[PATCH] pids: coding style: use struct pidmap
[linux-2.6/mini2440.git] / kernel / pid.c
blob0a45de2918e293a6c791c8e00b6d0a7226613870
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
30 #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
31 static struct hlist_head *pid_hash;
32 static int pidhash_shift;
33 static kmem_cache_t *pid_cachep;
35 int pid_max = PID_MAX_DEFAULT;
36 int last_pid;
38 #define RESERVED_PIDS 300
40 int pid_max_min = RESERVED_PIDS + 1;
41 int pid_max_max = PID_MAX_LIMIT;
43 #define PIDMAP_ENTRIES ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8)
44 #define BITS_PER_PAGE (PAGE_SIZE*8)
45 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
46 #define mk_pid(map, off) (((map) - pidmap_array)*BITS_PER_PAGE + (off))
47 #define find_next_offset(map, off) \
48 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
51 * PID-map pages start out as NULL, they get allocated upon
52 * first use and are never deallocated. This way a low pid_max
53 * value does not cause lots of bitmaps to be allocated, but
54 * the scheme scales to up to 4 million PIDs, runtime.
56 struct pidmap {
57 atomic_t nr_free;
58 void *page;
61 static struct pidmap pidmap_array[PIDMAP_ENTRIES] =
62 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };
65 * Note: disable interrupts while the pidmap_lock is held as an
66 * interrupt might come in and do read_lock(&tasklist_lock).
68 * If we don't disable interrupts there is a nasty deadlock between
69 * detach_pid()->free_pid() and another cpu that does
70 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
71 * read_lock(&tasklist_lock);
73 * After we clean up the tasklist_lock and know there are no
74 * irq handlers that take it we can leave the interrupts enabled.
75 * For now it is easier to be safe than to prove it can't happen.
77 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
79 static fastcall void free_pidmap(int pid)
81 struct pidmap *map = pidmap_array + pid / BITS_PER_PAGE;
82 int offset = pid & BITS_PER_PAGE_MASK;
84 clear_bit(offset, map->page);
85 atomic_inc(&map->nr_free);
88 static int alloc_pidmap(void)
90 int i, offset, max_scan, pid, last = last_pid;
91 struct pidmap *map;
93 pid = last + 1;
94 if (pid >= pid_max)
95 pid = RESERVED_PIDS;
96 offset = pid & BITS_PER_PAGE_MASK;
97 map = &pidmap_array[pid/BITS_PER_PAGE];
98 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
99 for (i = 0; i <= max_scan; ++i) {
100 if (unlikely(!map->page)) {
101 unsigned long page = get_zeroed_page(GFP_KERNEL);
103 * Free the page if someone raced with us
104 * installing it:
106 spin_lock_irq(&pidmap_lock);
107 if (map->page)
108 free_page(page);
109 else
110 map->page = (void *)page;
111 spin_unlock_irq(&pidmap_lock);
112 if (unlikely(!map->page))
113 break;
115 if (likely(atomic_read(&map->nr_free))) {
116 do {
117 if (!test_and_set_bit(offset, map->page)) {
118 atomic_dec(&map->nr_free);
119 last_pid = pid;
120 return pid;
122 offset = find_next_offset(map, offset);
123 pid = mk_pid(map, offset);
125 * find_next_offset() found a bit, the pid from it
126 * is in-bounds, and if we fell back to the last
127 * bitmap block and the final block was the same
128 * as the starting point, pid is before last_pid.
