viafb: MAINTAINERS entry
[linux-2.6/mini2440.git] / drivers / video / pxafb.c
blob97204497d9f7ed10de17f6290c7ac047fd6fabef
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/fb.h>
35 #include <linux/delay.h>
36 #include <linux/init.h>
37 #include <linux/ioport.h>
38 #include <linux/cpufreq.h>
39 #include <linux/platform_device.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/clk.h>
42 #include <linux/err.h>
43 #include <linux/completion.h>
44 #include <linux/mutex.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
48 #include <mach/hardware.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/div64.h>
52 #include <mach/pxa-regs.h>
53 #include <mach/pxa2xx-gpio.h>
54 #include <mach/bitfield.h>
55 #include <mach/pxafb.h>
58 * Complain if VAR is out of range.
60 #define DEBUG_VAR 1
62 #include "pxafb.h"
64 /* Bits which should not be set in machine configuration structures */
65 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
66 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
67 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
69 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
70 LCCR3_PCD | LCCR3_BPP)
72 static void (*pxafb_backlight_power)(int);
73 static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
75 static int pxafb_activate_var(struct fb_var_screeninfo *var,
76 struct pxafb_info *);
77 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
79 static inline unsigned long
80 lcd_readl(struct pxafb_info *fbi, unsigned int off)
82 return __raw_readl(fbi->mmio_base + off);
85 static inline void
86 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
88 __raw_writel(val, fbi->mmio_base + off);
91 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
93 unsigned long flags;
95 local_irq_save(flags);
97 * We need to handle two requests being made at the same time.
98 * There are two important cases:
99 * 1. When we are changing VT (C_REENABLE) while unblanking
100 * (C_ENABLE) We must perform the unblanking, which will
101 * do our REENABLE for us.
102 * 2. When we are blanking, but immediately unblank before
103 * we have blanked. We do the "REENABLE" thing here as
104 * well, just to be sure.
106 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
107 state = (u_int) -1;
108 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
109 state = C_REENABLE;
111 if (state != (u_int)-1) {
112 fbi->task_state = state;
113 schedule_work(&fbi->task);
115 local_irq_restore(flags);
118 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
120 chan &= 0xffff;
121 chan >>= 16 - bf->length;
122 return chan << bf->offset;
125 static int
126 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
127 u_int trans, struct fb_info *info)
129 struct pxafb_info *fbi = (struct pxafb_info *)info;
130 u_int val;
132 if (regno >= fbi->palette_size)
133 return 1;
135 if (fbi->fb.var.grayscale) {
136 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
137 return 0;
140 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
141 case LCCR4_PAL_FOR_0:
142 val = ((red >> 0) & 0xf800);
143 val |= ((green >> 5) & 0x07e0);
144 val |= ((blue >> 11) & 0x001f);
145 fbi->palette_cpu[regno] = val;
146 break;
147 case LCCR4_PAL_FOR_1:
148 val = ((red << 8) & 0x00f80000);
149 val |= ((green >> 0) & 0x0000fc00);
150 val |= ((blue >> 8) & 0x000000f8);
151 ((u32 *)(fbi->palette_cpu))[regno] = val;
152 break;
153 case LCCR4_PAL_FOR_2:
154 val = ((red << 8) & 0x00fc0000);
155 val |= ((green >> 0) & 0x0000fc00);
156 val |= ((blue >> 8) & 0x000000fc);
157 ((u32 *)(fbi->palette_cpu))[regno] = val;
158 break;
161 return 0;
164 static int
165 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
166 u_int trans, struct fb_info *info)
168 struct pxafb_info *fbi = (struct pxafb_info *)info;
169 unsigned int val;
170 int ret = 1;
173 * If inverse mode was selected, invert all the colours
174 * rather than the register number. The register number
175 * is what you poke into the framebuffer to produce the
176 * colour you requested.
178 if (fbi->cmap_inverse) {
179 red = 0xffff - red;
180 green = 0xffff - green;
181 blue = 0xffff - blue;
185 * If greyscale is true, then we convert the RGB value
186 * to greyscale no matter what visual we are using.
188 if (fbi->fb.var.grayscale)
189 red = green = blue = (19595 * red + 38470 * green +
190 7471 * blue) >> 16;
192 switch (fbi->fb.fix.visual) {
193 case FB_VISUAL_TRUECOLOR:
195 * 16-bit True Colour. We encode the RGB value
196 * according to the RGB bitfield information.
198 if (regno < 16) {
199 u32 *pal = fbi->fb.pseudo_palette;
201 val = chan_to_field(red, &fbi->fb.var.red);
202 val |= chan_to_field(green, &fbi->fb.var.green);
203 val |= chan_to_field(blue, &fbi->fb.var.blue);
205 pal[regno] = val;
206 ret = 0;
208 break;
210 case FB_VISUAL_STATIC_PSEUDOCOLOR:
211 case FB_VISUAL_PSEUDOCOLOR:
212 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
213 break;
216 return ret;
220 * pxafb_bpp_to_lccr3():
221 * Convert a bits per pixel value to the correct bit pattern for LCCR3
223 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
225 int ret = 0;
226 switch (var->bits_per_pixel) {
227 case 1: ret = LCCR3_1BPP; break;
228 case 2: ret = LCCR3_2BPP; break;
229 case 4: ret = LCCR3_4BPP; break;
230 case 8: ret = LCCR3_8BPP; break;
231 case 16: ret = LCCR3_16BPP; break;
232 case 24:
233 switch (var->red.length + var->green.length +
234 var->blue.length + var->transp.length) {
235 case 18: ret = LCCR3_18BPP_P | LCCR3_PDFOR_3; break;
236 case 19: ret = LCCR3_19BPP_P; break;
238 break;
239 case 32:
240 switch (var->red.length + var->green.length +
241 var->blue.length + var->transp.length) {
242 case 18: ret = LCCR3_18BPP | LCCR3_PDFOR_3; break;
243 case 19: ret = LCCR3_19BPP; break;
244 case 24: ret = LCCR3_24BPP | LCCR3_PDFOR_3; break;
245 case 25: ret = LCCR3_25BPP; break;
247 break;
249 return ret;
252 #ifdef CONFIG_CPU_FREQ
254 * pxafb_display_dma_period()
255 * Calculate the minimum period (in picoseconds) between two DMA
256 * requests for the LCD controller. If we hit this, it means we're
257 * doing nothing but LCD DMA.
259 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
262 * Period = pixclock * bits_per_byte * bytes_per_transfer
263 * / memory_bits_per_pixel;
265 return var->pixclock * 8 * 16 / var->bits_per_pixel;
267 #endif
270 * Select the smallest mode that allows the desired resolution to be
271 * displayed. If desired parameters can be rounded up.
