;
2060 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2062 return;
2065 /* We will clear out multicast tables every time we get the list.
2066 * Then add the entire new list...
2068 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2069 /* Clear DA filter special multicast table (Ex_dFSMT) */
2070 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2071 (eth_port_num) + table_index, 0);
2073 /* Clear DA filter other multicast table (Ex_dFOMT) */
2074 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2075 (eth_port_num) + table_index, 0);
2078 /* Get pointer to net_device multicast list and add each one... */
2079 for (i = 0, mc_list = dev->mc_list;
2080 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2081 i++, mc_list = mc_list->next)
2082 if (mc_list->dmi_addrlen == 6)
2083 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2087 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2089 * DESCRIPTION:
2090 * Go through all the DA filter tables (Unicast, Special Multicast &
2091 * Other Multicast) and set each entry to 0.
2093 * INPUT:
2094 * unsigned int eth_port_num Ethernet Port number.
2096 * OUTPUT:
2097 * Multicast and Unicast packets are rejected.
2099 * RETURN:
2100 * None.
2102 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2104 int table_index;
2106 /* Clear DA filter unicast table (Ex_dFUT) */
2107 for (table_index = 0; table_index <= 0xC; table_index += 4)
2108 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2109 (eth_port_num) + table_index, 0);
2111 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2112 /* Clear DA filter special multicast table (Ex_dFSMT) */
2113 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2114 (eth_port_num) + table_index, 0);
2115 /* Clear DA filter other multicast table (Ex_dFOMT) */
2116 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2117 (eth_port_num) + table_index, 0);
2122 * eth_clear_mib_counters - Clear all MIB counters
2124 * DESCRIPTION:
2125 * This function clears all MIB counters of a specific ethernet port.
2126 * A read from the MIB counter will reset the counter.
2128 * INPUT:
2129 * unsigned int eth_port_num Ethernet Port number.
2131 * OUTPUT:
2132 * After reading all MIB counters, the counters resets.
2134 * RETURN:
2135 * MIB counter value.
2138 static void eth_clear_mib_counters(unsigned int eth_port_num)
2140 int i;
2142 /* Perform dummy reads from MIB counters */
2143 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2144 i += 4)
2145 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2148 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2150 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2153 static void eth_update_mib_counters(struct mv643xx_private *mp)
2155 struct mv643xx_mib_counters *p = &mp->mib_counters;
2156 int offset;
2158 p->good_octets_received +=
2159 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2160 p->good_octets_received +=
2161 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2163 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2164 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2165 offset += 4)
2166 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2168 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2169 p->good_octets_sent +=
2170 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2172 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2173 offset <= ETH_MIB_LATE_COLLISION;
2174 offset += 4)
2175 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2179 * ethernet_phy_detect - Detect whether a phy is present
2181 * DESCRIPTION:
2182 * This function tests whether there is a PHY present on
2183 * the specified port.
2185 * INPUT:
2186 * unsigned int eth_port_num Ethernet Port number.
2188 * OUTPUT:
2189 * None
2191 * RETURN:
2192 * 0 on success
2193 * -ENODEV on failure
2196 static int ethernet_phy_detect(unsigned int port_num)
2198 unsigned int phy_reg_data0;
2199 int auto_neg;
2201 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2202 auto_neg = phy_reg_data0 & 0x1000;
2203 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2204 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2206 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2207 if ((phy_reg_data0 & 0x1000) == auto_neg)
2208 return -ENODEV; /* change didn't take */
2210 phy_reg_data0 ^= 0x1000;
2211 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2212 return 0;
2216 * ethernet_phy_get - Get the ethernet port PHY address.
2218 * DESCRIPTION:
2219 * This routine returns the given ethernet port PHY address.
2221 * INPUT:
2222 * unsigned int eth_port_num Ethernet Port number.
2224 * OUTPUT:
2225 * None.
2227 * RETURN:
2228 * PHY address.
2231 static int ethernet_phy_get(unsigned int eth_port_num)
2233 unsigned int reg_data;
2235 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2237 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2241 * ethernet_phy_set - Set the ethernet port PHY address.
2243 * DESCRIPTION:
2244 * This routine sets the given ethernet port PHY address.
2246 * INPUT:
2247 * unsigned int eth_port_num Ethernet Port number.
2248 * int phy_addr PHY address.
2250 * OUTPUT:
2251 * None.
