2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/init.h>
37 #include <linux/ioport.h>
38 #include <linux/cpufreq.h>
39 #include <linux/platform_device.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/clk.h>
42 #include <linux/err.h>
43 #include <linux/completion.h>
44 #include <linux/mutex.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
48 #include <mach/hardware.h>
51 #include <asm/div64.h>
52 #include <mach/pxa-regs.h>
53 #include <mach/pxa2xx-gpio.h>
54 #include <mach/bitfield.h>
55 #include <mach/pxafb.h>
58 * Complain if VAR is out of range.
64 /* Bits which should not be set in machine configuration structures */
65 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
66 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
67 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
69 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
70 LCCR3_PCD | LCCR3_BPP)
72 static void (*pxafb_backlight_power
)(int);
73 static void (*pxafb_lcd_power
)(int, struct fb_var_screeninfo
*);
75 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
77 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
79 static inline unsigned long
80 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
82 return __raw_readl(fbi
->mmio_base
+ off
);
86 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
88 __raw_writel(val
, fbi
->mmio_base
+ off
);
91 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
95 local_irq_save(flags
);
97 * We need to handle two requests being made at the same time.
98 * There are two important cases:
99 * 1. When we are changing VT (C_REENABLE) while unblanking
100 * (C_ENABLE) We must perform the unblanking, which will
101 * do our REENABLE for us.
102 * 2. When we are blanking, but immediately unblank before
103 * we have blanked. We do the "REENABLE" thing here as
104 * well, just to be sure.
106 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
108 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
111 if (state
!= (u_int
)-1) {
112 fbi
->task_state
= state
;
113 schedule_work(&fbi
->task
);
115 local_irq_restore(flags
);
118 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
121 chan
>>= 16 - bf
->length
;
122 return chan
<< bf
->offset
;
126 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
127 u_int trans
, struct fb_info
*info
)
129 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
132 if (regno
>= fbi
->palette_size
)
135 if (fbi
->fb
.var
.grayscale
) {
136 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
140 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
141 case LCCR4_PAL_FOR_0
:
142 val
= ((red
>> 0) & 0xf800);
143 val
|= ((green
>> 5) & 0x07e0);
144 val
|= ((blue
>> 11) & 0x001f);
145 fbi
->palette_cpu
[regno
] = val
;
147 case LCCR4_PAL_FOR_1
:
148 val
= ((red
<< 8) & 0x00f80000);
149 val
|= ((green
>> 0) & 0x0000fc00);
150 val
|= ((blue
>> 8) & 0x000000f8);
151 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
153 case LCCR4_PAL_FOR_2
:
154 val
= ((red
<< 8) & 0x00fc0000);
155 val
|= ((green
>> 0) & 0x0000fc00);
156 val
|= ((blue
>> 8) & 0x000000fc);
157 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
165 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
166 u_int trans
, struct fb_info
*info
)
168 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
173 * If inverse mode was selected, invert all the colours
174 * rather than the register number. The register number
175 * is what you poke into the framebuffer to produce the
176 * colour you requested.
178 if (fbi
->cmap_inverse
) {
180 green
= 0xffff - green
;
181 blue
= 0xffff - blue
;
185 * If greyscale is true, then we convert the RGB value
186 * to greyscale no matter what visual we are using.
188 if (fbi
->fb
.var
.grayscale
)
189 red
= green
= blue
= (19595 * red
+ 38470 * green
+
192 switch (fbi
->fb
.fix
.visual
) {
193 case FB_VISUAL_TRUECOLOR
:
195 * 16-bit True Colour. We encode the RGB value
196 * according to the RGB bitfield information.
199 u32
*pal
= fbi
->fb
.pseudo_palette
;
201 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
202 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
203 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
210 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
211 case FB_VISUAL_PSEUDOCOLOR
:
212 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
220 * pxafb_bpp_to_lccr3():
221 * Convert a bits per pixel value to the correct bit pattern for LCCR3
223 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo
*var
)
226 switch (var
->bits_per_pixel
) {
227 case 1: ret
= LCCR3_1BPP
; break;
228 case 2: ret
= LCCR3_2BPP
; break;
229 case 4: ret
= LCCR3_4BPP
; break;
230 case 8: ret
= LCCR3_8BPP
; break;
231 case 16: ret
= LCCR3_16BPP
; break;
233 switch (var
->red
.length
+ var
->green
.length
+
234 var
->blue
.length
+ var
->transp
.length
) {
235 case 18: ret
= LCCR3_18BPP_P
| LCCR3_PDFOR_3
; break;
236 case 19: ret
= LCCR3_19BPP_P
; break;
240 switch (var
->red
.length
+ var
->green
.length
+
241 var
->blue
.length
+ var
->transp
.length
) {
242 case 18: ret
= LCCR3_18BPP
| LCCR3_PDFOR_3
; break;
243 case 19: ret
= LCCR3_19BPP
; break;
244 case 24: ret
= LCCR3_24BPP
| LCCR3_PDFOR_3
; break;
245 case 25: ret
= LCCR3_25BPP
; break;
252 #ifdef CONFIG_CPU_FREQ
254 * pxafb_display_dma_period()
255 * Calculate the minimum period (in picoseconds) between two DMA
256 * requests for the LCD controller. If we hit this, it means we're
257 * doing nothing but LCD DMA.
259 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
262 * Period = pixclock * bits_per_byte * bytes_per_transfer
263 * / memory_bits_per_pixel;
265 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
270 * Select the smallest mode that allows the desired resolution to be
271 * displayed. If desired parameters can be rounded up.