273 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
274 struct fb_var_screeninfo *var)
276 struct pxafb_mode_info *mode = NULL;
277 struct pxafb_mode_info *modelist = mach->modes;
278 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
279 unsigned int i;
281 for (i = 0; i < mach->num_modes; i++) {
282 if (modelist[i].xres >= var->xres &&
283 modelist[i].yres >= var->yres &&
284 modelist[i].xres < best_x &&
285 modelist[i].yres < best_y &&
286 modelist[i].bpp >= var->bits_per_pixel) {
287 best_x = modelist[i].xres;
288 best_y = modelist[i].yres;
289 mode = &modelist[i];
293 return mode;
296 static void pxafb_setmode(struct fb_var_screeninfo *var,
297 struct pxafb_mode_info *mode)
299 var->xres = mode->xres;
300 var->yres = mode->yres;
301 var->bits_per_pixel = mode->bpp;
302 var->pixclock = mode->pixclock;
303 var->hsync_len = mode->hsync_len;
304 var->left_margin = mode->left_margin;
305 var->right_margin = mode->right_margin;
306 var->vsync_len = mode->vsync_len;
307 var->upper_margin = mode->upper_margin;
308 var->lower_margin = mode->lower_margin;
309 var->sync = mode->sync;
310 var->grayscale = mode->cmap_greyscale;
311 var->xres_virtual = var->xres;
312 var->yres_virtual = var->yres;
316 * pxafb_check_var():
317 * Get the video params out of 'var'. If a value doesn't fit, round it up,
318 * if it's too big, return -EINVAL.
320 * Round up in the following order: bits_per_pixel, xres,
321 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
322 * bitfields, horizontal timing, vertical timing.
324 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
326 struct pxafb_info *fbi = (struct pxafb_info *)info;
327 struct pxafb_mach_info *inf = fbi->dev->platform_data;
329 if (var->xres < MIN_XRES)
330 var->xres = MIN_XRES;
331 if (var->yres < MIN_YRES)
332 var->yres = MIN_YRES;
334 if (inf->fixed_modes) {
335 struct pxafb_mode_info *mode;
337 mode = pxafb_getmode(inf, var);
338 if (!mode)
339 return -EINVAL;
340 pxafb_setmode(var, mode);
341 } else {
342 if (var->xres > inf->modes->xres)
343 return -EINVAL;
344 if (var->yres > inf->modes->yres)
345 return -EINVAL;
346 if (var->bits_per_pixel > inf->modes->bpp)
347 return -EINVAL;
350 var->xres_virtual =
351 max(var->xres_virtual, var->xres);
352 var->yres_virtual =
353 max(var->yres_virtual, var->yres);
356 * Setup the RGB parameters for this display.
358 * The pixel packing format is described on page 7-11 of the
359 * PXA2XX Developer's Manual.
361 if (var->bits_per_pixel == 16) {
362 var->red.offset = 11; var->red.length = 5;
363 var->green.offset = 5; var->green.length = 6;
364 var->blue.offset = 0; var->blue.length = 5;
365 var->transp.offset = var->transp.length = 0;
366 } else if (var->bits_per_pixel > 16) {
367 struct pxafb_mode_info *mode;
369 mode = pxafb_getmode(inf, var);
370 if (!mode)
371 return -EINVAL;
373 switch (mode->depth) {
374 case 18: /* RGB666 */
375 var->transp.offset = var->transp.length = 0;
376 var->red.offset = 12; var->red.length = 6;
377 var->green.offset = 6; var->green.length = 6;
378 var->blue.offset = 0; var->blue.length = 6;
379 break;
380 case 19: /* RGBT666 */
381 var->transp.offset = 18; var->transp.length = 1;
382 var->red.offset = 12; var->red.length = 6;
383 var->green.offset = 6; var->green.length = 6;
384 var->blue.offset = 0; var->blue.length = 6;
385 break;
386 case 24: /* RGB888 */
387 var->transp.offset = var->transp.length = 0;
388 var->red.offset = 16; var->red.length = 8;
389 var->green.offset = 8; var->green.length = 8;
390 var->blue.offset = 0; var->blue.length = 8;
391 break;
392 case 25: /* RGBT888 */
393 var->transp.offset = 24; var->transp.length = 1;
394 var->red.offset = 16; var->red.length = 8;
395 var->green.offset = 8; var->green.length = 8;
396 var->blue.offset = 0; var->blue.length = 8;
397 break;
398 default:
399 return -EINVAL;
401 } else {
402 var->red.offset = var->green.offset = 0;
403 var->blue.offset = var->transp.offset = 0;
404 var->red.length = 8;
405 var->green.length = 8;
406 var->blue.length = 8;
407 var->transp.length = 0;
410 #ifdef CONFIG_CPU_FREQ
411 pr_debug("pxafb: dma period = %d ps\n",
412 pxafb_display_dma_period(var));
413 #endif
415 return 0;
418 static inline void pxafb_set_truecolor(u_int is_true_color)
420 /* do your machine-specific setup if needed */
424 * pxafb_set_par():
425 * Set the user defined part of the display for the specified console
427 static int pxafb_set_par(struct fb_info *info)
429 struct pxafb_info *fbi = (struct pxafb_info *)info;
430 struct fb_var_screeninfo *var = &info->var;
432 if (var->bits_per_pixel >= 16)
433 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
434 else if (!fbi->cmap_static)
435 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
436 else {
438 * Some people have weird ideas about wanting static
439 * pseudocolor maps. I suspect their user space
440 * applications are broken.
442 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
445 fbi->fb.fix.line_length = var->xres_virtual *
446 var->bits_per_pixel / 8;
447 if (var->bits_per_pixel >= 16)
448 fbi->palette_size = 0;
449 else
450 fbi->palette_size = var->bits_per_pixel == 1 ?
451 4 : 1 << var->bits_per_pixel;
453 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
456 * Set (any) board control register to handle new color depth
458 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
460 if (fbi->fb.var.bits_per_pixel >= 16)
461 fb_dealloc_cmap(&fbi->fb.cmap);
462 else
463 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
465 pxafb_activate_var(var, fbi);
467 return 0;
471 * pxafb_blank():
472 * Blank the display by setting all palette values to zero. Note, the
473 * 16 bpp mode does not really use the palette, so this will not
474 * blank the display in all modes.