2253 * RETURN:
2254 * None.
2257 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2259 u32 reg_data;
2260 int addr_shift = 5 * eth_port_num;
2262 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2263 reg_data &= ~(0x1f << addr_shift);
2264 reg_data |= (phy_addr & 0x1f) << addr_shift;
2265 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2269 * ethernet_phy_reset - Reset Ethernet port PHY.
2271 * DESCRIPTION:
2272 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2274 * INPUT:
2275 * unsigned int eth_port_num Ethernet Port number.
2277 * OUTPUT:
2278 * The PHY is reset.
2280 * RETURN:
2281 * None.
2284 static void ethernet_phy_reset(unsigned int eth_port_num)
2286 unsigned int phy_reg_data;
2288 /* Reset the PHY */
2289 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2290 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2291 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2293 /* wait for PHY to come out of reset */
2294 do {
2295 udelay(1);
2296 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2297 } while (phy_reg_data & 0x8000);
2300 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2301 unsigned int queues)
2303 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2306 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2307 unsigned int queues)
2309 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2312 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2314 u32 queues;
2316 /* Stop Tx port activity. Check port Tx activity. */
2317 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2318 & 0xFF;
2319 if (queues) {
2320 /* Issue stop command for active queues only */
2321 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2322 (queues << 8));
2324 /* Wait for all Tx activity to terminate. */
2325 /* Check port cause register that all Tx queues are stopped */
2326 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2327 & 0xFF)
2328 udelay(PHY_WAIT_MICRO_SECONDS);
2330 /* Wait for Tx FIFO to empty */
2331 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2332 ETH_PORT_TX_FIFO_EMPTY)
2333 udelay(PHY_WAIT_MICRO_SECONDS);
2336 return queues;
2339 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2341 u32 queues;
2343 /* Stop Rx port activity. Check port Rx activity. */
2344 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2345 & 0xFF;
2346 if (queues) {
2347 /* Issue stop command for active queues only */
2348 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2349 (queues << 8));
2351 /* Wait for all Rx activity to terminate. */
2352 /* Check port cause register that all Rx queues are stopped */
2353 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2354 & 0xFF)
2355 udelay(PHY_WAIT_MICRO_SECONDS);
2358 return queues;
2362 * eth_port_reset - Reset Ethernet port
2364 * DESCRIPTION:
2365 * This routine resets the chip by aborting any SDMA engine activity and
2366 * clearing the MIB counters. The Receiver and the Transmit unit are in
2367 * idle state after this command is performed and the port is disabled.
2369 * INPUT:
2370 * unsigned int eth_port_num Ethernet Port number.
2372 * OUTPUT:
2373 * Channel activity is halted.
2375 * RETURN:
2376 * None.
2379 static void eth_port_reset(unsigned int port_num)
2381 unsigned int reg_data;
2383 mv643xx_eth_port_disable_tx(port_num);
2384 mv643xx_eth_port_disable_rx(port_num);
2386 /* Clear all MIB counters */
2387 eth_clear_mib_counters(port_num);
2389 /* Reset the Enable bit in the Configuration Register */
2390 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2391 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2392 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2393 MV643XX_ETH_FORCE_LINK_PASS);
2394 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2399 * eth_port_read_smi_reg - Read PHY registers
2401 * DESCRIPTION:
2402 * This routine utilize the SMI interface to interact with the PHY in
2403 * order to perform PHY register read.
2405 * INPUT:
2406 * unsigned int port_num Ethernet Port number.
2407 * unsigned int phy_reg PHY register address offset.
2408 * unsigned int *value Register value buffer.
2410 * OUTPUT:
2411 * Write the value of a specified PHY register into given buffer.
2413 * RETURN:
2414 * false if the PHY is busy or read data is not in valid state.
2415 * true otherwise.
2418 static void eth_port_read_smi_reg(unsigned int port_num,
2419 unsigned int phy_reg, unsigned int *value)
2421 int phy_addr = ethernet_phy_get(port_num);
2422 unsigned long flags;
2423 int i;
2425 /* the SMI register is a shared resource */
2426 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2428 /* wait for the SMI register to become available */
2429 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2430 if (i == PHY_WAIT_ITERATIONS) {
2431 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2432 goto out;
2434 udelay(PHY_WAIT_MICRO_SECONDS);
2437 mv_write(MV643XX_ETH_SMI_REG,
2438 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2440 /* now wait for the data to be valid */
2441 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2442 if (i == PHY_WAIT_ITERATIONS) {
2443 printk("mv643xx PHY read timeout, port %d\n", port_num);
2444 goto out;
2446 udelay(PHY_WAIT_MICRO_SECONDS);
2449 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2450 out:
2451 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2455 * eth_port_write_smi_reg - Write to PHY registers
2457 * DESCRIPTION:
2458 * This routine utilize the SMI interface to interact with the PHY in
2459 * order to perform writes to PHY registers.
