mISDN: Cleanup hfc multiport driver
[linux-2.6/mini2440.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
blobff5ec3cbeb775a6db7b38714795abd122fee661d
1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
106 * dslot:
107 * NOTE: only one poll value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
116 * iomode:
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards requre specific IO mode, so it cannot be changed.
121 * It may be usefull to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
125 * clockdelay_nt:
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
131 * clockdelay_te:
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
139 * debug register access (never use this, it will flood your system log)
140 * #define HFC_REGISTER_DEBUG
143 #define HFC_MULTI_VERSION "2.03"
145 #include <linux/module.h>
146 #include <linux/pci.h>
147 #include <linux/delay.h>
148 #include <linux/mISDNhw.h>
149 #include <linux/mISDNdsp.h>
152 #define IRQCOUNT_DEBUG
153 #define IRQ_DEBUG
156 #include "hfc_multi.h"
157 #ifdef ECHOPREP
158 #include "gaintab.h"
159 #endif
161 #define MAX_CARDS 8
162 #define MAX_PORTS (8 * MAX_CARDS)
164 static LIST_HEAD(HFClist);
165 static spinlock_t HFClock; /* global hfc list lock */
167 static void ph_state_change(struct dchannel *);
169 static struct hfc_multi *syncmaster;
170 static int plxsd_master; /* if we have a master card (yet) */
171 static spinlock_t plx_lock; /* may not acquire other lock inside */
173 #define TYP_E1 1
174 #define TYP_4S 4
175 #define TYP_8S 8
177 static int poll_timer = 6; /* default = 128 samples = 16ms */
178 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
179 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
180 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
181 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
182 (0x60 MUST be included!) */
183 static u_char silence = 0xff; /* silence by LAW */
185 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
186 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
187 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
190 * module stuff
193 static uint type[MAX_CARDS];
194 static uint pcm[MAX_CARDS];
195 static uint dslot[MAX_CARDS];
196 static uint iomode[MAX_CARDS];
197 static uint port[MAX_PORTS];
198 static uint debug;
199 static uint poll;
200 static uint timer;
201 static uint clockdelay_te = CLKDEL_TE;
202 static uint clockdelay_nt = CLKDEL_NT;
204 static int HFC_cnt, Port_cnt, PCM_cnt = 99;
206 MODULE_AUTHOR("Andreas Eversberg");
207 MODULE_LICENSE("GPL");
208 MODULE_VERSION(HFC_MULTI_VERSION);
209 module_param(debug, uint, S_IRUGO | S_IWUSR);
210 module_param(poll, uint, S_IRUGO | S_IWUSR);
211 module_param(timer, uint, S_IRUGO | S_IWUSR);
212 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
213 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
214 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
215 module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR);
216 module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR);
217 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
218 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
220 #ifdef HFC_REGISTER_DEBUG
221 #define HFC_outb(hc, reg, val) \
222 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
223 #define HFC_outb_nodebug(hc, reg, val) \
224 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
225 #define HFC_inb(hc, reg) \
226 (hc->HFC_inb(hc, reg, __func__, __LINE__))
227 #define HFC_inb_nodebug(hc, reg) \
228 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
229 #define HFC_inw(hc, reg) \
230 (hc->HFC_inw(hc, reg, __func__, __LINE__))
231 #define HFC_inw_nodebug(hc, reg) \
232 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
233 #define HFC_wait(hc) \
234 (hc->HFC_wait(hc, __func__, __LINE__))
235 #define HFC_wait_nodebug(hc) \
236 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
237 #else
238 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
239 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
240 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
241 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
242 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
243 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
244 #define HFC_wait(hc) (hc->HFC_wait(hc))
245 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
246 #endif
248 /* HFC_IO_MODE_PCIMEM */
249 static void
250 #ifdef HFC_REGISTER_DEBUG
251 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
252 const char *function, int line)
253 #else
254 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
255 #endif
257 writeb(val, (hc->pci_membase)+reg);
259 static u_char
260 #ifdef HFC_REGISTER_DEBUG
261 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
262 #else
263 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
264 #endif
266 return readb((hc->pci_membase)+reg);
268 static u_short
269 #ifdef HFC_REGISTER_DEBUG
270 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
271 #else
272 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
273 #endif
275 return readw((hc->pci_membase)+reg);
277 static void
278 #ifdef HFC_REGISTER_DEBUG
279 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
280 #else
281 HFC_wait_pcimem(struct hfc_multi *hc)
282 #endif
284 while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
287 /* HFC_IO_MODE_REGIO */
288 static void
289 #ifdef HFC_REGISTER_DEBUG
290 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
291 const char *function, int line)
292 #else
293 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
294 #endif
296 outb(reg, (hc->pci_iobase)+4);
297 outb(val, hc->pci_iobase);
299 static u_char
300 #ifdef HFC_REGISTER_DEBUG
301 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
302 #else
303 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
304 #endif
306 outb(reg, (hc->pci_iobase)+4);
307 return inb(hc->pci_iobase);
309 static u_short
310 #ifdef HFC_REGISTER_DEBUG
311 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
312 #else
313 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
314 #endif
316 outb(reg, (hc->pci_iobase)+4);
317 return inw(hc->pci_iobase);
319 static void
320 #ifdef HFC_REGISTER_DEBUG
321 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
322 #else
323 HFC_wait_regio(struct hfc_multi *hc)
324 #endif
326 outb(R_STATUS, (hc->pci_iobase)+4);
327 while (inb(hc->pci_iobase) & V_BUSY);
330 #ifdef HFC_REGISTER_DEBUG
331 static void
332 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
333 const char *function, int line)
335 char regname[256] = "", bits[9] = "xxxxxxxx";
336 int i;
338 i = -1;
339 while (hfc_register_names[++i].name) {
340 if (hfc_register_names[i].reg == reg)
341 strcat(regname, hfc_register_names[i].name);
343 if (regname[0] == '\0')
344 strcpy(regname, "register");
346 bits[7] = '0'+(!!(val&1));
347 bits[6] = '0'+(!!(val&2));
348 bits[5] = '0'+(!!(val&4));
349 bits[4] = '0'+(!!(val&8));
350 bits[3] = '0'+(!!(val&16));
351 bits[2] = '0'+(!!(val&32));
352 bits[1] = '0'+(!!(val&64));
353 bits[0] = '0'+(!!(val&128));
354 printk(KERN_DEBUG
355 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
356 hc->id, reg, regname, val, bits, function, line);
357 HFC_outb_nodebug(hc, reg, val);
359 static u_char
360 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
362 char regname[256] = "", bits[9] = "xxxxxxxx";
363 u_char val = HFC_inb_nodebug(hc, reg);
364 int i;
366 i = 0;
367 while (hfc_register_names[i++].name)
369 while (hfc_register_names[++i].name) {
370 if (hfc_register_names[i].reg == reg)
371 strcat(regname, hfc_register_names[i].name);
373 if (regname[0] == '\0')
374 strcpy(regname, "register");
376 bits[7] = '0'+(!!(val&1));
377 bits[6] = '0'+(!!(val&2));
378 bits[5] = '0'+(!!(val&4));
379 bits[4] = '0'+(!!(val&8));
380 bits[3] = '0'+(!!(val&16));
381 bits[2] = '0'+(!!(val&32));
382 bits[1] = '0'+(!!(val&64));
383 bits[0] = '0'+(!!(val&128));
384 printk(KERN_DEBUG
385 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
386 hc->id, reg, regname, val, bits, function, line);
387 return val;
389 static u_short
390 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
392 char regname[256] = "";
393 u_short val = HFC_inw_nodebug(hc, reg);
394 int i;
396 i = 0;
397 while (hfc_register_names[i++].name)
399 while (hfc_register_names[++i].name) {
400 if (hfc_register_names[i].reg == reg)
401 strcat(regname, hfc_register_names[i].name);
403 if (regname[0] == '\0')
404 strcpy(regname, "register");
406 printk(KERN_DEBUG
407 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
408 hc->id, reg, regname, val, function, line);
409 return val;
411 static void
412 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
414 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
415 hc->id, function, line);
416 HFC_wait_nodebug(hc);
418 #endif
420 /* write fifo data (REGIO) */
421 static void
422 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
424 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
425 while (len>>2) {
426 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
427 data += 4;
428 len -= 4;
430 while (len>>1) {
431 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
432 data += 2;
433 len -= 2;
435 while (len) {
436 outb(*data, hc->pci_iobase);
437 data++;
438 len--;
441 /* write fifo data (PCIMEM) */
442 static void
443 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
445 while (len>>2) {
446 writel(cpu_to_le32(*(u32 *)data),
447 hc->pci_membase + A_FIFO_DATA0);
448 data += 4;
449 len -= 4;
451 while (len>>1) {
452 writew(cpu_to_le16(*(u16 *)data),
453 hc->pci_membase + A_FIFO_DATA0);
454 data += 2;
455 len -= 2;
457 while (len) {
458 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
459 data++;
460 len--;
463 /* read fifo data (REGIO) */
464 static void
465 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
467 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
468 while (len>>2) {
469 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
470 data += 4;
471 len -= 4;
473 while (len>>1) {
474 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
475 data += 2;
476 len -= 2;
478 while (len) {
479 *data = inb(hc->pci_iobase);
480 data++;
481 len--;
485 /* read fifo data (PCIMEM) */
486 static void
487 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
489 while (len>>2) {
490 *(u32 *)data =
491 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
492 data += 4;
493 len -= 4;
495 while (len>>1) {
496 *(u16 *)data =
497 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
498 data += 2;
499 len -= 2;
501 while (len) {
502 *data = readb(hc->pci_membase + A_FIFO_DATA0);
503 data++;
504 len--;
509 static void
510 enable_hwirq(struct hfc_multi *hc)
512 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
513 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
516 static void
517 disable_hwirq(struct hfc_multi *hc)
519 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
520 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
523 #define NUM_EC 2
524 #define MAX_TDM_CHAN 32
527 inline void
528 enablepcibridge(struct hfc_multi *c)
530 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
533 inline void
534 disablepcibridge(struct hfc_multi *c)
536 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
539 inline unsigned char
540 readpcibridge(struct hfc_multi *hc, unsigned char address)
542 unsigned short cipv;
543 unsigned char data;
545 if (!hc->pci_iobase)
546 return 0;
548 /* slow down a PCI read access by 1 PCI clock cycle */
549 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
551 if (address == 0)
552 cipv = 0x4000;
553 else
554 cipv = 0x5800;
556 /* select local bridge port address by writing to CIP port */
557 /* data = HFC_inb(c, cipv); * was _io before */
558 outw(cipv, hc->pci_iobase + 4);
559 data = inb(hc->pci_iobase);
561 /* restore R_CTRL for normal PCI read cycle speed */
562 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
564 return data;
567 inline void
568 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
570 unsigned short cipv;
571 unsigned int datav;
573 if (!hc->pci_iobase)
574 return;
576 if (address == 0)
577 cipv = 0x4000;
578 else
579 cipv = 0x5800;
581 /* select local bridge port address by writing to CIP port */
582 outw(cipv, hc->pci_iobase + 4);
583 /* define a 32 bit dword with 4 identical bytes for write sequence */
584 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
585 ((__u32) data << 24);
588 * write this 32 bit dword to the bridge data port
589 * this will initiate a write sequence of up to 4 writes to the same
590 * address on the local bus interface the number of write accesses
591 * is undefined but >=1 and depends on the next PCI transaction
592 * during write sequence on the local bus
594 outl(datav, hc->pci_iobase);
597 inline void
598 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
600 /* Do data pin read low byte */
601 HFC_outb(hc, R_GPIO_OUT1, reg);
604 inline void
605 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
607 cpld_set_reg(hc, reg);
609 enablepcibridge(hc);
610 writepcibridge(hc, 1, val);
611 disablepcibridge(hc);
613 return;
616 inline unsigned char
617 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
619 unsigned char bytein;
621 cpld_set_reg(hc, reg);
623 /* Do data pin read low byte */
624 HFC_outb(hc, R_GPIO_OUT1, reg);
626 enablepcibridge(hc);
627 bytein = readpcibridge(hc, 1);
628 disablepcibridge(hc);
630 return bytein;
633 inline void
634 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
636 cpld_write_reg(hc, 0, 0xff & addr);
637 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
640 inline unsigned short
641 vpm_read_address(struct hfc_multi *c)
643 unsigned short addr;
644 unsigned short highbit;
646 addr = cpld_read_reg(c, 0);
647 highbit = cpld_read_reg(c, 1);
649 addr = addr | (highbit << 8);
651 return addr & 0x1ff;
654 inline unsigned char
655 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
657 unsigned char res;
659 vpm_write_address(c, addr);
661 if (!which)
662 cpld_set_reg(c, 2);
663 else
664 cpld_set_reg(c, 3);
666 enablepcibridge(c);
667 res = readpcibridge(c, 1);
668 disablepcibridge(c);
670 cpld_set_reg(c, 0);
672 return res;
675 inline void
676 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
677 unsigned char data)
679 vpm_write_address(c, addr);
681 enablepcibridge(c);
683 if (!which)
684 cpld_set_reg(c, 2);
685 else
686 cpld_set_reg(c, 3);
688 writepcibridge(c, 1, data);
690 cpld_set_reg(c, 0);
692 disablepcibridge(c);
695 unsigned char regin;
696 regin = vpm_in(c, which, addr);
697 if (regin != data)
698 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
699 "0x%x\n", data, addr, regin);
705 static void
706 vpm_init(struct hfc_multi *wc)
708 unsigned char reg;
709 unsigned int mask;
710 unsigned int i, x, y;
711 unsigned int ver;
713 for (x = 0; x < NUM_EC; x++) {
714 /* Setup GPIO's */
715 if (!x) {
716 ver = vpm_in(wc, x, 0x1a0);
717 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
720 for (y = 0; y < 4; y++) {
721 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
722 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
723 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
726 /* Setup TDM path - sets fsync and tdm_clk as inputs */
727 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
728 vpm_out(wc, x, 0x1a3, reg & ~2);
730 /* Setup Echo length (256 taps) */
731 vpm_out(wc, x, 0x022, 1);
732 vpm_out(wc, x, 0x023, 0xff);
734 /* Setup timeslots */
735 vpm_out(wc, x, 0x02f, 0x00);
736 mask = 0x02020202 << (x * 4);
738 /* Setup the tdm channel masks for all chips */
739 for (i = 0; i < 4; i++)
740 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
742 /* Setup convergence rate */
743 printk(KERN_DEBUG "VPM: A-law mode\n");
744 reg = 0x00 | 0x10 | 0x01;
745 vpm_out(wc, x, 0x20, reg);
746 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
747 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
749 vpm_out(wc, x, 0x24, 0x02);
750 reg = vpm_in(wc, x, 0x24);
751 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
753 /* Initialize echo cans */
754 for (i = 0; i < MAX_TDM_CHAN; i++) {
755 if (mask & (0x00000001 << i))
756 vpm_out(wc, x, i, 0x00);
760 * ARM arch at least disallows a udelay of
761 * more than 2ms... it gives a fake "__bad_udelay"
762 * reference at link-time.
763 * long delays in kernel code are pretty sucky anyway
764 * for now work around it using 5 x 2ms instead of 1 x 10ms
767 udelay(2000);
768 udelay(2000);
769 udelay(2000);
770 udelay(2000);
771 udelay(2000);
773 /* Put in bypass mode */
774 for (i = 0; i < MAX_TDM_CHAN; i++) {
775 if (mask & (0x00000001 << i))
776 vpm_out(wc, x, i, 0x01);
779 /* Enable bypass */
780 for (i = 0; i < MAX_TDM_CHAN; i++) {
781 if (mask & (0x00000001 << i))
782 vpm_out(wc, x, 0x78 + i, 0x01);
788 #ifdef UNUSED
789 static void
790 vpm_check(struct hfc_multi *hctmp)
792 unsigned char gpi2;
794 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
796 if ((gpi2 & 0x3) != 0x3)
797 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
799 #endif /* UNUSED */
803 * Interface to enable/disable the HW Echocan
805 * these functions are called within a spin_lock_irqsave on
806 * the channel instance lock, so we are not disturbed by irqs
808 * we can later easily change the interface to make other
809 * things configurable, for now we configure the taps
813 static void
814 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
816 unsigned int timeslot;
817 unsigned int unit;
818 struct bchannel *bch = hc->chan[ch].bch;
819 #ifdef TXADJ
820 int txadj = -4;
821 struct sk_buff *skb;
822 #endif
823 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
824 return;
826 if (!bch)
827 return;
829 #ifdef TXADJ
830 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
831 sizeof(int), &txadj, GFP_ATOMIC);
832 if (skb)
833 recv_Bchannel_skb(bch, skb);
834 #endif
836 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
837 unit = ch % 4;
839 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
840 taps, timeslot);
842 vpm_out(hc, unit, timeslot, 0x7e);
845 static void
846 vpm_echocan_off(struct hfc_multi *hc, int ch)
848 unsigned int timeslot;
849 unsigned int unit;
850 struct bchannel *bch = hc->chan[ch].bch;
851 #ifdef TXADJ
852 int txadj = 0;
853 struct sk_buff *skb;
854 #endif
856 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
857 return;
859 if (!bch)
860 return;
862 #ifdef TXADJ
863 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
864 sizeof(int), &txadj, GFP_ATOMIC);
865 if (skb)
866 recv_Bchannel_skb(bch, skb);
867 #endif
869 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
870 unit = ch % 4;
872 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
873 timeslot);
874 /* FILLME */
875 vpm_out(hc, unit, timeslot, 0x01);
880 * Speech Design resync feature
881 * NOTE: This is called sometimes outside interrupt handler.
882 * We must lock irqsave, so no other interrupt (other card) will occurr!
883 * Also multiple interrupts may nest, so must lock each access (lists, card)!