273 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
274 struct fb_var_screeninfo
*var
)
276 struct pxafb_mode_info
*mode
= NULL
;
277 struct pxafb_mode_info
*modelist
= mach
->modes
;
278 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
281 for (i
= 0; i
< mach
->num_modes
; i
++) {
282 if (modelist
[i
].xres
>= var
->xres
&&
283 modelist
[i
].yres
>= var
->yres
&&
284 modelist
[i
].xres
< best_x
&&
285 modelist
[i
].yres
< best_y
&&
286 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
287 best_x
= modelist
[i
].xres
;
288 best_y
= modelist
[i
].yres
;
296 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
297 struct pxafb_mode_info
*mode
)
299 var
->xres
= mode
->xres
;
300 var
->yres
= mode
->yres
;
301 var
->bits_per_pixel
= mode
->bpp
;
302 var
->pixclock
= mode
->pixclock
;
303 var
->hsync_len
= mode
->hsync_len
;
304 var
->left_margin
= mode
->left_margin
;
305 var
->right_margin
= mode
->right_margin
;
306 var
->vsync_len
= mode
->vsync_len
;
307 var
->upper_margin
= mode
->upper_margin
;
308 var
->lower_margin
= mode
->lower_margin
;
309 var
->sync
= mode
->sync
;
310 var
->grayscale
= mode
->cmap_greyscale
;
311 var
->xres_virtual
= var
->xres
;
312 var
->yres_virtual
= var
->yres
;
317 * Get the video params out of 'var'. If a value doesn't fit, round it up,
318 * if it's too big, return -EINVAL.
320 * Round up in the following order: bits_per_pixel, xres,
321 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
322 * bitfields, horizontal timing, vertical timing.
324 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
326 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
327 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
329 if (var
->xres
< MIN_XRES
)
330 var
->xres
= MIN_XRES
;
331 if (var
->yres
< MIN_YRES
)
332 var
->yres
= MIN_YRES
;
334 if (inf
->fixed_modes
) {
335 struct pxafb_mode_info
*mode
;
337 mode
= pxafb_getmode(inf
, var
);
340 pxafb_setmode(var
, mode
);
342 if (var
->xres
> inf
->modes
->xres
)
344 if (var
->yres
> inf
->modes
->yres
)
346 if (var
->bits_per_pixel
> inf
->modes
->bpp
)
351 max(var
->xres_virtual
, var
->xres
);
353 max(var
->yres_virtual
, var
->yres
);
356 * Setup the RGB parameters for this display.
358 * The pixel packing format is described on page 7-11 of the
359 * PXA2XX Developer's Manual.
361 if (var
->bits_per_pixel
== 16) {
362 var
->red
.offset
= 11; var
->red
.length
= 5;
363 var
->green
.offset
= 5; var
->green
.length
= 6;
364 var
->blue
.offset
= 0; var
->blue
.length
= 5;
365 var
->transp
.offset
= var
->transp
.length
= 0;
366 } else if (var
->bits_per_pixel
> 16) {
367 struct pxafb_mode_info
*mode
;
369 mode
= pxafb_getmode(inf
, var
);
373 switch (mode
->depth
) {
374 case 18: /* RGB666 */
375 var
->transp
.offset
= var
->transp
.length
= 0;
376 var
->red
.offset
= 12; var
->red
.length
= 6;
377 var
->green
.offset
= 6; var
->green
.length
= 6;
378 var
->blue
.offset
= 0; var
->blue
.length
= 6;
380 case 19: /* RGBT666 */
381 var
->transp
.offset
= 18; var
->transp
.length
= 1;
382 var
->red
.offset
= 12; var
->red
.length
= 6;
383 var
->green
.offset
= 6; var
->green
.length
= 6;
384 var
->blue
.offset
= 0; var
->blue
.length
= 6;
386 case 24: /* RGB888 */
387 var
->transp
.offset
= var
->transp
.length
= 0;
388 var
->red
.offset
= 16; var
->red
.length
= 8;
389 var
->green
.offset
= 8; var
->green
.length
= 8;
390 var
->blue
.offset
= 0; var
->blue
.length
= 8;
392 case 25: /* RGBT888 */
393 var
->transp
.offset
= 24; var
->transp
.length
= 1;
394 var
->red
.offset
= 16; var
->red
.length
= 8;
395 var
->green
.offset
= 8; var
->green
.length
= 8;
396 var
->blue
.offset
= 0; var
->blue
.length
= 8;
402 var
->red
.offset
= var
->green
.offset
= 0;
403 var
->blue
.offset
= var
->transp
.offset
= 0;
405 var
->green
.length
= 8;
406 var
->blue
.length
= 8;
407 var
->transp
.length
= 0;
410 #ifdef CONFIG_CPU_FREQ
411 pr_debug("pxafb: dma period = %d ps\n",
412 pxafb_display_dma_period(var
));
418 static inline void pxafb_set_truecolor(u_int is_true_color
)
420 /* do your machine-specific setup if needed */
425 * Set the user defined part of the display for the specified console
427 static int pxafb_set_par(struct fb_info
*info
)
429 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
430 struct fb_var_screeninfo
*var
= &info
->var
;
432 if (var
->bits_per_pixel
>= 16)
433 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
434 else if (!fbi
->cmap_static
)
435 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
438 * Some people have weird ideas about wanting static
439 * pseudocolor maps. I suspect their user space
440 * applications are broken.
442 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
445 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
446 var
->bits_per_pixel
/ 8;
447 if (var
->bits_per_pixel
>= 16)
448 fbi
->palette_size
= 0;
450 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
451 4 : 1 << var
->bits_per_pixel
;
453 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
456 * Set (any) board control register to handle new color depth
458 pxafb_set_truecolor(fbi
->fb
.fix
.visual
== FB_VISUAL_TRUECOLOR
);
460 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
461 fb_dealloc_cmap(&fbi
->fb
.cmap
);
463 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
465 pxafb_activate_var(var
, fbi
);
472 * Blank the display by setting all palette values to zero. Note, the
473 * 16 bpp mode does not really use the palette, so this will not
474 * blank the display in all modes.
