2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
135 #include "therm_pm72.h"
137 #define VERSION "1.3"
142 #define DBG(args...) printk(args)
144 #define DBG(args...) do { } while(0)
152 static struct of_device
* of_dev
;
153 static struct i2c_adapter
* u3_0
;
154 static struct i2c_adapter
* u3_1
;
155 static struct i2c_adapter
* k2
;
156 static struct i2c_client
* fcu
;
157 static struct cpu_pid_state cpu_state
[2];
158 static struct basckside_pid_params backside_params
;
159 static struct backside_pid_state backside_state
;
160 static struct drives_pid_state drives_state
;
161 static struct dimm_pid_state dimms_state
;
162 static struct slots_pid_state slots_state
;
164 static int cpu_count
;
165 static int cpu_pid_type
;
166 static struct task_struct
*ctrl_task
;
167 static struct completion ctrl_complete
;
168 static int critical_state
;
170 static s32 dimm_output_clamp
;
171 static int fcu_rpm_shift
;
172 static int fcu_tickle_ticks
;
173 static DEFINE_MUTEX(driver_lock
);
176 * We have 3 types of CPU PID control. One is "split" old style control
177 * for intake & exhaust fans, the other is "combined" control for both
178 * CPUs that also deals with the pumps when present. To be "compatible"
179 * with OS X at this point, we only use "COMBINED" on the machines that
180 * are identified as having the pumps (though that identification is at
181 * least dodgy). Ultimately, we could probably switch completely to this
182 * algorithm provided we hack it to deal with the UP case
184 #define CPU_PID_TYPE_SPLIT 0
185 #define CPU_PID_TYPE_COMBINED 1
186 #define CPU_PID_TYPE_RACKMAC 2
189 * This table describes all fans in the FCU. The "id" and "type" values
190 * are defaults valid for all earlier machines. Newer machines will
191 * eventually override the table content based on the device-tree
195 char* loc
; /* location code */
196 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
197 int id
; /* id or -1 */
200 #define FCU_FAN_RPM 0
201 #define FCU_FAN_PWM 1
203 #define FCU_FAN_ABSENT_ID -1
205 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
207 struct fcu_fan_table fcu_fans
[] = {
208 [BACKSIDE_FAN_PWM_INDEX
] = {
209 .loc
= "BACKSIDE,SYS CTRLR FAN",
211 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
213 [DRIVES_FAN_RPM_INDEX
] = {
216 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
218 [SLOTS_FAN_PWM_INDEX
] = {
219 .loc
= "SLOT,PCI FAN",
221 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
223 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
224 .loc
= "CPU A INTAKE",
226 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
228 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
229 .loc
= "CPU A EXHAUST",
231 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
233 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
234 .loc
= "CPU B INTAKE",
236 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
238 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
239 .loc
= "CPU B EXHAUST",
241 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
243 /* pumps aren't present by default, have to be looked up in the
246 [CPUA_PUMP_RPM_INDEX
] = {
249 .id
= FCU_FAN_ABSENT_ID
,
251 [CPUB_PUMP_RPM_INDEX
] = {
254 .id
= FCU_FAN_ABSENT_ID
,
257 [CPU_A1_FAN_RPM_INDEX
] = {
260 .id
= FCU_FAN_ABSENT_ID
,
262 [CPU_A2_FAN_RPM_INDEX
] = {
265 .id
= FCU_FAN_ABSENT_ID
,
267 [CPU_A3_FAN_RPM_INDEX
] = {
270 .id
= FCU_FAN_ABSENT_ID
,
272 [CPU_B1_FAN_RPM_INDEX
] = {
275 .id
= FCU_FAN_ABSENT_ID
,
277 [CPU_B2_FAN_RPM_INDEX
] = {
280 .id
= FCU_FAN_ABSENT_ID
,
282 [CPU_B3_FAN_RPM_INDEX
] = {
285 .id
= FCU_FAN_ABSENT_ID
,
290 * i2c_driver structure to attach to the host i2c controller
293 static int therm_pm72_attach(struct i2c_adapter
*adapter
);
294 static int therm_pm72_detach(struct i2c_adapter
*adapter
);
296 static struct i2c_driver therm_pm72_driver
=
299 .name
= "therm_pm72",
301 .attach_adapter
= therm_pm72_attach
,
302 .detach_adapter
= therm_pm72_detach
,
306 * Utility function to create an i2c_client structure and
307 * attach it to one of u3 adapters
309 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
311 struct i2c_client
*clt
;
312 struct i2c_adapter
*adap
;
323 clt
= kzalloc(sizeof(struct i2c_client
), GFP_KERNEL
);
327 clt
->addr
= (id
>> 1) & 0x7f;
329 clt
->driver
= &therm_pm72_driver
;
330 strncpy(clt
->name
, name
, I2C_NAME_SIZE
-1);
332 if (i2c_attach_client(clt
)) {
333 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
341 * Utility function to get rid of the i2c_client structure
342 * (will also detach from the adapter hopepfully)
344 static void detach_i2c_chip(struct i2c_client
*clt
)
346 i2c_detach_client(clt
);
351 * Here are the i2c chip access wrappers
354 static void initialize_adc(struct cpu_pid_state
*state
)
359 /* Read ADC the configuration register and cache it. We
360 * also make sure Config2 contains proper values, I've seen
361 * cases where we got stale grabage in there, thus preventing
362 * proper reading of conv. values
368 i2c_master_send(state
->monitor
, buf
, 2);
370 /* Read & cache Config1 */
372 rc
= i2c_master_send(state
->monitor
, buf
, 1);
374 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
376 state
->adc_config
= buf
[0];
377 DBG("ADC config reg: %02x\n", state
->adc_config
);
378 /* Disable shutdown mode */
379 state
->adc_config
&= 0xfe;
381 buf
[1] = state
->adc_config
;
382 rc
= i2c_master_send(state
->monitor
, buf
, 2);
386 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
390 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
392 int rc
, data
, tries
= 0;
398 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
399 rc
= i2c_master_send(state
->monitor
, buf
, 2);
402 /* Wait for convertion */