885 static inline void
886 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
888 struct hfc_multi *hc, *next, *pcmmaster = NULL;
889 void __iomem *plx_acc_32;
890 u_int pv;
891 u_long flags;
893 spin_lock_irqsave(&HFClock, flags);
894 spin_lock(&plx_lock); /* must be locked inside other locks */
896 if (debug & DEBUG_HFCMULTI_PLXSD)
897 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
898 __func__, syncmaster);
900 /* select new master */
901 if (newmaster) {
902 if (debug & DEBUG_HFCMULTI_PLXSD)
903 printk(KERN_DEBUG "using provided controller\n");
904 } else {
905 list_for_each_entry_safe(hc, next, &HFClist, list) {
906 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
907 if (hc->syncronized) {
908 newmaster = hc;
909 break;
915 /* Disable sync of all cards */
916 list_for_each_entry_safe(hc, next, &HFClist, list) {
917 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
918 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
919 pv = readl(plx_acc_32);
920 pv &= ~PLX_SYNC_O_EN;
921 writel(pv, plx_acc_32);
922 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
923 pcmmaster = hc;
924 if (hc->type == 1) {
925 if (debug & DEBUG_HFCMULTI_PLXSD)
926 printk(KERN_DEBUG
927 "Schedule SYNC_I\n");
928 hc->e1_resync |= 1; /* get SYNC_I */
934 if (newmaster) {
935 hc = newmaster;
936 if (debug & DEBUG_HFCMULTI_PLXSD)
937 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
938 "interface.\n", hc->id, hc);
939 /* Enable new sync master */
940 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
941 pv = readl(plx_acc_32);
942 pv |= PLX_SYNC_O_EN;
943 writel(pv, plx_acc_32);
944 /* switch to jatt PLL, if not disabled by RX_SYNC */
945 if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
946 if (debug & DEBUG_HFCMULTI_PLXSD)
947 printk(KERN_DEBUG "Schedule jatt PLL\n");
948 hc->e1_resync |= 2; /* switch to jatt */
950 } else {
951 if (pcmmaster) {
952 hc = pcmmaster;
953 if (debug & DEBUG_HFCMULTI_PLXSD)
954 printk(KERN_DEBUG
955 "id=%d (0x%p) = PCM master syncronized "
956 "with QUARTZ\n", hc->id, hc);
957 if (hc->type == 1) {
958 /* Use the crystal clock for the PCM
959 master card */
960 if (debug & DEBUG_HFCMULTI_PLXSD)
961 printk(KERN_DEBUG
962 "Schedule QUARTZ for HFC-E1\n");
963 hc->e1_resync |= 4; /* switch quartz */
964 } else {
965 if (debug & DEBUG_HFCMULTI_PLXSD)
966 printk(KERN_DEBUG
967 "QUARTZ is automatically "
968 "enabled by HFC-%dS\n", hc->type);
970 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
971 pv = readl(plx_acc_32);
972 pv |= PLX_SYNC_O_EN;
973 writel(pv, plx_acc_32);
974 } else
975 if (!rm)
976 printk(KERN_ERR "%s no pcm master, this MUST "
977 "not happen!\n", __func__);
979 syncmaster = newmaster;
981 spin_unlock(&plx_lock);
982 spin_unlock_irqrestore(&HFClock, flags);
985 /* This must be called AND hc must be locked irqsave!!! */
986 inline void
987 plxsd_checksync(struct hfc_multi *hc, int rm)
989 if (hc->syncronized) {
990 if (syncmaster == NULL) {
991 if (debug & DEBUG_HFCMULTI_PLXSD)
992 printk(KERN_WARNING "%s: GOT sync on card %d"
993 " (id=%d)\n", __func__, hc->id + 1,
994 hc->id);
995 hfcmulti_resync(hc, hc, rm);
997 } else {
998 if (syncmaster == hc) {
999 if (debug & DEBUG_HFCMULTI_PLXSD)
1000 printk(KERN_WARNING "%s: LOST sync on card %d"
1001 " (id=%d)\n", __func__, hc->id + 1,
1002 hc->id);
1003 hfcmulti_resync(hc, NULL, rm);
1010 * free hardware resources used by driver
1012 static void
1013 release_io_hfcmulti(struct hfc_multi *hc)
1015 void __iomem *plx_acc_32;
1016 u_int pv;
1017 u_long plx_flags;
1019 if (debug & DEBUG_HFCMULTI_INIT)
1020 printk(KERN_DEBUG "%s: entered\n", __func__);
1022 /* soft reset also masks all interrupts */
1023 hc->hw.r_cirm |= V_SRES;
1024 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1025 udelay(1000);
1026 hc->hw.r_cirm &= ~V_SRES;
1027 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1028 udelay(1000); /* instead of 'wait' that may cause locking */
1030 /* release Speech Design card, if PLX was initialized */
1031 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1032 if (debug & DEBUG_HFCMULTI_PLXSD)
1033 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1034 __func__, hc->id + 1);
1035 spin_lock_irqsave(&plx_lock, plx_flags);
1036 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1037 writel(PLX_GPIOC_INIT, plx_acc_32);
1038 pv = readl(plx_acc_32);
1039 /* Termination off */
1040 pv &= ~PLX_TERM_ON;
1041 /* Disconnect the PCM */
1042 pv |= PLX_SLAVE_EN_N;
1043 pv &= ~PLX_MASTER_EN;
1044 pv &= ~PLX_SYNC_O_EN;
1045 /* Put the DSP in Reset */
1046 pv &= ~PLX_DSP_RES_N;
1047 writel(pv, plx_acc_32);
1048 if (debug & DEBUG_HFCMULTI_INIT)
1049 printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1050 __func__, pv);
1051 spin_unlock_irqrestore(&plx_lock, plx_flags);
1054 /* disable memory mapped ports / io ports */
1055 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1056 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1057 if (hc->pci_membase)
1058 iounmap(hc->pci_membase);
1059 if (hc->plx_membase)
1060 iounmap(hc->plx_membase);
1061 if (hc->pci_iobase)
1062 release_region(hc->pci_iobase, 8);
1064 if (hc->pci_dev) {
1065 pci_disable_device(hc->pci_dev);
1066 pci_set_drvdata(hc->pci_dev, NULL);
1068 if (debug & DEBUG_HFCMULTI_INIT)
1069 printk(KERN_DEBUG "%s: done\n", __func__);
1073 * function called to reset the HFC chip. A complete software reset of chip
1074 * and fifos is done. All configuration of the chip is done.
1077 static int
1078 init_chip(struct hfc_multi *hc)
1080 u_long flags, val, val2 = 0, rev;
1081 int i, err = 0;
1082 u_char r_conf_en, rval;
1083 void __iomem *plx_acc_32;
1084 u_int pv;
1085 u_long plx_flags, hfc_flags;
1086 int plx_count;
1087 struct hfc_multi *pos, *next, *plx_last_hc;
1089 spin_lock_irqsave(&hc->lock, flags);
1090 /* reset all registers */
1091 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1093 /* revision check */
1094 if (debug & DEBUG_HFCMULTI_INIT)
1095 printk(KERN_DEBUG "%s: entered\n", __func__);
1096 val = HFC_inb(hc, R_CHIP_ID)>>4;
1097 if (val != 0x8 && val != 0xc && val != 0xe) {
1098 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099 err = -EIO;
1100 goto out;
1102 rev = HFC_inb(hc, R_CHIP_RV);
1103 printk(KERN_INFO
1104 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105 val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1106 if (rev == 0) {
1107 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1108 printk(KERN_WARNING
1109 "HFC_multi: NOTE: Your chip is revision 0, "
1110 "ask Cologne Chip for update. Newer chips "
1111 "have a better FIFO handling. Old chips "
1112 "still work but may have slightly lower "
1113 "HDLC transmit performance.\n");
1115 if (rev > 1) {
1116 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1117 "consider chip revision = %ld. The chip / "
1118 "bridge may not work.\n", rev);
1121 /* set s-ram size */
1122 hc->Flen = 0x10;
1123 hc->Zmin = 0x80;
1124 hc->Zlen = 384;
1125 hc->DTMFbase = 0x1000;
1126 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1127 if (debug & DEBUG_HFCMULTI_INIT)
1128 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1129 __func__);
1130 hc->hw.r_ctrl |= V_EXT_RAM;
1131 hc->hw.r_ram_sz = 1;
1132 hc->Flen = 0x20;
1133 hc->Zmin = 0xc0;
1134 hc->Zlen = 1856;
1135 hc->DTMFbase = 0x2000;
1137 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1138 if (debug & DEBUG_HFCMULTI_INIT)
1139 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1140 __func__);
1141 hc->hw.r_ctrl |= V_EXT_RAM;
1142 hc->hw.r_ram_sz = 2;
1143 hc->Flen = 0x20;
1144 hc->Zmin = 0xc0;
1145 hc->Zlen = 8000;
1146 hc->DTMFbase = 0x2000;
1148 hc->max_trans = poll << 1;
1149 if (hc->max_trans > hc->Zlen)
1150 hc->max_trans = hc->Zlen;
1152 /* Speech Design PLX bridge */
1153 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1154 if (debug & DEBUG_HFCMULTI_PLXSD)
1155 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1156 __func__, hc->id + 1);
1157 spin_lock_irqsave(&plx_lock, plx_flags);
1158 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1159 writel(PLX_GPIOC_INIT, plx_acc_32);
1160 pv = readl(plx_acc_32);
1161 /* The first and the last cards are terminating the PCM bus */
1162 pv |= PLX_TERM_ON; /* hc is currently the last */
1163 /* Disconnect the PCM */
1164 pv |= PLX_SLAVE_EN_N;
1165 pv &= ~PLX_MASTER_EN;
1166 pv &= ~PLX_SYNC_O_EN;
1167 /* Put the DSP in Reset */
1168 pv &= ~PLX_DSP_RES_N;
1169 writel(pv, plx_acc_32);
1170 spin_unlock_irqrestore(&plx_lock, plx_flags);
1171 if (debug & DEBUG_HFCMULTI_INIT)
1172 printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1173 __func__, pv);
1175 * If we are the 3rd PLXSD card or higher, we must turn
1176 * termination of last PLXSD card off.
1178 spin_lock_irqsave(&HFClock, hfc_flags);
1179 plx_count = 0;
1180 plx_last_hc = NULL;
1181 list_for_each_entry_safe(pos, next, &HFClist, list) {
1182 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1183 plx_count++;
1184 if (pos != hc)
1185 plx_last_hc = pos;
1188 if (plx_count >= 3) {
1189 if (debug & DEBUG_HFCMULTI_PLXSD)
1190 printk(KERN_DEBUG "%s: card %d is between, so "
1191 "we disable termination\n",
1192 __func__, plx_last_hc->id + 1);
1193 spin_lock_irqsave(&plx_lock, plx_flags);
1194 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1195 pv = readl(plx_acc_32);
1196 pv &= ~PLX_TERM_ON;
1197 writel(pv, plx_acc_32);
1198 spin_unlock_irqrestore(&plx_lock, plx_flags);
1199 if (debug & DEBUG_HFCMULTI_INIT)
1200 printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1201 __func__, pv);
1203 spin_unlock_irqrestore(&HFClock, hfc_flags);
1204 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1207 /* we only want the real Z2 read-pointer for revision > 0 */
1208 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1209 hc->hw.r_ram_sz |= V_FZ_MD;
1211 /* select pcm mode */
1212 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1213 if (debug & DEBUG_HFCMULTI_INIT)
1214 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1215 __func__);
1216 } else
1217 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1218 if (debug & DEBUG_HFCMULTI_INIT)
1219 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1220 __func__);
1221 hc->hw.r_pcm_md0 |= V_PCM_MD;
1222 } else {
1223 if (debug & DEBUG_HFCMULTI_INIT)
1224 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1225 __func__);
1228 /* soft reset */
1229 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1230 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1231 HFC_outb(hc, R_FIFO_MD, 0);
1232 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1233 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1234 udelay(100);
1235 hc->hw.r_cirm = 0;
1236 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1237 udelay(100);
1238 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1240 /* Speech Design PLX bridge pcm and sync mode */
1241 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1242 spin_lock_irqsave(&plx_lock, plx_flags);
1243 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1244 pv = readl(plx_acc_32);
1245 /* Connect PCM */
1246 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1247 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1248 pv |= PLX_SYNC_O_EN;
1249 if (debug & DEBUG_HFCMULTI_INIT)
1250 printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1251 __func__, pv);
1252 } else {
1253 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1254 pv &= ~PLX_SYNC_O_EN;
1255 if (debug & DEBUG_HFCMULTI_INIT)
1256 printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1257 __func__, pv);
1259 writel(pv, plx_acc_32);
1260 spin_unlock_irqrestore(&plx_lock, plx_flags);
1263 /* PCM setup */
1264 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1265 if (hc->slots == 32)
1266 HFC_outb(hc, R_PCM_MD1, 0x00);
1267 if (hc->slots == 64)
1268 HFC_outb(hc, R_PCM_MD1, 0x10);
1269 if (hc->slots == 128)
1270 HFC_outb(hc, R_PCM_MD1, 0x20);
1271 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1272 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1273 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1274 else
1275 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1276 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1277 for (i = 0; i < 256; i++) {
1278 HFC_outb_nodebug(hc, R_SLOT, i);
1279 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1280 HFC_outb_nodebug(hc, A_CONF, 0);
1281 hc->slot_owner[i] = -1;
1284 /* set clock speed */
1285 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1286 if (debug & DEBUG_HFCMULTI_INIT)
1287 printk(KERN_DEBUG
1288 "%s: setting double clock\n", __func__);
1289 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1292 /* B410P GPIO */
1293 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1294 printk(KERN_NOTICE "Setting GPIOs\n");
1295 HFC_outb(hc, R_GPIO_SEL, 0x30);
1296 HFC_outb(hc, R_GPIO_EN1, 0x3);
1297 udelay(1000);
1298 printk(KERN_NOTICE "calling vpm_init\n");
1299 vpm_init(hc);
1302 /* check if R_F0_CNT counts (8 kHz frame count) */
1303 val = HFC_inb(hc, R_F0_CNTL);
1304 val += HFC_inb(hc, R_F0_CNTH) << 8;
1305 if (debug & DEBUG_HFCMULTI_INIT)
1306 printk(KERN_DEBUG
1307 "HFC_multi F0_CNT %ld after reset\n", val);
1308 spin_unlock_irqrestore(&hc->lock, flags);
1309 set_current_state(TASK_UNINTERRUPTIBLE);
1310 schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1311 spin_lock_irqsave(&hc->lock, flags);
1312 val2 = HFC_inb(hc, R_F0_CNTL);
1313 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1314 if (debug & DEBUG_HFCMULTI_INIT)
1315 printk(KERN_DEBUG
1316 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1317 val2);
1318 if (val2 >= val+8) { /* 1 ms */
1319 /* it counts, so we keep the pcm mode */
1320 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1321 printk(KERN_INFO "controller is PCM bus MASTER\n");
1322 else
1323 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1324 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1325 else {
1326 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1327 printk(KERN_INFO "controller is PCM bus SLAVE "
1328 "(auto detected)\n");
1330 } else {
1331 /* does not count */
1332 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1333 controller_fail:
1334 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1335 "pulse. Seems that controller fails.\n");
1336 err = -EIO;
1337 goto out;
1339 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1340 printk(KERN_INFO "controller is PCM bus SLAVE "
1341 "(ignoring missing PCM clock)\n");
1342 } else {
1343 /* only one pcm master */
1344 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1345 && plxsd_master) {
1346 printk(KERN_ERR "HFC_multi ERROR, no clock "
1347 "on another Speech Design card found. "
1348 "Please be sure to connect PCM cable.\n");
1349 err = -EIO;
1350 goto out;
1352 /* retry with master clock */
1353 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1354 spin_lock_irqsave(&plx_lock, plx_flags);
1355 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1356 pv = readl(plx_acc_32);
1357 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1358 pv |= PLX_SYNC_O_EN;
1359 writel(pv, plx_acc_32);
1360 spin_unlock_irqrestore(&plx_lock, plx_flags);
1361 if (debug & DEBUG_HFCMULTI_INIT)
1362 printk(KERN_WARNING "%s: master: PLX_GPIO"
1363 "=%x\n", __func__, pv);
1365 hc->hw.r_pcm_md0 |= V_PCM_MD;
1366 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1367 spin_unlock_irqrestore(&hc->lock, flags);
1368 set_current_state(TASK_UNINTERRUPTIBLE);
1369 schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1370 spin_lock_irqsave(&hc->lock, flags);
1371 val2 = HFC_inb(hc, R_F0_CNTL);
1372 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1373 if (debug & DEBUG_HFCMULTI_INIT)
1374 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1375 "10 ms (2nd try)\n", val2);
1376 if (val2 >= val+8) { /* 1 ms */
1377 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1378 &hc->chip);
1379 printk(KERN_INFO "controller is PCM bus MASTER "
1380 "(auto detected)\n");
1381 } else
1382 goto controller_fail;
1386 /* Release the DSP Reset */
1387 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1388 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1389 plxsd_master = 1;
1390 spin_lock_irqsave(&plx_lock, plx_flags);
1391 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1392 pv = readl(plx_acc_32);
1393 pv |= PLX_DSP_RES_N;
1394 writel(pv, plx_acc_32);
1395 spin_unlock_irqrestore(&plx_lock, plx_flags);
1396 if (debug & DEBUG_HFCMULTI_INIT)
1397 printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1398 __func__, pv);
1401 /* pcm id */
1402 if (hc->pcm)
1403 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1404 hc->pcm);
1405 else {
1406 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1407 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1408 PCM_cnt++; /* SD has proprietary bridging */
1410 hc->pcm = PCM_cnt;
1411 printk(KERN_INFO "controller has PCM BUS ID %d "
1412 "(auto selected)\n", hc->pcm);
1415 /* set up timer */
1416 HFC_outb(hc, R_TI_WD, poll_timer);
1417 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1419 /* set E1 state machine IRQ */
1420 if (hc->type == 1)
1421 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1423 /* set DTMF detection */