476 static int pxafb_blank(int blank
, struct fb_info
*info
)
478 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
482 case FB_BLANK_POWERDOWN
:
483 case FB_BLANK_VSYNC_SUSPEND
:
484 case FB_BLANK_HSYNC_SUSPEND
:
485 case FB_BLANK_NORMAL
:
486 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
487 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
488 for (i
= 0; i
< fbi
->palette_size
; i
++)
489 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
491 pxafb_schedule_work(fbi
, C_DISABLE
);
492 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
495 case FB_BLANK_UNBLANK
:
496 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
497 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
498 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
499 fb_set_cmap(&fbi
->fb
.cmap
, info
);
500 pxafb_schedule_work(fbi
, C_ENABLE
);
505 static int pxafb_mmap(struct fb_info
*info
,
506 struct vm_area_struct
*vma
)
508 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
509 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
511 if (off
< info
->fix
.smem_len
) {
512 vma
->vm_pgoff
+= fbi
->video_offset
/ PAGE_SIZE
;
513 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
514 fbi
->map_dma
, fbi
->map_size
);
519 static struct fb_ops pxafb_ops
= {
520 .owner
= THIS_MODULE
,
521 .fb_check_var
= pxafb_check_var
,
522 .fb_set_par
= pxafb_set_par
,
523 .fb_setcolreg
= pxafb_setcolreg
,
524 .fb_fillrect
= cfb_fillrect
,
525 .fb_copyarea
= cfb_copyarea
,
526 .fb_imageblit
= cfb_imageblit
,
527 .fb_blank
= pxafb_blank
,
528 .fb_mmap
= pxafb_mmap
,
532 * Calculate the PCD value from the clock rate (in picoseconds).
533 * We take account of the PPCR clock setting.
534 * From PXA Developer's Manual:
545 * LCLK = LCD/Memory Clock
548 * PixelClock here is in Hz while the pixclock argument given is the
549 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
551 * The function get_lclk_frequency_10khz returns LCLK in units of
552 * 10khz. Calling the result of this function lclk gives us the
555 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
556 * -------------------------------------- - 1
559 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
561 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
562 unsigned int pixclock
)
564 unsigned long long pcd
;
566 /* FIXME: Need to take into account Double Pixel Clock mode
567 * (DPC) bit? or perhaps set it based on the various clock
569 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
571 do_div(pcd
, 100000000 * 2);
572 /* no need for this, since we should subtract 1 anyway. they cancel */
573 /* pcd += 1; */ /* make up for integer math truncations */
574 return (unsigned int)pcd
;
578 * Some touchscreens need hsync information from the video driver to
579 * function correctly. We export it here. Note that 'hsync_time' and
580 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
581 * of the hsync period in seconds.
583 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
587 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
592 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
594 fbi
->hsync_time
= htime
;
597 unsigned long pxafb_get_hsync_time(struct device
*dev
)
599 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
601 /* If display is blanked/suspended, hsync isn't active */
602 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
605 return fbi
->hsync_time
;
607 EXPORT_SYMBOL(pxafb_get_hsync_time
);
609 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
610 unsigned int offset
, size_t size
)
612 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
613 unsigned int dma_desc_off
, pal_desc_off
;
615 if (dma
< 0 || dma
>= DMA_MAX
)
618 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
619 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
621 dma_desc
->fsadr
= fbi
->screen_dma
+ offset
;
623 dma_desc
->ldcmd
= size
;
625 if (pal
< 0 || pal
>= PAL_MAX
) {
626 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
627 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
629 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
630 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
632 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
635 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
636 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
638 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
640 pal_desc
->ldcmd
|= LDCMD_PAL
;
642 /* flip back and forth between palette and frame buffer */
643 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
644 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
645 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
651 #ifdef CONFIG_FB_PXA_SMARTPANEL
652 static int setup_smart_dma(struct pxafb_info
*fbi
)
654 struct pxafb_dma_descriptor
*dma_desc
;
655 unsigned long dma_desc_off
, cmd_buff_off
;
657 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
658 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
659 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
661 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
662 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
664 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
666 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
670 int pxafb_smart_flush(struct fb_info
*info
)
672 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
676 /* disable controller until all registers are set up */
677 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
679 /* 1. make it an even number of commands to align on 32-bit boundary
680 * 2. add the interrupt command to the end of the chain so we can
681 * keep track of the end of the transfer
684 while (fbi
->n_smart_cmds
& 1)
685 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
687 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
688 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
689 setup_smart_dma(fbi
);
691 /* continue to execute next command */
692 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
693 lcd_writel(fbi
, PRSR
, prsr
);
695 /* stop the processor in case it executed "wait for sync" cmd */
696 lcd_writel(fbi
, CMDCR
, 0x0001);
698 /* don't send interrupts for fifo underruns on channel 6 */
699 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
701 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
702 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
703 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
704 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
705 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
708 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
710 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
711 pr_warning("%s: timeout waiting for command done\n",
717 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
718 lcd_writel(fbi
, PRSR
, prsr
);
719 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
720 lcd_writel(fbi
, FDADR6
, 0);
721 fbi
->n_smart_cmds
= 0;
725 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
728 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
730 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
731 for (i
= 0; i
< n_cmds
; i
++) {
732 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
733 pxafb_smart_flush(info
);
735 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
++;
741 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
743 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
744 return (t
== 0) ? 1 : t
;
747 static void setup_smart_timing(struct pxafb_info
*fbi
,
748 struct fb_var_screeninfo
*var
)
750 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
751 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
752 unsigned long lclk
= clk_get_rate(fbi
->clk
);
753 unsigned t1
, t2
, t3
, t4
;
755 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
756 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
757 t3
= mode
->op_hold_time
;
758 t4
= mode
->cmd_inh_time
;
761 LCCR1_DisWdth(var
->xres
) |
762 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
763 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
764 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
766 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
767 fbi
->reg_lccr3
= LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
769 /* FIXME: make this configurable */
773 static int pxafb_smart_thread(void *arg
)
775 struct pxafb_info
*fbi
= arg
;
776 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
778 if (!fbi
|| !inf
->smart_update
) {
779 pr_err("%s: not properly initialized, thread terminated\n",
784 pr_debug("%s(): task starting\n", __func__
);
787 while (!kthread_should_stop()) {
792 if (fbi
->state
== C_ENABLE
) {
793 inf
->smart_update(&fbi
->fb
);
794 complete(&fbi
->refresh_done
);
797 set_current_state(TASK_INTERRUPTIBLE
);
798 schedule_timeout(30 * HZ
/ 1000);
801 pr_debug("%s(): task ending\n", __func__
);
805 static int pxafb_smart_init(struct pxafb_info
*fbi
)
807 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
809 if (IS_ERR(fbi
->smart_thread
)) {
810 printk(KERN_ERR
"%s: unable to create kernel thread\n",
812 return PTR_ERR(fbi
->smart_thread
);
817 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
822 int pxafb_smart_flush(struct fb_info
*info
)
826 #endif /* CONFIG_FB_SMART_PANEL */
828 static void setup_parallel_timing(struct pxafb_info
*fbi
,
829 struct fb_var_screeninfo
*var
)
831 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
834 LCCR1_DisWdth(var
->xres
) +
835 LCCR1_HorSnchWdth(var
->hsync_len
) +
836 LCCR1_BegLnDel(var
->left_margin
) +
837 LCCR1_EndLnDel(var
->right_margin
);
840 * If we have a dual scan LCD, we need to halve
841 * the YRES parameter.