404 /* Switch to data register */
406 rc
= i2c_master_send(state
->monitor
, buf
, 1);
410 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
413 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
416 DBG("Error reading ADC, retrying...\n");
418 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
425 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
433 rc
= i2c_master_send(chip
, &buf
, 1);
436 rc
= i2c_master_recv(chip
, &buf
, 1);
441 DBG("Error reading LM87, retrying...\n");
443 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
450 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
457 nw
= i2c_master_send(fcu
, buf
, 1);
458 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
464 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
469 nr
= i2c_master_recv(fcu
, buf
, nb
);
470 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
476 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
480 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
483 unsigned char buf
[16];
486 memcpy(buf
+1, ptr
, nb
);
490 nw
= i2c_master_send(fcu
, buf
, nb
);
491 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
497 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
501 static int start_fcu(void)
503 unsigned char buf
= 0xff;
506 rc
= fan_write_reg(0xe, &buf
, 1);
509 rc
= fan_write_reg(0x2e, &buf
, 1);
512 rc
= fan_read_reg(0, &buf
, 1);
515 fcu_rpm_shift
= (buf
== 1) ? 2 : 3;
516 printk(KERN_DEBUG
"FCU Initialized, RPM fan shift is %d\n",
522 static int set_rpm_fan(int fan_index
, int rpm
)
524 unsigned char buf
[2];
525 int rc
, id
, min
, max
;
527 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
529 id
= fcu_fans
[fan_index
].id
;
530 if (id
== FCU_FAN_ABSENT_ID
)
533 min
= 2400 >> fcu_rpm_shift
;
534 max
= 56000 >> fcu_rpm_shift
;
540 buf
[0] = rpm
>> (8 - fcu_rpm_shift
);
541 buf
[1] = rpm
<< fcu_rpm_shift
;
542 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
548 static int get_rpm_fan(int fan_index
, int programmed
)
550 unsigned char failure
;
551 unsigned char active
;
552 unsigned char buf
[2];
553 int rc
, id
, reg_base
;
555 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
557 id
= fcu_fans
[fan_index
].id
;
558 if (id
== FCU_FAN_ABSENT_ID
)
561 rc
= fan_read_reg(0xb, &failure
, 1);
564 if ((failure
& (1 << id
)) != 0)
566 rc
= fan_read_reg(0xd, &active
, 1);
569 if ((active
& (1 << id
)) == 0)
572 /* Programmed value or real current speed */
573 reg_base
= programmed
? 0x10 : 0x11;
574 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
578 return (buf
[0] << (8 - fcu_rpm_shift
)) | buf
[1] >> fcu_rpm_shift
;
581 static int set_pwm_fan(int fan_index
, int pwm
)
583 unsigned char buf
[2];
586 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
588 id
= fcu_fans
[fan_index
].id
;
589 if (id
== FCU_FAN_ABSENT_ID
)
596 pwm
= (pwm
* 2559) / 1000;
598 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
604 static int get_pwm_fan(int fan_index
)
606 unsigned char failure
;
607 unsigned char active
;
608 unsigned char buf
[2];
611 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
613 id
= fcu_fans
[fan_index
].id
;
614 if (id
== FCU_FAN_ABSENT_ID
)
617 rc
= fan_read_reg(0x2b, &failure
, 1);
620 if ((failure
& (1 << id
)) != 0)
622 rc
= fan_read_reg(0x2d, &active
, 1);
625 if ((active
& (1 << id
)) == 0)
628 /* Programmed value or real current speed */
629 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
633 return (buf
[0] * 1000) / 2559;
636 static void tickle_fcu(void)
640 pwm
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
642 DBG("FCU Tickle, slots fan is: %d\n", pwm
);
647 pwm
= SLOTS_FAN_DEFAULT_PWM
;
648 } else if (pwm
< SLOTS_PID_OUTPUT_MIN
)
649 pwm
= SLOTS_PID_OUTPUT_MIN
;
651 /* That is hopefully enough to make the FCU happy */
652 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, pwm
);
657 * Utility routine to read the CPU calibration EEPROM data
658 * from the device-tree
660 static int read_eeprom(int cpu
, struct mpu_data
*out
)
662 struct device_node
*np
;
667 /* prom.c routine for finding a node by path is a bit brain dead
668 * and requires exact @xxx unit numbers. This is a bit ugly but
669 * will work for these machines
671 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
672 np
= of_find_node_by_path(nodename
);
674 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
677 data
= of_get_property(np
, "cpuid", &len
);
679 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
683 memcpy(out
, data
, sizeof(struct mpu_data
));
689 static void fetch_cpu_pumps_minmax(void)
691 struct cpu_pid_state
*state0
= &cpu_state
[0];
692 struct cpu_pid_state
*state1
= &cpu_state
[1];
693 u16 pump_min
= 0, pump_max
= 0xffff;
696 /* Try to fetch pumps min/max infos from eeprom */
698 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
699 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
700 pump_min
= max(pump_min
, tmp
[0]);
701 pump_max
= min(pump_max
, tmp
[1]);
703 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
704 pump_min
= max(pump_min
, tmp
[2]);
705 pump_max
= min(pump_max
, tmp
[3]);
708 /* Double check the values, this _IS_ needed as the EEPROM on
709 * some dual 2.5Ghz G5s seem, at least, to have both min & max
710 * same to the same value ... (grrrr)
712 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
713 pump_min
= CPU_PUMP_OUTPUT_MIN
;
714 pump_max
= CPU_PUMP_OUTPUT_MAX
;
717 state0
->pump_min
= state1
->pump_min
= pump_min
;
718 state0
->pump_max
= state1
->pump_max
= pump_max
;
722 * Now, unfortunately, sysfs doesn't give us a nice void * we could
723 * pass around to the attribute functions, so we don't really have
724 * choice but implement a bunch of them...