476 static int pxafb_blank(int blank, struct fb_info *info)
478 struct pxafb_info *fbi = (struct pxafb_info *)info;
479 int i;
481 switch (blank) {
482 case FB_BLANK_POWERDOWN:
483 case FB_BLANK_VSYNC_SUSPEND:
484 case FB_BLANK_HSYNC_SUSPEND:
485 case FB_BLANK_NORMAL:
486 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
487 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
488 for (i = 0; i < fbi->palette_size; i++)
489 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
491 pxafb_schedule_work(fbi, C_DISABLE);
492 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
493 break;
495 case FB_BLANK_UNBLANK:
496 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
497 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
498 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
499 fb_set_cmap(&fbi->fb.cmap, info);
500 pxafb_schedule_work(fbi, C_ENABLE);
502 return 0;
505 static int pxafb_mmap(struct fb_info *info,
506 struct vm_area_struct *vma)
508 struct pxafb_info *fbi = (struct pxafb_info *)info;
509 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
511 if (off < info->fix.smem_len) {
512 vma->vm_pgoff += fbi->video_offset / PAGE_SIZE;
513 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
514 fbi->map_dma, fbi->map_size);
516 return -EINVAL;
519 static struct fb_ops pxafb_ops = {
520 .owner = THIS_MODULE,
521 .fb_check_var = pxafb_check_var,
522 .fb_set_par = pxafb_set_par,
523 .fb_setcolreg = pxafb_setcolreg,
524 .fb_fillrect = cfb_fillrect,
525 .fb_copyarea = cfb_copyarea,
526 .fb_imageblit = cfb_imageblit,
527 .fb_blank = pxafb_blank,
528 .fb_mmap = pxafb_mmap,
532 * Calculate the PCD value from the clock rate (in picoseconds).
533 * We take account of the PPCR clock setting.
534 * From PXA Developer's Manual:
536 * PixelClock = LCLK
537 * -------------
538 * 2 ( PCD + 1 )
540 * PCD = LCLK
541 * ------------- - 1
542 * 2(PixelClock)
544 * Where:
545 * LCLK = LCD/Memory Clock
546 * PCD = LCCR3[7:0]
548 * PixelClock here is in Hz while the pixclock argument given is the
549 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
551 * The function get_lclk_frequency_10khz returns LCLK in units of
552 * 10khz. Calling the result of this function lclk gives us the
553 * following
555 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
556 * -------------------------------------- - 1
559 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
561 static inline unsigned int get_pcd(struct pxafb_info *fbi,
562 unsigned int pixclock)
564 unsigned long long pcd;
566 /* FIXME: Need to take into account Double Pixel Clock mode
567 * (DPC) bit? or perhaps set it based on the various clock
568 * speeds */
569 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
570 pcd *= pixclock;
571 do_div(pcd, 100000000 * 2);
572 /* no need for this, since we should subtract 1 anyway. they cancel */
573 /* pcd += 1; */ /* make up for integer math truncations */
574 return (unsigned int)pcd;
578 * Some touchscreens need hsync information from the video driver to
579 * function correctly. We export it here. Note that 'hsync_time' and
580 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
581 * of the hsync period in seconds.
583 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
585 unsigned long htime;
587 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
588 fbi->hsync_time = 0;
589 return;
592 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
594 fbi->hsync_time = htime;
597 unsigned long pxafb_get_hsync_time(struct device *dev)
599 struct pxafb_info *fbi = dev_get_drvdata(dev);
601 /* If display is blanked/suspended, hsync isn't active */
602 if (!fbi || (fbi->state != C_ENABLE))
603 return 0;
605 return fbi->hsync_time;
607 EXPORT_SYMBOL(pxafb_get_hsync_time);
609 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
610 unsigned int offset, size_t size)
612 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
613 unsigned int dma_desc_off, pal_desc_off;
615 if (dma < 0 || dma >= DMA_MAX)
616 return -EINVAL;
618 dma_desc = &fbi->dma_buff->dma_desc[dma];
619 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
621 dma_desc->fsadr = fbi->screen_dma + offset;
622 dma_desc->fidr = 0;
623 dma_desc->ldcmd = size;
625 if (pal < 0 || pal >= PAL_MAX) {
626 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
627 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
628 } else {
629 pal_desc = &fbi->dma_buff->pal_desc[pal];
630 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
632 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
633 pal_desc->fidr = 0;
635 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
636 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
637 else
638 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
640 pal_desc->ldcmd |= LDCMD_PAL;
642 /* flip back and forth between palette and frame buffer */
643 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
644 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
645 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
648 return 0;
651 #ifdef CONFIG_FB_PXA_SMARTPANEL
652 static int setup_smart_dma(struct pxafb_info *fbi)
654 struct pxafb_dma_descriptor *dma_desc;
655 unsigned long dma_desc_off, cmd_buff_off;
657 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
658 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
659 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
661 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
662 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
663 dma_desc->fidr = 0;
664 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
666 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
667 return 0;
670 int pxafb_smart_flush(struct fb_info *info)
672 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
673 uint32_t prsr;
674 int ret = 0;
676 /* disable controller until all registers are set up */
677 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
679 /* 1. make it an even number of commands to align on 32-bit boundary
680 * 2. add the interrupt command to the end of the chain so we can
681 * keep track of the end of the transfer
684 while (fbi->n_smart_cmds & 1)
685 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
687 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
688 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
689 setup_smart_dma(fbi);
691 /* continue to execute next command */
692 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
693 lcd_writel(fbi, PRSR, prsr);
695 /* stop the processor in case it executed "wait for sync" cmd */
696 lcd_writel(fbi, CMDCR, 0x0001);
698 /* don't send interrupts for fifo underruns on channel 6 */
699 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
701 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
702 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
703 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
704 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
705 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
707 /* begin sending */
708 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
710 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
711 pr_warning("%s: timeout waiting for command done\n",
712 __func__);
713 ret = -ETIMEDOUT;
716 /* quick disable */
717 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
718 lcd_writel(fbi, PRSR, prsr);
719 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
720 lcd_writel(fbi, FDADR6, 0);
721 fbi->n_smart_cmds = 0;
722 return ret;
725 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
727 int i;
728 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
730 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
731 for (i = 0; i < n_cmds; i++) {
732 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
733 pxafb_smart_flush(info);
735 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds++;
738 return 0;
741 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
743 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
744 return (t == 0) ? 1 : t;
747 static void setup_smart_timing(struct pxafb_info *fbi,
748 struct fb_var_screeninfo *var)
750 struct pxafb_mach_info *inf = fbi->dev->platform_data;
751 struct pxafb_mode_info *mode = &inf->modes[0];
752 unsigned long lclk = clk_get_rate(fbi->clk);
753 unsigned t1, t2, t3, t4;
755 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
756 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
757 t3 = mode->op_hold_time;
758 t4 = mode->cmd_inh_time;
760 fbi->reg_lccr1 =
761 LCCR1_DisWdth(var->xres) |
762 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
763 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
764 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
766 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
767 fbi->reg_lccr3 = LCCR3_PixClkDiv(__smart_timing(t4, lclk));
769 /* FIXME: make this configurable */
770 fbi->reg_cmdcr = 1;
773 static int pxafb_smart_thread(void *arg)
775 struct pxafb_info *fbi = arg;
776 struct pxafb_mach_info *inf = fbi->dev->platform_data;
778 if (!fbi || !inf->smart_update) {
779 pr_err("%s: not properly initialized, thread terminated\n",
780 __func__);
781 return -EINVAL;
784 pr_debug("%s(): task starting\n", __func__);
786 set_freezable();
787 while (!kthread_should_stop()) {
789 if (try_to_freeze())
790 continue;
792 if (fbi->state == C_ENABLE) {
793 inf->smart_update(&fbi->fb);
794 complete(&fbi->refresh_done);
797 set_current_state(TASK_INTERRUPTIBLE);
798 schedule_timeout(30 * HZ / 1000);
801 pr_debug("%s(): task ending\n", __func__);
802 return 0;
805 static int pxafb_smart_init(struct pxafb_info *fbi)
807 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
808 "lcd_refresh");
809 if (IS_ERR(fbi->smart_thread)) {
810 printk(KERN_ERR "%s: unable to create kernel thread\n",
811 __func__);
812 return PTR_ERR(fbi->smart_thread);
814 return 0;
816 #else
817 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
819 return 0;
822 int pxafb_smart_flush(struct fb_info *info)
824 return 0;
826 #endif /* CONFIG_FB_SMART_PANEL */
828 static void setup_parallel_timing(struct pxafb_info *fbi,
829 struct fb_var_screeninfo *var)
831 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
833 fbi->reg_lccr1 =
834 LCCR1_DisWdth(var->xres) +
835 LCCR1_HorSnchWdth(var->hsync_len) +
836 LCCR1_BegLnDel(var->left_margin) +
837 LCCR1_EndLnDel(var->right_margin);
840 * If we have a dual scan LCD, we need to halve
841 * the YRES parameter.