1424 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1425 if (debug & DEBUG_HFCMULTI_INIT)
1426 printk(KERN_DEBUG "%s: enabling DTMF detection "
1427 "for all B-channel\n", __func__);
1428 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1429 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1430 hc->hw.r_dtmf |= V_ULAW_SEL;
1431 HFC_outb(hc, R_DTMF_N, 102 - 1);
1432 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1435 /* conference engine */
1436 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1437 r_conf_en = V_CONF_EN | V_ULAW;
1438 else
1439 r_conf_en = V_CONF_EN;
1440 HFC_outb(hc, R_CONF_EN, r_conf_en);
1442 /* setting leds */
1443 switch (hc->leds) {
1444 case 1: /* HFC-E1 OEM */
1445 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1446 HFC_outb(hc, R_GPIO_SEL, 0x32);
1447 else
1448 HFC_outb(hc, R_GPIO_SEL, 0x30);
1450 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1451 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1453 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1454 break;
1456 case 2: /* HFC-4S OEM */
1457 case 3:
1458 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1459 HFC_outb(hc, R_GPIO_EN1, 0xff);
1460 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1461 break;
1464 /* set master clock */
1465 if (hc->masterclk >= 0) {
1466 if (debug & DEBUG_HFCMULTI_INIT)
1467 printk(KERN_DEBUG "%s: setting ST master clock "
1468 "to port %d (0..%d)\n",
1469 __func__, hc->masterclk, hc->ports-1);
1470 hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1471 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1474 /* setting misc irq */
1475 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1476 if (debug & DEBUG_HFCMULTI_INIT)
1477 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1478 hc->hw.r_irqmsk_misc);
1480 /* RAM access test */
1481 HFC_outb(hc, R_RAM_ADDR0, 0);
1482 HFC_outb(hc, R_RAM_ADDR1, 0);
1483 HFC_outb(hc, R_RAM_ADDR2, 0);
1484 for (i = 0; i < 256; i++) {
1485 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1486 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1488 for (i = 0; i < 256; i++) {
1489 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1490 HFC_inb_nodebug(hc, R_RAM_DATA);
1491 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1492 if (rval != ((i * 3) & 0xff)) {
1493 printk(KERN_DEBUG
1494 "addr:%x val:%x should:%x\n", i, rval,
1495 (i * 3) & 0xff);
1496 err++;
1499 if (err) {
1500 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1501 err = -EIO;
1502 goto out;
1505 if (debug & DEBUG_HFCMULTI_INIT)
1506 printk(KERN_DEBUG "%s: done\n", __func__);
1507 out:
1508 spin_unlock_irqrestore(&hc->lock, flags);
1509 return err;
1514 * control the watchdog
1516 static void
1517 hfcmulti_watchdog(struct hfc_multi *hc)
1519 hc->wdcount++;
1521 if (hc->wdcount > 10) {
1522 hc->wdcount = 0;
1523 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1524 V_GPIO_OUT3 : V_GPIO_OUT2;
1526 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1527 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1528 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1535 * output leds
1537 static void
1538 hfcmulti_leds(struct hfc_multi *hc)
1540 unsigned long lled;
1541 unsigned long leddw;
1542 int i, state, active, leds;
1543 struct dchannel *dch;
1544 int led[4];
1546 hc->ledcount += poll;
1547 if (hc->ledcount > 4096) {
1548 hc->ledcount -= 4096;
1549 hc->ledstate = 0xAFFEAFFE;
1552 switch (hc->leds) {
1553 case 1: /* HFC-E1 OEM */
1554 /* 2 red blinking: NT mode deactivate
1555 * 2 red steady: TE mode deactivate
1556 * left green: L1 active
1557 * left red: frame sync, but no L1
1558 * right green: L2 active
1560 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1561 if (hc->chan[hc->dslot].dch->dev.D.protocol
1562 != ISDN_P_NT_E1) {
1563 led[0] = 1;
1564 led[1] = 1;
1565 } else if (hc->ledcount>>11) {
1566 led[0] = 1;
1567 led[1] = 1;
1568 } else {
1569 led[0] = 0;
1570 led[1] = 0;
1572 led[2] = 0;
1573 led[3] = 0;
1574 } else { /* with frame sync */
1575 /* TODO make it work */
1576 led[0] = 0;
1577 led[1] = 0;
1578 led[2] = 0;
1579 led[3] = 1;
1581 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1582 /* leds are inverted */
1583 if (leds != (int)hc->ledstate) {
1584 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1585 hc->ledstate = leds;
1587 break;
1589 case 2: /* HFC-4S OEM */
1590 /* red blinking = PH_DEACTIVATE NT Mode
1591 * red steady = PH_DEACTIVATE TE Mode
1592 * green steady = PH_ACTIVATE
1594 for (i = 0; i < 4; i++) {
1595 state = 0;
1596 active = -1;
1597 dch = hc->chan[(i << 2) | 2].dch;
1598 if (dch) {
1599 state = dch->state;
1600 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1601 active = 3;
1602 else
1603 active = 7;
1605 if (state) {
1606 if (state == active) {
1607 led[i] = 1; /* led green */
1608 } else
1609 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1610 /* TE mode: led red */
1611 led[i] = 2;
1612 else
1613 if (hc->ledcount>>11)
1614 /* led red */
1615 led[i] = 2;
1616 else
1617 /* led off */
1618 led[i] = 0;
1619 } else
1620 led[i] = 0; /* led off */
1622 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1623 leds = 0;
1624 for (i = 0; i < 4; i++) {
1625 if (led[i] == 1) {
1626 /*green*/
1627 leds |= (0x2 << (i * 2));
1628 } else if (led[i] == 2) {
1629 /*red*/
1630 leds |= (0x1 << (i * 2));
1633 if (leds != (int)hc->ledstate) {
1634 vpm_out(hc, 0, 0x1a8 + 3, leds);
1635 hc->ledstate = leds;
1637 } else {
1638 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1639 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1640 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1641 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1642 if (leds != (int)hc->ledstate) {
1643 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1644 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1645 hc->ledstate = leds;
1648 break;
1650 case 3: /* HFC 1S/2S Beronet */
1651 /* red blinking = PH_DEACTIVATE NT Mode
1652 * red steady = PH_DEACTIVATE TE Mode
1653 * green steady = PH_ACTIVATE
1655 for (i = 0; i < 2; i++) {
1656 state = 0;
1657 active = -1;
1658 dch = hc->chan[(i << 2) | 2].dch;
1659 if (dch) {
1660 state = dch->state;
1661 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1662 active = 3;
1663 else
1664 active = 7;
1666 if (state) {
1667 if (state == active) {
1668 led[i] = 1; /* led green */
1669 } else
1670 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1671 /* TE mode: led red */
1672 led[i] = 2;
1673 else
1674 if (hc->ledcount >> 11)
1675 /* led red */
1676 led[i] = 2;
1677 else
1678 /* led off */
1679 led[i] = 0;
1680 } else
1681 led[i] = 0; /* led off */
1685 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1686 | ((led[1]&1)<<3);
1687 if (leds != (int)hc->ledstate) {
1688 HFC_outb_nodebug(hc, R_GPIO_EN1,
1689 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1690 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1691 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1692 hc->ledstate = leds;
1694 break;
1695 case 8: /* HFC 8S+ Beronet */
1696 lled = 0;
1698 for (i = 0; i < 8; i++) {
1699 state = 0;
1700 active = -1;
1701 dch = hc->chan[(i << 2) | 2].dch;
1702 if (dch) {
1703 state = dch->state;
1704 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1705 active = 3;
1706 else
1707 active = 7;
1709 if (state) {
1710 if (state == active) {
1711 lled |= 0 << i;
1712 } else
1713 if (hc->ledcount >> 11)
1714 lled |= 0 << i;
1715 else
1716 lled |= 1 << i;
1717 } else
1718 lled |= 1 << i;
1720 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1721 if (leddw != hc->ledstate) {
1722 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1723 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1724 /* was _io before */
1725 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1726 outw(0x4000, hc->pci_iobase + 4);
1727 outl(leddw, hc->pci_iobase);
1728 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1729 hc->ledstate = leddw;
1731 break;
1735 * read dtmf coefficients
1738 static void
1739 hfcmulti_dtmf(struct hfc_multi *hc)
1741 s32 *coeff;
1742 u_int mantissa;
1743 int co, ch;
1744 struct bchannel *bch = NULL;
1745 u8 exponent;
1746 int dtmf = 0;
1747 int addr;
1748 u16 w_float;
1749 struct sk_buff *skb;
1750 struct mISDNhead *hh;
1752 if (debug & DEBUG_HFCMULTI_DTMF)
1753 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1754 for (ch = 0; ch <= 31; ch++) {
1755 /* only process enabled B-channels */
1756 bch = hc->chan[ch].bch;
1757 if (!bch)
1758 continue;
1759 if (!hc->created[hc->chan[ch].port])
1760 continue;
1761 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1762 continue;
1763 if (debug & DEBUG_HFCMULTI_DTMF)
1764 printk(KERN_DEBUG "%s: dtmf channel %d:",
1765 __func__, ch);
1766 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1767 dtmf = 1;
1768 for (co = 0; co < 8; co++) {
1769 /* read W(n-1) coefficient */
1770 addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1771 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1772 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1773 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1774 | V_ADDR_INC);
1775 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1776 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1777 if (debug & DEBUG_HFCMULTI_DTMF)
1778 printk(" %04x", w_float);
1780 /* decode float (see chip doc) */
1781 mantissa = w_float & 0x0fff;
1782 if (w_float & 0x8000)
1783 mantissa |= 0xfffff000;
1784 exponent = (w_float>>12) & 0x7;
1785 if (exponent) {
1786 mantissa ^= 0x1000;
1787 mantissa <<= (exponent-1);
1790 /* store coefficient */
1791 coeff[co<<1] = mantissa;
1793 /* read W(n) coefficient */
1794 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1795 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1796 if (debug & DEBUG_HFCMULTI_DTMF)
1797 printk(" %04x", w_float);
1799 /* decode float (see chip doc) */
1800 mantissa = w_float & 0x0fff;
1801 if (w_float & 0x8000)
1802 mantissa |= 0xfffff000;
1803 exponent = (w_float>>12) & 0x7;
1804 if (exponent) {
1805 mantissa ^= 0x1000;
1806 mantissa <<= (exponent-1);
1809 /* store coefficient */
1810 coeff[(co<<1)|1] = mantissa;
1812 if (debug & DEBUG_HFCMULTI_DTMF)
1813 printk("%s: DTMF ready %08x %08x %08x %08x "
1814 "%08x %08x %08x %08x\n", __func__,
1815 coeff[0], coeff[1], coeff[2], coeff[3],
1816 coeff[4], coeff[5], coeff[6], coeff[7]);
1817 hc->chan[ch].coeff_count++;
1818 if (hc->chan[ch].coeff_count == 8) {
1819 hc->chan[ch].coeff_count = 0;
1820 skb = mI_alloc_skb(512, GFP_ATOMIC);
1821 if (!skb) {
1822 printk(KERN_WARNING "%s: No memory for skb\n",
1823 __func__);
1824 continue;
1826 hh = mISDN_HEAD_P(skb);
1827 hh->prim = PH_CONTROL_IND;
1828 hh->id = DTMF_HFC_COEF;
1829 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1830 recv_Bchannel_skb(bch, skb);
1834 /* restart DTMF processing */
1835 hc->dtmf = dtmf;
1836 if (dtmf)
1837 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1842 * fill fifo as much as possible
1845 static void
1846 hfcmulti_tx(struct hfc_multi *hc, int ch)
1848 int i, ii, temp, len = 0;
1849 int Zspace, z1, z2; /* must be int for calculation */
1850 int Fspace, f1, f2;
1851 u_char *d;
1852 int *txpending, slot_tx;
1853 struct bchannel *bch;
1854 struct dchannel *dch;
1855 struct sk_buff **sp = NULL;
1856 int *idxp;
1858 bch = hc->chan[ch].bch;
1859 dch = hc->chan[ch].dch;
1860 if ((!dch) && (!bch))
1861 return;
1863 txpending = &hc->chan[ch].txpending;
1864 slot_tx = hc->chan[ch].slot_tx;
1865 if (dch) {
1866 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1867 return;
1868 sp = &dch->tx_skb;
1869 idxp = &dch->tx_idx;
1870 } else {
1871 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1872 return;
1873 sp = &bch->tx_skb;
1874 idxp = &bch->tx_idx;
1876 if (*sp)
1877 len = (*sp)->len;
1879 if ((!len) && *txpending != 1)
1880 return; /* no data */
1882 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1883 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1884 (hc->chan[ch].slot_rx < 0) &&
1885 (hc->chan[ch].slot_tx < 0))
1886 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1887 else
1888 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1889 HFC_wait_nodebug(hc);
1891 if (*txpending == 2) {
1892 /* reset fifo */
1893 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1894 HFC_wait_nodebug(hc);
1895 HFC_outb(hc, A_SUBCH_CFG, 0);
1896 *txpending = 1;
1898 next_frame:
1899 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1900 f1 = HFC_inb_nodebug(hc, A_F1);
1901 f2 = HFC_inb_nodebug(hc, A_F2);
1902 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1903 if (debug & DEBUG_HFCMULTI_FIFO)
1904 printk(KERN_DEBUG
1905 "%s(card %d): reread f2 because %d!=%d\n",
1906 __func__, hc->id + 1, temp, f2);
1907 f2 = temp; /* repeat until F2 is equal */
1909 Fspace = f2 - f1 - 1;
1910 if (Fspace < 0)
1911 Fspace += hc->Flen;
1913 * Old FIFO handling doesn't give us the current Z2 read
1914 * pointer, so we cannot send the next frame before the fifo
1915 * is empty. It makes no difference except for a slightly
1916 * lower performance.
1918 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1919 if (f1 != f2)
1920 Fspace = 0;
1921 else
1922 Fspace = 1;
1924 /* one frame only for ST D-channels, to allow resending */
1925 if (hc->type != 1 && dch) {
1926 if (f1 != f2)
1927 Fspace = 0;
1929 /* F-counter full condition */
1930 if (Fspace == 0)
1931 return;
1933 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1934 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1935 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1936 if (debug & DEBUG_HFCMULTI_FIFO)
1937 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1938 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1939 z2 = temp; /* repeat unti Z2 is equal */
1941 Zspace = z2 - z1;
1942 if (Zspace <= 0)
1943 Zspace += hc->Zlen;
1944 Zspace -= 4; /* keep not too full, so pointers will not overrun */
1945 /* fill transparent data only to maxinum transparent load (minus 4) */
1946 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1947 Zspace = Zspace - hc->Zlen + hc->max_trans;
1948 if (Zspace <= 0) /* no space of 4 bytes */
1949 return;
1951 /* if no data */
1952 if (!len) {
1953 if (z1 == z2) { /* empty */
1954 /* if done with FIFO audio data during PCM connection */
1955 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1956 *txpending && slot_tx >= 0) {
1957 if (debug & DEBUG_HFCMULTI_MODE)
1958 printk(KERN_DEBUG
1959 "%s: reconnecting PCM due to no "
1960 "more FIFO data: channel %d "
1961 "slot_tx %d\n",
1962 __func__, ch, slot_tx);
1963 /* connect slot */
1964 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1965 V_HDLC_TRP | V_IFF);
1966 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1967 HFC_wait_nodebug(hc);
1968 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1969 V_HDLC_TRP | V_IFF);
1970 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1971 HFC_wait_nodebug(hc);
1973 *txpending = 0;
1975 return; /* no data */
1978 /* if audio data and connected slot */
1979 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1980 && slot_tx >= 0) {
1981 if (debug & DEBUG_HFCMULTI_MODE)
1982 printk(KERN_DEBUG "%s: disconnecting PCM due to "
1983 "FIFO data: channel %d slot_tx %d\n",
1984 __func__, ch, slot_tx);
1985 /* disconnect slot */
1986 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
1987 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1988 HFC_wait_nodebug(hc);
1989 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
1990 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1991 HFC_wait_nodebug(hc);
1993 *txpending = 1;
1995 /* show activity */
1996 hc->activity[hc->chan[ch].port] = 1;
1998 /* fill fifo to what we have left */
1999 ii = len;
2000 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2001 temp = 1;
2002 else
2003 temp = 0;
2004 i = *idxp;
2005 d = (*sp)->data + i;
2006 if (ii - i > Zspace)
2007 ii = Zspace + i;
2008 if (debug & DEBUG_HFCMULTI_FIFO)
2009 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2010 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2011 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2012 temp ? "HDLC":"TRANS");
2015 /* Have to prep the audio data */
2016 hc->write_fifo(hc, d, ii - i);
2017 *idxp = ii;
2019 /* if not all data has been written */
2020 if (ii != len) {
2021 /* NOTE: fifo is started by the calling function */
2022 return;
2025 /* if all data has been written, terminate frame */
2026 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2027 /* increment f-counter */
2028 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2029 HFC_wait_nodebug(hc);
2032 /* send confirm, since get_net_bframe will not do it with trans */
2033 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2034 confirm_Bsend(bch);
2036 /* check for next frame */
2037 dev_kfree_skb(*sp);
2038 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2039 len = (*sp)->len;
2040 goto next_frame;
2042 if (dch && get_next_dframe(dch)) {
2043 len = (*sp)->len;
2044 goto next_frame;
2048 * now we have no more data, so in case of transparent,
2049 * we set the last byte in fifo to 'silence' in case we will get
2050 * no more data at all. this prevents sending an undefined value.