726 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
727 * the input twice... I accept patches :)
729 #define BUILD_SHOW_FUNC_FIX(name, data) \
730 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
733 mutex_lock(&driver_lock); \
734 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
735 mutex_unlock(&driver_lock); \
738 #define BUILD_SHOW_FUNC_INT(name, data) \
739 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
741 return sprintf(buf, "%d", data); \
744 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
745 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
746 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
747 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
748 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
750 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
751 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
752 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
753 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
754 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
756 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
757 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
759 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
760 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
762 BUILD_SHOW_FUNC_FIX(slots_temperature
, slots_state
.last_temp
)
763 BUILD_SHOW_FUNC_INT(slots_fan_pwm
, slots_state
.pwm
)
765 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
767 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
768 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
769 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
770 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
771 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
773 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
774 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
775 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
776 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
777 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
779 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
780 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
782 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
783 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
785 static DEVICE_ATTR(slots_temperature
,S_IRUGO
,show_slots_temperature
,NULL
);
786 static DEVICE_ATTR(slots_fan_pwm
,S_IRUGO
,show_slots_fan_pwm
,NULL
);
788 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
791 * CPUs fans control loop
794 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
796 s32 ltemp
, volts
, amps
;
799 /* Default (in case of error) */
800 *temp
= state
->cur_temp
;
801 *power
= state
->cur_power
;
803 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
804 index
= (state
->index
== 0) ?
805 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
807 index
= (state
->index
== 0) ?
808 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
810 /* Read current fan status */
811 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
813 /* XXX What do we do now ? Nothing for now, keep old value, but
814 * return error upstream
816 DBG(" cpu %d, fan reading error !\n", state
->index
);
819 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
822 /* Get some sensor readings and scale it */
823 ltemp
= read_smon_adc(state
, 1);
825 /* XXX What do we do now ? */
829 DBG(" cpu %d, temp reading error !\n", state
->index
);
831 /* Fixup temperature according to diode calibration
833 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
835 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
836 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
837 state
->last_temp
= *temp
;
838 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
842 * Read voltage & current and calculate power
844 volts
= read_smon_adc(state
, 3);
845 amps
= read_smon_adc(state
, 4);
847 /* Scale voltage and current raw sensor values according to fixed scales
848 * obtained in Darwin and calculate power from I and V
850 volts
*= ADC_CPU_VOLTAGE_SCALE
;
851 amps
*= ADC_CPU_CURRENT_SCALE
;
852 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
853 state
->voltage
= volts
;
854 state
->current_a
= amps
;
855 state
->last_power
= *power
;
857 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
858 state
->index
, FIX32TOPRINT(state
->current_a
),
859 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
864 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
866 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
867 s64 integ_p
, deriv_p
, prop_p
, sum
;
870 /* Calculate power target value (could be done once for all)
871 * and convert to a 16.16 fp number
873 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
874 DBG(" power target: %d.%03d, error: %d.%03d\n",
875 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
877 /* Store temperature and power in history array */
878 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
879 state
->temp_history
[state
->cur_temp
] = temp
;
880 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
881 state
->power_history
[state
->cur_power
] = power
;
882 state
->error_history
[state
->cur_power
] = power_target
- power
;
884 /* If first loop, fill the history table */
886 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
887 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
888 state
->power_history
[state
->cur_power
] = power
;
889 state
->error_history
[state
->cur_power
] = power_target
- power
;
891 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
892 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
893 state
->temp_history
[state
->cur_temp
] = temp
;
898 /* Calculate the integral term normally based on the "power" values */
901 for (i
= 0; i
< state
->count_power
; i
++)
902 integral
+= state
->error_history
[i
];
903 integral
*= CPU_PID_INTERVAL
;
904 DBG(" integral: %08x\n", integral
);
906 /* Calculate the adjusted input (sense value).