843 lines_per_panel = var->yres;
844 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
845 lines_per_panel /= 2;
847 fbi->reg_lccr2 =
848 LCCR2_DisHght(lines_per_panel) +
849 LCCR2_VrtSnchWdth(var->vsync_len) +
850 LCCR2_BegFrmDel(var->upper_margin) +
851 LCCR2_EndFrmDel(var->lower_margin);
853 fbi->reg_lccr3 = fbi->lccr3 |
854 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
855 LCCR3_HorSnchH : LCCR3_HorSnchL) |
856 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
857 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
859 if (pcd) {
860 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
861 set_hsync_time(fbi, pcd);
866 * pxafb_activate_var():
867 * Configures LCD Controller based on entries in var parameter.
868 * Settings are only written to the controller if changes were made.
870 static int pxafb_activate_var(struct fb_var_screeninfo *var,
871 struct pxafb_info *fbi)
873 u_long flags;
874 size_t nbytes;
876 #if DEBUG_VAR
877 if (!(fbi->lccr0 & LCCR0_LCDT)) {
878 if (var->xres < 16 || var->xres > 1024)
879 printk(KERN_ERR "%s: invalid xres %d\n",
880 fbi->fb.fix.id, var->xres);
881 switch (var->bits_per_pixel) {
882 case 1:
883 case 2:
884 case 4:
885 case 8:
886 case 16:
887 case 24:
888 case 32:
889 break;
890 default:
891 printk(KERN_ERR "%s: invalid bit depth %d\n",
892 fbi->fb.fix.id, var->bits_per_pixel);
893 break;
896 if (var->hsync_len < 1 || var->hsync_len > 64)
897 printk(KERN_ERR "%s: invalid hsync_len %d\n",
898 fbi->fb.fix.id, var->hsync_len);
899 if (var->left_margin < 1 || var->left_margin > 255)
900 printk(KERN_ERR "%s: invalid left_margin %d\n",
901 fbi->fb.fix.id, var->left_margin);
902 if (var->right_margin < 1 || var->right_margin > 255)
903 printk(KERN_ERR "%s: invalid right_margin %d\n",
904 fbi->fb.fix.id, var->right_margin);
905 if (var->yres < 1 || var->yres > 1024)
906 printk(KERN_ERR "%s: invalid yres %d\n",
907 fbi->fb.fix.id, var->yres);
908 if (var->vsync_len < 1 || var->vsync_len > 64)
909 printk(KERN_ERR "%s: invalid vsync_len %d\n",
910 fbi->fb.fix.id, var->vsync_len);
911 if (var->upper_margin < 0 || var->upper_margin > 255)
912 printk(KERN_ERR "%s: invalid upper_margin %d\n",
913 fbi->fb.fix.id, var->upper_margin);
914 if (var->lower_margin < 0 || var->lower_margin > 255)
915 printk(KERN_ERR "%s: invalid lower_margin %d\n",
916 fbi->fb.fix.id, var->lower_margin);
918 #endif
919 /* Update shadow copy atomically */
920 local_irq_save(flags);
922 #ifdef CONFIG_FB_PXA_SMARTPANEL
923 if (fbi->lccr0 & LCCR0_LCDT)
924 setup_smart_timing(fbi, var);
925 else
926 #endif
927 setup_parallel_timing(fbi, var);
929 fbi->reg_lccr0 = fbi->lccr0 |
930 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
931 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
933 fbi->reg_lccr3 |= pxafb_bpp_to_lccr3(var);
935 nbytes = var->yres * fbi->fb.fix.line_length;
937 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) {
938 nbytes = nbytes / 2;
939 setup_frame_dma(fbi, DMA_LOWER, PAL_NONE, nbytes, nbytes);
942 if ((var->bits_per_pixel >= 16) || (fbi->lccr0 & LCCR0_LCDT))
943 setup_frame_dma(fbi, DMA_BASE, PAL_NONE, 0, nbytes);
944 else
945 setup_frame_dma(fbi, DMA_BASE, PAL_BASE, 0, nbytes);
947 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
948 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
949 local_irq_restore(flags);
952 * Only update the registers if the controller is enabled
953 * and something has changed.
955 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
956 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
957 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
958 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
959 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
960 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
961 pxafb_schedule_work(fbi, C_REENABLE);
963 return 0;
967 * NOTE! The following functions are purely helpers for set_ctrlr_state.
968 * Do not call them directly; set_ctrlr_state does the correct serialisation
969 * to ensure that things happen in the right way 100% of time time.