2052 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2053 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2057 /* NOTE: only called if E1 card is in active state */
2058 static void
2059 hfcmulti_rx(struct hfc_multi *hc, int ch)
2061 int temp;
2062 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2063 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2064 int again = 0;
2065 struct bchannel *bch;
2066 struct dchannel *dch;
2067 struct sk_buff *skb, **sp = NULL;
2068 int maxlen;
2070 bch = hc->chan[ch].bch;
2071 dch = hc->chan[ch].dch;
2072 if ((!dch) && (!bch))
2073 return;
2074 if (dch) {
2075 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2076 return;
2077 sp = &dch->rx_skb;
2078 maxlen = dch->maxlen;
2079 } else {
2080 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2081 return;
2082 sp = &bch->rx_skb;
2083 maxlen = bch->maxlen;
2085 next_frame:
2086 /* on first AND before getting next valid frame, R_FIFO must be written
2087 to. */
2088 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2089 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2090 (hc->chan[ch].slot_rx < 0) &&
2091 (hc->chan[ch].slot_tx < 0))
2092 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2093 else
2094 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2095 HFC_wait_nodebug(hc);
2097 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2098 if (hc->chan[ch].rx_off)
2099 return;
2101 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2102 f1 = HFC_inb_nodebug(hc, A_F1);
2103 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2104 if (debug & DEBUG_HFCMULTI_FIFO)
2105 printk(KERN_DEBUG
2106 "%s(card %d): reread f1 because %d!=%d\n",
2107 __func__, hc->id + 1, temp, f1);
2108 f1 = temp; /* repeat until F1 is equal */
2110 f2 = HFC_inb_nodebug(hc, A_F2);
2112 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2113 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2114 if (debug & DEBUG_HFCMULTI_FIFO)
2115 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2116 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2117 z1 = temp; /* repeat until Z1 is equal */
2119 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2120 Zsize = z1 - z2;
2121 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2122 /* complete hdlc frame */
2123 Zsize++;
2124 if (Zsize < 0)
2125 Zsize += hc->Zlen;
2126 /* if buffer is empty */
2127 if (Zsize <= 0)
2128 return;
2130 if (*sp == NULL) {
2131 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2132 if (*sp == NULL) {
2133 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2134 __func__);
2135 return;
2138 /* show activity */
2139 hc->activity[hc->chan[ch].port] = 1;
2141 /* empty fifo with what we have */
2142 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2143 if (debug & DEBUG_HFCMULTI_FIFO)
2144 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2145 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2146 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2147 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2148 f1, f2, Zsize + (*sp)->len, again);
2149 /* HDLC */
2150 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2151 if (debug & DEBUG_HFCMULTI_FIFO)
2152 printk(KERN_DEBUG
2153 "%s(card %d): hdlc-frame too large.\n",
2154 __func__, hc->id + 1);
2155 skb_trim(*sp, 0);
2156 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2157 HFC_wait_nodebug(hc);
2158 return;
2161 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2163 if (f1 != f2) {
2164 /* increment Z2,F2-counter */
2165 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2166 HFC_wait_nodebug(hc);
2167 /* check size */
2168 if ((*sp)->len < 4) {
2169 if (debug & DEBUG_HFCMULTI_FIFO)
2170 printk(KERN_DEBUG
2171 "%s(card %d): Frame below minimum "
2172 "size\n", __func__, hc->id + 1);
2173 skb_trim(*sp, 0);
2174 goto next_frame;
2176 /* there is at least one complete frame, check crc */
2177 if ((*sp)->data[(*sp)->len - 1]) {
2178 if (debug & DEBUG_HFCMULTI_CRC)
2179 printk(KERN_DEBUG
2180 "%s: CRC-error\n", __func__);
2181 skb_trim(*sp, 0);
2182 goto next_frame;
2184 skb_trim(*sp, (*sp)->len - 3);
2185 if ((*sp)->len < MISDN_COPY_SIZE) {
2186 skb = *sp;
2187 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2188 if (*sp) {
2189 memcpy(skb_put(*sp, skb->len),
2190 skb->data, skb->len);
2191 skb_trim(skb, 0);
2192 } else {
2193 printk(KERN_DEBUG "%s: No mem\n",
2194 __func__);
2195 *sp = skb;
2196 skb = NULL;
2198 } else {
2199 skb = NULL;
2201 if (debug & DEBUG_HFCMULTI_FIFO) {
2202 printk(KERN_DEBUG "%s(card %d):",
2203 __func__, hc->id + 1);
2204 temp = 0;
2205 while (temp < (*sp)->len)
2206 printk(" %02x", (*sp)->data[temp++]);
2207 printk("\n");
2209 if (dch)
2210 recv_Dchannel(dch);
2211 else
2212 recv_Bchannel(bch);
2213 *sp = skb;
2214 again++;
2215 goto next_frame;
2217 /* there is an incomplete frame */
2218 } else {
2219 /* transparent */
2220 if (Zsize > skb_tailroom(*sp))
2221 Zsize = skb_tailroom(*sp);
2222 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2223 if (((*sp)->len) < MISDN_COPY_SIZE) {
2224 skb = *sp;
2225 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2226 if (*sp) {
2227 memcpy(skb_put(*sp, skb->len),
2228 skb->data, skb->len);
2229 skb_trim(skb, 0);
2230 } else {
2231 printk(KERN_DEBUG "%s: No mem\n", __func__);
2232 *sp = skb;
2233 skb = NULL;
2235 } else {
2236 skb = NULL;
2238 if (debug & DEBUG_HFCMULTI_FIFO)
2239 printk(KERN_DEBUG
2240 "%s(card %d): fifo(%d) reading %d bytes "
2241 "(z1=%04x, z2=%04x) TRANS\n",
2242 __func__, hc->id + 1, ch, Zsize, z1, z2);
2243 /* only bch is transparent */
2244 recv_Bchannel(bch);
2245 *sp = skb;
2251 * Interrupt handler
2253 static void
2254 signal_state_up(struct dchannel *dch, int info, char *msg)
2256 struct sk_buff *skb;
2257 int id, data = info;
2259 if (debug & DEBUG_HFCMULTI_STATE)
2260 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2262 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2264 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2265 GFP_ATOMIC);
2266 if (!skb)
2267 return;
2268 recv_Dchannel_skb(dch, skb);
2271 static inline void
2272 handle_timer_irq(struct hfc_multi *hc)
2274 int ch, temp;
2275 struct dchannel *dch;
2276 u_long flags;
2278 /* process queued resync jobs */
2279 if (hc->e1_resync) {
2280 /* lock, so e1_resync gets not changed */
2281 spin_lock_irqsave(&HFClock, flags);
2282 if (hc->e1_resync & 1) {
2283 if (debug & DEBUG_HFCMULTI_PLXSD)
2284 printk(KERN_DEBUG "Enable SYNC_I\n");
2285 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2286 /* disable JATT, if RX_SYNC is set */
2287 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2288 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2290 if (hc->e1_resync & 2) {
2291 if (debug & DEBUG_HFCMULTI_PLXSD)
2292 printk(KERN_DEBUG "Enable jatt PLL\n");
2293 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2295 if (hc->e1_resync & 4) {
2296 if (debug & DEBUG_HFCMULTI_PLXSD)
2297 printk(KERN_DEBUG
2298 "Enable QUARTZ for HFC-E1\n");
2299 /* set jatt to quartz */
2300 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2301 | V_JATT_OFF);
2302 /* switch to JATT, in case it is not already */
2303 HFC_outb(hc, R_SYNC_OUT, 0);
2305 hc->e1_resync = 0;
2306 spin_unlock_irqrestore(&HFClock, flags);
2309 if (hc->type != 1 || hc->e1_state == 1)
2310 for (ch = 0; ch <= 31; ch++) {
2311 if (hc->created[hc->chan[ch].port]) {
2312 hfcmulti_tx(hc, ch);
2313 /* fifo is started when switching to rx-fifo */
2314 hfcmulti_rx(hc, ch);
2315 if (hc->chan[ch].dch &&
2316 hc->chan[ch].nt_timer > -1) {
2317 dch = hc->chan[ch].dch;
2318 if (!(--hc->chan[ch].nt_timer)) {
2319 schedule_event(dch,
2320 FLG_PHCHANGE);
2321 if (debug &
2322 DEBUG_HFCMULTI_STATE)
2323 printk(KERN_DEBUG
2324 "%s: nt_timer at "
2325 "state %x\n",
2326 __func__,
2327 dch->state);
2332 if (hc->type == 1 && hc->created[0]) {
2333 dch = hc->chan[hc->dslot].dch;
2334 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2335 /* LOS */
2336 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2337 if (!temp && hc->chan[hc->dslot].los)
2338 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2339 "LOS detected");
2340 if (temp && !hc->chan[hc->dslot].los)
2341 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2342 "LOS gone");
2343 hc->chan[hc->dslot].los = temp;
2345 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2346 /* AIS */
2347 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2348 if (!temp && hc->chan[hc->dslot].ais)
2349 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2350 "AIS detected");
2351 if (temp && !hc->chan[hc->dslot].ais)
2352 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2353 "AIS gone");
2354 hc->chan[hc->dslot].ais = temp;
2356 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2357 /* SLIP */
2358 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2359 if (!temp && hc->chan[hc->dslot].slip_rx)
2360 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2361 " bit SLIP detected RX");
2362 hc->chan[hc->dslot].slip_rx = temp;
2363 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2364 if (!temp && hc->chan[hc->dslot].slip_tx)
2365 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2366 " bit SLIP detected TX");
2367 hc->chan[hc->dslot].slip_tx = temp;
2369 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2370 /* RDI */
2371 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2372 if (!temp && hc->chan[hc->dslot].rdi)
2373 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2374 "RDI detected");
2375 if (temp && !hc->chan[hc->dslot].rdi)
2376 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2377 "RDI gone");
2378 hc->chan[hc->dslot].rdi = temp;
2380 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2381 switch (hc->chan[hc->dslot].sync) {
2382 case 0:
2383 if ((temp & 0x60) == 0x60) {
2384 if (debug & DEBUG_HFCMULTI_SYNC)
2385 printk(KERN_DEBUG
2386 "%s: (id=%d) E1 now "
2387 "in clock sync\n",
2388 __func__, hc->id);
2389 HFC_outb(hc, R_RX_OFF,
2390 hc->chan[hc->dslot].jitter | V_RX_INIT);
2391 HFC_outb(hc, R_TX_OFF,
2392 hc->chan[hc->dslot].jitter | V_RX_INIT);
2393 hc->chan[hc->dslot].sync = 1;
2394 goto check_framesync;
2396 break;
2397 case 1:
2398 if ((temp & 0x60) != 0x60) {
2399 if (debug & DEBUG_HFCMULTI_SYNC)
2400 printk(KERN_DEBUG
2401 "%s: (id=%d) E1 "
2402 "lost clock sync\n",
2403 __func__, hc->id);
2404 hc->chan[hc->dslot].sync = 0;
2405 break;
2407 check_framesync:
2408 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2409 if (temp == 0x27) {
2410 if (debug & DEBUG_HFCMULTI_SYNC)
2411 printk(KERN_DEBUG
2412 "%s: (id=%d) E1 "
2413 "now in frame sync\n",
2414 __func__, hc->id);
2415 hc->chan[hc->dslot].sync = 2;
2417 break;
2418 case 2:
2419 if ((temp & 0x60) != 0x60) {
2420 if (debug & DEBUG_HFCMULTI_SYNC)
2421 printk(KERN_DEBUG
2422 "%s: (id=%d) E1 lost "
2423 "clock & frame sync\n",
2424 __func__, hc->id);
2425 hc->chan[hc->dslot].sync = 0;
2426 break;
2428 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2429 if (temp != 0x27) {
2430 if (debug & DEBUG_HFCMULTI_SYNC)
2431 printk(KERN_DEBUG
2432 "%s: (id=%d) E1 "
2433 "lost frame sync\n",
2434 __func__, hc->id);
2435 hc->chan[hc->dslot].sync = 1;
2437 break;
2441 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2442 hfcmulti_watchdog(hc);
2444 if (hc->leds)
2445 hfcmulti_leds(hc);
2448 static void
2449 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2451 struct dchannel *dch;
2452 int ch;
2453 int active;
2454 u_char st_status, temp;
2456 /* state machine */
2457 for (ch = 0; ch <= 31; ch++) {
2458 if (hc->chan[ch].dch) {
2459 dch = hc->chan[ch].dch;
2460 if (r_irq_statech & 1) {
2461 HFC_outb_nodebug(hc, R_ST_SEL,
2462 hc->chan[ch].port);
2463 /* undocumented: delay after R_ST_SEL */
2464 udelay(1);
2465 /* undocumented: status changes during read */
2466 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2467 while (st_status != (temp =
2468 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2469 if (debug & DEBUG_HFCMULTI_STATE)
2470 printk(KERN_DEBUG "%s: reread "
2471 "STATE because %d!=%d\n",
2472 __func__, temp,
2473 st_status);
2474 st_status = temp; /* repeat */
2477 /* Speech Design TE-sync indication */
2478 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2479 dch->dev.D.protocol == ISDN_P_TE_S0) {
2480 if (st_status & V_FR_SYNC_ST)
2481 hc->syncronized |=
2482 (1 << hc->chan[ch].port);
2483 else
2484 hc->syncronized &=
2485 ~(1 << hc->chan[ch].port);
2487 dch->state = st_status & 0x0f;
2488 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2489 active = 3;
2490 else
2491 active = 7;
2492 if (dch->state == active) {
2493 HFC_outb_nodebug(hc, R_FIFO,
2494 (ch << 1) | 1);
2495 HFC_wait_nodebug(hc);
2496 HFC_outb_nodebug(hc,
2497 R_INC_RES_FIFO, V_RES_F);
2498 HFC_wait_nodebug(hc);
2499 dch->tx_idx = 0;
2501 schedule_event(dch, FLG_PHCHANGE);
2502 if (debug & DEBUG_HFCMULTI_STATE)
2503 printk(KERN_DEBUG
2504 "%s: S/T newstate %x port %d\n",
2505 __func__, dch->state,
2506 hc->chan[ch].port);
2508 r_irq_statech >>= 1;
2511 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2512 plxsd_checksync(hc, 0);
2515 static void
2516 fifo_irq(struct hfc_multi *hc, int block)
2518 int ch, j;
2519 struct dchannel *dch;
2520 struct bchannel *bch;
2521 u_char r_irq_fifo_bl;
2523 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2524 j = 0;
2525 while (j < 8) {
2526 ch = (block << 2) + (j >> 1);
2527 dch = hc->chan[ch].dch;
2528 bch = hc->chan[ch].bch;
2529 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2530 j += 2;
2531 continue;
2533 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2534 test_bit(FLG_ACTIVE, &dch->Flags)) {
2535 hfcmulti_tx(hc, ch);
2536 /* start fifo */
2537 HFC_outb_nodebug(hc, R_FIFO, 0);
2538 HFC_wait_nodebug(hc);
2540 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2541 test_bit(FLG_ACTIVE, &bch->Flags)) {
2542 hfcmulti_tx(hc, ch);
2543 /* start fifo */
2544 HFC_outb_nodebug(hc, R_FIFO, 0);
2545 HFC_wait_nodebug(hc);
2547 j++;
2548 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2549 test_bit(FLG_ACTIVE, &dch->Flags)) {
2550 hfcmulti_rx(hc, ch);
2552 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2553 test_bit(FLG_ACTIVE, &bch->Flags)) {
2554 hfcmulti_rx(hc, ch);
2556 j++;
2560 #ifdef IRQ_DEBUG
2561 int irqsem;
2562 #endif
2563 static irqreturn_t
2564 hfcmulti_interrupt(int intno, void *dev_id)
2566 #ifdef IRQCOUNT_DEBUG
2567 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2568 iq5 = 0, iq6 = 0, iqcnt = 0;
2569 #endif
2570 struct hfc_multi *hc = dev_id;
2571 struct dchannel *dch;
2572 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2573 int i;
2574 void __iomem *plx_acc;
2575 u_short wval;
2576 u_char e1_syncsta, temp;
2577 u_long flags;
2579 if (!hc) {
2580 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2581 return IRQ_NONE;
2584 spin_lock(&hc->lock);
2586 #ifdef IRQ_DEBUG
2587 if (irqsem)
2588 printk(KERN_ERR "irq for card %d during irq from "
2589 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2590 irqsem = hc->id + 1;
2591 #endif
2593 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2594 spin_lock_irqsave(&plx_lock, flags);
2595 plx_acc = hc->plx_membase + PLX_INTCSR;
2596 wval = readw(plx_acc);
2597 spin_unlock_irqrestore(&plx_lock, flags);
2598 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2599 goto irq_notforus;
2602 status = HFC_inb_nodebug(hc, R_STATUS);
2603 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2604 #ifdef IRQCOUNT_DEBUG
2605 if (r_irq_statech)
2606 iq1++;
2607 if (status & V_DTMF_STA)
2608 iq2++;
2609 if (status & V_LOST_STA)
2610 iq3++;
2611 if (status & V_EXT_IRQSTA)
2612 iq4++;
2613 if (status & V_MISC_IRQSTA)
2614 iq5++;
2615 if (status & V_FR_IRQSTA)
2616 iq6++;
2617 if (iqcnt++ > 5000) {
2618 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2619 iq1, iq2, iq3, iq4, iq5, iq6);
2620 iqcnt = 0;
2622 #endif
2623 if (!r_irq_statech &&
2624 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2625 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2626 /* irq is not for us */
2627 goto irq_notforus;
2629 hc->irqcnt++;
2630 if (r_irq_statech) {
2631 if (hc->type != 1)
2632 ph_state_irq(hc, r_irq_statech);
2634 if (status & V_EXT_IRQSTA)
2635 ; /* external IRQ */
2636 if (status & V_LOST_STA) {
2637 /* LOST IRQ */
2638 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2640 if (status & V_MISC_IRQSTA) {
2641 /* misc IRQ */
2642 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2643 if (r_irq_misc & V_STA_IRQ) {
2644 if (hc->type == 1) {
2645 /* state machine */
2646 dch = hc->chan[hc->dslot].dch;
2647 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2648 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2649 && hc->e1_getclock) {
2650 if (e1_syncsta & V_FR_SYNC_E1)
2651 hc->syncronized = 1;
2652 else
2653 hc->syncronized = 0;
2655 /* undocumented: status changes during read */
2656 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2657 while (dch->state != (temp =
2658 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2659 if (debug & DEBUG_HFCMULTI_STATE)
2660 printk(KERN_DEBUG "%s: reread "
2661 "STATE because %d!=%d\n",
2662 __func__, temp,
2663 dch->state);
2664 dch->state = temp; /* repeat */
2666 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2667 & 0x7;
2668 schedule_event(dch, FLG_PHCHANGE);
2669 if (debug & DEBUG_HFCMULTI_STATE)
2670 printk(KERN_DEBUG
2671 "%s: E1 (id=%d) newstate %x\n",
2672 __func__, hc->id, dch->state);
2673 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2674 plxsd_checksync(hc, 0);
2677 if (r_irq_misc & V_TI_IRQ)
2678 handle_timer_irq(hc);
2680 if (r_irq_misc & V_DTMF_IRQ) {
2681 /* -> DTMF IRQ */
2682 hfcmulti_dtmf(hc);
2684 if (r_irq_misc & V_IRQ_PROC) {
2685 static int irq_proc_cnt;
2686 if (!irq_proc_cnt++)
2687 printk(KERN_WARNING "%s: got V_IRQ_PROC -"
2688 " this should not happen\n", __func__);
2692 if (status & V_FR_IRQSTA) {
2693 /* FIFO IRQ */
2694 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2695 for (i = 0; i < 8; i++) {
2696 if (r_irq_oview & (1 << i))
2697 fifo_irq(hc, i);
2701 #ifdef IRQ_DEBUG
2702 irqsem = 0;
2703 #endif
2704 spin_unlock(&hc->lock);
2705 return IRQ_HANDLED;
2707 irq_notforus:
2708 #ifdef IRQ_DEBUG
2709 irqsem = 0;
2710 #endif
2711 spin_unlock(&hc->lock);
2712 return IRQ_NONE;
2717 * timer callback for D-chan busy resolution. Currently no function
2720 static void
2721 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2727 * activate/deactivate hardware for selected channels and mode
2729 * configure B-channel with the given protocol
2730 * ch eqals to the HFC-channel (0-31)
2731 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2732 * for S/T, 1-31 for E1)
2733 * the hdlc interrupts will be set/unset
2735 static int
2736 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2737 int bank_tx, int slot_rx, int bank_rx)
2739 int flow_tx = 0, flow_rx = 0, routing = 0;
2740 int oslot_tx, oslot_rx;
2741 int conf;
2743 if (ch < 0 || ch > 31)
2744 return EINVAL;
2745 oslot_tx = hc->chan[ch].slot_tx;
2746 oslot_rx = hc->chan[ch].slot_rx;
2747 conf = hc->chan[ch].conf;
2749 if (debug & DEBUG_HFCMULTI_MODE)
2750 printk(KERN_DEBUG
2751 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2752 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2753 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2754 bank_tx, oslot_rx, slot_rx, bank_rx);
2756 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2757 /* remove from slot */
2758 if (debug & DEBUG_HFCMULTI_MODE)
2759 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2760 __func__, oslot_tx);