909 * so the result is 28.36
911 * input target is mpu.ttarget, input max is mpu.tmax
913 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
914 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
915 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
916 adj_in_target
= (state
->mpu
.ttarget
<< 16);
917 if (adj_in_target
> sval
)
918 adj_in_target
= sval
;
919 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
922 /* Calculate the derivative term */
923 derivative
= state
->temp_history
[state
->cur_temp
] -
924 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
925 % CPU_TEMP_HISTORY_SIZE
];
926 derivative
/= CPU_PID_INTERVAL
;
927 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
928 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
931 /* Calculate the proportional term */
932 proportional
= temp
- adj_in_target
;
933 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
934 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
940 DBG(" sum: %d\n", (int)sum
);
941 state
->rpm
+= (s32
)sum
;
944 static void do_monitor_cpu_combined(void)
946 struct cpu_pid_state
*state0
= &cpu_state
[0];
947 struct cpu_pid_state
*state1
= &cpu_state
[1];
948 s32 temp0
, power0
, temp1
, power1
;
949 s32 temp_combi
, power_combi
;
950 int rc
, intake
, pump
;
952 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
954 /* XXX What do we do now ? */
956 state1
->overtemp
= 0;
957 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
959 /* XXX What do we do now ? */
961 if (state1
->overtemp
)
964 temp_combi
= max(temp0
, temp1
);
965 power_combi
= max(power0
, power1
);
967 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
968 * full blown immediately and try to trigger a shutdown
970 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
971 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
973 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
974 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16))
977 state0
->overtemp
= 0;
978 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
980 if (state0
->overtemp
> 0) {
981 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
982 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
983 pump
= state0
->pump_max
;
988 do_cpu_pid(state0
, temp_combi
, power_combi
);
991 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
992 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
994 /* Calculate intake fan speed */
995 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
996 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
997 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
998 state0
->intake_rpm
= intake
;
1000 /* Calculate pump speed */
1001 pump
= (state0
->rpm
* state0
->pump_max
) /
1002 state0
->mpu
.rmaxn_exhaust_fan
;
1003 pump
= min(pump
, state0
->pump_max
);
1004 pump
= max(pump
, state0
->pump_min
);
1007 /* We copy values from state 0 to state 1 for /sysfs */
1008 state1
->rpm
= state0
->rpm
;
1009 state1
->intake_rpm
= state0
->intake_rpm
;
1011 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1012 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
1014 /* We should check for errors, shouldn't we ? But then, what
1015 * do we do once the error occurs ? For FCU notified fan
1016 * failures (-EFAULT) we probably want to notify userland
1019 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1020 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1021 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1022 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1024 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1025 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
1026 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1027 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
1030 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
1035 /* Read current fan status */
1036 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1038 /* XXX What do we do now ? */
1041 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1042 * full blown immediately and try to trigger a shutdown
1044 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1045 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1047 state
->index
, temp
>> 16);
1048 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1049 } else if (temp
> (state
->mpu
.tmax
<< 16))
1052 state
->overtemp
= 0;
1053 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1055 if (state
->overtemp
> 0) {
1056 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1057 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1062 do_cpu_pid(state
, temp
, power
);
1065 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1066 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1068 /* Calculate intake fan */
1069 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1070 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1071 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1072 state
->intake_rpm
= intake
;
1075 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1076 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1078 /* We should check for errors, shouldn't we ? But then, what
1079 * do we do once the error occurs ? For FCU notified fan
1080 * failures (-EFAULT) we probably want to notify userland
1083 if (state
->index
== 0) {
1084 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1085 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1087 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1088 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1092 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1094 s32 temp
, power
, fan_min
;
1097 /* Read current fan status */
1098 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1100 /* XXX What do we do now ? */
1103 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1104 * full blown immediately and try to trigger a shutdown
1106 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1107 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1109 state
->index
, temp
>> 16);
1110 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1111 } else if (temp
> (state
->mpu
.tmax
<< 16))
1114 state
->overtemp
= 0;
1115 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1117 if (state
->overtemp
> 0) {
1118 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1123 do_cpu_pid(state
, temp
, power
);
1125 /* Check clamp from dimms */
1126 fan_min
= dimm_output_clamp
;
1127 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1129 DBG(" CPU min mpu = %d, min dimm = %d\n",
1130 state
->mpu
.rminn_intake_fan
, dimm_output_clamp
);
1132 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1133 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1134 state
->intake_rpm
= state
->rpm
;
1137 DBG("** CPU %d RPM: %d overtemp: %d\n",
1138 state
->index
, (int)state
->rpm
, state
->overtemp
);
1140 /* We should check for errors, shouldn't we ? But then, what
1141 * do we do once the error occurs ? For FCU notified fan
1142 * failures (-EFAULT) we probably want to notify userland
1145 if (state
->index
== 0) {