970 * -- rmk
972 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
974 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
976 if (pxafb_backlight_power)
977 pxafb_backlight_power(on);
980 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
982 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
984 if (pxafb_lcd_power)
985 pxafb_lcd_power(on, &fbi->fb.var);
988 static void pxafb_setup_gpio(struct pxafb_info *fbi)
990 int gpio, ldd_bits;
991 unsigned int lccr0 = fbi->lccr0;
994 * setup is based on type of panel supported
997 /* 4 bit interface */
998 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
999 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
1000 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
1001 ldd_bits = 4;
1003 /* 8 bit interface */
1004 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
1005 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
1006 (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
1007 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
1008 (lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1009 (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
1010 ldd_bits = 8;
1012 /* 16 bit interface */
1013 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
1014 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
1015 (lccr0 & LCCR0_PAS) == LCCR0_Act))
1016 ldd_bits = 16;
1018 else {
1019 printk(KERN_ERR "pxafb_setup_gpio: unable to determine "
1020 "bits per pixel\n");
1021 return;
1024 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
1025 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
1026 /* 18 bit interface */
1027 if (fbi->fb.var.bits_per_pixel > 16) {
1028 pxa_gpio_mode(86 | GPIO_ALT_FN_2_OUT);
1029 pxa_gpio_mode(87 | GPIO_ALT_FN_2_OUT);
1031 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
1032 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
1033 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
1035 if ((lccr0 & LCCR0_PAS) == 0)
1036 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
1039 static void pxafb_enable_controller(struct pxafb_info *fbi)
1041 pr_debug("pxafb: Enabling LCD controller\n");
1042 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1043 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1044 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1045 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1046 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1047 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1049 /* enable LCD controller clock */
1050 clk_enable(fbi->clk);
1052 if (fbi->lccr0 & LCCR0_LCDT)
1053 return;
1055 /* Sequence from 11.7.10 */
1056 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1057 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1058 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1059 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1061 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1062 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1063 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1066 static void pxafb_disable_controller(struct pxafb_info *fbi)
1068 uint32_t lccr0;
1070 #ifdef CONFIG_FB_PXA_SMARTPANEL
1071 if (fbi->lccr0 & LCCR0_LCDT) {
1072 wait_for_completion_timeout(&fbi->refresh_done,
1073 200 * HZ / 1000);
1074 return;
1076 #endif
1078 /* Clear LCD Status Register */
1079 lcd_writel(fbi, LCSR, 0xffffffff);
1081 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1082 lcd_writel(fbi, LCCR0, lccr0);
1083 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1085 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1087 /* disable LCD controller clock */
1088 clk_disable(fbi->clk);
1092 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1094 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1096 struct pxafb_info *fbi = dev_id;
1097 unsigned int lccr0, lcsr = lcd_readl(fbi, LCSR);
1099 if (lcsr & LCSR_LDD) {
1100 lccr0 = lcd_readl(fbi, LCCR0);
1101 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1102 complete(&fbi->disable_done);
1105 #ifdef CONFIG_FB_PXA_SMARTPANEL
1106 if (lcsr & LCSR_CMD_INT)
1107 complete(&fbi->command_done);
1108 #endif
1110 lcd_writel(fbi, LCSR, lcsr);
1111 return IRQ_HANDLED;
1115 * This function must be called from task context only, since it will
1116 * sleep when disabling the LCD controller, or if we get two contending
1117 * processes trying to alter state.
1119 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1121 u_int old_state;
1123 mutex_lock(&fbi->ctrlr_lock);
1125 old_state = fbi->state;
1128 * Hack around fbcon initialisation.
1130 if (old_state == C_STARTUP && state == C_REENABLE)
1131 state = C_ENABLE;
1133 switch (state) {
1134 case C_DISABLE_CLKCHANGE:
1136 * Disable controller for clock change. If the
1137 * controller is already disabled, then do nothing.
1139 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1140 fbi->state = state;
1141 /* TODO __pxafb_lcd_power(fbi, 0); */
1142 pxafb_disable_controller(fbi);
1144 break;
1146 case C_DISABLE_PM:
1147 case C_DISABLE:
1149 * Disable controller
1151 if (old_state != C_DISABLE) {
1152 fbi->state = state;
1153 __pxafb_backlight_power(fbi, 0);
1154 __pxafb_lcd_power(fbi, 0);
1155 if (old_state != C_DISABLE_CLKCHANGE)
1156 pxafb_disable_controller(fbi);
1158 break;
1160 case C_ENABLE_CLKCHANGE:
1162 * Enable the controller after clock change. Only
1163 * do this if we were disabled for the clock change.
1165 if (old_state == C_DISABLE_CLKCHANGE) {
1166 fbi->state = C_ENABLE;
1167 pxafb_enable_controller(fbi);
1168 /* TODO __pxafb_lcd_power(fbi, 1); */
1170 break;
1172 case C_REENABLE:
1174 * Re-enable the controller only if it was already
1175 * enabled. This is so we reprogram the control
1176 * registers.
1178 if (old_state == C_ENABLE) {
1179 __pxafb_lcd_power(fbi, 0);
1180 pxafb_disable_controller(fbi);
1181 pxafb_setup_gpio(fbi);
1182 pxafb_enable_controller(fbi);
1183 __pxafb_lcd_power(fbi, 1);
1185 break;
1187 case C_ENABLE_PM:
1189 * Re-enable the controller after PM. This is not
1190 * perfect - think about the case where we were doing
1191 * a clock change, and we suspended half-way through.
1193 if (old_state != C_DISABLE_PM)
1194 break;
1195 /* fall through */
1197 case C_ENABLE:
1199 * Power up the LCD screen, enable controller, and
1200 * turn on the backlight.
1202 if (old_state != C_ENABLE) {
1203 fbi->state = C_ENABLE;
1204 pxafb_setup_gpio(fbi);
1205 pxafb_enable_controller(fbi);
1206 __pxafb_lcd_power(fbi, 1);
1207 __pxafb_backlight_power(fbi, 1);
1209 break;
1211 mutex_unlock(&fbi->ctrlr_lock);
1215 * Our LCD controller task (which is called when we blank or unblank)
1216 * via keventd.
1218 static void pxafb_task(struct work_struct *work)
1220 struct pxafb_info *fbi =
1221 container_of(work, struct pxafb_info, task);
1222 u_int state = xchg(&fbi->task_state, -1);
1224 set_ctrlr_state(fbi, state);
1227 #ifdef CONFIG_CPU_FREQ
1229 * CPU clock speed change handler. We need to adjust the LCD timing
1230 * parameters when the CPU clock is adjusted by the power management
1231 * subsystem.
1233 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1235 static int
1236 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1238 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1239 /* TODO struct cpufreq_freqs *f = data; */
1240 u_int pcd;
1242 switch (val) {
1243 case CPUFREQ_PRECHANGE:
1244 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1245 break;
1247 case CPUFREQ_POSTCHANGE:
1248 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1249 set_hsync_time(fbi, pcd);
1250 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1251 LCCR3_PixClkDiv(pcd);
1252 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1253 break;
1255 return 0;
1258 static int
1259 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1261 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1262 struct fb_var_screeninfo *var = &fbi->fb.var;
1263 struct cpufreq_policy *policy = data;
1265 switch (val) {
1266 case CPUFREQ_ADJUST:
1267 case CPUFREQ_INCOMPATIBLE:
1268 pr_debug("min dma period: %d ps, "
1269 "new clock %d kHz\n", pxafb_display_dma_period(var),
1270 policy->max);
1271 /* TODO: fill in min/max values */
1272 break;
1274 return 0;
1276 #endif
1278 #ifdef CONFIG_PM
1280 * Power management hooks. Note that we won't be called from IRQ context,
1281 * unlike the blank functions above, so we may sleep.