2761 if (hc->slot_owner[oslot_tx<<1] == ch) {
2762 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2763 HFC_outb(hc, A_SL_CFG, 0);
2764 HFC_outb(hc, A_CONF, 0);
2765 hc->slot_owner[oslot_tx<<1] = -1;
2766 } else {
2767 if (debug & DEBUG_HFCMULTI_MODE)
2768 printk(KERN_DEBUG
2769 "%s: we are not owner of this tx slot "
2770 "anymore, channel %d is.\n",
2771 __func__, hc->slot_owner[oslot_tx<<1]);
2775 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2776 /* remove from slot */
2777 if (debug & DEBUG_HFCMULTI_MODE)
2778 printk(KERN_DEBUG
2779 "%s: remove from slot %d (RX)\n",
2780 __func__, oslot_rx);
2781 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2782 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2783 HFC_outb(hc, A_SL_CFG, 0);
2784 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2785 } else {
2786 if (debug & DEBUG_HFCMULTI_MODE)
2787 printk(KERN_DEBUG
2788 "%s: we are not owner of this rx slot "
2789 "anymore, channel %d is.\n",
2790 __func__,
2791 hc->slot_owner[(oslot_rx << 1) | 1]);
2795 if (slot_tx < 0) {
2796 flow_tx = 0x80; /* FIFO->ST */
2797 /* disable pcm slot */
2798 hc->chan[ch].slot_tx = -1;
2799 hc->chan[ch].bank_tx = 0;
2800 } else {
2801 /* set pcm slot */
2802 if (hc->chan[ch].txpending)
2803 flow_tx = 0x80; /* FIFO->ST */
2804 else
2805 flow_tx = 0xc0; /* PCM->ST */
2806 /* put on slot */
2807 routing = bank_tx ? 0xc0 : 0x80;
2808 if (conf >= 0 || bank_tx > 1)
2809 routing = 0x40; /* loop */
2810 if (debug & DEBUG_HFCMULTI_MODE)
2811 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2812 " %d flow %02x routing %02x conf %d (TX)\n",
2813 __func__, ch, slot_tx, bank_tx,
2814 flow_tx, routing, conf);
2815 HFC_outb(hc, R_SLOT, slot_tx << 1);
2816 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2817 HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2818 hc->slot_owner[slot_tx << 1] = ch;
2819 hc->chan[ch].slot_tx = slot_tx;
2820 hc->chan[ch].bank_tx = bank_tx;
2822 if (slot_rx < 0) {
2823 /* disable pcm slot */
2824 flow_rx = 0x80; /* ST->FIFO */
2825 hc->chan[ch].slot_rx = -1;
2826 hc->chan[ch].bank_rx = 0;
2827 } else {
2828 /* set pcm slot */
2829 if (hc->chan[ch].txpending)
2830 flow_rx = 0x80; /* ST->FIFO */
2831 else
2832 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2833 /* put on slot */
2834 routing = bank_rx?0x80:0xc0; /* reversed */
2835 if (conf >= 0 || bank_rx > 1)
2836 routing = 0x40; /* loop */
2837 if (debug & DEBUG_HFCMULTI_MODE)
2838 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2839 " %d flow %02x routing %02x conf %d (RX)\n",
2840 __func__, ch, slot_rx, bank_rx,
2841 flow_rx, routing, conf);
2842 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2843 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2844 hc->slot_owner[(slot_rx<<1)|1] = ch;
2845 hc->chan[ch].slot_rx = slot_rx;
2846 hc->chan[ch].bank_rx = bank_rx;
2849 switch (protocol) {
2850 case (ISDN_P_NONE):
2851 /* disable TX fifo */
2852 HFC_outb(hc, R_FIFO, ch << 1);
2853 HFC_wait(hc);
2854 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2855 HFC_outb(hc, A_SUBCH_CFG, 0);
2856 HFC_outb(hc, A_IRQ_MSK, 0);
2857 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2858 HFC_wait(hc);
2859 /* disable RX fifo */
2860 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2861 HFC_wait(hc);
2862 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2863 HFC_outb(hc, A_SUBCH_CFG, 0);
2864 HFC_outb(hc, A_IRQ_MSK, 0);
2865 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2866 HFC_wait(hc);
2867 if (hc->chan[ch].bch && hc->type != 1) {
2868 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2869 ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2870 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2871 /* undocumented: delay after R_ST_SEL */
2872 udelay(1);
2873 HFC_outb(hc, A_ST_CTRL0,
2874 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2876 if (hc->chan[ch].bch) {
2877 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2878 test_and_clear_bit(FLG_TRANSPARENT,
2879 &hc->chan[ch].bch->Flags);
2881 break;
2882 case (ISDN_P_B_RAW): /* B-channel */
2884 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2885 (hc->chan[ch].slot_rx < 0) &&
2886 (hc->chan[ch].slot_tx < 0)) {
2888 printk(KERN_DEBUG
2889 "Setting B-channel %d to echo cancelable "
2890 "state on PCM slot %d\n", ch,
2891 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2892 printk(KERN_DEBUG
2893 "Enabling pass through for channel\n");
2894 vpm_out(hc, ch, ((ch / 4) * 8) +
2895 ((ch % 4) * 4) + 1, 0x01);
2896 /* rx path */
2897 /* S/T -> PCM */
2898 HFC_outb(hc, R_FIFO, (ch << 1));
2899 HFC_wait(hc);
2900 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2901 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2902 ((ch % 4) * 4) + 1) << 1);
2903 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2905 /* PCM -> FIFO */
2906 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2907 HFC_wait(hc);
2908 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2909 HFC_outb(hc, A_SUBCH_CFG, 0);
2910 HFC_outb(hc, A_IRQ_MSK, 0);
2911 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2912 HFC_wait(hc);
2913 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2914 ((ch % 4) * 4) + 1) << 1) | 1);
2915 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2917 /* tx path */
2918 /* PCM -> S/T */
2919 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2920 HFC_wait(hc);
2921 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2922 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2923 ((ch % 4) * 4)) << 1) | 1);
2924 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2926 /* FIFO -> PCM */
2927 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2928 HFC_wait(hc);
2929 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2930 HFC_outb(hc, A_SUBCH_CFG, 0);
2931 HFC_outb(hc, A_IRQ_MSK, 0);
2932 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2933 HFC_wait(hc);
2934 /* tx silence */
2935 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2936 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2937 ((ch % 4) * 4)) << 1);
2938 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2939 } else {
2940 /* enable TX fifo */
2941 HFC_outb(hc, R_FIFO, ch << 1);
2942 HFC_wait(hc);
2943 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2944 V_HDLC_TRP | V_IFF);
2945 HFC_outb(hc, A_SUBCH_CFG, 0);
2946 HFC_outb(hc, A_IRQ_MSK, 0);
2947 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2948 HFC_wait(hc);
2949 /* tx silence */
2950 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2951 /* enable RX fifo */
2952 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2953 HFC_wait(hc);
2954 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2955 HFC_outb(hc, A_SUBCH_CFG, 0);
2956 HFC_outb(hc, A_IRQ_MSK, 0);
2957 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2958 HFC_wait(hc);
2960 if (hc->type != 1) {
2961 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2962 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2963 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2964 /* undocumented: delay after R_ST_SEL */
2965 udelay(1);
2966 HFC_outb(hc, A_ST_CTRL0,
2967 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2969 if (hc->chan[ch].bch)
2970 test_and_set_bit(FLG_TRANSPARENT,
2971 &hc->chan[ch].bch->Flags);
2972 break;
2973 case (ISDN_P_B_HDLC): /* B-channel */
2974 case (ISDN_P_TE_S0): /* D-channel */
2975 case (ISDN_P_NT_S0):
2976 case (ISDN_P_TE_E1):
2977 case (ISDN_P_NT_E1):
2978 /* enable TX fifo */
2979 HFC_outb(hc, R_FIFO, ch<<1);
2980 HFC_wait(hc);
2981 if (hc->type == 1 || hc->chan[ch].bch) {
2982 /* E1 or B-channel */
2983 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
2984 HFC_outb(hc, A_SUBCH_CFG, 0);
2985 } else {
2986 /* D-Channel without HDLC fill flags */
2987 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
2988 HFC_outb(hc, A_SUBCH_CFG, 2);
2990 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
2991 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2992 HFC_wait(hc);
2993 /* enable RX fifo */
2994 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2995 HFC_wait(hc);
2996 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
2997 if (hc->type == 1 || hc->chan[ch].bch)
2998 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
2999 else
3000 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3001 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3002 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3003 HFC_wait(hc);
3004 if (hc->chan[ch].bch) {
3005 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3006 if (hc->type != 1) {
3007 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3008 ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3009 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3010 /* undocumented: delay after R_ST_SEL */
3011 udelay(1);
3012 HFC_outb(hc, A_ST_CTRL0,
3013 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3016 break;
3017 default:
3018 printk(KERN_DEBUG "%s: protocol not known %x\n",
3019 __func__, protocol);
3020 hc->chan[ch].protocol = ISDN_P_NONE;
3021 return -ENOPROTOOPT;
3023 hc->chan[ch].protocol = protocol;
3024 return 0;
3029 * connect/disconnect PCM
3032 static void
3033 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3034 int slot_rx, int bank_rx)
3036 if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3037 /* disable PCM */
3038 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3039 return;
3042 /* enable pcm */
3043 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3044 slot_rx, bank_rx);
3048 * set/disable conference
3051 static void
3052 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3054 if (num >= 0 && num <= 7)
3055 hc->chan[ch].conf = num;
3056 else
3057 hc->chan[ch].conf = -1;
3058 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3059 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3060 hc->chan[ch].bank_rx);
3065 * set/disable sample loop
3068 /* NOTE: this function is experimental and therefore disabled */
3071 * Layer 1 callback function
3073 static int
3074 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3076 struct hfc_multi *hc = dch->hw;
3077 u_long flags;
3079 switch (cmd) {
3080 case INFO3_P8:
3081 case INFO3_P10:
3082 break;
3083 case HW_RESET_REQ:
3084 /* start activation */
3085 spin_lock_irqsave(&hc->lock, flags);
3086 if (hc->type == 1) {
3087 if (debug & DEBUG_HFCMULTI_MSG)
3088 printk(KERN_DEBUG
3089 "%s: HW_RESET_REQ no BRI\n",
3090 __func__);
3091 } else {
3092 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3093 /* undocumented: delay after R_ST_SEL */
3094 udelay(1);
3095 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3096 udelay(6); /* wait at least 5,21us */
3097 HFC_outb(hc, A_ST_WR_STATE, 3);
3098 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3099 /* activate */
3101 spin_unlock_irqrestore(&hc->lock, flags);
3102 l1_event(dch->l1, HW_POWERUP_IND);
3103 break;
3104 case HW_DEACT_REQ:
3105 /* start deactivation */
3106 spin_lock_irqsave(&hc->lock, flags);
3107 if (hc->type == 1) {
3108 if (debug & DEBUG_HFCMULTI_MSG)
3109 printk(KERN_DEBUG
3110 "%s: HW_DEACT_REQ no BRI\n",
3111 __func__);
3112 } else {
3113 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3114 /* undocumented: delay after R_ST_SEL */
3115 udelay(1);
3116 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3117 /* deactivate */
3118 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3119 hc->syncronized &=
3120 ~(1 << hc->chan[dch->slot].port);
3121 plxsd_checksync(hc, 0);
3124 skb_queue_purge(&dch->squeue);
3125 if (dch->tx_skb) {
3126 dev_kfree_skb(dch->tx_skb);
3127 dch->tx_skb = NULL;
3129 dch->tx_idx = 0;
3130 if (dch->rx_skb) {
3131 dev_kfree_skb(dch->rx_skb);
3132 dch->rx_skb = NULL;
3134 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3135 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3136 del_timer(&dch->timer);
3137 spin_unlock_irqrestore(&hc->lock, flags);
3138 break;
3139 case HW_POWERUP_REQ:
3140 spin_lock_irqsave(&hc->lock, flags);
3141 if (hc->type == 1) {
3142 if (debug & DEBUG_HFCMULTI_MSG)
3143 printk(KERN_DEBUG
3144 "%s: HW_POWERUP_REQ no BRI\n",
3145 __func__);
3146 } else {
3147 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3148 /* undocumented: delay after R_ST_SEL */
3149 udelay(1);
3150 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3151 udelay(6); /* wait at least 5,21us */
3152 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3154 spin_unlock_irqrestore(&hc->lock, flags);
3155 break;
3156 case PH_ACTIVATE_IND:
3157 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3158 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3159 GFP_ATOMIC);
3160 break;
3161 case PH_DEACTIVATE_IND:
3162 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3163 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3164 GFP_ATOMIC);
3165 break;
3166 default:
3167 if (dch->debug & DEBUG_HW)
3168 printk(KERN_DEBUG "%s: unknown command %x\n",
3169 __func__, cmd);
3170 return -1;
3172 return 0;
3176 * Layer2 -> Layer 1 Transfer
3179 static int
3180 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3182 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3183 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3184 struct hfc_multi *hc = dch->hw;
3185 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3186 int ret = -EINVAL;
3187 unsigned int id;
3188 u_long flags;
3190 switch (hh->prim) {
3191 case PH_DATA_REQ:
3192 if (skb->len < 1)
3193 break;
3194 spin_lock_irqsave(&hc->lock, flags);
3195 ret = dchannel_senddata(dch, skb);
3196 if (ret > 0) { /* direct TX */
3197 id = hh->id; /* skb can be freed */
3198 hfcmulti_tx(hc, dch->slot);
3199 ret = 0;
3200 /* start fifo */
3201 HFC_outb(hc, R_FIFO, 0);
3202 HFC_wait(hc);
3203 spin_unlock_irqrestore(&hc->lock, flags);
3204 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3205 } else
3206 spin_unlock_irqrestore(&hc->lock, flags);
3207 return ret;
3208 case PH_ACTIVATE_REQ:
3209 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3210 spin_lock_irqsave(&hc->lock, flags);
3211 ret = 0;
3212 if (debug & DEBUG_HFCMULTI_MSG)
3213 printk(KERN_DEBUG
3214 "%s: PH_ACTIVATE port %d (0..%d)\n",
3215 __func__, hc->chan[dch->slot].port,
3216 hc->ports-1);
3217 /* start activation */
3218 if (hc->type == 1) {
3219 ph_state_change(dch);
3220 if (debug & DEBUG_HFCMULTI_STATE)
3221 printk(KERN_DEBUG
3222 "%s: E1 report state %x \n",
3223 __func__, dch->state);
3224 } else {
3225 HFC_outb(hc, R_ST_SEL,
3226 hc->chan[dch->slot].port);
3227 /* undocumented: delay after R_ST_SEL */
3228 udelay(1);
3229 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3230 /* G1 */
3231 udelay(6); /* wait at least 5,21us */
3232 HFC_outb(hc, A_ST_WR_STATE, 1);
3233 HFC_outb(hc, A_ST_WR_STATE, 1 |
3234 (V_ST_ACT*3)); /* activate */
3235 dch->state = 1;
3237 spin_unlock_irqrestore(&hc->lock, flags);
3238 } else
3239 ret = l1_event(dch->l1, hh->prim);
3240 break;
3241 case PH_DEACTIVATE_REQ:
3242 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3243 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3244 spin_lock_irqsave(&hc->lock, flags);
3245 if (debug & DEBUG_HFCMULTI_MSG)
3246 printk(KERN_DEBUG
3247 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3248 __func__, hc->chan[dch->slot].port,
3249 hc->ports-1);
3250 /* start deactivation */
3251 if (hc->type == 1) {
3252 if (debug & DEBUG_HFCMULTI_MSG)
3253 printk(KERN_DEBUG
3254 "%s: PH_DEACTIVATE no BRI\n",
3255 __func__);
3256 } else {
3257 HFC_outb(hc, R_ST_SEL,
3258 hc->chan[dch->slot].port);
3259 /* undocumented: delay after R_ST_SEL */
3260 udelay(1);
3261 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3262 /* deactivate */
3263 dch->state = 1;
3265 skb_queue_purge(&dch->squeue);
3266 if (dch->tx_skb) {
3267 dev_kfree_skb(dch->tx_skb);
3268 dch->tx_skb = NULL;
3270 dch->tx_idx = 0;
3271 if (dch->rx_skb) {
3272 dev_kfree_skb(dch->rx_skb);
3273 dch->rx_skb = NULL;
3275 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3276 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3277 del_timer(&dch->timer);
3278 #ifdef FIXME
3279 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3280 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3281 #endif
3282 ret = 0;
3283 spin_unlock_irqrestore(&hc->lock, flags);
3284 } else
3285 ret = l1_event(dch->l1, hh->prim);
3286 break;
3288 if (!ret)
3289 dev_kfree_skb(skb);
3290 return ret;
3293 static void
3294 deactivate_bchannel(struct bchannel *bch)
3296 struct hfc_multi *hc = bch->hw;
3297 u_long flags;
3299 spin_lock_irqsave(&hc->lock, flags);
3300 if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3301 dev_kfree_skb(bch->next_skb);
3302 bch->next_skb = NULL;
3304 if (bch->tx_skb) {
3305 dev_kfree_skb(bch->tx_skb);
3306 bch->tx_skb = NULL;
3308 bch->tx_idx = 0;
3309 if (bch->rx_skb) {
3310 dev_kfree_skb(bch->rx_skb);
3311 bch->rx_skb = NULL;
3313 hc->chan[bch->slot].coeff_count = 0;
3314 test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3315 test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3316 hc->chan[bch->slot].rx_off = 0;
3317 hc->chan[bch->slot].conf = -1;
3318 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3319 spin_unlock_irqrestore(&hc->lock, flags);
3322 static int
3323 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3325 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3326 struct hfc_multi *hc = bch->hw;
3327 int ret = -EINVAL;
3328 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3329 unsigned int id;
3330 u_long flags;
3332 switch (hh->prim) {
3333 case PH_DATA_REQ:
3334 if (!skb->len)
3335 break;
3336 spin_lock_irqsave(&hc->lock, flags);
3337 ret = bchannel_senddata(bch, skb);
3338 if (ret > 0) { /* direct TX */
3339 id = hh->id; /* skb can be freed */
3340 hfcmulti_tx(hc, bch->slot);
3341 ret = 0;
3342 /* start fifo */
3343 HFC_outb_nodebug(hc, R_FIFO, 0);
3344 HFC_wait_nodebug(hc);
3345 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3346 spin_unlock_irqrestore(&hc->lock, flags);
3347 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3348 } else
3349 spin_unlock_irqrestore(&hc->lock, flags);
3350 } else
3351 spin_unlock_irqrestore(&hc->lock, flags);
3352 return ret;
3353 case PH_ACTIVATE_REQ:
3354 if (debug & DEBUG_HFCMULTI_MSG)
3355 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3356 __func__, bch->slot);
3357 spin_lock_irqsave(&hc->lock, flags);
3358 /* activate B-channel if not already activated */
3359 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3360 hc->chan[bch->slot].txpending = 0;
3361 ret = mode_hfcmulti(hc, bch->slot,
3362 ch->protocol,
3363 hc->chan[bch->slot].slot_tx,
3364 hc->chan[bch->slot].bank_tx,
3365 hc->chan[bch->slot].slot_rx,
3366 hc->chan[bch->slot].bank_rx);
3367 if (!ret) {
3368 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3369 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3370 /* start decoder */
3371 hc->dtmf = 1;
3372 if (debug & DEBUG_HFCMULTI_DTMF)
3373 printk(KERN_DEBUG
3374 "%s: start dtmf decoder\n",
3375 __func__);
3376 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3377 V_RST_DTMF);
3380 } else
3381 ret = 0;
3382 spin_unlock_irqrestore(&hc->lock, flags);
3383 if (!ret)
3384 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3385 GFP_KERNEL);
3386 break;
3387 case PH_CONTROL_REQ:
3388 spin_lock_irqsave(&hc->lock, flags);
3389 switch (hh->id) {
3390 case HFC_SPL_LOOP_ON: /* set sample loop */
3391 if (debug & DEBUG_HFCMULTI_MSG)
3392 printk(KERN_DEBUG
3393 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3394 __func__, skb->len);
3395 ret = 0;