1146 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1147 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1148 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1150 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1151 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1152 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1157 * Initialize the state structure for one CPU control loop
1159 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1163 state
->index
= index
;
1165 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1166 state
->overtemp
= 0;
1167 state
->adc_config
= 0x00;
1171 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1172 else if (index
== 1)
1173 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1174 if (state
->monitor
== NULL
)
1177 if (read_eeprom(index
, &state
->mpu
))
1180 state
->count_power
= state
->mpu
.tguardband
;
1181 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1182 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1183 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1185 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1188 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1189 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1190 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1191 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1192 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1194 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1195 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1196 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1197 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1198 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1201 printk(KERN_WARNING
"Failed to create some of the atribute"
1202 "files for CPU %d\n", index
);
1207 detach_i2c_chip(state
->monitor
);
1208 state
->monitor
= NULL
;
1214 * Dispose of the state data for one CPU control loop
1216 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1218 if (state
->monitor
== NULL
)
1221 if (state
->index
== 0) {
1222 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1223 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1224 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1225 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1226 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1228 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1229 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1230 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1231 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1232 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1235 detach_i2c_chip(state
->monitor
);
1236 state
->monitor
= NULL
;
1240 * Motherboard backside & U3 heatsink fan control loop
1242 static void do_monitor_backside(struct backside_pid_state
*state
)
1244 s32 temp
, integral
, derivative
, fan_min
;
1245 s64 integ_p
, deriv_p
, prop_p
, sum
;
1248 if (--state
->ticks
!= 0)
1250 state
->ticks
= backside_params
.interval
;
1254 /* Check fan status */
1255 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1257 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1258 /* XXX What do we do now ? */
1261 DBG(" current pwm: %d\n", state
->pwm
);
1263 /* Get some sensor readings */
1264 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1265 state
->last_temp
= temp
;
1266 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1267 FIX32TOPRINT(backside_params
.input_target
));
1269 /* Store temperature and error in history array */
1270 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1271 state
->sample_history
[state
->cur_sample
] = temp
;
1272 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1274 /* If first loop, fill the history table */
1276 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1277 state
->cur_sample
= (state
->cur_sample
+ 1) %
1278 BACKSIDE_PID_HISTORY_SIZE
;
1279 state
->sample_history
[state
->cur_sample
] = temp
;
1280 state
->error_history
[state
->cur_sample
] =
1281 temp
- backside_params
.input_target
;
1286 /* Calculate the integral term */
1289 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1290 integral
+= state
->error_history
[i
];
1291 integral
*= backside_params
.interval
;
1292 DBG(" integral: %08x\n", integral
);
1293 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1294 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1297 /* Calculate the derivative term */
1298 derivative
= state
->error_history
[state
->cur_sample
] -
1299 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1300 % BACKSIDE_PID_HISTORY_SIZE
];
1301 derivative
/= backside_params
.interval
;
1302 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1303 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1306 /* Calculate the proportional term */
1307 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1308 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1314 DBG(" sum: %d\n", (int)sum
);
1315 if (backside_params
.additive
)
1316 state
->pwm
+= (s32
)sum
;
1320 /* Check for clamp */
1321 fan_min
= (dimm_output_clamp
* 100) / 14000;
1322 fan_min
= max(fan_min
, backside_params
.output_min
);
1324 state
->pwm
= max(state
->pwm
, fan_min
);
1325 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1327 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1328 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1332 * Initialize the state structure for the backside fan control loop
1334 static int init_backside_state(struct backside_pid_state
*state
)
1336 struct device_node
*u3
;
1337 int u3h
= 1; /* conservative by default */
1341 * There are different PID params for machines with U3 and machines
1342 * with U3H, pick the right ones now
1344 u3
= of_find_node_by_path("/u3@0,f8000000");
1346 const u32
*vers
= of_get_property(u3
, "device-rev", NULL
);
1348 if (((*vers
) & 0x3f) < 0x34)
1354 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1355 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1356 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1357 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1358 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1359 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1360 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1361 backside_params
.additive
= 0;
1363 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1364 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1365 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1366 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1367 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1368 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1369 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1370 backside_params
.additive
= 1;
1372 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1373 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1374 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1375 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1376 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1377 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1378 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1379 backside_params
.additive
= 1;