2461 * INPUT:
2462 * unsigned int eth_port_num Ethernet Port number.
2463 * unsigned int phy_reg PHY register address offset.
2464 * unsigned int value Register value.
2466 * OUTPUT:
2467 * Write the given value to the specified PHY register.
2469 * RETURN:
2470 * false if the PHY is busy.
2471 * true otherwise.
2474 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2475 unsigned int phy_reg, unsigned int value)
2477 int phy_addr;
2478 int i;
2479 unsigned long flags;
2481 phy_addr = ethernet_phy_get(eth_port_num);
2483 /* the SMI register is a shared resource */
2484 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2486 /* wait for the SMI register to become available */
2487 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2488 if (i == PHY_WAIT_ITERATIONS) {
2489 printk("mv643xx PHY busy timeout, port %d\n",
2490 eth_port_num);
2491 goto out;
2493 udelay(PHY_WAIT_MICRO_SECONDS);
2496 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2497 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2498 out:
2499 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2503 * Wrappers for MII support library.
2505 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2507 int val;
2508 struct mv643xx_private *mp = netdev_priv(dev);
2510 eth_port_read_smi_reg(mp->port_num, location, &val);
2511 return val;
2514 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2516 struct mv643xx_private *mp = netdev_priv(dev);
2517 eth_port_write_smi_reg(mp->port_num, location, val);
2521 * eth_port_receive - Get received information from Rx ring.
2523 * DESCRIPTION:
2524 * This routine returns the received data to the caller. There is no
2525 * data copying during routine operation. All information is returned
2526 * using pointer to packet information struct passed from the caller.
2527 * If the routine exhausts Rx ring resources then the resource error flag
2528 * is set.
2530 * INPUT:
2531 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2532 * struct pkt_info *p_pkt_info User packet buffer.
2534 * OUTPUT:
2535 * Rx ring current and used indexes are updated.
2537 * RETURN:
2538 * ETH_ERROR in case the routine can not access Rx desc ring.
2539 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2540 * ETH_END_OF_JOB if there is no received data.
2541 * ETH_OK otherwise.
2543 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2544 struct pkt_info *p_pkt_info)
2546 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2547 volatile struct eth_rx_desc *p_rx_desc;
2548 unsigned int command_status;
2549 unsigned long flags;
2551 /* Do not process Rx ring in case of Rx ring resource error */
2552 if (mp->rx_resource_err)
2553 return ETH_QUEUE_FULL;
2555 spin_lock_irqsave(&mp->lock, flags);
2557 /* Get the Rx Desc ring 'curr and 'used' indexes */
2558 rx_curr_desc = mp->rx_curr_desc_q;
2559 rx_used_desc = mp->rx_used_desc_q;
2561 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2563 /* The following parameters are used to save readings from memory */
2564 command_status = p_rx_desc->cmd_sts;
2565 rmb();
2567 /* Nothing to receive... */
2568 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2569 spin_unlock_irqrestore(&mp->lock, flags);
2570 return ETH_END_OF_JOB;
2573 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2574 p_pkt_info->cmd_sts = command_status;
2575 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2576 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2577 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2580 * Clean the return info field to indicate that the
2581 * packet has been moved to the upper layers
2583 mp->rx_skb[rx_curr_desc] = NULL;
2585 /* Update current index in data structure */
2586 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2587 mp->rx_curr_desc_q = rx_next_curr_desc;
2589 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2590 if (rx_next_curr_desc == rx_used_desc)
2591 mp->rx_resource_err = 1;
2593 spin_unlock_irqrestore(&mp->lock, flags);
2595 return ETH_OK;
2599 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2601 * DESCRIPTION:
2602 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2603 * next 'used' descriptor and attached the returned buffer to it.
2604 * In case the Rx ring was in "resource error" condition, where there are
2605 * no available Rx resources, the function resets the resource error flag.