3396 break;
3397 case HFC_SPL_LOOP_OFF: /* set silence */
3398 if (debug & DEBUG_HFCMULTI_MSG)
3399 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3400 __func__);
3401 ret = 0;
3402 break;
3403 default:
3404 printk(KERN_ERR
3405 "%s: unknown PH_CONTROL_REQ info %x\n",
3406 __func__, hh->id);
3407 ret = -EINVAL;
3409 spin_unlock_irqrestore(&hc->lock, flags);
3410 break;
3411 case PH_DEACTIVATE_REQ:
3412 deactivate_bchannel(bch); /* locked there */
3413 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3414 GFP_KERNEL);
3415 ret = 0;
3416 break;
3418 if (!ret)
3419 dev_kfree_skb(skb);
3420 return ret;
3424 * bchannel control function
3426 static int
3427 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3429 int ret = 0;
3430 struct dsp_features *features =
3431 (struct dsp_features *)(*((u_long *)&cq->p1));
3432 struct hfc_multi *hc = bch->hw;
3433 int slot_tx;
3434 int bank_tx;
3435 int slot_rx;
3436 int bank_rx;
3437 int num;
3439 switch (cq->op) {
3440 case MISDN_CTRL_GETOP:
3441 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3442 | MISDN_CTRL_RX_OFF;
3443 break;
3444 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3445 hc->chan[bch->slot].rx_off = !!cq->p1;
3446 if (!hc->chan[bch->slot].rx_off) {
3447 /* reset fifo on rx on */
3448 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3449 HFC_wait_nodebug(hc);
3450 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3451 HFC_wait_nodebug(hc);
3453 if (debug & DEBUG_HFCMULTI_MSG)
3454 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3455 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3456 break;
3457 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3458 if (debug & DEBUG_HFCMULTI_MSG)
3459 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3460 __func__);
3461 /* create confirm */
3462 features->hfc_id = hc->id;
3463 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3464 features->hfc_dtmf = 1;
3465 features->hfc_loops = 0;
3466 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3467 features->hfc_echocanhw = 1;
3468 } else {
3469 features->pcm_id = hc->pcm;
3470 features->pcm_slots = hc->slots;
3471 features->pcm_banks = 2;
3473 break;
3474 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3475 slot_tx = cq->p1 & 0xff;
3476 bank_tx = cq->p1 >> 8;
3477 slot_rx = cq->p2 & 0xff;
3478 bank_rx = cq->p2 >> 8;
3479 if (debug & DEBUG_HFCMULTI_MSG)
3480 printk(KERN_DEBUG
3481 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3482 "slot %d bank %d (RX)\n",
3483 __func__, slot_tx, bank_tx,
3484 slot_rx, bank_rx);
3485 if (slot_tx < hc->slots && bank_tx <= 2 &&
3486 slot_rx < hc->slots && bank_rx <= 2)
3487 hfcmulti_pcm(hc, bch->slot,
3488 slot_tx, bank_tx, slot_rx, bank_rx);
3489 else {
3490 printk(KERN_WARNING
3491 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3492 "slot %d bank %d (RX) out of range\n",
3493 __func__, slot_tx, bank_tx,
3494 slot_rx, bank_rx);
3495 ret = -EINVAL;
3497 break;
3498 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3499 if (debug & DEBUG_HFCMULTI_MSG)
3500 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3501 __func__);
3502 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3503 break;
3504 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3505 num = cq->p1 & 0xff;
3506 if (debug & DEBUG_HFCMULTI_MSG)
3507 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3508 __func__, num);
3509 if (num <= 7)
3510 hfcmulti_conf(hc, bch->slot, num);
3511 else {
3512 printk(KERN_WARNING
3513 "%s: HW_CONF_JOIN conf %d out of range\n",
3514 __func__, num);
3515 ret = -EINVAL;
3517 break;
3518 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3519 if (debug & DEBUG_HFCMULTI_MSG)
3520 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3521 hfcmulti_conf(hc, bch->slot, -1);
3522 break;
3523 case MISDN_CTRL_HFC_ECHOCAN_ON:
3524 if (debug & DEBUG_HFCMULTI_MSG)
3525 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3526 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3527 vpm_echocan_on(hc, bch->slot, cq->p1);
3528 else
3529 ret = -EINVAL;
3530 break;
3532 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3533 if (debug & DEBUG_HFCMULTI_MSG)
3534 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3535 __func__);
3536 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3537 vpm_echocan_off(hc, bch->slot);
3538 else
3539 ret = -EINVAL;
3540 break;
3541 default:
3542 printk(KERN_WARNING "%s: unknown Op %x\n",
3543 __func__, cq->op);
3544 ret = -EINVAL;
3545 break;
3547 return ret;
3550 static int
3551 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3553 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3554 struct hfc_multi *hc = bch->hw;
3555 int err = -EINVAL;
3556 u_long flags;
3558 if (bch->debug & DEBUG_HW)
3559 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3560 __func__, cmd, arg);
3561 switch (cmd) {
3562 case CLOSE_CHANNEL:
3563 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3564 if (test_bit(FLG_ACTIVE, &bch->Flags))
3565 deactivate_bchannel(bch); /* locked there */
3566 ch->protocol = ISDN_P_NONE;
3567 ch->peer = NULL;
3568 module_put(THIS_MODULE);
3569 err = 0;
3570 break;
3571 case CONTROL_CHANNEL:
3572 spin_lock_irqsave(&hc->lock, flags);
3573 err = channel_bctrl(bch, arg);
3574 spin_unlock_irqrestore(&hc->lock, flags);
3575 break;
3576 default:
3577 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3578 __func__, cmd);
3580 return err;
3584 * handle D-channel events
3586 * handle state change event
3588 static void
3589 ph_state_change(struct dchannel *dch)
3591 struct hfc_multi *hc = dch->hw;
3592 int ch, i;
3594 if (!dch) {
3595 printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3596 __func__);
3597 return;
3599 ch = dch->slot;
3601 if (hc->type == 1) {
3602 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3603 if (debug & DEBUG_HFCMULTI_STATE)
3604 printk(KERN_DEBUG
3605 "%s: E1 TE (id=%d) newstate %x\n",
3606 __func__, hc->id, dch->state);
3607 } else {
3608 if (debug & DEBUG_HFCMULTI_STATE)
3609 printk(KERN_DEBUG
3610 "%s: E1 NT (id=%d) newstate %x\n",
3611 __func__, hc->id, dch->state);
3613 switch (dch->state) {
3614 case (1):
3615 if (hc->e1_state != 1) {
3616 for (i = 1; i <= 31; i++) {
3617 /* reset fifos on e1 activation */
3618 HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3619 HFC_wait_nodebug(hc);
3620 HFC_outb_nodebug(hc,
3621 R_INC_RES_FIFO, V_RES_F);
3622 HFC_wait_nodebug(hc);
3625 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3626 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3627 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3628 break;
3630 default:
3631 if (hc->e1_state != 1)
3632 return;
3633 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3634 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3635 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3637 hc->e1_state = dch->state;
3638 } else {
3639 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3640 if (debug & DEBUG_HFCMULTI_STATE)
3641 printk(KERN_DEBUG
3642 "%s: S/T TE newstate %x\n",
3643 __func__, dch->state);
3644 switch (dch->state) {
3645 case (0):
3646 l1_event(dch->l1, HW_RESET_IND);
3647 break;
3648 case (3):
3649 l1_event(dch->l1, HW_DEACT_IND);
3650 break;
3651 case (5):
3652 case (8):
3653 l1_event(dch->l1, ANYSIGNAL);
3654 break;
3655 case (6):
3656 l1_event(dch->l1, INFO2);
3657 break;
3658 case (7):
3659 l1_event(dch->l1, INFO4_P8);
3660 break;
3662 } else {
3663 if (debug & DEBUG_HFCMULTI_STATE)
3664 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3665 __func__, dch->state);
3666 switch (dch->state) {
3667 case (2):
3668 if (hc->chan[ch].nt_timer == 0) {
3669 hc->chan[ch].nt_timer = -1;
3670 HFC_outb(hc, R_ST_SEL,
3671 hc->chan[ch].port);
3672 /* undocumented: delay after R_ST_SEL */
3673 udelay(1);
3674 HFC_outb(hc, A_ST_WR_STATE, 4 |
3675 V_ST_LD_STA); /* G4 */
3676 udelay(6); /* wait at least 5,21us */
3677 HFC_outb(hc, A_ST_WR_STATE, 4);
3678 dch->state = 4;
3679 } else {
3680 /* one extra count for the next event */
3681 hc->chan[ch].nt_timer =
3682 nt_t1_count[poll_timer] + 1;
3683 HFC_outb(hc, R_ST_SEL,
3684 hc->chan[ch].port);
3685 /* undocumented: delay after R_ST_SEL */
3686 udelay(1);
3687 /* allow G2 -> G3 transition */
3688 HFC_outb(hc, A_ST_WR_STATE, 2 |
3689 V_SET_G2_G3);
3691 break;
3692 case (1):
3693 hc->chan[ch].nt_timer = -1;
3694 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3695 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3696 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3697 break;
3698 case (4):
3699 hc->chan[ch].nt_timer = -1;
3700 break;
3701 case (3):
3702 hc->chan[ch].nt_timer = -1;
3703 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3704 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3705 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3706 break;
3713 * called for card mode init message
3716 static void
3717 hfcmulti_initmode(struct dchannel *dch)
3719 struct hfc_multi *hc = dch->hw;
3720 u_char a_st_wr_state, r_e1_wr_sta;
3721 int i, pt;
3723 if (debug & DEBUG_HFCMULTI_INIT)
3724 printk(KERN_DEBUG "%s: entered\n", __func__);
3726 if (hc->type == 1) {
3727 hc->chan[hc->dslot].slot_tx = -1;
3728 hc->chan[hc->dslot].slot_rx = -1;
3729 hc->chan[hc->dslot].conf = -1;
3730 if (hc->dslot) {
3731 mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3732 -1, 0, -1, 0);
3733 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3734 dch->timer.data = (long) dch;
3735 init_timer(&dch->timer);
3737 for (i = 1; i <= 31; i++) {
3738 if (i == hc->dslot)
3739 continue;
3740 hc->chan[i].slot_tx = -1;
3741 hc->chan[i].slot_rx = -1;
3742 hc->chan[i].conf = -1;
3743 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3745 /* E1 */
3746 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3747 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3748 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3750 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3751 HFC_outb(hc, R_RX0, 0);
3752 hc->hw.r_tx0 = 0 | V_OUT_EN;
3753 } else {
3754 HFC_outb(hc, R_RX0, 1);
3755 hc->hw.r_tx0 = 1 | V_OUT_EN;
3757 hc->hw.r_tx1 = V_ATX | V_NTRI;
3758 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3759 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3760 HFC_outb(hc, R_TX_FR0, 0x00);
3761 HFC_outb(hc, R_TX_FR1, 0xf8);
3763 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3764 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3766 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3768 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3769 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3771 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3772 if (debug & DEBUG_HFCMULTI_INIT)
3773 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3774 __func__);
3775 r_e1_wr_sta = 0; /* G0 */
3776 hc->e1_getclock = 0;
3777 } else {
3778 if (debug & DEBUG_HFCMULTI_INIT)
3779 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3780 __func__);
3781 r_e1_wr_sta = 0; /* F0 */
3782 hc->e1_getclock = 1;
3784 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3785 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3786 else
3787 HFC_outb(hc, R_SYNC_OUT, 0);
3788 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3789 hc->e1_getclock = 1;
3790 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3791 hc->e1_getclock = 0;
3792 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3793 /* SLAVE (clock master) */
3794 if (debug & DEBUG_HFCMULTI_INIT)
3795 printk(KERN_DEBUG
3796 "%s: E1 port is clock master "
3797 "(clock from PCM)\n", __func__);
3798 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3799 } else {
3800 if (hc->e1_getclock) {
3801 /* MASTER (clock slave) */
3802 if (debug & DEBUG_HFCMULTI_INIT)
3803 printk(KERN_DEBUG
3804 "%s: E1 port is clock slave "
3805 "(clock to PCM)\n", __func__);
3806 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3807 } else {
3808 /* MASTER (clock master) */
3809 if (debug & DEBUG_HFCMULTI_INIT)
3810 printk(KERN_DEBUG "%s: E1 port is "
3811 "clock master "
3812 "(clock from QUARTZ)\n",
3813 __func__);
3814 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3815 V_PCM_SYNC | V_JATT_OFF);
3816 HFC_outb(hc, R_SYNC_OUT, 0);
3819 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3820 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3821 HFC_outb(hc, R_PWM0, 0x50);
3822 HFC_outb(hc, R_PWM1, 0xff);
3823 /* state machine setup */
3824 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3825 udelay(6); /* wait at least 5,21us */
3826 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3827 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3828 hc->syncronized = 0;
3829 plxsd_checksync(hc, 0);
3831 } else {
3832 i = dch->slot;
3833 hc->chan[i].slot_tx = -1;
3834 hc->chan[i].slot_rx = -1;
3835 hc->chan[i].conf = -1;
3836 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3837 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3838 dch->timer.data = (long) dch;
3839 init_timer(&dch->timer);
3840 hc->chan[i - 2].slot_tx = -1;
3841 hc->chan[i - 2].slot_rx = -1;
3842 hc->chan[i - 2].conf = -1;
3843 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3844 hc->chan[i - 1].slot_tx = -1;
3845 hc->chan[i - 1].slot_rx = -1;
3846 hc->chan[i - 1].conf = -1;
3847 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3848 /* ST */
3849 pt = hc->chan[i].port;
3850 /* select interface */
3851 HFC_outb(hc, R_ST_SEL, pt);
3852 /* undocumented: delay after R_ST_SEL */
3853 udelay(1);
3854 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3855 if (debug & DEBUG_HFCMULTI_INIT)
3856 printk(KERN_DEBUG
3857 "%s: ST port %d is NT-mode\n",
3858 __func__, pt);
3859 /* clock delay */
3860 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3861 a_st_wr_state = 1; /* G1 */
3862 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3863 } else {
3864 if (debug & DEBUG_HFCMULTI_INIT)
3865 printk(KERN_DEBUG
3866 "%s: ST port %d is TE-mode\n",
3867 __func__, pt);
3868 /* clock delay */
3869 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3870 a_st_wr_state = 2; /* F2 */
3871 hc->hw.a_st_ctrl0[pt] = 0;
3873 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3874 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3875 /* line setup */
3876 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3877 /* disable E-channel */
3878 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3879 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3880 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3881 else
3882 HFC_outb(hc, A_ST_CTRL1, 0);
3883 /* enable B-channel receive */
3884 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3885 /* state machine setup */
3886 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3887 udelay(6); /* wait at least 5,21us */
3888 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3889 hc->hw.r_sci_msk |= 1 << pt;
3890 /* state machine interrupts */
3891 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3892 /* unset sync on port */
3893 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3894 hc->syncronized &=
3895 ~(1 << hc->chan[dch->slot].port);
3896 plxsd_checksync(hc, 0);
3899 if (debug & DEBUG_HFCMULTI_INIT)
3900 printk("%s: done\n", __func__);
3904 static int
3905 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3906 struct channel_req *rq)
3908 int err = 0;
3909 u_long flags;
3911 if (debug & DEBUG_HW_OPEN)
3912 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3913 dch->dev.id, __builtin_return_address(0));
3914 if (rq->protocol == ISDN_P_NONE)
3915 return -EINVAL;
3916 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3917 (dch->dev.D.protocol != rq->protocol)) {
3918 if (debug & DEBUG_HFCMULTI_MODE)
3919 printk(KERN_WARNING "%s: change protocol %x to %x\n",
3920 __func__, dch->dev.D.protocol, rq->protocol);
3922 if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3923 && (rq->protocol != ISDN_P_TE_S0))
3924 l1_event(dch->l1, CLOSE_CHANNEL);
3925 if (dch->dev.D.protocol != rq->protocol) {
3926 if (rq->protocol == ISDN_P_TE_S0) {
3927 err = create_l1(dch, hfcm_l1callback);
3928 if (err)
3929 return err;
3931 dch->dev.D.protocol = rq->protocol;
3932 spin_lock_irqsave(&hc->lock, flags);
3933 hfcmulti_initmode(dch);
3934 spin_unlock_irqrestore(&hc->lock, flags);
3937 if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3938 ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3939 ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3940 ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3941 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3942 0, NULL, GFP_KERNEL);
3944 rq->ch = &dch->dev.D;
3945 if (!try_module_get(THIS_MODULE))
3946 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3947 return 0;
3950 static int
3951 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3952 struct channel_req *rq)
3954 struct bchannel *bch;
3955 int ch;
3957 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3958 return -EINVAL;
3959 if (rq->protocol == ISDN_P_NONE)
3960 return -EINVAL;
3961 if (hc->type == 1)
3962 ch = rq->adr.channel;
3963 else
3964 ch = (rq->adr.channel - 1) + (dch->slot - 2);
3965 bch = hc->chan[ch].bch;
3966 if (!bch) {
3967 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3968 __func__, ch);
3969 return -EINVAL;
3971 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
3972 return -EBUSY; /* b-channel can be only open once */
3973 bch->ch.protocol = rq->protocol;
3974 hc->chan[ch].rx_off = 0;
3975 rq->ch = &bch->ch;
3976 if (!try_module_get(THIS_MODULE))
3977 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3978 return 0;
3982 * device control function
3984 static int
3985 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
3987 int ret = 0;
3989 switch (cq->op) {
3990 case MISDN_CTRL_GETOP:
3991 cq->op = 0;
3992 break;
3993 default:
3994 printk(KERN_WARNING "%s: unknown Op %x\n",
3995 __func__, cq->op);
3996 ret = -EINVAL;
3997 break;
3999 return ret;
4002 static int
4003 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4005 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4006 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4007 struct hfc_multi *hc = dch->hw;
4008 struct channel_req *rq;
4009 int err = 0;
4010 u_long flags;
4012 if (dch->debug & DEBUG_HW)
4013 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4014 __func__, cmd, arg);
4015 switch (cmd) {
4016 case OPEN_CHANNEL:
4017 rq = arg;
4018 switch (rq->protocol) {
4019 case ISDN_P_TE_S0:
4020 case ISDN_P_NT_S0:
4021 if (hc->type == 1) {
4022 err = -EINVAL;
4023 break;
4025 err = open_dchannel(hc, dch, rq); /* locked there */
4026 break;
4027 case ISDN_P_TE_E1:
4028 case ISDN_P_NT_E1:
4029 if (hc->type != 1) {
4030 err = -EINVAL;
4031 break;
4033 err = open_dchannel(hc, dch, rq); /* locked there */
4034 break;
4035 default:
4036 spin_lock_irqsave(&hc->lock, flags);
4037 err = open_bchannel(hc, dch, rq);
4038 spin_unlock_irqrestore(&hc->lock, flags);
4040 break;
4041 case CLOSE_CHANNEL:
4042 if (debug & DEBUG_HW_OPEN)
4043 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4044 __func__, dch->dev.id,
4045 __builtin_return_address(0));
4046 module_put(THIS_MODULE);
4047 break;
4048 case CONTROL_CHANNEL:
4049 spin_lock_irqsave(&hc->lock, flags);
4050 err = channel_dctrl(dch, arg);
4051 spin_unlock_irqrestore(&hc->lock, flags);
4052 break;
4053 default:
4054 if (dch->debug & DEBUG_HW)
4055 printk(KERN_DEBUG "%s: unknown command %x\n",
4056 __func__, cmd);
4057 err = -EINVAL;
4059 return err;
4063 * initialize the card
4067 * start timer irq, wait some time and check if we have interrupts.