1283 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1285 struct pxafb_info *fbi = platform_get_drvdata(dev);
1287 set_ctrlr_state(fbi, C_DISABLE_PM);
1288 return 0;
1291 static int pxafb_resume(struct platform_device *dev)
1293 struct pxafb_info *fbi = platform_get_drvdata(dev);
1295 set_ctrlr_state(fbi, C_ENABLE_PM);
1296 return 0;
1298 #else
1299 #define pxafb_suspend NULL
1300 #define pxafb_resume NULL
1301 #endif
1304 * pxafb_map_video_memory():
1305 * Allocates the DRAM memory for the frame buffer. This buffer is
1306 * remapped into a non-cached, non-buffered, memory region to
1307 * allow palette and pixel writes to occur without flushing the
1308 * cache. Once this area is remapped, all virtual memory
1309 * access to the video memory should occur at the new region.
1311 static int __devinit pxafb_map_video_memory(struct pxafb_info *fbi)
1314 * We reserve one page for the palette, plus the size
1315 * of the framebuffer.
1317 fbi->video_offset = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
1318 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + fbi->video_offset);
1319 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1320 &fbi->map_dma, GFP_KERNEL);
1322 if (fbi->map_cpu) {
1323 /* prevent initial garbage on screen */
1324 memset(fbi->map_cpu, 0, fbi->map_size);
1325 fbi->fb.screen_base = fbi->map_cpu + fbi->video_offset;
1326 fbi->screen_dma = fbi->map_dma + fbi->video_offset;
1329 * FIXME: this is actually the wrong thing to place in
1330 * smem_start. But fbdev suffers from the problem that
1331 * it needs an API which doesn't exist (in this case,
1332 * dma_writecombine_mmap)
1334 fbi->fb.fix.smem_start = fbi->screen_dma;
1335 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1337 fbi->dma_buff = (void *) fbi->map_cpu;
1338 fbi->dma_buff_phys = fbi->map_dma;
1339 fbi->palette_cpu = (u16 *) fbi->dma_buff->palette;
1341 pr_debug("pxafb: palette_mem_size = 0x%08x\n", fbi->palette_size*sizeof(u16));
1343 #ifdef CONFIG_FB_PXA_SMARTPANEL
1344 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1345 fbi->n_smart_cmds = 0;
1346 #endif
1349 return fbi->map_cpu ? 0 : -ENOMEM;
1352 static void pxafb_decode_mode_info(struct pxafb_info *fbi,
1353 struct pxafb_mode_info *modes,
1354 unsigned int num_modes)
1356 unsigned int i, smemlen;
1358 pxafb_setmode(&fbi->fb.var, &modes[0]);
1360 for (i = 0; i < num_modes; i++) {
1361 smemlen = modes[i].xres * modes[i].yres * modes[i].bpp / 8;
1362 if (smemlen > fbi->fb.fix.smem_len)
1363 fbi->fb.fix.smem_len = smemlen;
1367 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1368 struct pxafb_mach_info *inf)
1370 unsigned int lcd_conn = inf->lcd_conn;
1372 fbi->cmap_inverse = inf->cmap_inverse;
1373 fbi->cmap_static = inf->cmap_static;
1375 switch (lcd_conn & 0xf) {
1376 case LCD_TYPE_MONO_STN:
1377 fbi->lccr0 = LCCR0_CMS;
1378 break;
1379 case LCD_TYPE_MONO_DSTN:
1380 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1381 break;
1382 case LCD_TYPE_COLOR_STN:
1383 fbi->lccr0 = 0;
1384 break;
1385 case LCD_TYPE_COLOR_DSTN:
1386 fbi->lccr0 = LCCR0_SDS;
1387 break;
1388 case LCD_TYPE_COLOR_TFT:
1389 fbi->lccr0 = LCCR0_PAS;
1390 break;
1391 case LCD_TYPE_SMART_PANEL:
1392 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1393 break;
1394 default:
1395 /* fall back to backward compatibility way */
1396 fbi->lccr0 = inf->lccr0;
1397 fbi->lccr3 = inf->lccr3;
1398 fbi->lccr4 = inf->lccr4;
1399 goto decode_mode;
1402 if (lcd_conn == LCD_MONO_STN_8BPP)
1403 fbi->lccr0 |= LCCR0_DPD;
1405 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1407 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1408 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1409 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1411 decode_mode:
1412 pxafb_decode_mode_info(fbi, inf->modes, inf->num_modes);
1415 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1417 struct pxafb_info *fbi;
1418 void *addr;
1419 struct pxafb_mach_info *inf = dev->platform_data;
1421 /* Alloc the pxafb_info and pseudo_palette in one step */
1422 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1423 if (!fbi)
1424 return NULL;
1426 memset(fbi, 0, sizeof(struct pxafb_info));
1427 fbi->dev = dev;
1429 fbi->clk = clk_get(dev, "LCDCLK");
1430 if (IS_ERR(fbi->clk)) {
1431 kfree(fbi);
1432 return NULL;
1435 strcpy(fbi->fb.fix.id, PXA_NAME);
1437 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1438 fbi->fb.fix.type_aux = 0;
1439 fbi->fb.fix.xpanstep = 0;
1440 fbi->fb.fix.ypanstep = 0;
1441 fbi->fb.fix.ywrapstep = 0;
1442 fbi->fb.fix.accel = FB_ACCEL_NONE;
1444 fbi->fb.var.nonstd = 0;
1445 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1446 fbi->fb.var.height = -1;
1447 fbi->fb.var.width = -1;
1448 fbi->fb.var.accel_flags = 0;
1449 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1451 fbi->fb.fbops = &pxafb_ops;
1452 fbi->fb.flags = FBINFO_DEFAULT;
1453 fbi->fb.node = -1;
1455 addr = fbi;
1456 addr = addr + sizeof(struct pxafb_info);
1457 fbi->fb.pseudo_palette = addr;
1459 fbi->state = C_STARTUP;
1460 fbi->task_state = (u_char)-1;
1462 pxafb_decode_mach_info(fbi, inf);
1464 init_waitqueue_head(&fbi->ctrlr_wait);
1465 INIT_WORK(&fbi->task, pxafb_task);
1466 mutex_init(&fbi->ctrlr_lock);
1467 init_completion(&fbi->disable_done);
1468 #ifdef CONFIG_FB_PXA_SMARTPANEL
1469 init_completion(&fbi->command_done);
1470 init_completion(&fbi->refresh_done);
1471 #endif
1473 return fbi;
1476 #ifdef CONFIG_FB_PXA_PARAMETERS
1477 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1479 struct pxafb_mach_info *inf = dev->platform_data;
1481 const char *name = this_opt+5;
1482 unsigned int namelen = strlen(name);
1483 int res_specified = 0, bpp_specified = 0;
1484 unsigned int xres = 0, yres = 0, bpp = 0;
1485 int yres_specified = 0;
1486 int i;
1487 for (i = namelen-1; i >= 0; i--) {
1488 switch (name[i]) {
1489 case '-':
1490 namelen = i;
1491 if (!bpp_specified && !yres_specified) {
1492 bpp = simple_strtoul(&name[i+1], NULL, 0);
1493 bpp_specified = 1;
1494 } else
1495 goto done;
1496 break;
1497 case 'x':
1498 if (!yres_specified) {
1499 yres = simple_strtoul(&name[i+1], NULL, 0);
1500 yres_specified = 1;
1501 } else
1502 goto done;
1503 break;