1386 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1387 if (state
->monitor
== NULL
)
1390 err
= device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1391 err
|= device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1393 printk(KERN_WARNING
"Failed to create attribute file(s)"
1394 " for backside fan\n");
1400 * Dispose of the state data for the backside control loop
1402 static void dispose_backside_state(struct backside_pid_state
*state
)
1404 if (state
->monitor
== NULL
)
1407 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1408 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1410 detach_i2c_chip(state
->monitor
);
1411 state
->monitor
= NULL
;
1415 * Drives bay fan control loop
1417 static void do_monitor_drives(struct drives_pid_state
*state
)
1419 s32 temp
, integral
, derivative
;
1420 s64 integ_p
, deriv_p
, prop_p
, sum
;
1423 if (--state
->ticks
!= 0)
1425 state
->ticks
= DRIVES_PID_INTERVAL
;
1429 /* Check fan status */
1430 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1432 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1433 /* XXX What do we do now ? */
1436 DBG(" current rpm: %d\n", state
->rpm
);
1438 /* Get some sensor readings */
1439 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1441 state
->last_temp
= temp
;
1442 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1443 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1445 /* Store temperature and error in history array */
1446 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1447 state
->sample_history
[state
->cur_sample
] = temp
;
1448 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1450 /* If first loop, fill the history table */
1452 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1453 state
->cur_sample
= (state
->cur_sample
+ 1) %
1454 DRIVES_PID_HISTORY_SIZE
;
1455 state
->sample_history
[state
->cur_sample
] = temp
;
1456 state
->error_history
[state
->cur_sample
] =
1457 temp
- DRIVES_PID_INPUT_TARGET
;
1462 /* Calculate the integral term */
1465 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1466 integral
+= state
->error_history
[i
];
1467 integral
*= DRIVES_PID_INTERVAL
;
1468 DBG(" integral: %08x\n", integral
);
1469 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1470 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1473 /* Calculate the derivative term */
1474 derivative
= state
->error_history
[state
->cur_sample
] -
1475 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1476 % DRIVES_PID_HISTORY_SIZE
];
1477 derivative
/= DRIVES_PID_INTERVAL
;
1478 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1479 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1482 /* Calculate the proportional term */
1483 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1484 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1490 DBG(" sum: %d\n", (int)sum
);
1491 state
->rpm
+= (s32
)sum
;
1493 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1494 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1496 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1497 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1501 * Initialize the state structure for the drives bay fan control loop
1503 static int init_drives_state(struct drives_pid_state
*state
)
1511 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1512 if (state
->monitor
== NULL
)
1515 err
= device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1516 err
|= device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1518 printk(KERN_WARNING
"Failed to create attribute file(s)"
1519 " for drives bay fan\n");
1525 * Dispose of the state data for the drives control loop
1527 static void dispose_drives_state(struct drives_pid_state
*state
)
1529 if (state
->monitor
== NULL
)
1532 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1533 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1535 detach_i2c_chip(state
->monitor
);
1536 state
->monitor
= NULL
;
1540 * DIMMs temp control loop
1542 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1544 s32 temp
, integral
, derivative
, fan_min
;
1545 s64 integ_p
, deriv_p
, prop_p
, sum
;
1548 if (--state
->ticks
!= 0)
1550 state
->ticks
= DIMM_PID_INTERVAL
;
1554 DBG(" current value: %d\n", state
->output
);
1556 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1560 state
->last_temp
= temp
;
1561 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1562 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1564 /* Store temperature and error in history array */
1565 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1566 state
->sample_history
[state
->cur_sample
] = temp
;
1567 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1569 /* If first loop, fill the history table */
1571 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1572 state
->cur_sample
= (state
->cur_sample
+ 1) %
1573 DIMM_PID_HISTORY_SIZE
;
1574 state
->sample_history
[state
->cur_sample
] = temp
;
1575 state
->error_history
[state
->cur_sample
] =
1576 temp
- DIMM_PID_INPUT_TARGET
;
1581 /* Calculate the integral term */
1584 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1585 integral
+= state
->error_history
[i
];
1586 integral
*= DIMM_PID_INTERVAL
;
1587 DBG(" integral: %08x\n", integral
);
1588 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1589 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1592 /* Calculate the derivative term */
1593 derivative
= state
->error_history
[state
->cur_sample
] -
1594 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1595 % DIMM_PID_HISTORY_SIZE
];
1596 derivative
/= DIMM_PID_INTERVAL
;
1597 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1598 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1601 /* Calculate the proportional term */
1602 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1603 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1609 DBG(" sum: %d\n", (int)sum
);
1610 state
->output
= (s32
)sum
;
1611 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1612 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1613 dimm_output_clamp
= state
->output
;
1615 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1617 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1618 fan_min
= (dimm_output_clamp
* 100) / 14000;
1619 fan_min
= max(fan_min
, backside_params
.output_min
);
1620 if (backside_state
.pwm
< fan_min
) {
1621 backside_state
.pwm
= fan_min
;
1622 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1623 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1628 * Initialize the state structure for the DIMM temp control loop
1630 static int init_dimms_state(struct dimm_pid_state
*state
)
1634 state
->output
= 4000;
1636 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1637 if (state
->monitor
== NULL
)
1640 if (device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
))
1641 printk(KERN_WARNING
"Failed to create attribute file"
1642 " for DIMM temperature\n");
1648 * Dispose of the state data for the DIMM control loop
1650 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1652 if (state
->monitor
== NULL
)
1655 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1657 detach_i2c_chip(state