4068 * if not, reset chip and try again.
4070 static int
4071 init_card(struct hfc_multi *hc)
4073 int err = -EIO;
4074 u_long flags;
4075 void __iomem *plx_acc;
4076 u_long plx_flags;
4078 if (debug & DEBUG_HFCMULTI_INIT)
4079 printk(KERN_DEBUG "%s: entered\n", __func__);
4081 spin_lock_irqsave(&hc->lock, flags);
4082 /* set interrupts but leave global interrupt disabled */
4083 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4084 disable_hwirq(hc);
4085 spin_unlock_irqrestore(&hc->lock, flags);
4087 if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4088 "HFC-multi", hc)) {
4089 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4090 hc->pci_dev->irq);
4091 return -EIO;
4093 hc->irq = hc->pci_dev->irq;
4095 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4096 spin_lock_irqsave(&plx_lock, plx_flags);
4097 plx_acc = hc->plx_membase + PLX_INTCSR;
4098 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4099 plx_acc); /* enable PCI & LINT1 irq */
4100 spin_unlock_irqrestore(&plx_lock, plx_flags);
4103 if (debug & DEBUG_HFCMULTI_INIT)
4104 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4105 __func__, hc->irq, hc->irqcnt);
4106 err = init_chip(hc);
4107 if (err)
4108 goto error;
4110 * Finally enable IRQ output
4111 * this is only allowed, if an IRQ routine is allready
4112 * established for this HFC, so don't do that earlier
4114 spin_lock_irqsave(&hc->lock, flags);
4115 enable_hwirq(hc);
4116 spin_unlock_irqrestore(&hc->lock, flags);
4117 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4118 set_current_state(TASK_UNINTERRUPTIBLE);
4119 schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4120 /* turn IRQ off until chip is completely initialized */
4121 spin_lock_irqsave(&hc->lock, flags);
4122 disable_hwirq(hc);
4123 spin_unlock_irqrestore(&hc->lock, flags);
4124 if (debug & DEBUG_HFCMULTI_INIT)
4125 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4126 __func__, hc->irq, hc->irqcnt);
4127 if (hc->irqcnt) {
4128 if (debug & DEBUG_HFCMULTI_INIT)
4129 printk(KERN_DEBUG "%s: done\n", __func__);
4131 return 0;
4133 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4134 printk(KERN_INFO "ignoring missing interrupts\n");
4135 return 0;
4138 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4139 hc->irq);
4141 err = -EIO;
4143 error:
4144 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4145 spin_lock_irqsave(&plx_lock, plx_flags);
4146 plx_acc = hc->plx_membase + PLX_INTCSR;
4147 writew(0x00, plx_acc); /*disable IRQs*/
4148 spin_unlock_irqrestore(&plx_lock, plx_flags);
4151 if (debug & DEBUG_HFCMULTI_INIT)
4152 printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4153 if (hc->irq) {
4154 free_irq(hc->irq, hc);
4155 hc->irq = 0;
4158 if (debug & DEBUG_HFCMULTI_INIT)
4159 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4160 return err;
4164 * find pci device and set it up
4167 static int
4168 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4169 const struct pci_device_id *ent)
4171 struct hm_map *m = (struct hm_map *)ent->driver_data;
4173 printk(KERN_INFO
4174 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4175 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4177 hc->pci_dev = pdev;
4178 if (m->clock2)
4179 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4181 if (ent->device == 0xB410) {
4182 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4183 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4184 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4185 hc->slots = 32;
4188 if (hc->pci_dev->irq <= 0) {
4189 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4190 return -EIO;
4192 if (pci_enable_device(hc->pci_dev)) {
4193 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4194 return -EIO;
4196 hc->leds = m->leds;
4197 hc->ledstate = 0xAFFEAFFE;
4198 hc->opticalsupport = m->opticalsupport;
4200 /* set memory access methods */
4201 if (m->io_mode) /* use mode from card config */
4202 hc->io_mode = m->io_mode;
4203 switch (hc->io_mode) {
4204 case HFC_IO_MODE_PLXSD:
4205 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4206 hc->slots = 128; /* required */
4207 /* fall through */
4208 case HFC_IO_MODE_PCIMEM:
4209 hc->HFC_outb = HFC_outb_pcimem;
4210 hc->HFC_inb = HFC_inb_pcimem;
4211 hc->HFC_inw = HFC_inw_pcimem;
4212 hc->HFC_wait = HFC_wait_pcimem;
4213 hc->read_fifo = read_fifo_pcimem;
4214 hc->write_fifo = write_fifo_pcimem;
4215 break;
4216 case HFC_IO_MODE_REGIO:
4217 hc->HFC_outb = HFC_outb_regio;
4218 hc->HFC_inb = HFC_inb_regio;
4219 hc->HFC_inw = HFC_inw_regio;
4220 hc->HFC_wait = HFC_wait_regio;
4221 hc->read_fifo = read_fifo_regio;
4222 hc->write_fifo = write_fifo_regio;
4223 break;
4224 default:
4225 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4226 pci_disable_device(hc->pci_dev);
4227 return -EIO;
4229 hc->HFC_outb_nodebug = hc->HFC_outb;
4230 hc->HFC_inb_nodebug = hc->HFC_inb;
4231 hc->HFC_inw_nodebug = hc->HFC_inw;
4232 hc->HFC_wait_nodebug = hc->HFC_wait;
4233 #ifdef HFC_REGISTER_DEBUG
4234 hc->HFC_outb = HFC_outb_debug;
4235 hc->HFC_inb = HFC_inb_debug;
4236 hc->HFC_inw = HFC_inw_debug;
4237 hc->HFC_wait = HFC_wait_debug;
4238 #endif
4239 hc->pci_iobase = 0;
4240 hc->pci_membase = NULL;
4241 hc->plx_membase = NULL;
4243 switch (hc->io_mode) {
4244 case HFC_IO_MODE_PLXSD:
4245 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4246 /* MEMBASE 1 is PLX PCI Bridge */
4248 if (!hc->plx_origmembase) {
4249 printk(KERN_WARNING
4250 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4251 pci_disable_device(hc->pci_dev);
4252 return -EIO;
4255 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4256 if (!hc->plx_membase) {
4257 printk(KERN_WARNING
4258 "HFC-multi: failed to remap plx address space. "
4259 "(internal error)\n");
4260 pci_disable_device(hc->pci_dev);
4261 return -EIO;
4263 printk(KERN_INFO
4264 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4265 (u_long)hc->plx_membase, hc->plx_origmembase);
4267 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4268 /* MEMBASE 1 is PLX PCI Bridge */
4269 if (!hc->pci_origmembase) {
4270 printk(KERN_WARNING
4271 "HFC-multi: No IO-Memory for PCI card found\n");
4272 pci_disable_device(hc->pci_dev);
4273 return -EIO;
4276 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4277 if (!hc->pci_membase) {
4278 printk(KERN_WARNING "HFC-multi: failed to remap io "
4279 "address space. (internal error)\n");
4280 pci_disable_device(hc->pci_dev);
4281 return -EIO;
4284 printk(KERN_INFO
4285 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4286 "leds-type %d\n",
4287 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4288 hc->pci_dev->irq, HZ, hc->leds);
4289 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4290 break;
4291 case HFC_IO_MODE_PCIMEM:
4292 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4293 if (!hc->pci_origmembase) {
4294 printk(KERN_WARNING
4295 "HFC-multi: No IO-Memory for PCI card found\n");
4296 pci_disable_device(hc->pci_dev);
4297 return -EIO;
4300 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4301 if (!hc->pci_membase) {
4302 printk(KERN_WARNING
4303 "HFC-multi: failed to remap io address space. "
4304 "(internal error)\n");
4305 pci_disable_device(hc->pci_dev);
4306 return -EIO;
4308 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4309 "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4310 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4311 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4312 break;
4313 case HFC_IO_MODE_REGIO:
4314 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4315 if (!hc->pci_iobase) {
4316 printk(KERN_WARNING
4317 "HFC-multi: No IO for PCI card found\n");
4318 pci_disable_device(hc->pci_dev);
4319 return -EIO;
4322 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4323 printk(KERN_WARNING "HFC-multi: failed to request "
4324 "address space at 0x%08lx (internal error)\n",
4325 hc->pci_iobase);
4326 pci_disable_device(hc->pci_dev);
4327 return -EIO;
4330 printk(KERN_INFO
4331 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4332 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4333 hc->pci_dev->irq, HZ, hc->leds);
4334 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4335 break;
4336 default:
4337 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4338 pci_disable_device(hc->pci_dev);
4339 return -EIO;
4342 pci_set_drvdata(hc->pci_dev, hc);
4344 /* At this point the needed PCI config is done */
4345 /* fifos are still not enabled */
4346 return 0;
4351 * remove port
4354 static void
4355 release_port(struct hfc_multi *hc, struct dchannel *dch)
4357 int pt, ci, i = 0;
4358 u_long flags;
4359 struct bchannel *pb;
4361 ci = dch->slot;
4362 pt = hc->chan[ci].port;
4364 if (debug & DEBUG_HFCMULTI_INIT)
4365 printk(KERN_DEBUG "%s: entered for port %d\n",
4366 __func__, pt + 1);
4368 if (pt >= hc->ports) {
4369 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4370 __func__, pt + 1);
4371 return;
4374 if (debug & DEBUG_HFCMULTI_INIT)
4375 printk(KERN_DEBUG "%s: releasing port=%d\n",
4376 __func__, pt + 1);
4378 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4379 l1_event(dch->l1, CLOSE_CHANNEL);
4381 hc->chan[ci].dch = NULL;
4383 if (hc->created[pt]) {
4384 hc->created[pt] = 0;
4385 mISDN_unregister_device(&dch->dev);
4388 spin_lock_irqsave(&hc->lock, flags);
4390 if (dch->timer.function) {
4391 del_timer(&dch->timer);
4392 dch->timer.function = NULL;
4395 if (hc->type == 1) { /* E1 */
4396 /* remove sync */
4397 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4398 hc->syncronized = 0;
4399 plxsd_checksync(hc, 1);
4401 /* free channels */
4402 for (i = 0; i <= 31; i++) {
4403 if (hc->chan[i].bch) {
4404 if (debug & DEBUG_HFCMULTI_INIT)
4405 printk(KERN_DEBUG
4406 "%s: free port %d channel %d\n",
4407 __func__, hc->chan[i].port+1, i);
4408 pb = hc->chan[i].bch;
4409 hc->chan[i].bch = NULL;
4410 spin_unlock_irqrestore(&hc->lock, flags);
4411 mISDN_freebchannel(pb);
4412 kfree(pb);
4413 kfree(hc->chan[i].coeff);
4414 spin_lock_irqsave(&hc->lock, flags);
4417 } else {
4418 /* remove sync */
4419 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4420 hc->syncronized &=
4421 ~(1 << hc->chan[ci].port);
4422 plxsd_checksync(hc, 1);
4424 /* free channels */
4425 if (hc->chan[ci - 2].bch) {
4426 if (debug & DEBUG_HFCMULTI_INIT)
4427 printk(KERN_DEBUG
4428 "%s: free port %d channel %d\n",
4429 __func__, hc->chan[ci - 2].port+1,
4430 ci - 2);
4431 pb = hc->chan[ci - 2].bch;
4432 hc->chan[ci - 2].bch = NULL;
4433 spin_unlock_irqrestore(&hc->lock, flags);
4434 mISDN_freebchannel(pb);
4435 kfree(pb);
4436 kfree(hc->chan[ci - 2].coeff);
4437 spin_lock_irqsave(&hc->lock, flags);
4439 if (hc->chan[ci - 1].bch) {
4440 if (debug & DEBUG_HFCMULTI_INIT)
4441 printk(KERN_DEBUG
4442 "%s: free port %d channel %d\n",
4443 __func__, hc->chan[ci - 1].port+1,
4444 ci - 1);
4445 pb = hc->chan[ci - 1].bch;
4446 hc->chan[ci - 1].bch = NULL;
4447 spin_unlock_irqrestore(&hc->lock, flags);
4448 mISDN_freebchannel(pb);
4449 kfree(pb);
4450 kfree(hc->chan[ci - 1].coeff);
4451 spin_lock_irqsave(&hc->lock, flags);
4455 spin_unlock_irqrestore(&hc->lock, flags);
4457 if (debug & DEBUG_HFCMULTI_INIT)
4458 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4459 mISDN_freedchannel(dch);
4460 kfree(dch);
4462 if (debug & DEBUG_HFCMULTI_INIT)
4463 printk(KERN_DEBUG "%s: done!\n", __func__);
4466 static void
4467 release_card(struct hfc_multi *hc)
4469 u_long flags;
4470 int ch;
4472 if (debug & DEBUG_HFCMULTI_INIT)
4473 printk(KERN_WARNING "%s: release card (%d) entered\n",
4474 __func__, hc->id);
4476 spin_lock_irqsave(&hc->lock, flags);
4477 disable_hwirq(hc);
4478 spin_unlock_irqrestore(&hc->lock, flags);
4480 udelay(1000);
4482 /* dimm leds */
4483 if (hc->leds)
4484 hfcmulti_leds(hc);
4486 /* disable D-channels & B-channels */
4487 if (debug & DEBUG_HFCMULTI_INIT)
4488 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4489 __func__);
4490 for (ch = 0; ch <= 31; ch++) {
4491 if (hc->chan[ch].dch)
4492 release_port(hc, hc->chan[ch].dch);
4495 /* release hardware & irq */
4496 if (hc->irq) {
4497 if (debug & DEBUG_HFCMULTI_INIT)
4498 printk(KERN_WARNING "%s: free irq %d\n",
4499 __func__, hc->irq);
4500 free_irq(hc->irq, hc);
4501 hc->irq = 0;
4504 release_io_hfcmulti(hc);
4506 if (debug & DEBUG_HFCMULTI_INIT)
4507 printk(KERN_WARNING "%s: remove instance from list\n",
4508 __func__);
4509 list_del(&hc->list);
4511 if (debug & DEBUG_HFCMULTI_INIT)
4512 printk(KERN_WARNING "%s: delete instance\n", __func__);
4513 if (hc == syncmaster)
4514 syncmaster = NULL;
4515 kfree(hc);
4516 if (debug & DEBUG_HFCMULTI_INIT)
4517 printk(KERN_WARNING "%s: card successfully removed\n",
4518 __func__);
4521 static int
4522 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4524 struct dchannel *dch;
4525 struct bchannel *bch;
4526 int ch, ret = 0;
4527 char name[MISDN_MAX_IDLEN];
4529 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4530 if (!dch)
4531 return -ENOMEM;
4532 dch->debug = debug;
4533 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4534 dch->hw = hc;
4535 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4536 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4537 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4538 dch->dev.D.send = handle_dmsg;
4539 dch->dev.D.ctrl = hfcm_dctrl;
4540 dch->dev.nrbchan = (hc->dslot)?30:31;
4541 dch->slot = hc->dslot;
4542 hc->chan[hc->dslot].dch = dch;
4543 hc->chan[hc->dslot].port = 0;
4544 hc->chan[hc->dslot].nt_timer = -1;
4545 for (ch = 1; ch <= 31; ch++) {
4546 if (ch == hc->dslot) /* skip dchannel */
4547 continue;
4548 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4549 if (!bch) {
4550 printk(KERN_ERR "%s: no memory for bchannel\n",
4551 __func__);
4552 ret = -ENOMEM;
4553 goto free_chan;
4555 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4556 if (!hc->chan[ch].coeff) {
4557 printk(KERN_ERR "%s: no memory for coeffs\n",
4558 __func__);
4559 ret = -ENOMEM;
4560 goto free_chan;
4562 bch->nr = ch;
4563 bch->slot = ch;
4564 bch->debug = debug;
4565 mISDN_initbchannel(bch, MAX_DATA_MEM);
4566 bch->hw = hc;
4567 bch->ch.send = handle_bmsg;
4568 bch->ch.ctrl = hfcm_bctrl;
4569 bch->ch.nr = ch;
4570 list_add(&bch->ch.list, &dch->dev.bchannels);
4571 hc->chan[ch].bch = bch;
4572 hc->chan[ch].port = 0;
4573 set_channelmap(bch->nr, dch->dev.channelmap);
4575 /* set optical line type */
4576 if (port[Port_cnt] & 0x001) {
4577 if (!m->opticalsupport) {
4578 printk(KERN_INFO
4579 "This board has no optical "
4580 "support\n");
4581 } else {
4582 if (debug & DEBUG_HFCMULTI_INIT)
4583 printk(KERN_DEBUG
4584 "%s: PORT set optical "
4585 "interfacs: card(%d) "
4586 "port(%d)\n",
4587 __func__,
4588 HFC_cnt + 1, 1);
4589 test_and_set_bit(HFC_CFG_OPTICAL,
4590 &hc->chan[hc->dslot].cfg);
4593 /* set LOS report */
4594 if (port[Port_cnt] & 0x004) {
4595 if (debug & DEBUG_HFCMULTI_INIT)
4596 printk(KERN_DEBUG "%s: PORT set "
4597 "LOS report: card(%d) port(%d)\n",
4598 __func__, HFC_cnt + 1, 1);
4599 test_and_set_bit(HFC_CFG_REPORT_LOS,
4600 &hc->chan[hc->dslot].cfg);
4602 /* set AIS report */
4603 if (port[Port_cnt] & 0x008) {
4604 if (debug & DEBUG_HFCMULTI_INIT)
4605 printk(KERN_DEBUG "%s: PORT set "
4606 "AIS report: card(%d) port(%d)\n",
4607 __func__, HFC_cnt + 1, 1);
4608 test_and_set_bit(HFC_CFG_REPORT_AIS,
4609 &hc->chan[hc->dslot].cfg);
4611 /* set SLIP report */
4612 if (port[Port_cnt] & 0x010) {
4613 if (debug & DEBUG_HFCMULTI_INIT)
4614 printk(KERN_DEBUG
4615 "%s: PORT set SLIP report: "
4616 "card(%d) port(%d)\n",
4617 __func__, HFC_cnt + 1, 1);
4618 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4619 &hc->chan[hc->dslot].cfg);
4621 /* set RDI report */
4622 if (port[Port_cnt] & 0x020) {
4623 if (debug & DEBUG_HFCMULTI_INIT)
4624 printk(KERN_DEBUG
4625 "%s: PORT set RDI report: "
4626 "card(%d) port(%d)\n",
4627 __func__, HFC_cnt + 1, 1);
4628 test_and_set_bit(HFC_CFG_REPORT_RDI,
4629 &hc->chan[hc->dslot].cfg);
4631 /* set CRC-4 Mode */
4632 if (!(port[Port_cnt] & 0x100)) {
4633 if (debug & DEBUG_HFCMULTI_INIT)
4634 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4635 " card(%d) port(%d)\n",
4636 __func__, HFC_cnt + 1, 1);
4637 test_and_set_bit(HFC_CFG_CRC4,
4638 &hc->chan[hc->dslot].cfg);
4639 } else {
4640 if (debug & DEBUG_HFCMULTI_INIT)
4641 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4642 " report: card(%d) port(%d)\n",
4643 __func__, HFC_cnt + 1, 1);
4645 /* set forced clock */
4646 if (port[Port_cnt] & 0x0200) {
4647 if (debug & DEBUG_HFCMULTI_INIT)
4648 printk(KERN_DEBUG "%s: PORT force getting clock from "
4649 "E1: card(%d) port(%d)\n",
4650 __func__, HFC_cnt + 1, 1);
4651 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4652 } else
4653 if (port[Port_cnt] & 0x0400) {
4654 if (debug & DEBUG_HFCMULTI_INIT)
4655 printk(KERN_DEBUG "%s: PORT force putting clock to "
4656 "E1: card(%d) port(%d)\n",
4657 __func__, HFC_cnt + 1, 1);
4658 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4660 /* set JATT PLL */
4661 if (port[Port_cnt] & 0x0800) {
4662 if (debug & DEBUG_HFCMULTI_INIT)
4663 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4664 "E1: card(%d) port(%d)\n",
4665 __func__, HFC_cnt + 1, 1);
4666 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4668 /* set elastic jitter buffer */
4669 if (port[Port_cnt] & 0x3000) {
4670 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4671 if (debug & DEBUG_HFCMULTI_INIT)
4672 printk(KERN_DEBUG
4673 "%s: PORT set elastic "
4674 "buffer to %d: card(%d) port(%d)\n",
4675 __func__, hc->chan[hc->dslot].jitter,
4676 HFC_cnt + 1, 1);
4677 } else
4678 hc->chan[hc->dslot].jitter = 2; /* default */
4679 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4680 ret = mISDN_register_device(&dch->dev, name);
4681 if (ret)
4682 goto free_chan;
4683 hc->created[0] = 1;
4684 return ret;
4685 free_chan:
4686 release_port(hc, dch);
4687 return ret;
4690 static int
4691 init_multi_port(struct hfc_multi *hc, int pt)
4693 struct dchannel *dch;
4694 struct bchannel *bch;
4695 int ch, i, ret = 0;
4696 char name[MISDN_MAX_IDLEN];
4698 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4699 if (!dch)
4700 return -ENOMEM;
4701 dch->debug = debug;