843 lines_per_panel
= var
->yres
;
844 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
845 lines_per_panel
/= 2;
848 LCCR2_DisHght(lines_per_panel
) +
849 LCCR2_VrtSnchWdth(var
->vsync_len
) +
850 LCCR2_BegFrmDel(var
->upper_margin
) +
851 LCCR2_EndFrmDel(var
->lower_margin
);
853 fbi
->reg_lccr3
= fbi
->lccr3
|
854 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
855 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
856 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
857 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
860 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
861 set_hsync_time(fbi
, pcd
);
866 * pxafb_activate_var():
867 * Configures LCD Controller based on entries in var parameter.
868 * Settings are only written to the controller if changes were made.
870 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
871 struct pxafb_info
*fbi
)
877 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
878 if (var
->xres
< 16 || var
->xres
> 1024)
879 printk(KERN_ERR
"%s: invalid xres %d\n",
880 fbi
->fb
.fix
.id
, var
->xres
);
881 switch (var
->bits_per_pixel
) {
891 printk(KERN_ERR
"%s: invalid bit depth %d\n",
892 fbi
->fb
.fix
.id
, var
->bits_per_pixel
);
896 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
897 printk(KERN_ERR
"%s: invalid hsync_len %d\n",
898 fbi
->fb
.fix
.id
, var
->hsync_len
);
899 if (var
->left_margin
< 1 || var
->left_margin
> 255)
900 printk(KERN_ERR
"%s: invalid left_margin %d\n",
901 fbi
->fb
.fix
.id
, var
->left_margin
);
902 if (var
->right_margin
< 1 || var
->right_margin
> 255)
903 printk(KERN_ERR
"%s: invalid right_margin %d\n",
904 fbi
->fb
.fix
.id
, var
->right_margin
);
905 if (var
->yres
< 1 || var
->yres
> 1024)
906 printk(KERN_ERR
"%s: invalid yres %d\n",
907 fbi
->fb
.fix
.id
, var
->yres
);
908 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
909 printk(KERN_ERR
"%s: invalid vsync_len %d\n",
910 fbi
->fb
.fix
.id
, var
->vsync_len
);
911 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
912 printk(KERN_ERR
"%s: invalid upper_margin %d\n",
913 fbi
->fb
.fix
.id
, var
->upper_margin
);
914 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
915 printk(KERN_ERR
"%s: invalid lower_margin %d\n",
916 fbi
->fb
.fix
.id
, var
->lower_margin
);
919 /* Update shadow copy atomically */
920 local_irq_save(flags
);
922 #ifdef CONFIG_FB_PXA_SMARTPANEL
923 if (fbi
->lccr0
& LCCR0_LCDT
)
924 setup_smart_timing(fbi
, var
);
927 setup_parallel_timing(fbi
, var
);
929 fbi
->reg_lccr0
= fbi
->lccr0
|
930 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
931 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
933 fbi
->reg_lccr3
|= pxafb_bpp_to_lccr3(var
);
935 nbytes
= var
->yres
* fbi
->fb
.fix
.line_length
;
937 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
) {
939 setup_frame_dma(fbi
, DMA_LOWER
, PAL_NONE
, nbytes
, nbytes
);
942 if ((var
->bits_per_pixel
>= 16) || (fbi
->lccr0
& LCCR0_LCDT
))
943 setup_frame_dma(fbi
, DMA_BASE
, PAL_NONE
, 0, nbytes
);
945 setup_frame_dma(fbi
, DMA_BASE
, PAL_BASE
, 0, nbytes
);
947 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
948 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
949 local_irq_restore(flags
);
952 * Only update the registers if the controller is enabled
953 * and something has changed.
955 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
956 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
957 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
958 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
959 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
960 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1]))
961 pxafb_schedule_work(fbi
, C_REENABLE
);
967 * NOTE! The following functions are purely helpers for set_ctrlr_state.
968 * Do not call them directly; set_ctrlr_state does the correct serialisation
969 * to ensure that things happen in the right way 100% of time time.