1504 case '0' ... '9':
1505 break;
1506 default:
1507 goto done;
1510 if (i < 0 && yres_specified) {
1511 xres = simple_strtoul(name, NULL, 0);
1512 res_specified = 1;
1514 done:
1515 if (res_specified) {
1516 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1517 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1519 if (bpp_specified)
1520 switch (bpp) {
1521 case 1:
1522 case 2:
1523 case 4:
1524 case 8:
1525 case 16:
1526 inf->modes[0].bpp = bpp;
1527 dev_info(dev, "overriding bit depth: %d\n", bpp);
1528 break;
1529 default:
1530 dev_err(dev, "Depth %d is not valid\n", bpp);
1531 return -EINVAL;
1533 return 0;
1536 static int __devinit parse_opt(struct device *dev, char *this_opt)
1538 struct pxafb_mach_info *inf = dev->platform_data;
1539 struct pxafb_mode_info *mode = &inf->modes[0];
1540 char s[64];
1542 s[0] = '\0';
1544 if (!strncmp(this_opt, "mode:", 5)) {
1545 return parse_opt_mode(dev, this_opt);
1546 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1547 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1548 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1549 } else if (!strncmp(this_opt, "left:", 5)) {
1550 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1551 sprintf(s, "left: %u\n", mode->left_margin);
1552 } else if (!strncmp(this_opt, "right:", 6)) {
1553 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1554 sprintf(s, "right: %u\n", mode->right_margin);
1555 } else if (!strncmp(this_opt, "upper:", 6)) {
1556 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1557 sprintf(s, "upper: %u\n", mode->upper_margin);
1558 } else if (!strncmp(this_opt, "lower:", 6)) {
1559 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1560 sprintf(s, "lower: %u\n", mode->lower_margin);
1561 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1562 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1563 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1564 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1565 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1566 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1567 } else if (!strncmp(this_opt, "hsync:", 6)) {
1568 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1569 sprintf(s, "hsync: Active Low\n");
1570 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1571 } else {
1572 sprintf(s, "hsync: Active High\n");
1573 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1575 } else if (!strncmp(this_opt, "vsync:", 6)) {
1576 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1577 sprintf(s, "vsync: Active Low\n");
1578 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1579 } else {
1580 sprintf(s, "vsync: Active High\n");
1581 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1583 } else if (!strncmp(this_opt, "dpc:", 4)) {
1584 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1585 sprintf(s, "double pixel clock: false\n");
1586 inf->lccr3 &= ~LCCR3_DPC;
1587 } else {
1588 sprintf(s, "double pixel clock: true\n");
1589 inf->lccr3 |= LCCR3_DPC;
1591 } else if (!strncmp(this_opt, "outputen:", 9)) {
1592 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1593 sprintf(s, "output enable: active low\n");
1594 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1595 } else {
1596 sprintf(s, "output enable: active high\n");
1597 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1599 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1600 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1601 sprintf(s, "pixel clock polarity: falling edge\n");
1602 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1603 } else {
1604 sprintf(s, "pixel clock polarity: rising edge\n");
1605 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1607 } else if (!strncmp(this_opt, "color", 5)) {
1608 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1609 } else if (!strncmp(this_opt, "mono", 4)) {
1610 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1611 } else if (!strncmp(this_opt, "active", 6)) {
1612 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1613 } else if (!strncmp(this_opt, "passive", 7)) {
1614 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1615 } else if (!strncmp(this_opt, "single", 6)) {
1616 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1617 } else if (!strncmp(this_opt, "dual", 4)) {
1618 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1619 } else if (!strncmp(this_opt, "4pix", 4)) {
1620 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1621 } else if (!strncmp(this_opt, "8pix", 4)) {
1622 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1623 } else {
1624 dev_err(dev, "unknown option: %s\n", this_opt);
1625 return -EINVAL;
1628 if (s[0] != '\0')
1629 dev_info(dev, "override %s", s);
1631 return 0;
1634 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1636 char *this_opt;
1637 int ret;
1639 if (!options || !*options)
1640 return 0;
1642 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1644 /* could be made table driven or similar?... */
1645 while ((this_opt = strsep(&options, ",")) != NULL) {
1646 ret = parse_opt(dev, this_opt);
1647 if (ret)
1648 return ret;
1650 return 0;
1653 static char g_options[256] __devinitdata = "";
1655 #ifndef MODULE
1656 static int __init pxafb_setup_options(void)
1658 char *options = NULL;
1660 if (fb_get_options("pxafb", &options))
1661 return -ENODEV;
1663 if (options)
1664 strlcpy(g_options, options, sizeof(g_options));
1666 return 0;
1668 #else
1669 #define pxafb_setup_options() (0)
1671 module_param_string(options, g_options, sizeof(g_options), 0);
1672 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1673 #endif
1675 #else
1676 #define pxafb_parse_options(...) (0)
1677 #define pxafb_setup_options() (0)
1678 #endif
1680 #ifdef DEBUG_VAR
1681 /* Check for various illegal bit-combinations. Currently only
1682 * a warning is given. */
1683 static void __devinit pxafb_check_options(struct device *dev,
1684 struct pxafb_mach_info *inf)
1686 if (inf->lcd_conn)
1687 return;
1689 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1690 dev_warn(dev, "machine LCCR0 setting contains "
1691 "illegal bits: %08x\n",