->monitor
);
1658 state
->monitor
= NULL
;
1662 * Slots fan control loop
1664 static void do_monitor_slots(struct slots_pid_state
*state
)
1666 s32 temp
, integral
, derivative
;
1667 s64 integ_p
, deriv_p
, prop_p
, sum
;
1670 if (--state
->ticks
!= 0)
1672 state
->ticks
= SLOTS_PID_INTERVAL
;
1676 /* Check fan status */
1677 rc
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
1679 printk(KERN_WARNING
"Error %d reading slots fan !\n", rc
);
1680 /* XXX What do we do now ? */
1683 DBG(" current pwm: %d\n", state
->pwm
);
1685 /* Get some sensor readings */
1686 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1688 state
->last_temp
= temp
;
1689 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1690 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET
));
1692 /* Store temperature and error in history array */
1693 state
->cur_sample
= (state
->cur_sample
+ 1) % SLOTS_PID_HISTORY_SIZE
;
1694 state
->sample_history
[state
->cur_sample
] = temp
;
1695 state
->error_history
[state
->cur_sample
] = temp
- SLOTS_PID_INPUT_TARGET
;
1697 /* If first loop, fill the history table */
1699 for (i
= 0; i
< (SLOTS_PID_HISTORY_SIZE
- 1); i
++) {
1700 state
->cur_sample
= (state
->cur_sample
+ 1) %
1701 SLOTS_PID_HISTORY_SIZE
;
1702 state
->sample_history
[state
->cur_sample
] = temp
;
1703 state
->error_history
[state
->cur_sample
] =
1704 temp
- SLOTS_PID_INPUT_TARGET
;
1709 /* Calculate the integral term */
1712 for (i
= 0; i
< SLOTS_PID_HISTORY_SIZE
; i
++)
1713 integral
+= state
->error_history
[i
];
1714 integral
*= SLOTS_PID_INTERVAL
;
1715 DBG(" integral: %08x\n", integral
);
1716 integ_p
= ((s64
)SLOTS_PID_G_r
) * (s64
)integral
;
1717 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1720 /* Calculate the derivative term */
1721 derivative
= state
->error_history
[state
->cur_sample
] -
1722 state
->error_history
[(state
->cur_sample
+ SLOTS_PID_HISTORY_SIZE
- 1)
1723 % SLOTS_PID_HISTORY_SIZE
];
1724 derivative
/= SLOTS_PID_INTERVAL
;
1725 deriv_p
= ((s64
)SLOTS_PID_G_d
) * (s64
)derivative
;
1726 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1729 /* Calculate the proportional term */
1730 prop_p
= ((s64
)SLOTS_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1731 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1737 DBG(" sum: %d\n", (int)sum
);
1738 state
->pwm
= (s32
)sum
;
1740 state
->pwm
= max(state
->pwm
, SLOTS_PID_OUTPUT_MIN
);
1741 state
->pwm
= min(state
->pwm
, SLOTS_PID_OUTPUT_MAX
);
1743 DBG("** DRIVES PWM: %d\n", (int)state
->pwm
);
1744 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, state
->pwm
);
1748 * Initialize the state structure for the slots bay fan control loop
1750 static int init_slots_state(struct slots_pid_state
*state
)
1758 state
->monitor
= attach_i2c_chip(XSERVE_SLOTS_LM75
, "slots_temp");
1759 if (state
->monitor
== NULL
)
1762 err
= device_create_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1763 err
|= device_create_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1765 printk(KERN_WARNING
"Failed to create attribute file(s)"
1766 " for slots bay fan\n");
1772 * Dispose of the state data for the slots control loop
1774 static void dispose_slots_state(struct slots_pid_state
*state
)
1776 if (state
->monitor
== NULL
)
1779 device_remove_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1780 device_remove_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1782 detach_i2c_chip(state
->monitor
);
1783 state
->monitor
= NULL
;
1787 static int call_critical_overtemp(void)
1789 char *argv
[] = { critical_overtemp_path
, NULL
};
1790 static char *envp
[] = { "HOME=/",
1792 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1795 return call_usermodehelper(critical_overtemp_path
,
1796 argv
, envp
, UMH_WAIT_EXEC
);
1801 * Here's the kernel thread that calls the various control loops
1803 static int main_control_loop(void *x
)
1805 DBG("main_control_loop started\n");
1807 mutex_lock(&driver_lock
);
1809 if (start_fcu() < 0) {
1810 printk(KERN_ERR
"kfand: failed to start FCU\n");
1811 mutex_unlock(&driver_lock
);
1815 /* Set the PCI fan once for now on non-RackMac */
1817 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1819 /* Initialize ADCs */
1820 initialize_adc(&cpu_state
[0]);
1821 if (cpu_state
[1].monitor
!= NULL
)
1822 initialize_adc(&cpu_state
[1]);
1824 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1826 mutex_unlock(&driver_lock
);
1828 while (state
== state_attached
) {
1829 unsigned long elapsed
, start
;
1833 mutex_lock(&driver_lock
);
1835 /* Tickle the FCU just in case */
1836 if (--fcu_tickle_ticks
< 0) {
1837 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1841 /* First, we always calculate the new DIMMs state on an Xserve */
1843 do_monitor_dimms(&dimms_state
);
1845 /* Then, the CPUs */
1846 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1847 do_monitor_cpu_combined();
1848 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1849 do_monitor_cpu_rack(&cpu_state
[0]);
1850 if (cpu_state
[1].monitor
!= NULL
)
1851 do_monitor_cpu_rack(&cpu_state
[1]);
1852 // better deal with UP
1854 do_monitor_cpu_split(&cpu_state
[0]);
1855 if (cpu_state
[1].monitor
!= NULL
)
1856 do_monitor_cpu_split(&cpu_state
[1]);
1857 // better deal with UP
1859 /* Then, the rest */
1860 do_monitor_backside(&backside_state
);
1862 do_monitor_slots(&slots_state
);
1864 do_monitor_drives(&drives_state
);
1865 mutex_unlock(&driver_lock
);
1867 if (critical_state
== 1) {
1868 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1869 printk(KERN_WARNING
"Attempting to shut down...\n");
1870 if (call_critical_overtemp()) {
1871 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1872 critical_overtemp_path
);
1873 machine_power_off();
1876 if (critical_state
> 0)
1878 if (critical_state
> MAX_CRITICAL_STATE
) {
1879 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1880 machine_power_off();
1883 // FIXME: Deal with signals
1884 elapsed
= jiffies
- start
;
1886 schedule_timeout_interruptible(HZ
- elapsed
);
1890 DBG("main_control_loop ended\n");
1893 complete_and_exit(&ctrl_complete
, 0);
1897 * Dispose the control loops when tearing down
1899 static void dispose_control_loops(void)
1901 dispose_cpu_state(&cpu_state
[0]);
1902 dispose_cpu_state(&cpu_state
[1]);
1903 dispose_backside_state(&backside_state
);
1904 dispose_drives_state(&drives_state
);
1905 dispose_slots_state(&slots_state
);
1906 dispose_dimms_state(&dimms_state
);
1910 * Create the control loops. U3-0 i2c bus is up, so we can now
1911 * get to the various sensors
1913 static int create_control_loops(void)
1915 struct device_node
*np
;
1917 /* Count CPUs from the device-tree, we don't care how many are
1918 * actually used by Linux
1921 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1924 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1926 /* Decide the type of PID algorithm to use based on the presence of
1927 * the pumps, though that may not be the best way, that is good enough
1931 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1932 else if (machine_is_compatible("PowerMac7,3")