972 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
974 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
976 if (pxafb_backlight_power
)
977 pxafb_backlight_power(on
);
980 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
982 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
985 pxafb_lcd_power(on
, &fbi
->fb
.var
);
988 static void pxafb_setup_gpio(struct pxafb_info
*fbi
)
991 unsigned int lccr0
= fbi
->lccr0
;
994 * setup is based on type of panel supported
997 /* 4 bit interface */
998 if ((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
999 (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
&&
1000 (lccr0
& LCCR0_DPD
) == LCCR0_4PixMono
)
1003 /* 8 bit interface */
1004 else if (((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
1005 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
||
1006 (lccr0
& LCCR0_DPD
) == LCCR0_8PixMono
)) ||
1007 ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
1008 (lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
1009 (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
))
1012 /* 16 bit interface */
1013 else if ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
1014 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
||
1015 (lccr0
& LCCR0_PAS
) == LCCR0_Act
))
1019 printk(KERN_ERR
"pxafb_setup_gpio: unable to determine "
1020 "bits per pixel\n");
1024 for (gpio
= 58; ldd_bits
; gpio
++, ldd_bits
--)
1025 pxa_gpio_mode(gpio
| GPIO_ALT_FN_2_OUT
);
1026 /* 18 bit interface */
1027 if (fbi
->fb
.var
.bits_per_pixel
> 16) {
1028 pxa_gpio_mode(86 | GPIO_ALT_FN_2_OUT
);
1029 pxa_gpio_mode(87 | GPIO_ALT_FN_2_OUT
);
1031 pxa_gpio_mode(GPIO74_LCD_FCLK_MD
);
1032 pxa_gpio_mode(GPIO75_LCD_LCLK_MD
);
1033 pxa_gpio_mode(GPIO76_LCD_PCLK_MD
);
1035 if ((lccr0
& LCCR0_PAS
) == 0)
1036 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD
);
1039 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1041 pr_debug("pxafb: Enabling LCD controller\n");
1042 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1043 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1044 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1045 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1046 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1047 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1049 /* enable LCD controller clock */
1050 clk_enable(fbi
->clk
);
1052 if (fbi
->lccr0
& LCCR0_LCDT
)
1055 /* Sequence from 11.7.10 */
1056 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1057 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1058 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1059 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1061 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1062 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1063 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1066 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1070 #ifdef CONFIG_FB_PXA_SMARTPANEL
1071 if (fbi
->lccr0
& LCCR0_LCDT
) {
1072 wait_for_completion_timeout(&fbi
->refresh_done
,
1078 /* Clear LCD Status Register */
1079 lcd_writel(fbi
, LCSR
, 0xffffffff);
1081 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1082 lcd_writel(fbi
, LCCR0
, lccr0
);
1083 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1085 wait_for_completion_timeout(&fbi
->disable_done
, 200 * HZ
/ 1000);
1087 /* disable LCD controller clock */
1088 clk_disable(fbi
->clk
);
1092 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1094 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1096 struct pxafb_info
*fbi
= dev_id
;
1097 unsigned int lccr0
, lcsr
= lcd_readl(fbi
, LCSR
);
1099 if (lcsr
& LCSR_LDD
) {
1100 lccr0
= lcd_readl(fbi
, LCCR0
);
1101 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1102 complete(&fbi
->disable_done
);
1105 #ifdef CONFIG_FB_PXA_SMARTPANEL
1106 if (lcsr
& LCSR_CMD_INT
)
1107 complete(&fbi
->command_done
);
1110 lcd_writel(fbi
, LCSR
, lcsr
);
1115 * This function must be called from task context only, since it will
1116 * sleep when disabling the LCD controller, or if we get two contending
1117 * processes trying to alter state.
1119 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1123 mutex_lock(&fbi
->ctrlr_lock
);
1125 old_state
= fbi
->state
;
1128 * Hack around fbcon initialisation.
1130 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1134 case C_DISABLE_CLKCHANGE
:
1136 * Disable controller for clock change. If the
1137 * controller is already disabled, then do nothing.
1139 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1141 /* TODO __pxafb_lcd_power(fbi, 0); */
1142 pxafb_disable_controller(fbi
);
1149 * Disable controller
1151 if (old_state
!= C_DISABLE
) {
1153 __pxafb_backlight_power(fbi
, 0);
1154 __pxafb_lcd_power(fbi
, 0);
1155 if (old_state
!= C_DISABLE_CLKCHANGE
)
1156 pxafb_disable_controller(fbi
);
1160 case C_ENABLE_CLKCHANGE
:
1162 * Enable the controller after clock change. Only
1163 * do this if we were disabled for the clock change.
1165 if (old_state
== C_DISABLE_CLKCHANGE
) {
1166 fbi
->state
= C_ENABLE
;
1167 pxafb_enable_controller(fbi
);
1168 /* TODO __pxafb_lcd_power(fbi, 1); */
1174 * Re-enable the controller only if it was already
1175 * enabled. This is so we reprogram the control
1178 if (old_state
== C_ENABLE
) {
1179 __pxafb_lcd_power(fbi
, 0);
1180 pxafb_disable_controller(fbi
);
1181 pxafb_setup_gpio(fbi
);
1182 pxafb_enable_controller(fbi
);
1183 __pxafb_lcd_power(fbi
, 1);
1189 * Re-enable the controller after PM. This is not
1190 * perfect - think about the case where we were doing
1191 * a clock change, and we suspended half-way through.
1193 if (old_state
!= C_DISABLE_PM
)
1199 * Power up the LCD screen, enable controller, and
1200 * turn on the backlight.