1692 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1693 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1694 dev_warn(dev, "machine LCCR3 setting contains "
1695 "illegal bits: %08x\n",
1696 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1697 if (inf->lccr0 & LCCR0_DPD &&
1698 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1699 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1700 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1701 dev_warn(dev, "Double Pixel Data (DPD) mode is "
1702 "only valid in passive mono"
1703 " single panel mode\n");
1704 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1705 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1706 dev_warn(dev, "Dual panel only valid in passive mode\n");
1707 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1708 (inf->modes->upper_margin || inf->modes->lower_margin))
1709 dev_warn(dev, "Upper and lower margins must be 0 in "
1710 "passive mode\n");
1712 #else
1713 #define pxafb_check_options(...) do {} while (0)
1714 #endif
1716 static int __devinit pxafb_probe(struct platform_device *dev)
1718 struct pxafb_info *fbi;
1719 struct pxafb_mach_info *inf;
1720 struct resource *r;
1721 int irq, ret;
1723 dev_dbg(&dev->dev, "pxafb_probe\n");
1725 inf = dev->dev.platform_data;
1726 ret = -ENOMEM;
1727 fbi = NULL;
1728 if (!inf)
1729 goto failed;
1731 ret = pxafb_parse_options(&dev->dev, g_options);
1732 if (ret < 0)
1733 goto failed;
1735 pxafb_check_options(&dev->dev, inf);
1737 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
1738 inf->modes->xres,
1739 inf->modes->yres,
1740 inf->modes->bpp);
1741 if (inf->modes->xres == 0 ||
1742 inf->modes->yres == 0 ||
1743 inf->modes->bpp == 0) {
1744 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1745 ret = -EINVAL;
1746 goto failed;
1748 pxafb_backlight_power = inf->pxafb_backlight_power;
1749 pxafb_lcd_power = inf->pxafb_lcd_power;
1750 fbi = pxafb_init_fbinfo(&dev->dev);
1751 if (!fbi) {
1752 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1753 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1754 ret = -ENOMEM;
1755 goto failed;
1758 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1759 if (r == NULL) {
1760 dev_err(&dev->dev, "no I/O memory resource defined\n");
1761 ret = -ENODEV;
1762 goto failed_fbi;
1765 r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
1766 if (r == NULL) {
1767 dev_err(&dev->dev, "failed to request I/O memory\n");
1768 ret = -EBUSY;
1769 goto failed_fbi;
1772 fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
1773 if (fbi->mmio_base == NULL) {
1774 dev_err(&dev->dev, "failed to map I/O memory\n");
1775 ret = -EBUSY;
1776 goto failed_free_res;
1779 /* Initialize video memory */
1780 ret = pxafb_map_video_memory(fbi);
1781 if (ret) {
1782 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1783 ret = -ENOMEM;
1784 goto failed_free_io;
1787 irq = platform_get_irq(dev, 0);
1788 if (irq < 0) {
1789 dev_err(&dev->dev, "no IRQ defined\n");
1790 ret = -ENODEV;
1791 goto failed_free_mem;
1794 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1795 if (ret) {
1796 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1797 ret = -EBUSY;
1798 goto failed_free_mem;
1801 #ifdef CONFIG_FB_PXA_SMARTPANEL
1802 ret = pxafb_smart_init(fbi);
1803 if (ret) {
1804 dev_err(&dev->dev, "failed to initialize smartpanel\n");
1805 goto failed_free_irq;
1807 #endif
1809 * This makes sure that our colour bitfield
1810 * descriptors are correctly initialised.
1812 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
1813 if (ret) {
1814 dev_err(&dev->dev, "failed to get suitable mode\n");
1815 goto failed_free_irq;
1818 ret = pxafb_set_par(&fbi->fb);
1819 if (ret) {
1820 dev_err(&dev->dev, "Failed to set parameters\n");
1821 goto failed_free_irq;
1824 platform_set_drvdata(dev, fbi);
1826 ret = register_framebuffer(&fbi->fb);
1827 if (ret < 0) {
1828 dev_err(&dev->dev,
1829 "Failed to register framebuffer device: %d\n", ret);
1830 goto failed_free_cmap;
1833 #ifdef CONFIG_CPU_FREQ
1834 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1835 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1836 cpufreq_register_notifier(&fbi->freq_transition,
1837 CPUFREQ_TRANSITION_NOTIFIER);
1838 cpufreq_register_notifier(&fbi->freq_policy,
1839 CPUFREQ_POLICY_NOTIFIER);
1840 #endif
1843 * Ok, now enable the LCD controller
1845 set_ctrlr_state(fbi, C_ENABLE);
1847 return 0;
1849 failed_free_cmap:
1850 if (fbi->fb.cmap.len)
1851 fb_dealloc_cmap(&fbi->fb.cmap);
1852 failed_free_irq:
1853 free_irq(irq, fbi);
1854 failed_free_mem:
1855 dma_free_writecombine(&dev->dev, fbi->map_size,
1856 fbi->map_cpu, fbi->map_dma);
1857 failed_free_io:
1858 iounmap(fbi->mmio_base);
1859 failed_free_res:
1860 release_mem_region(r->start, r->end - r->start + 1);
1861 failed_fbi:
1862 clk_put(fbi->clk);
1863 platform_set_drvdata(dev, NULL);
1864 kfree(fbi);
1865 failed:
1866 return ret;
1869 static int __devexit pxafb_remove(struct platform_device *dev)
1871 struct pxafb_info *fbi = platform_get_drvdata(dev);
1872 struct resource *r;
1873 int irq;
1874 struct fb_info *info;
1876 if (!fbi)
1877 return 0;
1879 info = &fbi->fb;
1881 unregister_framebuffer(info);
1883 pxafb_disable_controller(fbi);
1885 if (fbi->fb.cmap.len)
1886 fb_dealloc_cmap(&fbi->fb.cmap);
1888 irq = platform_get_irq(dev, 0);
1889 free_irq(irq, fbi);
1891 dma_free_writecombine(&dev->dev, fbi->map_size,
1892 fbi->map_cpu, fbi->map_dma);
1894 iounmap(fbi->mmio_base);
1896 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1897 release_mem_region(r->start, r->end - r->start + 1);
1899 clk_put(fbi->clk);
1900 kfree(fbi);
1902 return 0;
1905 static struct platform_driver pxafb_driver = {
1906 .probe = pxafb_probe,
1907 .remove = pxafb_remove,
1908 .suspend = pxafb_suspend,
1909 .resume = pxafb_resume,
1910 .driver = {
1911 .owner = THIS_MODULE,
1912 .name = "pxa2xx-fb",
1916 static int __init pxafb_init(void)
1918 if (pxafb_setup_options())
1919 return -EINVAL;
1921 return platform_driver_register(&pxafb_driver);
1924 static void __exit pxafb_exit(void)
1926 platform_driver_unregister(&pxafb_driver);
1929 module_init(pxafb_init);
1930 module_exit(pxafb_exit);
1932 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1933 MODULE_LICENSE("GPL");