1934 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1935 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1936 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1937 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1939 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1941 /* Create control loops for everything. If any fail, everything
1944 if (init_cpu_state(&cpu_state
[0], 0))
1946 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1947 fetch_cpu_pumps_minmax();
1949 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1951 if (init_backside_state(&backside_state
))
1953 if (rackmac
&& init_dimms_state(&dimms_state
))
1955 if (rackmac
&& init_slots_state(&slots_state
))
1957 if (!rackmac
&& init_drives_state(&drives_state
))
1960 DBG("all control loops up !\n");
1965 DBG("failure creating control loops, disposing\n");
1967 dispose_control_loops();
1973 * Start the control loops after everything is up, that is create
1974 * the thread that will make them run
1976 static void start_control_loops(void)
1978 init_completion(&ctrl_complete
);
1980 ctrl_task
= kthread_run(main_control_loop
, NULL
, "kfand");
1984 * Stop the control loops when tearing down
1986 static void stop_control_loops(void)
1989 wait_for_completion(&ctrl_complete
);
1993 * Attach to the i2c FCU after detecting U3-1 bus
1995 static int attach_fcu(void)
1997 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
2001 DBG("FCU attached\n");
2007 * Detach from the i2c FCU when tearing down
2009 static void detach_fcu(void)
2012 detach_i2c_chip(fcu
);
2017 * Attach to the i2c controller. We probe the various chips based
2018 * on the device-tree nodes and build everything for the driver to
2019 * run, we then kick the driver monitoring thread
2021 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
2023 mutex_lock(&driver_lock
);
2026 if (state
== state_detached
)
2027 state
= state_attaching
;
2028 if (state
!= state_attaching
) {
2029 mutex_unlock(&driver_lock
);
2033 /* Check if we are looking for one of these */
2034 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2036 DBG("found U3-0\n");
2038 if (create_control_loops())
2040 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2042 DBG("found U3-1, attaching FCU\n");
2045 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
2048 if (u3_0
&& rackmac
)
2049 if (create_control_loops())
2052 /* We got all we need, start control loops */
2053 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
2054 DBG("everything up, starting control loops\n");
2055 state
= state_attached
;
2056 start_control_loops();
2058 mutex_unlock(&driver_lock
);
2064 * Called on every adapter when the driver or the i2c controller
2067 static int therm_pm72_detach(struct i2c_adapter
*adapter
)
2069 mutex_lock(&driver_lock
);
2071 if (state
!= state_detached
)
2072 state
= state_detaching
;
2074 /* Stop control loops if any */
2075 DBG("stopping control loops\n");
2076 mutex_unlock(&driver_lock
);
2077 stop_control_loops();
2078 mutex_lock(&driver_lock
);
2080 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2081 DBG("lost U3-0, disposing control loops\n");
2082 dispose_control_loops();
2086 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2087 DBG("lost U3-1, detaching FCU\n");
2091 if (u3_0
== NULL
&& u3_1
== NULL
)
2092 state
= state_detached
;
2094 mutex_unlock(&driver_lock
);
2099 static int fan_check_loc_match(const char *loc
, int fan
)
2104 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
2111 if (strcmp(loc
, c
) == 0)
2120 static void fcu_lookup_fans(struct device_node
*fcu_node
)
2122 struct device_node
*np
= NULL
;
2125 /* The table is filled by default with values that are suitable
2126 * for the old machines without device-tree informations. We scan
2127 * the device-tree and override those values with whatever is
2131 DBG("Looking up FCU controls in device-tree...\n");
2133 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
2138 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
2140 /* Detect control type */
2141 if (!strcmp(np
->type
, "fan-rpm-control") ||
2142 !strcmp(np
->type
, "fan-rpm"))
2144 if (!strcmp(np
->type
, "fan-pwm-control") ||
2145 !strcmp(np
->type
, "fan-pwm"))
2147 /* Only care about fans for now */
2151 /* Lookup for a matching location */
2152 loc
= of_get_property(np
, "location", NULL
);
2153 reg
= of_get_property(np
, "reg", NULL
);
2154 if (loc
== NULL
|| reg
== NULL
)
2156 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
2158 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2161 if (!fan_check_loc_match(loc
, i
))
2163 DBG(" location match, index: %d\n", i
);
2164 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
2165 if (type
!= fcu_fans
[i
].type
) {
2166 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
2167 "in device-tree for %s\n", np
->full_name
);
2170 if (type
== FCU_FAN_RPM
)
2171 fan_id
= ((*reg
) - 0x10) / 2;
2173 fan_id
= ((*reg
) - 0x30) / 2;
2175 printk(KERN_WARNING
"therm_pm72: Can't parse "
2176 "fan ID in device-tree for %s\n", np
->full_name
);
2179 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
2180 fcu_fans
[i
].id
= fan_id
;
2184 /* Now dump the array */
2185 printk(KERN_INFO
"Detected fan controls:\n");
2186 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2187 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
2189 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
2190 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
2191 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
2195 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
2197 state
= state_detached
;
2199 /* Lookup the fans in the device tree */
2200 fcu_lookup_fans(dev
->node
);
2202 /* Add the driver */
2203 return i2c_add_driver(&therm_pm72_driver
);
2206 static int fcu_of_remove(struct of_device
* dev
)
2208 i2c_del_driver(&therm_pm72_driver
);
2213 static struct of_device_id fcu_match
[] =
2221 static struct of_platform_driver fcu_of_platform_driver
=
2223 .name
= "temperature",
2224 .match_table
= fcu_match
,
2225 .probe
= fcu_of_probe
,
2226 .remove
= fcu_of_remove
2230 * Check machine type, attach to i2c controller
2232 static int __init
therm_pm72_init(void)
2234 struct device_node
*np
;
2236 rackmac
= machine_is_compatible("RackMac3,1");
2238 if (!machine_is_compatible("PowerMac7,2") &&
2239 !machine_is_compatible("PowerMac7,3") &&
2243 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2245 np
= of_find_node_by_type(NULL
, "fcu");
2247 /* Some machines have strangely broken device-tree */
2248 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2250 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2254 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2255 if (of_dev
== NULL
) {
2256 printk(KERN_ERR
"Can't register FCU platform device !\n");
2260 of_register_platform_driver(&fcu_of_platform_driver
);
2265 static void __exit
therm_pm72_exit(void)
2267 of_unregister_platform_driver(&fcu_of_platform_driver
);
2270 of_device_unregister(of_dev
);
2273 module_init(therm_pm72_init
);
2274 module_exit(therm_pm72_exit
);
2276 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278 MODULE_LICENSE("GPL");