1202 if (old_state
!= C_ENABLE
) {
1203 fbi
->state
= C_ENABLE
;
1204 pxafb_setup_gpio(fbi
);
1205 pxafb_enable_controller(fbi
);
1206 __pxafb_lcd_power(fbi
, 1);
1207 __pxafb_backlight_power(fbi
, 1);
1211 mutex_unlock(&fbi
->ctrlr_lock
);
1215 * Our LCD controller task (which is called when we blank or unblank)
1218 static void pxafb_task(struct work_struct
*work
)
1220 struct pxafb_info
*fbi
=
1221 container_of(work
, struct pxafb_info
, task
);
1222 u_int state
= xchg(&fbi
->task_state
, -1);
1224 set_ctrlr_state(fbi
, state
);
1227 #ifdef CONFIG_CPU_FREQ
1229 * CPU clock speed change handler. We need to adjust the LCD timing
1230 * parameters when the CPU clock is adjusted by the power management
1233 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1236 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1238 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1239 /* TODO struct cpufreq_freqs *f = data; */
1243 case CPUFREQ_PRECHANGE
:
1244 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1247 case CPUFREQ_POSTCHANGE
:
1248 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1249 set_hsync_time(fbi
, pcd
);
1250 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1251 LCCR3_PixClkDiv(pcd
);
1252 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1259 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1261 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1262 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1263 struct cpufreq_policy
*policy
= data
;
1266 case CPUFREQ_ADJUST
:
1267 case CPUFREQ_INCOMPATIBLE
:
1268 pr_debug("min dma period: %d ps, "
1269 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1271 /* TODO: fill in min/max values */
1280 * Power management hooks. Note that we won't be called from IRQ context,
1281 * unlike the blank functions above, so we may sleep.
1283 static int pxafb_suspend(struct platform_device
*dev
, pm_message_t state
)
1285 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1287 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1291 static int pxafb_resume(struct platform_device
*dev
)
1293 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1295 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1299 #define pxafb_suspend NULL
1300 #define pxafb_resume NULL
1304 * pxafb_map_video_memory():
1305 * Allocates the DRAM memory for the frame buffer. This buffer is
1306 * remapped into a non-cached, non-buffered, memory region to
1307 * allow palette and pixel writes to occur without flushing the
1308 * cache. Once this area is remapped, all virtual memory
1309 * access to the video memory should occur at the new region.
1311 static int __devinit
pxafb_map_video_memory(struct pxafb_info
*fbi
)
1314 * We reserve one page for the palette, plus the size
1315 * of the framebuffer.
1317 fbi
->video_offset
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
1318 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ fbi
->video_offset
);
1319 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1320 &fbi
->map_dma
, GFP_KERNEL
);
1323 /* prevent initial garbage on screen */
1324 memset(fbi
->map_cpu
, 0, fbi
->map_size
);
1325 fbi
->fb
.screen_base
= fbi
->map_cpu
+ fbi
->video_offset
;
1326 fbi
->screen_dma
= fbi
->map_dma
+ fbi
->video_offset
;
1329 * FIXME: this is actually the wrong thing to place in
1330 * smem_start. But fbdev suffers from the problem that
1331 * it needs an API which doesn't exist (in this case,
1332 * dma_writecombine_mmap)
1334 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1335 fbi
->palette_size
= fbi
->fb
.var
.bits_per_pixel
== 8 ? 256 : 16;
1337 fbi
->dma_buff
= (void *) fbi
->map_cpu
;
1338 fbi
->dma_buff_phys
= fbi
->map_dma
;
1339 fbi
->palette_cpu
= (u16
*) fbi
->dma_buff
->palette
;
1341 pr_debug("pxafb: palette_mem_size = 0x%08x\n", fbi
->palette_size
*sizeof(u16
));
1343 #ifdef CONFIG_FB_PXA_SMARTPANEL
1344 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1345 fbi
->n_smart_cmds
= 0;
1349 return fbi
->map_cpu
? 0 : -ENOMEM
;
1352 static void pxafb_decode_mode_info(struct pxafb_info
*fbi
,
1353 struct pxafb_mode_info
*modes
,
1354 unsigned int num_modes
)
1356 unsigned int i
, smemlen
;
1358 pxafb_setmode(&fbi
->fb
.var
, &modes
[0]);
1360 for (i
= 0; i
< num_modes
; i
++) {
1361 smemlen
= modes
[i
].xres
* modes
[i
].yres
* modes
[i
].bpp
/ 8;
1362 if (smemlen
> fbi
->fb
.fix
.smem_len
)
1363 fbi
->fb
.fix
.smem_len
= smemlen
;
1367 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1368 struct pxafb_mach_info
*inf
)
1370 unsigned int lcd_conn
= inf
->lcd_conn
;
1372 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1373 fbi
->cmap_static
= inf
->cmap_static
;
1375 switch (lcd_conn
& 0xf) {
1376 case LCD_TYPE_MONO_STN
:
1377 fbi
->lccr0
= LCCR0_CMS
;
1379 case LCD_TYPE_MONO_DSTN
:
1380 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1382 case LCD_TYPE_COLOR_STN
:
1385 case LCD_TYPE_COLOR_DSTN
:
1386 fbi
->lccr0
= LCCR0_SDS
;
1388 case LCD_TYPE_COLOR_TFT
:
1389 fbi
->lccr0
= LCCR0_PAS
;
1391 case LCD_TYPE_SMART_PANEL
:
1392 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1395 /* fall back to backward compatibility way */
1396 fbi
->lccr0
= inf
->lccr0
;
1397 fbi
->lccr3
= inf
->lccr3
;
1398 fbi
->lccr4
= inf
->lccr4
;
1402 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1403 fbi
->lccr0
|= LCCR0_DPD
;
1405 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1407 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1408 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1409 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1412 pxafb_decode_mode_info(fbi
, inf
->modes
, inf
->num_modes
);
1415 static struct pxafb_info
* __devinit
pxafb_init_fbinfo(struct device
*dev
)
1417 struct pxafb_info
*fbi
;
1419 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1421 /* Alloc the pxafb_info and pseudo_palette in one step */
1422 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1426 memset(fbi
, 0, sizeof(struct pxafb_info
));
1429 fbi
->clk
= clk_get(dev
, "LCDCLK");
1430 if (IS_ERR(fbi
->clk
)) {
1435 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1437 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1438 fbi
->fb
.fix
.type_aux
= 0;
1439 fbi
->fb