130 } while (offset < BITS_PER_PAGE && pid < pid_max &&
131 (i != max_scan || pid < last ||
132 !((last+1) & BITS_PER_PAGE_MASK)));
134 if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) {
135 ++map;
136 offset = 0;
137 } else {
138 map = &pidmap_array[0];
139 offset = RESERVED_PIDS;
140 if (unlikely(last == offset))
141 break;
143 pid = mk_pid(map, offset);
145 return -1;
148 static int next_pidmap(int last)
150 int offset;
151 pidmap_t *map;
153 offset = (last + 1) & BITS_PER_PAGE_MASK;
154 map = &pidmap_array[(last + 1)/BITS_PER_PAGE];
155 for (; map < &pidmap_array[PIDMAP_ENTRIES]; map++, offset = 0) {
156 if (unlikely(!map->page))
157 continue;
158 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
159 if (offset < BITS_PER_PAGE)
160 return mk_pid(map, offset);
162 return -1;
165 fastcall void put_pid(struct pid *pid)
167 if (!pid)
168 return;
169 if ((atomic_read(&pid->count) == 1) ||
170 atomic_dec_and_test(&pid->count))
171 kmem_cache_free(pid_cachep, pid);
173 EXPORT_SYMBOL_GPL(put_pid);
175 static void delayed_put_pid(struct rcu_head *rhp)
177 struct pid *pid = container_of(rhp, struct pid, rcu);
178 put_pid(pid);
181 fastcall void free_pid(struct pid *pid)
183 /* We can be called with write_lock_irq(&tasklist_lock) held */
184 unsigned long flags;
186 spin_lock_irqsave(&pidmap_lock, flags);
187 hlist_del_rcu(&pid->pid_chain);
188 spin_unlock_irqrestore(&pidmap_lock, flags);
190 free_pidmap(pid->nr);
191 call_rcu(&pid->rcu, delayed_put_pid);
194 struct pid *alloc_pid(void)
196 struct pid *pid;
197 enum pid_type type;
198 int nr = -1;
200 pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
201 if (!pid)
202 goto out;
204 nr = alloc_pidmap();
205 if (nr < 0)
206 goto out_free;
208 atomic_set(&pid->count, 1);
209 pid->nr = nr;
210 for (type = 0; type < PIDTYPE_MAX; ++type)
211 INIT_HLIST_HEAD(&pid->tasks[type]);
213 spin_lock_irq(&pidmap_lock);
214 hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
215 spin_unlock_irq(&pidmap_lock);
217 out:
218 return pid;
220 out_free:
221 kmem_cache_free(pid_cachep, pid);
222 pid = NULL;
223 goto out;
226 struct pid * fastcall find_pid(int nr)
228 struct hlist_node *elem;
229 struct pid *pid;
231 hlist_for_each_entry_rcu(pid, elem,
232 &pid_hash[pid_hashfn(nr)], pid_chain) {
233 if (pid->nr == nr)
234 return pid;
236 return NULL;
238 EXPORT_SYMBOL_GPL(find_pid);
240 int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
242 struct pid_link *link;
243 struct pid *pid;
245 link = &task->pids[type];
246 link->pid = pid = find_pid(nr);
247 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
249 return 0;
252 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
254 struct pid_link *link;
255 struct pid *pid;
256 int tmp;
258 link = &task->pids[type];
259 pid = link->pid;
261 hlist_del_rcu(&link->node);
262 link->pid = NULL;
264 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
265 if (!hlist_empty(&pid->tasks[tmp]))
266 return;
268 free_pid(pid);
271 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
272 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
273 enum pid_type type)
275 new->pids[type].pid = old->pids[type].pid;
276 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
277 old->pids[type].pid = NULL;
280 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
282 struct task_struct *result = NULL;
283 if (pid) {
284 struct hlist_node *first;
285 first = rcu_dereference(pid->tasks[type].first);
286 if (first)
287 result = hlist_entry(first, struct task_struct, pids[(type)].node);
289 return result;
293 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
295 struct task_struct *find_task_by_pid_type(int type, int nr)
297 return pid_task(find_pid(nr), type);
300 EXPORT_SYMBOL(find_task_by_pid_type);
302 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
304 struct task_struct *result;
305 rcu_read_lock();
306 result = pid_task(pid, type);
307 if (result)
308 get_task_struct(result);
309 rcu_read_unlock();
310 return result;
313 struct pid *find_get_pid(pid_t nr)
315 struct pid *pid;
317 rcu_read_lock();
318 pid = get_pid(find_pid(nr));
319 rcu_read_unlock();
321 return pid;
325 * Used by proc to find the first pid that is greater then or equal to nr.
327 * If there is a pid at nr this function is exactly the same as find_pid.
329 struct pid *find_ge_pid(int nr)
331 struct pid *pid;
333 do {
334 pid = find_pid(nr);
335 if (pid)
336 break;
337 nr = next_pidmap(nr);
338 } while (nr > 0);
340 return pid;
342 EXPORT_SYMBOL_GPL(find_get_pid);
345 * The pid hash table is scaled according to the amount of memory in the
346 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
347 * more.
349 void __init pidhash_init(void)
351 int i, pidhash_size;
352 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
354 pidhash_shift = max(4, fls(megabytes * 4));
355 pidhash_shift = min(12, pidhash_shift);
356 pidhash_size = 1 << pidhash_shift;
358 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
359 pidhash_size, pidhash_shift,
360 pidhash_size * sizeof(struct hlist_head));
362 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
363 if (!pid_hash)
364 panic("Could not alloc pidhash!\n");
365 for (i = 0; i < pidhash_size; i++)
366 INIT_HLIST_HEAD(&pid_hash[i]);
369 void __init pidmap_init(void)
371 pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL);
372 /* Reserve PID 0. We never call free_pidmap(0) */
373 set_bit(0, pidmap_array->page);
374 atomic_dec(&pidmap_array->nr_free);
376 pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
377 __alignof__(struct pid),
378 SLAB_PANIC, NULL, NULL);