2607 * INPUT:
2608 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2609 * struct pkt_info *p_pkt_info Information on returned buffer.
2611 * OUTPUT:
2612 * New available Rx resource in Rx descriptor ring.
2614 * RETURN:
2615 * ETH_ERROR in case the routine can not access Rx desc ring.
2616 * ETH_OK otherwise.
2618 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2619 struct pkt_info *p_pkt_info)
2621 int used_rx_desc; /* Where to return Rx resource */
2622 volatile struct eth_rx_desc *p_used_rx_desc;
2623 unsigned long flags;
2625 spin_lock_irqsave(&mp->lock, flags);
2627 /* Get 'used' Rx descriptor */
2628 used_rx_desc = mp->rx_used_desc_q;
2629 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2631 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2632 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2633 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2635 /* Flush the write pipe */
2637 /* Return the descriptor to DMA ownership */
2638 wmb();
2639 p_used_rx_desc->cmd_sts =
2640 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2641 wmb();
2643 /* Move the used descriptor pointer to the next descriptor */
2644 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2646 /* Any Rx return cancels the Rx resource error status */
2647 mp->rx_resource_err = 0;
2649 spin_unlock_irqrestore(&mp->lock, flags);
2651 return ETH_OK;
2654 /************* Begin ethtool support *************************/
2656 struct mv643xx_stats {
2657 char stat_string[ETH_GSTRING_LEN];
2658 int sizeof_stat;
2659 int stat_offset;
2662 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2663 offsetof(struct mv643xx_private, m)
2665 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2666 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2667 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2668 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2669 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2670 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2671 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2672 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2673 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2674 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2675 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2676 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2677 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2678 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2679 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2680 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2681 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2682 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2683 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2684 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2685 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2686 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2687 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2688 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2689 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2690 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2691 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2692 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2693 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2694 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2695 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2696 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2697 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2698 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2699 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2700 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2701 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2702 { "collision", MV643XX_STAT(mib_counters.collision) },
2703 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2706 #define MV643XX_STATS_LEN \
2707 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2709 static void mv643xx_get_drvinfo(struct net_device *netdev,
2710 struct ethtool_drvinfo *drvinfo)
2712 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2713 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2714 strncpy(drvinfo->fw_version, "N/A", 32);
2715 strncpy(drvinfo->bus_info, "mv643xx", 32);
2716 drvinfo->n_stats = MV643XX_STATS_LEN;
2719 static int mv643xx_get_stats_count(struct net_device *netdev)
2721 return MV643XX_STATS_LEN;
2724 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2725 struct ethtool_stats *stats, uint64_t *data)
2727 struct mv643xx_private *mp = netdev->priv;
2728 int i;
2730 eth_update_mib_counters(mp);
2732 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2733 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2734 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2735 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2739 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2740 uint8_t *data)
2742 int i;
2744 switch(stringset) {
2745 case ETH_SS_STATS:
2746 for (i=0; i < MV643XX_STATS_LEN; i++) {
2747 memcpy(data + i * ETH_GSTRING_LEN,
2748 mv643xx_gstrings_stats[i].stat_string,
2749 ETH_GSTRING_LEN);
2751 break;
2755 static u32 mv643xx_eth_get_link(struct net_device *dev)
2757 struct mv643xx_private *mp = netdev_priv(dev);
2759 return mii_link_ok(&mp->mii);
2762 static int mv643xx_eth_nway_restart(struct net_device *dev)
2764 struct mv643xx_private *mp = netdev_priv(dev);
2766 return mii_nway_restart(&mp->mii);
2769 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2771 struct mv643xx_private *mp = netdev_priv(dev);
2773 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2776 static const struct ethtool_ops mv643xx_ethtool_ops = {
2777 .get_settings = mv643xx_get_settings,
2778 .set_settings = mv643xx_set_settings,
2779 .get_drvinfo = mv643xx_get_drvinfo,
2780 .get_link = mv643xx_eth_get_link,
2781 .get_sg = ethtool_op_get_sg,
2782 .set_sg = ethtool_op_set_sg,
2783 .get_stats_count = mv643xx_get_stats_count,
2784 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2785 .get_strings = mv643xx_get_strings,
2786 .get_stats_count = mv643xx_get_stats_count,
2787 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2788 .nway_reset = mv643xx_eth_nway_restart,
2791 /************* End ethtool support *************************/