.fix
.xpanstep
= 0;
1440 fbi
->fb
.fix
.ypanstep
= 0;
1441 fbi
->fb
.fix
.ywrapstep
= 0;
1442 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1444 fbi
->fb
.var
.nonstd
= 0;
1445 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1446 fbi
->fb
.var
.height
= -1;
1447 fbi
->fb
.var
.width
= -1;
1448 fbi
->fb
.var
.accel_flags
= 0;
1449 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1451 fbi
->fb
.fbops
= &pxafb_ops
;
1452 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1456 addr
= addr
+ sizeof(struct pxafb_info
);
1457 fbi
->fb
.pseudo_palette
= addr
;
1459 fbi
->state
= C_STARTUP
;
1460 fbi
->task_state
= (u_char
)-1;
1462 pxafb_decode_mach_info(fbi
, inf
);
1464 init_waitqueue_head(&fbi
->ctrlr_wait
);
1465 INIT_WORK(&fbi
->task
, pxafb_task
);
1466 mutex_init(&fbi
->ctrlr_lock
);
1467 init_completion(&fbi
->disable_done
);
1468 #ifdef CONFIG_FB_PXA_SMARTPANEL
1469 init_completion(&fbi
->command_done
);
1470 init_completion(&fbi
->refresh_done
);
1476 #ifdef CONFIG_FB_PXA_PARAMETERS
1477 static int __devinit
parse_opt_mode(struct device
*dev
, const char *this_opt
)
1479 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1481 const char *name
= this_opt
+5;
1482 unsigned int namelen
= strlen(name
);
1483 int res_specified
= 0, bpp_specified
= 0;
1484 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1485 int yres_specified
= 0;
1487 for (i
= namelen
-1; i
>= 0; i
--) {
1491 if (!bpp_specified
&& !yres_specified
) {
1492 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1498 if (!yres_specified
) {
1499 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1510 if (i
< 0 && yres_specified
) {
1511 xres
= simple_strtoul(name
, NULL
, 0);
1515 if (res_specified
) {
1516 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1517 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1526 inf
->modes
[0].bpp
= bpp
;
1527 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1530 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1536 static int __devinit
parse_opt(struct device
*dev
, char *this_opt
)
1538 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1539 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1544 if (!strncmp(this_opt
, "mode:", 5)) {
1545 return parse_opt_mode(dev
, this_opt
);
1546 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1547 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1548 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1549 } else if (!strncmp(this_opt
, "left:", 5)) {
1550 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1551 sprintf(s
, "left: %u\n", mode
->left_margin
);
1552 } else if (!strncmp(this_opt
, "right:", 6)) {
1553 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1554 sprintf(s
, "right: %u\n", mode
->right_margin
);
1555 } else if (!strncmp(this_opt
, "upper:", 6)) {
1556 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1557 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1558 } else if (!strncmp(this_opt
, "lower:", 6)) {
1559 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1560 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1561 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1562 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1563 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1564 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1565 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1566 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1567 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1568 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1569 sprintf(s
, "hsync: Active Low\n");
1570 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1572 sprintf(s
, "hsync: Active High\n");
1573 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1575 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1576 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1577 sprintf(s
, "vsync: Active Low\n");
1578 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1580 sprintf(s
, "vsync: Active High\n");
1581 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1583 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1584 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1585 sprintf(s
, "double pixel clock: false\n");
1586 inf
->lccr3
&= ~LCCR3_DPC
;
1588 sprintf(s
, "double pixel clock: true\n");
1589 inf
->lccr3
|= LCCR3_DPC
;
1591 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1592 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1593 sprintf(s
, "output enable: active low\n");
1594 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1596 sprintf(s
, "output enable: active high\n");
1597 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1599 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1600 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1601 sprintf(s
, "pixel clock polarity: falling edge\n");
1602 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1604 sprintf(s
, "pixel clock polarity: rising edge\n");
1605 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1607 } else if (!strncmp(this_opt
, "color", 5)) {
1608 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1609 } else if (!strncmp(this_opt
, "mono", 4)) {
1610 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1611 } else if (!strncmp(this_opt
, "active", 6)) {
1612 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1613 } else if (!strncmp(this_opt
, "passive", 7)) {
1614 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1615 } else if (!strncmp(this_opt
, "single", 6)) {
1616 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1617 } else if (!strncmp(this_opt
, "dual", 4)) {
1618 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1619 } else if (!strncmp(this_opt
, "4pix", 4)) {
1620 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
1621 } else if (!strncmp(this_opt
, "8pix", 4)) {
1622 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
1624 dev_err(dev
, "unknown option: %s\n", this_opt
);
1629 dev_info(dev
, "override %s", s
);
1634 static int __devinit
pxafb_parse_options(struct device
*dev
, char *options
)
1639 if (!options
|| !*options
)
1642 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
1644 /* could be made table driven or similar?... */