4702 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4703 dch->hw = hc;
4704 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4705 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4706 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4707 dch->dev.D.send = handle_dmsg;
4708 dch->dev.D.ctrl = hfcm_dctrl;
4709 dch->dev.nrbchan = 2;
4710 i = pt << 2;
4711 dch->slot = i + 2;
4712 hc->chan[i + 2].dch = dch;
4713 hc->chan[i + 2].port = pt;
4714 hc->chan[i + 2].nt_timer = -1;
4715 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4716 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4717 if (!bch) {
4718 printk(KERN_ERR "%s: no memory for bchannel\n",
4719 __func__);
4720 ret = -ENOMEM;
4721 goto free_chan;
4723 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4724 if (!hc->chan[i + ch].coeff) {
4725 printk(KERN_ERR "%s: no memory for coeffs\n",
4726 __func__);
4727 ret = -ENOMEM;
4728 goto free_chan;
4730 bch->nr = ch + 1;
4731 bch->slot = i + ch;
4732 bch->debug = debug;
4733 mISDN_initbchannel(bch, MAX_DATA_MEM);
4734 bch->hw = hc;
4735 bch->ch.send = handle_bmsg;
4736 bch->ch.ctrl = hfcm_bctrl;
4737 bch->ch.nr = ch + 1;
4738 list_add(&bch->ch.list, &dch->dev.bchannels);
4739 hc->chan[i + ch].bch = bch;
4740 hc->chan[i + ch].port = pt;
4741 set_channelmap(bch->nr, dch->dev.channelmap);
4743 /* set master clock */
4744 if (port[Port_cnt] & 0x001) {
4745 if (debug & DEBUG_HFCMULTI_INIT)
4746 printk(KERN_DEBUG
4747 "%s: PROTOCOL set master clock: "
4748 "card(%d) port(%d)\n",
4749 __func__, HFC_cnt + 1, pt + 1);
4750 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4751 printk(KERN_ERR "Error: Master clock "
4752 "for port(%d) of card(%d) is only"
4753 " possible with TE-mode\n",
4754 pt + 1, HFC_cnt + 1);
4755 ret = -EINVAL;
4756 goto free_chan;
4758 if (hc->masterclk >= 0) {
4759 printk(KERN_ERR "Error: Master clock "
4760 "for port(%d) of card(%d) already "
4761 "defined for port(%d)\n",
4762 pt + 1, HFC_cnt + 1, hc->masterclk+1);
4763 ret = -EINVAL;
4764 goto free_chan;
4766 hc->masterclk = pt;
4768 /* set transmitter line to non capacitive */
4769 if (port[Port_cnt] & 0x002) {
4770 if (debug & DEBUG_HFCMULTI_INIT)
4771 printk(KERN_DEBUG
4772 "%s: PROTOCOL set non capacitive "
4773 "transmitter: card(%d) port(%d)\n",
4774 __func__, HFC_cnt + 1, pt + 1);
4775 test_and_set_bit(HFC_CFG_NONCAP_TX,
4776 &hc->chan[i + 2].cfg);
4778 /* disable E-channel */
4779 if (port[Port_cnt] & 0x004) {
4780 if (debug & DEBUG_HFCMULTI_INIT)
4781 printk(KERN_DEBUG
4782 "%s: PROTOCOL disable E-channel: "
4783 "card(%d) port(%d)\n",
4784 __func__, HFC_cnt + 1, pt + 1);
4785 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4786 &hc->chan[i + 2].cfg);
4788 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d",
4789 hc->type, HFC_cnt + 1, pt + 1);
4790 ret = mISDN_register_device(&dch->dev, name);
4791 if (ret)
4792 goto free_chan;
4793 hc->created[pt] = 1;
4794 return ret;
4795 free_chan:
4796 release_port(hc, dch);
4797 return ret;
4800 static int
4801 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4803 struct hm_map *m = (struct hm_map *)ent->driver_data;
4804 int ret_err = 0;
4805 int pt;
4806 struct hfc_multi *hc;
4807 u_long flags;
4808 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4810 if (HFC_cnt >= MAX_CARDS) {
4811 printk(KERN_ERR "too many cards (max=%d).\n",
4812 MAX_CARDS);
4813 return -EINVAL;
4815 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4816 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4817 "type[%d] %d was supplied as module parameter\n",
4818 m->vendor_name, m->card_name, m->type, HFC_cnt,
4819 type[HFC_cnt] & 0xff);
4820 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4821 "first, to see cards and their types.");
4822 return -EINVAL;
4824 if (debug & DEBUG_HFCMULTI_INIT)
4825 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4826 __func__, m->vendor_name, m->card_name, m->type,
4827 type[HFC_cnt]);
4829 /* allocate card+fifo structure */
4830 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4831 if (!hc) {
4832 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4833 return -ENOMEM;
4835 spin_lock_init(&hc->lock);
4836 hc->mtyp = m;
4837 hc->type = m->type;
4838 hc->ports = m->ports;
4839 hc->id = HFC_cnt;
4840 hc->pcm = pcm[HFC_cnt];
4841 hc->io_mode = iomode[HFC_cnt];
4842 if (dslot[HFC_cnt] < 0) {
4843 hc->dslot = 0;
4844 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4845 "31 B-channels\n");
4846 } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) {
4847 hc->dslot = dslot[HFC_cnt];
4848 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4849 "time slot %d\n", dslot[HFC_cnt]);
4850 } else
4851 hc->dslot = 16;
4853 /* set chip specific features */
4854 hc->masterclk = -1;
4855 if (type[HFC_cnt] & 0x100) {
4856 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4857 silence = 0xff; /* ulaw silence */
4858 } else
4859 silence = 0x2a; /* alaw silence */
4860 if (!(type[HFC_cnt] & 0x200))
4861 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4863 if (type[HFC_cnt] & 0x800)
4864 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4865 if (type[HFC_cnt] & 0x1000) {
4866 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4867 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4869 if (type[HFC_cnt] & 0x4000)
4870 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4871 if (type[HFC_cnt] & 0x8000)
4872 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4873 hc->slots = 32;
4874 if (type[HFC_cnt] & 0x10000)
4875 hc->slots = 64;
4876 if (type[HFC_cnt] & 0x20000)
4877 hc->slots = 128;
4878 if (type[HFC_cnt] & 0x80000) {
4879 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4880 hc->wdcount = 0;
4881 hc->wdbyte = V_GPIO_OUT2;
4882 printk(KERN_NOTICE "Watchdog enabled\n");
4885 /* setup pci, hc->slots may change due to PLXSD */
4886 ret_err = setup_pci(hc, pdev, ent);
4887 if (ret_err) {
4888 if (hc == syncmaster)
4889 syncmaster = NULL;
4890 kfree(hc);
4891 return ret_err;
4894 /* crate channels */
4895 for (pt = 0; pt < hc->ports; pt++) {
4896 if (Port_cnt >= MAX_PORTS) {
4897 printk(KERN_ERR "too many ports (max=%d).\n",
4898 MAX_PORTS);
4899 ret_err = -EINVAL;
4900 goto free_card;
4902 if (hc->type == 1)
4903 ret_err = init_e1_port(hc, m);
4904 else
4905 ret_err = init_multi_port(hc, pt);
4906 if (debug & DEBUG_HFCMULTI_INIT)
4907 printk(KERN_DEBUG
4908 "%s: Registering D-channel, card(%d) port(%d)"
4909 "result %d\n",
4910 __func__, HFC_cnt + 1, pt, ret_err);
4912 if (ret_err) {
4913 while (pt) { /* release already registered ports */
4914 pt--;
4915 release_port(hc, hc->chan[(pt << 2) + 2].dch);
4917 goto free_card;
4919 Port_cnt++;
4922 /* disp switches */
4923 switch (m->dip_type) {
4924 case DIP_4S:
4926 * Get DIP setting for beroNet 1S/2S/4S cards
4927 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4928 * GPI 19/23 (R_GPI_IN2))
4930 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4931 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4932 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
4934 /* Port mode (TE/NT) jumpers */
4935 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
4937 if (test_bit(HFC_CHIP_B410P, &hc->chip))
4938 pmj = ~pmj & 0xf;
4940 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4941 m->vendor_name, m->card_name, dips, pmj);
4942 break;
4943 case DIP_8S:
4945 * Get DIP Setting for beroNet 8S0+ cards
4946 * Enable PCI auxbridge function
4948 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
4949 /* prepare access to auxport */
4950 outw(0x4000, hc->pci_iobase + 4);
4952 * some dummy reads are required to
4953 * read valid DIP switch data
4955 dips = inb(hc->pci_iobase);
4956 dips = inb(hc->pci_iobase);
4957 dips = inb(hc->pci_iobase);
4958 dips = ~inb(hc->pci_iobase) & 0x3F;
4959 outw(0x0, hc->pci_iobase + 4);
4960 /* disable PCI auxbridge function */
4961 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
4962 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4963 m->vendor_name, m->card_name, dips);
4964 break;
4965 case DIP_E1:
4967 * get DIP Setting for beroNet E1 cards
4968 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
4970 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
4971 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4972 m->vendor_name, m->card_name, dips);
4973 break;
4976 /* add to list */
4977 spin_lock_irqsave(&HFClock, flags);
4978 list_add_tail(&hc->list, &HFClist);
4979 spin_unlock_irqrestore(&HFClock, flags);
4981 /* initialize hardware */
4982 ret_err = init_card(hc);
4983 if (ret_err) {
4984 printk(KERN_ERR "init card returns %d\n", ret_err);
4985 release_card(hc);
4986 return ret_err;
4989 /* start IRQ and return */
4990 spin_lock_irqsave(&hc->lock, flags);
4991 enable_hwirq(hc);
4992 spin_unlock_irqrestore(&hc->lock, flags);
4993 return 0;
4995 free_card:
4996 release_io_hfcmulti(hc);
4997 if (hc == syncmaster)
4998 syncmaster = NULL;
4999 kfree(hc);
5000 return ret_err;
5003 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5005 struct hfc_multi *card = pci_get_drvdata(pdev);
5006 u_long flags;
5008 if (debug)
5009 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5010 "device:%x subvendor:%x subdevice:%x\n",
5011 pdev->vendor, pdev->device,
5012 pdev->subsystem_vendor, pdev->subsystem_device);
5014 if (card) {
5015 spin_lock_irqsave(&HFClock, flags);
5016 release_card(card);
5017 spin_unlock_irqrestore(&HFClock, flags);
5018 } else {
5019 if (debug)
5020 printk(KERN_WARNING "%s: drvdata allready removed\n",
5021 __func__);
5025 #define VENDOR_CCD "Cologne Chip AG"
5026 #define VENDOR_BN "beroNet GmbH"
5027 #define VENDOR_DIG "Digium Inc."
5028 #define VENDOR_JH "Junghanns.NET GmbH"
5029 #define VENDOR_PRIM "PrimuX"
5031 static const struct hm_map hfcm_map[] = {
5032 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5033 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
5034 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5035 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5036 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5037 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5038 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
5039 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5040 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5041 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5042 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5043 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5045 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5046 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5047 HFC_IO_MODE_REGIO},
5048 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5049 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5051 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5052 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5053 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5055 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5056 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5057 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5058 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5060 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5061 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5062 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5064 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5065 HFC_IO_MODE_PLXSD},
5066 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5067 HFC_IO_MODE_PLXSD},
5068 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5069 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5070 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5073 #undef H
5074 #define H(x) ((unsigned long)&hfcm_map[x])
5075 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5077 /* Cards with HFC-4S Chip */
5078 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5079 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5080 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5081 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5082 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5083 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5084 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5085 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5086 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5087 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5088 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5089 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5090 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5091 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5092 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5093 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5094 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5095 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5096 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5097 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5098 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5099 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5100 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5101 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5102 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5103 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5104 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5105 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5107 /* Cards with HFC-8S Chip */
5108 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5109 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5110 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5111 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5112 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5113 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5114 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5115 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5116 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5117 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5118 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5119 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5120 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5121 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5122 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5123 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5126 /* Cards with HFC-E1 Chip */
5127 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5128 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5129 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5130 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5131 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5132 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5133 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5134 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5136 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5137 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5138 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5139 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5140 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5141 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5143 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5144 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5145 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5146 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5147 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5148 0, 0, 0},
5149 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5150 0, 0, 0},
5151 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5152 0, 0, 0},
5153 {0, }
5155 #undef H
5157 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5159 static int
5160 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5162 struct hm_map *m = (struct hm_map *)ent->driver_data;
5163 int ret;
5165 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5166 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5167 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5168 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5169 printk(KERN_ERR
5170 "Unknown HFC multiport controller (vendor:%x device:%x "
5171 "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
5172 ent->subvendor, ent->subdevice);
5173 printk(KERN_ERR
5174 "Please contact the driver maintainer for support.\n");
5175 return -ENODEV;
5177 ret = hfcmulti_init(pdev, ent);
5178 if (ret)
5179 return ret;
5180 HFC_cnt++;
5181 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5182 return 0;
5185 static struct pci_driver hfcmultipci_driver = {
5186 .name = "hfc_multi",
5187 .probe = hfcmulti_probe,
5188 .remove = __devexit_p(hfc_remove_pci),
5189 .id_table = hfmultipci_ids,
5192 static void __exit
5193 HFCmulti_cleanup(void)
5195 struct hfc_multi *card, *next;
5197 /* get rid of all devices of this driver */
5198 list_for_each_entry_safe(card, next, &HFClist, list)
5199 release_card(card);
5200 pci_unregister_driver(&hfcmultipci_driver);
5203 static int __init
5204 HFCmulti_init(void)
5206 int err;
5208 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5210 #ifdef IRQ_DEBUG
5211 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5212 #endif
5214 spin_lock_init(&HFClock);
5215 spin_lock_init(&plx_lock);
5217 if (debug & DEBUG_HFCMULTI_INIT)
5218 printk(KERN_DEBUG "%s: init entered\n", __func__);
5220 switch (poll) {
5221 case 0:
5222 poll_timer = 6;
5223 poll = 128;
5224 break;
5225 case 8:
5226 poll_timer = 2;
5227 break;
5228 case 16:
5229 poll_timer = 3;
5230 break;
5231 case 32:
5232 poll_timer = 4;
5233 break;
5234 case 64:
5235 poll_timer = 5;
5236 break;
5237 case 128:
5238 poll_timer = 6;
5239 break;
5240 case 256:
5241 poll_timer = 7;
5242 break;
5243 default:
5244 printk(KERN_ERR
5245 "%s: Wrong poll value (%d).\n", __func__, poll);
5246 err = -EINVAL;
5247 return err;
5251 err = pci_register_driver(&hfcmultipci_driver);
5252 if (err < 0) {
5253 printk(KERN_ERR "error registering pci driver: %x\n", err);
5254 return err;
5256 return 0;
5260 module_init(HFCmulti_init);
5261 module_exit(HFCmulti_cleanup);