1645 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1646 ret
= parse_opt(dev
, this_opt
);
1653 static char g_options
[256] __devinitdata
= "";
1656 static int __init
pxafb_setup_options(void)
1658 char *options
= NULL
;
1660 if (fb_get_options("pxafb", &options
))
1664 strlcpy(g_options
, options
, sizeof(g_options
));
1669 #define pxafb_setup_options() (0)
1671 module_param_string(options
, g_options
, sizeof(g_options
), 0);
1672 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
1676 #define pxafb_parse_options(...) (0)
1677 #define pxafb_setup_options() (0)
1681 /* Check for various illegal bit-combinations. Currently only
1682 * a warning is given. */
1683 static void __devinit
pxafb_check_options(struct device
*dev
,
1684 struct pxafb_mach_info
*inf
)
1689 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
1690 dev_warn(dev
, "machine LCCR0 setting contains "
1691 "illegal bits: %08x\n",
1692 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
1693 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
1694 dev_warn(dev
, "machine LCCR3 setting contains "
1695 "illegal bits: %08x\n",
1696 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
1697 if (inf
->lccr0
& LCCR0_DPD
&&
1698 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
1699 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
1700 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
1701 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
1702 "only valid in passive mono"
1703 " single panel mode\n");
1704 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
1705 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1706 dev_warn(dev
, "Dual panel only valid in passive mode\n");
1707 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
1708 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
1709 dev_warn(dev
, "Upper and lower margins must be 0 in "
1713 #define pxafb_check_options(...) do {} while (0)
1716 static int __devinit
pxafb_probe(struct platform_device
*dev
)
1718 struct pxafb_info
*fbi
;
1719 struct pxafb_mach_info
*inf
;
1723 dev_dbg(&dev
->dev
, "pxafb_probe\n");
1725 inf
= dev
->dev
.platform_data
;
1731 ret
= pxafb_parse_options(&dev
->dev
, g_options
);
1735 pxafb_check_options(&dev
->dev
, inf
);
1737 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
1741 if (inf
->modes
->xres
== 0 ||
1742 inf
->modes
->yres
== 0 ||
1743 inf
->modes
->bpp
== 0) {
1744 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
1748 pxafb_backlight_power
= inf
->pxafb_backlight_power
;
1749 pxafb_lcd_power
= inf
->pxafb_lcd_power
;
1750 fbi
= pxafb_init_fbinfo(&dev
->dev
);
1752 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1753 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
1758 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
1760 dev_err(&dev
->dev
, "no I/O memory resource defined\n");
1765 r
= request_mem_region(r
->start
, r
->end
- r
->start
+ 1, dev
->name
);
1767 dev_err(&dev
->dev
, "failed to request I/O memory\n");
1772 fbi
->mmio_base
= ioremap(r
->start
, r
->end
- r
->start
+ 1);
1773 if (fbi
->mmio_base
== NULL
) {
1774 dev_err(&dev
->dev
, "failed to map I/O memory\n");
1776 goto failed_free_res
;
1779 /* Initialize video memory */
1780 ret
= pxafb_map_video_memory(fbi
);
1782 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
1784 goto failed_free_io
;
1787 irq
= platform_get_irq(dev
, 0);
1789 dev_err(&dev
->dev
, "no IRQ defined\n");
1791 goto failed_free_mem
;
1794 ret
= request_irq(irq
, pxafb_handle_irq
, IRQF_DISABLED
, "LCD", fbi
);
1796 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
1798 goto failed_free_mem
;
1801 #ifdef CONFIG_FB_PXA_SMARTPANEL
1802 ret
= pxafb_smart_init(fbi
);
1804 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
1805 goto failed_free_irq
;
1809 * This makes sure that our colour bitfield
1810 * descriptors are correctly initialised.
1812 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1814 dev_err(&dev
->dev
, "failed to get suitable mode\n");
1815 goto failed_free_irq
;
1818 ret
= pxafb_set_par(&fbi
->fb
);
1820 dev_err(&dev
->dev
, "Failed to set parameters\n");
1821 goto failed_free_irq
;
1824 platform_set_drvdata(dev
, fbi
);
1826 ret
= register_framebuffer(&fbi
->fb
);
1829 "Failed to register framebuffer device: %d\n", ret
);
1830 goto failed_free_cmap
;
1833 #ifdef CONFIG_CPU_FREQ
1834 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
1835 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
1836 cpufreq_register_notifier(&fbi
->freq_transition
,
1837 CPUFREQ_TRANSITION_NOTIFIER
);
1838 cpufreq_register_notifier(&fbi
->freq_policy
,
1839 CPUFREQ_POLICY_NOTIFIER
);
1843 * Ok, now enable the LCD controller
1845 set_ctrlr_state(fbi
, C_ENABLE
);
1850 if (fbi
->fb
.cmap
.len
)
1851 fb_dealloc_cmap(&fbi
->fb
.cmap
);
1855 dma_free_writecombine(&dev
->dev
, fbi
->map_size
,
1856 fbi
->map_cpu
, fbi
->map_dma
);
1858 iounmap(fbi
->mmio_base
);
1860 release_mem_region(r
->start
, r
->end
- r
->start
+ 1);
1863 platform_set_drvdata(dev
, NULL
);
1869 static int __devexit
pxafb_remove(struct platform_device
*dev
)
1871 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1874 struct fb_info
*info
;
1881 unregister_framebuffer(info
);
1883 pxafb_disable_controller(fbi
);
1885 if (fbi
->fb
.cmap
.len
)
1886 fb_dealloc_cmap(&fbi
->fb
.cmap
);
1888 irq
= platform_get_irq(dev
, 0);
1891 dma_free_writecombine(&dev
->dev
, fbi
->map_size
,
1892 fbi
->map_cpu
, fbi
->map_dma
);
1894 iounmap(fbi
->mmio_base
);
1896 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
1897 release_mem_region(r
->start
, r
->end
- r
->start
+ 1);
1905 static struct platform_driver pxafb_driver
= {
1906 .probe
= pxafb_probe
,
1907 .remove
= pxafb_remove
,
1908 .suspend
= pxafb_suspend
,
1909 .resume
= pxafb_resume
,
1911 .owner
= THIS_MODULE
,
1912 .name
= "pxa2xx-fb",
1916 static int __init
pxafb_init(void)
1918 if (pxafb_setup_options())
1921 return platform_driver_register(&pxafb_driver
);
1924 static void __exit
pxafb_exit(void)
1926 platform_driver_unregister(&pxafb_driver
);
1929 module_init(pxafb_init
);
1930 module_exit(pxafb_exit
);
1932 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1933 MODULE_LICENSE("GPL");